On the Spectral Evolution of Hot White Dwarf Stars. II. Time-dependent Simulations of Element Transport in Evolving White Dwarfs with STELUM
White dwarf stars are subject to various element transport mechanisms that can cause their surface composition to change radically as they cool, a phenomenon known as spectral evolution. In this paper, we undertake a comprehensive theoretical investigation of the spectral evolution of white dwarfs....
Saved in:
Published in | The Astrophysical journal Vol. 927; no. 1; pp. 128 - 144 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Philadelphia
The American Astronomical Society
01.03.2022
IOP Publishing |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | White dwarf stars are subject to various element transport mechanisms that can cause their surface composition to change radically as they cool, a phenomenon known as spectral evolution. In this paper, we undertake a comprehensive theoretical investigation of the spectral evolution of white dwarfs. First, we introduce STELUM, a new implementation of the stellar evolutionary code developed at the Université de Montréal. We provide a thorough description of the physical content and numerical techniques of the code, covering the treatment of both stellar evolution and chemical transport. Then, we present two state-of-the-art numerical simulations of element transport in evolving white dwarfs. Atomic diffusion, convective mixing, and mass loss are considered simultaneously as time-dependent diffusive processes and are fully coupled to the cooling. We first model the PG 1159−DO−DB−DQ evolutionary channel: a helium-, carbon-, and oxygen-rich PG 1159 star transforms into a pure-helium DB white dwarf due to gravitational settling and then into a helium-dominated, carbon-polluted DQ white dwarf through convective dredge-up. We also compute for the first time the full DO−DA−DC evolutionary channel: a helium-rich DO white dwarf harboring residual hydrogen becomes a pure-hydrogen DA star through the float-up process and then a helium-dominated, hydrogen-bearing DC star due to convective mixing. We demonstrate that our results are in excellent agreement with available empirical constraints. In particular, our DO−DA−DC simulation perfectly reproduces the lower branch of the bifurcation observed in the Gaia color–magnitude diagram, which can therefore be interpreted as a signature of spectral evolution. |
---|---|
AbstractList | White dwarf stars are subject to various element transport mechanisms that can cause their surface composition to change radically as they cool, a phenomenon known as spectral evolution. In this paper, we undertake a comprehensive theoretical investigation of the spectral evolution of white dwarfs. First, we introduce STELUM, a new implementation of the stellar evolutionary code developed at the Université de Montréal. We provide a thorough description of the physical content and numerical techniques of the code, covering the treatment of both stellar evolution and chemical transport. Then, we present two state-of-the-art numerical simulations of element transport in evolving white dwarfs. Atomic diffusion, convective mixing, and mass loss are considered simultaneously as time-dependent diffusive processes and are fully coupled to the cooling. We first model the PG 1159−DO−DB−DQ evolutionary channel: a helium-, carbon-, and oxygen-rich PG 1159 star transforms into a pure-helium DB white dwarf due to gravitational settling and then into a helium-dominated, carbon-polluted DQ white dwarf through convective dredge-up. We also compute for the first time the full DO−DA−DC evolutionary channel: a helium-rich DO white dwarf harboring residual hydrogen becomes a pure-hydrogen DA star through the float-up process and then a helium-dominated, hydrogen-bearing DC star due to convective mixing. We demonstrate that our results are in excellent agreement with available empirical constraints. In particular, our DO−DA−DC simulation perfectly reproduces the lower branch of the bifurcation observed in the Gaia color–magnitude diagram, which can therefore be interpreted as a signature of spectral evolution. White dwarf stars are subject to various element transport mechanisms that can cause their surface composition to change radically as they cool, a phenomenon known as spectral evolution. In this paper, we undertake a comprehensive theoretical investigation of the spectral evolution of white dwarfs. First, we introduce STELUM, a new implementation of the stellar evolutionary code developed at the Université de Montréal. We provide a thorough description of the physical content and numerical techniques of the code, covering the treatment of both stellar evolution and chemical transport. Then, we present two state-of-the-art numerical simulations of element transport in evolving white dwarfs. Atomic diffusion, convective mixing, and mass loss are considered simultaneously as time-dependent diffusive processes and are fully coupled to the cooling. We first model the PG 1159-DO-DB-DQ evolutionary channel: a helium-, carbon-, and oxygen-rich PG 1159 star transforms into a pure-helium DB white dwarf due to gravitational settling and then into a helium-dominated, carbon-polluted DQ white dwarf through convective dredge-up. We also compute for the first time the full DO-DA-DC evolutionary channel: a helium-rