On the Spectral Evolution of Hot White Dwarf Stars. II. Time-dependent Simulations of Element Transport in Evolving White Dwarfs with STELUM

White dwarf stars are subject to various element transport mechanisms that can cause their surface composition to change radically as they cool, a phenomenon known as spectral evolution. In this paper, we undertake a comprehensive theoretical investigation of the spectral evolution of white dwarfs....

Full description

Saved in:
Bibliographic Details
Published inThe Astrophysical journal Vol. 927; no. 1; pp. 128 - 144
Main Authors Bédard, A., Brassard, P., Bergeron, P., Blouin, S.
Format Journal Article
LanguageEnglish
Published Philadelphia The American Astronomical Society 01.03.2022
IOP Publishing
Subjects
Online AccessGet full text

Cover

Loading…
Abstract White dwarf stars are subject to various element transport mechanisms that can cause their surface composition to change radically as they cool, a phenomenon known as spectral evolution. In this paper, we undertake a comprehensive theoretical investigation of the spectral evolution of white dwarfs. First, we introduce STELUM, a new implementation of the stellar evolutionary code developed at the Université de Montréal. We provide a thorough description of the physical content and numerical techniques of the code, covering the treatment of both stellar evolution and chemical transport. Then, we present two state-of-the-art numerical simulations of element transport in evolving white dwarfs. Atomic diffusion, convective mixing, and mass loss are considered simultaneously as time-dependent diffusive processes and are fully coupled to the cooling. We first model the PG 1159−DO−DB−DQ evolutionary channel: a helium-, carbon-, and oxygen-rich PG 1159 star transforms into a pure-helium DB white dwarf due to gravitational settling and then into a helium-dominated, carbon-polluted DQ white dwarf through convective dredge-up. We also compute for the first time the full DO−DA−DC evolutionary channel: a helium-rich DO white dwarf harboring residual hydrogen becomes a pure-hydrogen DA star through the float-up process and then a helium-dominated, hydrogen-bearing DC star due to convective mixing. We demonstrate that our results are in excellent agreement with available empirical constraints. In particular, our DO−DA−DC simulation perfectly reproduces the lower branch of the bifurcation observed in the Gaia color–magnitude diagram, which can therefore be interpreted as a signature of spectral evolution.
AbstractList White dwarf stars are subject to various element transport mechanisms that can cause their surface composition to change radically as they cool, a phenomenon known as spectral evolution. In this paper, we undertake a comprehensive theoretical investigation of the spectral evolution of white dwarfs. First, we introduce STELUM, a new implementation of the stellar evolutionary code developed at the Université de Montréal. We provide a thorough description of the physical content and numerical techniques of the code, covering the treatment of both stellar evolution and chemical transport. Then, we present two state-of-the-art numerical simulations of element transport in evolving white dwarfs. Atomic diffusion, convective mixing, and mass loss are considered simultaneously as time-dependent diffusive processes and are fully coupled to the cooling. We first model the PG 1159−DO−DB−DQ evolutionary channel: a helium-, carbon-, and oxygen-rich PG 1159 star transforms into a pure-helium DB white dwarf due to gravitational settling and then into a helium-dominated, carbon-polluted DQ white dwarf through convective dredge-up. We also compute for the first time the full DO−DA−DC evolutionary channel: a helium-rich DO white dwarf harboring residual hydrogen becomes a pure-hydrogen DA star through the float-up process and then a helium-dominated, hydrogen-bearing DC star due to convective mixing. We demonstrate that our results are in excellent agreement with available empirical constraints. In particular, our DO−DA−DC simulation perfectly reproduces the lower branch of the bifurcation observed in the Gaia color–magnitude diagram, which can therefore be interpreted as a signature of spectral evolution.
White dwarf stars are subject to various element transport mechanisms that can cause their surface composition to change radically as they cool, a phenomenon known as spectral evolution. In this paper, we undertake a comprehensive theoretical investigation of the spectral evolution of white dwarfs. First, we introduce STELUM, a new implementation of the stellar evolutionary code developed at the Université de Montréal. We provide a thorough description of the physical content and numerical techniques of the code, covering the treatment of both stellar evolution and chemical transport. Then, we present two state-of-the-art numerical simulations of element transport in evolving white dwarfs. Atomic diffusion, convective mixing, and mass loss are considered simultaneously as time-dependent diffusive processes and are fully coupled to the cooling. We first model the PG 1159-DO-DB-DQ evolutionary channel: a helium-, carbon-, and oxygen-rich PG 1159 star transforms into a pure-helium DB white dwarf due to gravitational settling and then into a helium-dominated, carbon-polluted DQ white dwarf through convective dredge-up. We also compute for the first time the full DO-DA-DC evolutionary channel: a helium-rich DO white dwarf harboring residual hydrogen becomes a pure-hydrogen DA star through the float-up process and then a helium-dominated, hydrogen-bearing DC star due to convective mixing. We demonstrate that our results are in excellent agreement with available empirical constraints. In particular, our DO-DA-DC simulation perfectly reproduces the lower branch of the bifurcation observed in the Gaia color–magnitude diagram, which can therefore be interpreted as a signature of spectral evolution.
Author Brassard, P.
Bergeron, P.
Blouin, S.
Bédard, A.
Author_xml – sequence: 1
  givenname: A.
  orcidid: 0000-0002-2384-1326
  surname: Bédard
  fullname: Bédard, A.
  organization: Université de Montréal Département de Physique, Montréal, QC H3C 3J7, Canada
– sequence: 2
  givenname: P.
  surname: Brassard
  fullname: Brassard, P.
  organization: Université de Montréal Département de Physique, Montréal, QC H3C 3J7, Canada
– sequence: 3
  givenname: P.
  orcidid: 0000-0003-2368-345X
  surname: Bergeron
  fullname: Bergeron, P.
  organization: Université de Montréal Département de Physique, Montréal, QC H3C 3J7, Canada
– sequence: 4
  givenname: S.
  orcidid: 0000-0002-9632-1436
  surname: Blouin
  fullname: Blouin, S.
  organization: University of Victoria Department of Physics and Astronomy, Victoria, BC V8W 2Y2, Canada
BackLink https://www.osti.gov/servlets/purl/1865028$$D View this record in Osti.gov
BookMark eNp9kcFvFCEYxYmpidvq3SPReHO2DDAMHE1d7SZretht9EYYBlw2szAC28b_wT9apmPUGPVE-PJ7L9_33jk488EbAJ7XaEk4bS_rhvCKkqa9VJpS0T4Ci5-jM7BACNGKkfbTE3Ce0mH6YiEW4NuNh3lv4HY0Okc1wNVdGE7ZBQ-Dhdchw497lw18e6-ihdusYlrC9XoJd-5oqt6MxvfGZ7h1x9OgJl2ahKvBHKfxLiqfxhAzdP7B-s75z79bJnjv8h5ud6vN7Yen4LFVQzLPfrwX4Pbdand1XW1u3q-v3mwqTVGbK90SRnVvBFLcllO7TnAjKBEW9ww3HWqUFahWnWg0M6zHTV-TTtWWMNP0XJAL8GL2DSk7mXTZRu918L5kIGvOGoR5gV7O0BjDl5NJWR7CKfqyl8SMlgAF5qxQbKZ0DClFY2Vxe8ihpOkGWSM51SOnLuTUhZzrKUL0h3CM7qji1_9JXs0SF8Zfy6jxIAUuuKwxl2NvC_f6L9w_bb8Dx12ugQ
CitedBy_id crossref_primary_10_1093_mnrasl_slad105
crossref_primary_10_1007_s10509_024_04307_5
crossref_primary_10_3847_1538_4357_acbfaa
crossref_primary_10_1093_mnras_stac3733
crossref_primary_10_3847_1538_4357_ac76c7
crossref_primary_10_3847_1538_4357_accb56
crossref_primary_10_3847_1538_4357_ad9827
crossref_primary_10_3847_1538_4357_ad9a6d
crossref_primary_10_1093_mnras_stad3773
crossref_primary_10_3847_1538_4357_acbb62
crossref_primary_10_1093_mnras_stad2171
crossref_primary_10_1016_j_newar_2024_101705
crossref_primary_10_3847_1538_4357_ad3440
crossref_primary_10_1051_0004_6361_202451886
crossref_primary_10_1103_PhysRevE_111_025206
crossref_primary_10_1038_s41586_024_07102_y
crossref_primary_10_1093_mnras_stad1574
crossref_primary_10_1093_mnras_stad3825
crossref_primary_10_3847_1538_4357_acd057
crossref_primary_10_3847_1538_4357_ac609d
crossref_primary_10_1016_j_physrep_2022_09_001
crossref_primary_10_1093_mnrasl_slaf011
crossref_primary_10_1093_mnras_stad1719
crossref_primary_10_3847_1538_4357_ad863b
Cites_doi 10.1086/162553
10.1086/301513
10.1088/0004-637X/737/1/28
10.1086/592788
10.1086/169815
10.1088/0067-0049/189/1/240
10.1086/428642
10.1093/mnras/stz3638
10.1086/191420
10.1086/161412
10.1051/0004-6361/202037530
10.3847/1538-4357/ab379e
10.1086/505938
10.1086/177381
10.1016/0092-640X(88)90009-5
10.1051/0004-6361/201832843
10.1086/162241
10.1086/191679
10.1086/516819
10.1086/169937
10.3847/1538-4357/ab153a
10.1086/191111
10.1046/j.1365-8711.1998.01332.x
10.1046/j.1365-8711.1998.01392.x
10.1088/0004-637X/730/2/128
10.1093/mnras/sty2751
10.1086/192204
10.1111/j.1365-2966.2005.08991.x
10.1111/j.1365-2966.2010.16426.x
10.3847/1538-4357/ab6602
10.3847/1538-4357/ab9e75
10.1146/annurev-earth-060313-054740
10.1086/345787
10.1086/304425
10.1086/168185
10.3847/1538-4357/ab46b9
10.3847/0067-0049/223/1/10
10.1051/0004-6361/202038879
10.1088/0004-637X/799/2/142
10.1086/164410
10.1051/0004-6361/201424861
10.1086/152061
10.1051/0004-6361:20053769
10.1051/0004-6361/200811468
10.1051/0004-6361/201423691
10.1088/0004-637X/720/1/581
10.1086/157657
10.3847/1538-4357/aae2b1
10.1111/j.1365-2966.2011.18355.x
10.3847/1538-4357/aad4a9
10.3847/1538-4357/aab713
10.1051/0004-6361/201220896
10.1086/172399
10.1098/rsos.170192
10.1086/173695
10.1086/500443
10.1088/0004-637X/717/1/183
10.1093/mnras/stz2656
10.1086/173006
10.3847/1538-4357/abafbe
10.1093/mnras/stz1759
10.1086/187909
10.1038/nature25136
10.1086/148357
10.3847/1538-4357/ab4989
10.1086/175566
10.1103/PhysRevLett.111.161101
10.1051/0004-6361/201936346
10.1051/0004-6361:20040021
10.1088/0004-637X/755/2/128
10.1093/mnras/stz2915
10.1086/308153
10.1093/mnras/stz960
10.1016/S0375-9474(99)00030-5
10.1086/430373
10.1086/191112
10.1086/192264
10.3847/1538-4357/833/2/127
10.1086/190482
10.1086/192184
10.1086/152062
10.1086/312955
10.1051/0004-6361:200500159
10.3847/1538-4357/aa6797
10.1086/184203
10.1093/mnras/stu216
10.1146/annurev.astro.38.1.613
10.1086/191728
10.1051/0004-6361/201629272
10.1051/0004-6361:20041965
10.3847/1538-4357/ab1f82
10.1086/523699
10.1103/PhysRevE.103.043204
10.1086/320356
10.1086/190192
10.1086/317235
10.3847/1538-4365/aaa5a8
10.1086/319535
ContentType Journal Article
Copyright 2022. The Author(s). Published by the American Astronomical Society.
2022. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022. The Author(s). Published by the American Astronomical Society.
– notice: 2022. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
CorporateAuthor Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
CorporateAuthor_xml – name: Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
DBID O3W
TSCCA
AAYXX
CITATION
7TG
8FD
H8D
KL.
L7M
OIOZB
OTOTI
DOI 10.3847/1538-4357/ac4497
DatabaseName IOPscience : Institute of Physics Open Access Journal Titles [open access]
IOPscience (Open Access)
CrossRef
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Aerospace Database
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList CrossRef

Aerospace Database
Database_xml – sequence: 1
  dbid: O3W
  name: IOPscience : Institute of Physics Open Access Journal Titles [open access]
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
EISSN 1538-4357
ExternalDocumentID 1865028
10_3847_1538_4357_ac4497
apjac4497
GrantInformation_xml – fundername: Gouvernement du Canada ∣ Natural Sciences and Engineering Research Council of Canada (NSERC)
  grantid: RN000916
  funderid: https://doi.org/10.13039/501100000038
GroupedDBID -DZ
-~X
123
1JI
23N
2FS
2WC
4.4
6J9
85S
AAFWJ
AAGCD
AAJIO
ABHWH
ACBEA
ACGFS
ACHIP
ACNCT
ADACN
AEFHF
AENEX
AFPKN
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
CJUJL
CRLBU
CS3
EBS
F5P
FRP
GROUPED_DOAJ
IJHAN
IOP
KOT
M~E
N5L
O3W
O43
OK1
PJBAE
RIN
RNS
ROL
SJN
SY9
T37
TN5
TR2
TSCCA
WH7
XSW
AAYXX
CITATION
7TG
8FD
AEINN
H8D
KL.
L7M
ABPTK
OIOZB
OTOTI
ID FETCH-LOGICAL-c407t-c7364cde90a8f497bb98e9439f2d625b05af901ab95c6e6d25d13ba1f36e5d893
IEDL.DBID O3W
ISSN 0004-637X
IngestDate Sat Jun 17 13:45:49 EDT 2023
Wed Aug 13 11:02:01 EDT 2025
Tue Jul 01 03:24:52 EDT 2025
Thu Apr 24 22:58:20 EDT 2025
Wed Mar 23 01:37:34 EDT 2022
Wed Aug 21 03:33:46 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c407t-c7364cde90a8f497bb98e9439f2d625b05af901ab95c6e6d25d13ba1f36e5d893
Notes Stars and Stellar Physics
AAS34965
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
Natural Sciences and Engineering Research Council of Canada (NSERC)
LA-UR-21-28934
89233218CNA000001; 20190624PRD2
USDOE Laboratory Directed Research and Development (LDRD) Program
USDOE National Nuclear Security Administration (NNSA)
Fonds de Recherche du Quebec-Nature et Technologie (FRQNT)
ORCID 0000-0002-2384-1326
0000-0003-2368-345X
0000-0002-9632-1436
0000000296321436
0000000223841326
000000032368345X
OpenAccessLink https://iopscience.iop.org/article/10.3847/1538-4357/ac4497
PQID 2640009286
PQPubID 4562441
PageCount 17
ParticipantIDs crossref_citationtrail_10_3847_1538_4357_ac4497
proquest_journals_2640009286
osti_scitechconnect_1865028
crossref_primary_10_3847_1538_4357_ac4497
iop_journals_10_3847_1538_4357_ac4497
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
– name: United States
PublicationTitle The Astrophysical journal
PublicationTitleAbbrev APJ
PublicationTitleAlternate Astrophys. J
PublicationYear 2022
Publisher The American Astronomical Society
IOP Publishing
Publisher_xml – name: The American Astronomical Society
– name: IOP Publishing
References Baglin (apjac4497bib9) 1973; 27
Cyburt (apjac4497bib43) 2010; 189
Reindl (apjac4497bib108) 2014; 572
Turcotte (apjac4497bib121) 1993; 413
Quirion (apjac4497bib107) 2012; 755
Canuto (apjac4497bib32) 1991; 370
Pelletier (apjac4497bib106) 1986; 307
Gaia Collaboration (apjac4497bib66) 2016; 595
Unglaub (apjac4497bib123) 2000; 359
Dehner (apjac4497bib45) 1995; 445
Bergeron (apjac4497bib16) 2011; 737
Itoh (apjac4497bib81) 1996; 102
Iben (apjac4497bib77) 1984; 282
D’Antona (apjac4497bib44) 1989; 347
Freytag (apjac4497bib64) 1996; 313
Koester (apjac4497bib93) 1982; 116
Paquette (apjac4497bib104) 1986b; 61
Bergeron (apjac4497bib15) 1995; 443
Cunningham (apjac4497bib41) 2019; 488
Althaus (apjac4497bib4) 2020; 633
Schatzman (apjac4497bib115) 1958
Cukanovaite (apjac4497bib40) 2019; 490
Langer (apjac4497bib96) 1985; 145
Gaia Collaboration (apjac4497bib65) 2018; 616
Camisassa (apjac4497bib31) 2017; 839
Dufour (apjac4497bib50) 2005; 627
Chen (apjac4497bib37) 2011; 413
Dreizler (apjac4497bib48) 1999; 352
Isern (apjac4497bib79) 2000; 528
Kippenhahn (apjac4497bib86) 1980; 91
Lamb (apjac4497bib95) 1974
Althaus (apjac4497bib5) 2005a; 440
Hubbard (apjac4497bib76) 1969; 18
Thoul (apjac4497bib118) 1994; 421
Giammichele (apjac4497bib68) 2018; 554
Cunningham (apjac4497bib42) 2020; 492
Genest-Beaulieu (apjac4497bib67) 2019; 882
Dreizler (apjac4497bib49) 1996; 314
Alcock (apjac4497bib1) 1980; 235
Graboske (apjac4497bib71) 1973; 181
Kitsikis (apjac4497bib88) 2005
Fontaine (apjac4497bib60) 2015
Blouin (apjac4497bib23) 2018; 863
Badnell (apjac4497bib8) 2005; 360
Dufour (apjac4497bib51) 2017
Coutu (apjac4497bib39) 2019; 885
Itoh (apjac4497bib82) 1984; 285
Kippenhahn (apjac4497bib87) 2012
Kudritzki (apjac4497bib94) 2000; 38
Beznogov (apjac4497bib17) 2013; 111
Koester (apjac4497bib89) 1976; 52
Barstow (apjac4497bib10) 2014; 440
Bergeron (apjac4497bib13) 2001; 133
Dupuis (apjac4497bib53) 1992; 82
Scóccola (apjac4497bib116) 2006; 451
Blouin (apjac4497bib25) 2020b; 899
Paxton (apjac4497bib105) 2018; 234
Desharnais (apjac4497bib46) 2008; 672
Herwig (apjac4497bib74) 2000; 360
Kepler (apjac4497bib85) 2019; 486
Salaris (apjac4497bib112) 2017; 4
Althaus (apjac4497bib6) 2005b; 435
Althaus (apjac4497bib3) 2004; 417
Giammichele (apjac4497bib69) 2016; 223
Fontaine (apjac4497bib57) 2005
Dunlap (apjac4497bib52) 2015
Unglaub (apjac4497bib122) 1998; 338
Dewitt (apjac4497bib47) 1973; 181
Blouin (apjac4497bib24) 2019; 878
Michaud (apjac4497bib100) 2015
Brassard (apjac4497bib29) 1992; 80
Tremblay (apjac4497bib120) 2015; 799
Althaus (apjac4497bib2) 1998; 296
Fontaine (apjac4497bib58) 2008; 120
Iglesias (apjac4497bib78) 1996; 464
Hairer (apjac4497bib72) 1996
Brassard (apjac4497bib28) 2007
Holberg (apjac4497bib75) 2006; 132
MacDonald (apjac4497bib98) 1991; 371
Fontaine (apjac4497bib61) 1977; 35
Mihalas (apjac4497bib101) 1978
Burgers (apjac4497bib30) 1969
Charbonneau (apjac4497bib35) 1993; 405
Isern (apjac4497bib80) 1997; 485
Koester (apjac4497bib91) 2014; 566
Angulo (apjac4497bib7) 1999; 656
Ourique (apjac4497bib102) 2019; 482
Caughlan (apjac4497bib34) 1988; 40
Bischoff-Kim (apjac4497bib18) 2019; 871
Henyey (apjac4497bib73) 1965; 142
Saumon (apjac4497bib114) 1995; 99
Paquette (apjac4497bib103) 1986a; 61
Koester (apjac4497bib90) 2009; 498
Tremblay (apjac4497bib119) 2011; 730
Bédard (apjac4497bib11) 2020; 901
Cassisi (apjac4497bib33) 2007; 661
Farihi (apjac4497bib54) 2010; 404
Renedo (apjac4497bib109) 2010; 717
Ferguson (apjac4497bib55) 2005; 623
Fontaine (apjac4497bib62) 1984; 277
Werner (apjac4497bib125) 1996; 309
Blouin (apjac4497bib20) 2021; 103
MacDonald (apjac4497bib97) 1998; 296
Rolland (apjac4497bib111) 2020; 889
Blouin (apjac4497bib21) 2020a; 640
Brassard (apjac4497bib27) 2015
Manseau (apjac4497bib99) 2016; 833
Rolland (apjac4497bib110) 2018; 857
Jura (apjac4497bib84) 2014; 42
Werner (apjac4497bib126) 2006; 118
Salaris (apjac4497bib113) 2000; 544
Fontaine (apjac4497bib63) 1987
Gianninas (apjac4497bib70) 2010; 720
Van Grootel (apjac4497bib124) 2013; 553
Chayer (apjac4497bib36) 1995; 99
Tassoul (apjac4497bib117) 1990; 72
Fontaine (apjac4497bib59) 2001; 113
Blöcker (apjac4497bib19) 1995; 299
Fontaine (apjac4497bib56) 2002; 581
York (apjac4497bib127) 2000; 120
Bergeron (apjac4497bib12) 2019; 876
Cheng (apjac4497bib38) 2019; 886
Koester (apjac4497bib92) 2020; 635
Bergeron (apjac4497bib14) 1997; 108
Blouin (apjac4497bib22) 2019; 490
Itoh (apjac4497bib83) 1983; 273
Böhm-Vitense (apjac4497bib26) 1958; 46
References_xml – volume: 285
  start-page: 758
  year: 1984
  ident: apjac4497bib82
  publication-title: ApJ
  doi: 10.1086/162553
– start-page: 19
  year: 2007
  ident: apjac4497bib28
– volume: 120
  start-page: 1579
  year: 2000
  ident: apjac4497bib127
  publication-title: AJ
  doi: 10.1086/301513
– volume: 737
  start-page: 28
  year: 2011
  ident: apjac4497bib16
  publication-title: ApJ
  doi: 10.1088/0004-637X/737/1/28
– volume: 120
  start-page: 1043
  year: 2008
  ident: apjac4497bib58
  publication-title: PASP
  doi: 10.1086/592788
– volume: 370
  start-page: 295
  year: 1991
  ident: apjac4497bib32
  publication-title: ApJ
  doi: 10.1086/169815
– volume: 189
  start-page: 240
  year: 2010
  ident: apjac4497bib43
  publication-title: ApJS
  doi: 10.1088/0067-0049/189/1/240
– volume: 623
  start-page: 585
  year: 2005
  ident: apjac4497bib55
  publication-title: ApJ
  doi: 10.1086/428642
– start-page: 113
  year: 2015
  ident: apjac4497bib60
– volume: 145
  start-page: 179
  year: 1985
  ident: apjac4497bib96
  publication-title: A&A
– volume: 492
  start-page: 3540
  year: 2020
  ident: apjac4497bib42
  publication-title: MNRAS
  doi: 10.1093/mnras/stz3638
– year: 1958
  ident: apjac4497bib115
– volume: 72
  start-page: 335
  year: 1990
  ident: apjac4497bib117
  publication-title: ApJS
  doi: 10.1086/191420
– volume: 273
  start-page: 774
  year: 1983
  ident: apjac4497bib83
  publication-title: ApJ
  doi: 10.1086/161412
– volume: 635
  start-page: A103
  year: 2020
  ident: apjac4497bib92
  publication-title: A&A
  doi: 10.1051/0004-6361/202037530
– volume: 882
  start-page: 106
  year: 2019
  ident: apjac4497bib67
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab379e
– volume: 132
  start-page: 1221
  year: 2006
  ident: apjac4497bib75
  publication-title: AJ
  doi: 10.1086/505938
– volume: 352
  start-page: 632
  year: 1999
  ident: apjac4497bib48
  publication-title: A&A
– volume: 464
  start-page: 943
  year: 1996
  ident: apjac4497bib78
  publication-title: ApJ
  doi: 10.1086/177381
– volume: 40
  start-page: 283
  year: 1988
  ident: apjac4497bib34
  publication-title: ADNDT
  doi: 10.1016/0092-640X(88)90009-5
– volume: 616
  start-page: A10
  year: 2018
  ident: apjac4497bib65
  publication-title: A&A
  doi: 10.1051/0004-6361/201832843
– volume: 282
  start-page: 615
  year: 1984
  ident: apjac4497bib77
  publication-title: ApJ
  doi: 10.1086/162241
– year: 1996
  ident: apjac4497bib72
– start-page: 3
  year: 2017
  ident: apjac4497bib51
– volume: 80
  start-page: 725
  year: 1992
  ident: apjac4497bib29
  publication-title: ApJS
  doi: 10.1086/191679
– volume: 91
  start-page: 175
  year: 1980
  ident: apjac4497bib86
  publication-title: A&A
– volume: 661
  start-page: 1094
  year: 2007
  ident: apjac4497bib33
  publication-title: ApJ
  doi: 10.1086/516819
– volume: 371
  start-page: 719
  year: 1991
  ident: apjac4497bib98
  publication-title: ApJ
  doi: 10.1086/169937
– volume: 876
  start-page: 67
  year: 2019
  ident: apjac4497bib12
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab153a
– volume: 61
  start-page: 177
  year: 1986b
  ident: apjac4497bib104
  publication-title: ApJS
  doi: 10.1086/191111
– volume: 296
  start-page: 206
  year: 1998
  ident: apjac4497bib2
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.1998.01332.x
– volume: 296
  start-page: 523
  year: 1998
  ident: apjac4497bib97
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.1998.01392.x
– volume: 730
  start-page: 128
  year: 2011
  ident: apjac4497bib119
  publication-title: ApJ
  doi: 10.1088/0004-637X/730/2/128
– volume: 482
  start-page: 649
  year: 2019
  ident: apjac4497bib102
  publication-title: MNRAS
  doi: 10.1093/mnras/sty2751
– volume: 99
  start-page: 713
  year: 1995
  ident: apjac4497bib114
  publication-title: ApJS
  doi: 10.1086/192204
– volume: 360
  start-page: 458
  year: 2005
  ident: apjac4497bib8
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2005.08991.x
– volume: 404
  start-page: 2123
  year: 2010
  ident: apjac4497bib54
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2010.16426.x
– volume: 889
  start-page: 87
  year: 2020
  ident: apjac4497bib111
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab6602
– volume: 899
  start-page: 46
  year: 2020b
  ident: apjac4497bib25
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab9e75
– volume: 42
  start-page: 45
  year: 2014
  ident: apjac4497bib84
  publication-title: AREPS
  doi: 10.1146/annurev-earth-060313-054740
– volume: 581
  start-page: L33
  year: 2002
  ident: apjac4497bib56
  publication-title: ApJL
  doi: 10.1086/345787
– volume: 485
  start-page: 308
  year: 1997
  ident: apjac4497bib80
  publication-title: ApJ
  doi: 10.1086/304425
– volume: 347
  start-page: 934
  year: 1989
  ident: apjac4497bib44
  publication-title: ApJ
  doi: 10.1086/168185
– volume: 299
  start-page: 755
  year: 1995
  ident: apjac4497bib19
  publication-title: A&A
– volume: 27
  start-page: 307
  year: 1973
  ident: apjac4497bib9
  publication-title: A&A
– volume: 885
  start-page: 74
  year: 2019
  ident: apjac4497bib39
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab46b9
– volume: 223
  start-page: 10
  year: 2016
  ident: apjac4497bib69
  publication-title: ApJS
  doi: 10.3847/0067-0049/223/1/10
– volume: 640
  start-page: L11
  year: 2020a
  ident: apjac4497bib21
  publication-title: A&A
  doi: 10.1051/0004-6361/202038879
– volume: 799
  start-page: 142
  year: 2015
  ident: apjac4497bib120
  publication-title: ApJ
  doi: 10.1088/0004-637X/799/2/142
– year: 1969
  ident: apjac4497bib30
– volume: 307
  start-page: 242
  year: 1986
  ident: apjac4497bib106
  publication-title: ApJ
  doi: 10.1086/164410
– volume: 572
  start-page: A117
  year: 2014
  ident: apjac4497bib108
  publication-title: A&A
  doi: 10.1051/0004-6361/201424861
– volume: 181
  start-page: 439
  year: 1973
  ident: apjac4497bib47
  publication-title: ApJ
  doi: 10.1086/152061
– volume: 451
  start-page: 147
  year: 2006
  ident: apjac4497bib116
  publication-title: A&A
  doi: 10.1051/0004-6361:20053769
– volume: 498
  start-page: 517
  year: 2009
  ident: apjac4497bib90
  publication-title: A&A
  doi: 10.1051/0004-6361/200811468
– start-page: 319
  year: 1987
  ident: apjac4497bib63
– volume: 566
  start-page: A34
  year: 2014
  ident: apjac4497bib91
  publication-title: A&A
  doi: 10.1051/0004-6361/201423691
– volume: 720
  start-page: 581
  year: 2010
  ident: apjac4497bib70
  publication-title: ApJ
  doi: 10.1088/0004-637X/720/1/581
– volume: 235
  start-page: 541
  year: 1980
  ident: apjac4497bib1
  publication-title: ApJ
  doi: 10.1086/157657
– start-page: 65
  year: 2005
  ident: apjac4497bib88
– volume: 871
  start-page: 13
  year: 2019
  ident: apjac4497bib18
  publication-title: ApJ
  doi: 10.3847/1538-4357/aae2b1
– volume: 413
  start-page: 2827
  year: 2011
  ident: apjac4497bib37
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2011.18355.x
– volume: 863
  start-page: 184
  year: 2018
  ident: apjac4497bib23
  publication-title: ApJ
  doi: 10.3847/1538-4357/aad4a9
– year: 2015
  ident: apjac4497bib100
– volume: 857
  start-page: 56
  year: 2018
  ident: apjac4497bib110
  publication-title: ApJ
  doi: 10.3847/1538-4357/aab713
– volume: 553
  start-page: A97
  year: 2013
  ident: apjac4497bib124
  publication-title: A&A
  doi: 10.1051/0004-6361/201220896
– volume: 405
  start-page: 720
  year: 1993
  ident: apjac4497bib35
  publication-title: ApJ
  doi: 10.1086/172399
– volume: 4
  year: 2017
  ident: apjac4497bib112
  publication-title: RSOS
  doi: 10.1098/rsos.170192
– volume: 421
  start-page: 828
  year: 1994
  ident: apjac4497bib118
  publication-title: ApJ
  doi: 10.1086/173695
– volume: 309
  start-page: 861
  year: 1996
  ident: apjac4497bib125
  publication-title: A&A
– volume: 314
  start-page: 217
  year: 1996
  ident: apjac4497bib49
  publication-title: A&A
– volume: 52
  start-page: 415
  year: 1976
  ident: apjac4497bib89
  publication-title: A&A
– volume: 118
  start-page: 183
  year: 2006
  ident: apjac4497bib126
  publication-title: PASP
  doi: 10.1086/500443
– volume: 717
  start-page: 183
  year: 2010
  ident: apjac4497bib109
  publication-title: ApJ
  doi: 10.1088/0004-637X/717/1/183
– volume: 490
  start-page: 1010
  year: 2019
  ident: apjac4497bib40
  publication-title: MNRAS
  doi: 10.1093/mnras/stz2656
– volume: 360
  start-page: 952
  year: 2000
  ident: apjac4497bib74
  publication-title: A&A
– volume: 413
  start-page: 376
  year: 1993
  ident: apjac4497bib121
  publication-title: ApJ
  doi: 10.1086/173006
– year: 1978
  ident: apjac4497bib101
– volume: 901
  start-page: 93
  year: 2020
  ident: apjac4497bib11
  publication-title: ApJ
  doi: 10.3847/1538-4357/abafbe
– volume: 488
  start-page: 2503
  year: 2019
  ident: apjac4497bib41
  publication-title: MNRAS
  doi: 10.1093/mnras/stz1759
– start-page: 49
  year: 2005
  ident: apjac4497bib57
– volume: 46
  start-page: 108
  year: 1958
  ident: apjac4497bib26
  publication-title: ZAp
– volume: 445
  start-page: L141
  year: 1995
  ident: apjac4497bib45
  publication-title: ApJL
  doi: 10.1086/187909
– volume: 554
  start-page: 73
  year: 2018
  ident: apjac4497bib68
  publication-title: Natur
  doi: 10.1038/nature25136
– volume: 142
  start-page: 841
  year: 1965
  ident: apjac4497bib73
  publication-title: ApJ
  doi: 10.1086/148357
– volume: 338
  start-page: 75
  year: 1998
  ident: apjac4497bib122
  publication-title: A&A
– volume: 886
  start-page: 100
  year: 2019
  ident: apjac4497bib38
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab4989
– year: 1974
  ident: apjac4497bib95
– volume: 443
  start-page: 764
  year: 1995
  ident: apjac4497bib15
  publication-title: ApJ
  doi: 10.1086/175566
– volume: 111
  year: 2013
  ident: apjac4497bib17
  publication-title: PhRvL
  doi: 10.1103/PhysRevLett.111.161101
– start-page: 125
  year: 2015
  ident: apjac4497bib27
– volume: 633
  start-page: A20
  year: 2020
  ident: apjac4497bib4
  publication-title: A&A
  doi: 10.1051/0004-6361/201936346
– volume: 417
  start-page: 1115
  year: 2004
  ident: apjac4497bib3
  publication-title: A&A
  doi: 10.1051/0004-6361:20040021
– volume: 755
  start-page: 128
  year: 2012
  ident: apjac4497bib107
  publication-title: ApJ
  doi: 10.1088/0004-637X/755/2/128
– volume: 490
  start-page: 4166
  year: 2019
  ident: apjac4497bib22
  publication-title: MNRAS
  doi: 10.1093/mnras/stz2915
– volume: 313
  start-page: 497
  year: 1996
  ident: apjac4497bib64
  publication-title: A&A
– volume: 528
  start-page: 397
  year: 2000
  ident: apjac4497bib79
  publication-title: ApJ
  doi: 10.1086/308153
– volume: 486
  start-page: 2169
  year: 2019
  ident: apjac4497bib85
  publication-title: MNRAS
  doi: 10.1093/mnras/stz960
– volume: 656
  start-page: 3
  year: 1999
  ident: apjac4497bib7
  publication-title: NuPhA
  doi: 10.1016/S0375-9474(99)00030-5
– volume: 116
  start-page: 147
  year: 1982
  ident: apjac4497bib93
  publication-title: A&A
– volume: 627
  start-page: 404
  year: 2005
  ident: apjac4497bib50
  publication-title: ApJ
  doi: 10.1086/430373
– volume: 61
  start-page: 197
  year: 1986a
  ident: apjac4497bib103
  publication-title: ApJS
  doi: 10.1086/191112
– volume: 102
  start-page: 411
  year: 1996
  ident: apjac4497bib81
  publication-title: ApJS
  doi: 10.1086/192264
– volume: 833
  start-page: 127
  year: 2016
  ident: apjac4497bib99
  publication-title: ApJ
  doi: 10.3847/1538-4357/833/2/127
– volume: 35
  start-page: 293
  year: 1977
  ident: apjac4497bib61
  publication-title: ApJS
  doi: 10.1086/190482
– volume: 99
  start-page: 189
  year: 1995
  ident: apjac4497bib36
  publication-title: ApJS
  doi: 10.1086/192184
– volume: 181
  start-page: 457
  year: 1973
  ident: apjac4497bib71
  publication-title: ApJ
  doi: 10.1086/152062
– start-page: 547
  year: 2015
  ident: apjac4497bib52
– volume: 108
  start-page: 339
  year: 1997
  ident: apjac4497bib14
  publication-title: ApJS
  doi: 10.1086/312955
– volume: 440
  start-page: L1
  year: 2005a
  ident: apjac4497bib5
  publication-title: A&A
  doi: 10.1051/0004-6361:200500159
– volume: 839
  start-page: 11
  year: 2017
  ident: apjac4497bib31
  publication-title: ApJ
  doi: 10.3847/1538-4357/aa6797
– volume: 277
  start-page: L61
  year: 1984
  ident: apjac4497bib62
  publication-title: ApJL
  doi: 10.1086/184203
– volume: 440
  start-page: 1607
  year: 2014
  ident: apjac4497bib10
  publication-title: MNRAS
  doi: 10.1093/mnras/stu216
– volume: 38
  start-page: 613
  year: 2000
  ident: apjac4497bib94
  publication-title: ARA&A
  doi: 10.1146/annurev.astro.38.1.613
– volume: 359
  start-page: 1042
  year: 2000
  ident: apjac4497bib123
  publication-title: A&A
– volume: 82
  start-page: 505
  year: 1992
  ident: apjac4497bib53
  publication-title: ApJS
  doi: 10.1086/191728
– volume: 595
  start-page: A1
  year: 2016
  ident: apjac4497bib66
  publication-title: A&A
  doi: 10.1051/0004-6361/201629272
– volume: 435
  start-page: 631
  year: 2005b
  ident: apjac4497bib6
  publication-title: A&A
  doi: 10.1051/0004-6361:20041965
– volume: 878
  start-page: 63
  year: 2019
  ident: apjac4497bib24
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab1f82
– volume: 672
  start-page: 540
  year: 2008
  ident: apjac4497bib46
  publication-title: ApJ
  doi: 10.1086/523699
– volume: 103
  year: 2021
  ident: apjac4497bib20
  publication-title: PhRvE
  doi: 10.1103/PhysRevE.103.043204
– volume: 133
  start-page: 413
  year: 2001
  ident: apjac4497bib13
  publication-title: ApJS
  doi: 10.1086/320356
– volume: 18
  start-page: 297
  year: 1969
  ident: apjac4497bib76
  publication-title: ApJS
  doi: 10.1086/190192
– volume: 544
  start-page: 1036
  year: 2000
  ident: apjac4497bib113
  publication-title: ApJ
  doi: 10.1086/317235
– volume: 234
  start-page: 34
  year: 2018
  ident: apjac4497bib105
  publication-title: ApJS
  doi: 10.3847/1538-4365/aaa5a8
– year: 2012
  ident: apjac4497bib87
– volume: 113
  start-page: 409
  year: 2001
  ident: apjac4497bib59
  publication-title: PASP
  doi: 10.1086/319535
SSID ssj0004299
Score 2.508923
Snippet White dwarf stars are subject to various element transport mechanisms that can cause their surface composition to change radically as they cool, a phenomenon...
SourceID osti
proquest
crossref
iop
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 128
SubjectTerms ASTRONOMY AND ASTROPHYSICS
Astrophysics
Atomic properties
Carbon
Chemical transport
Convective mixing
Diffusion
Dwarf stars
Helium
Hydrogen
Late stellar evolution
Mathematical models
Numerical simulations
Oxygen
Simulation
Spectra
Stars
Stellar convection envelopes
Stellar diffusion
Stellar evolution
Stellar evolutionary models
Stellar winds
Time dependent analysis
White dwarf stars
White dwarfs
Title On the Spectral Evolution of Hot White Dwarf Stars. II. Time-dependent Simulations of Element Transport in Evolving White Dwarfs with STELUM
URI https://iopscience.iop.org/article/10.3847/1538-4357/ac4497
https://www.proquest.com/docview/2640009286
https://www.osti.gov/servlets/purl/1865028
Volume 927
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbaIiQuCAqoS8tqDoDEIfuI87DFqYKtdhFlK7Ur9mY5fkhFNFlt0iL-Az-aGSe7pQJVXCIfxk7keX0zsWcYe228QKdQ8GgkCxElfKQjaRNUd6oVJp2RPvQiOP2STRfJp2W63GHvt3dhqlVn-gc4bAsFt1tI-s3Rlg6DjqKXz4faJInMd9kDLjJBkdecf729FBnLDvsmUcbzZfuP8p8r3PFJu_hetM8Vathf9jk4nZMn7HGHFuG4_banbMeV--zguKb8dXX1E95CGLfpiXqfPTxrR8_Yr3kJiO2A-stTMgMmN52QQeVhWjUQWuPBxx967QEh57oewGw2ALoTEm1a4zZwfnnVNfiqaeKkPW0O25rocFmGpSkv8eeSNVCGF84vJp8Xp8_Z4mRy8WEadZ0XIoMBXhOZnGeJsU6OtPC4QUUhhZOIXXxsMWAqRqn2CCR0IVOTuczGqR3zQo89z1xqEQK9YHtlVboDBgjIMothECK3PHGSY3ykEWW5WLvY5tz02HCz98p0ZcmpO8Z3heEJcUsRtxRxS7Xc6rF32xmrtiTHPbRvkJ2q08v6Hrr-HTq9-qZkjHQK_bdaWd9jhyQRCoWTiusaOoVkGjUWiHBj0WNHG0G5XQOhJiHYWGQv__MrDtmjmG5XhCNuR2yvWV-7V4h5mqIfcgX4nM3P-kHOfwNZMfjJ
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoEYgLggLq0lLmAEgcso84ceJjRXe1C31J7Yq9WY5jS0U0WW3SIv4DP5qZ2NtSgSpuPtiO5ZnxfDOx52PsnXE5OoWCR0NZ5FHChzqSZYLmTrXCpDXSdVwER8diOk8-L9JF4Dnt3sLUy3D097HpCwX7LST75niWDjobRS-fDbRJEpkNlqXbYA9TLgRxN5zwr7cPI2MZ8G8SCZ4t_H_Kf85yxy9t4LfxjK7Ryv46ozvHM3nGngbECPt-fc_ZA1ttse39hnLY9eVP-ABd26comi326NS3XrBfJxUgvgPimKeEBoyvg6JB7WBat9DR48HBD71ygLBz1fRhNusDvQuJ1vS4LZxdXAaSr4YGjv2Nc7ipiw4XVTc15Sb-nLIByvLC2fn4cH70ks0n4_NP0yiwL0QGg7w2MhkXiSmtHOrc4QYVhcytRPzi4hKDpmKYaodgQhcyNcKKMk7LES_0yHFh0xJh0Cu2WdWV3WaAoEyUGAohessSKznGSBqRlo21jcuMmx4brPdemVCanBgyvisMUUhaiqSlSFrKS6vHPt6MWPqyHPf0fY_iVME2m3v67d3pp5fflIyxn0IfrlDJemyHNEKhglKBXUM3kUyrRjmi3Djvsd21otzOgXCTUGyci9f_uYq37PHpwUQdzo6_7LAnMT226G687bLNdnVl3yAEaou9Ts1_AwKm-ro
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Spectral+Evolution+of+Hot+White+Dwarf+Stars.+II.+Time-dependent+Simulations+of+Element+Transport+in+Evolving+White+Dwarfs+with+STELUM&rft.jtitle=The+Astrophysical+journal&rft.au=B%C3%A9dard%2C+A.&rft.au=Brassard%2C+P.&rft.au=Bergeron%2C+P.&rft.au=Blouin%2C+S.&rft.date=2022-03-01&rft.pub=IOP+Publishing&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=927&rft.issue=1&rft_id=info:doi/10.3847%2F1538-4357%2Fac4497&rft.externalDocID=1865028
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon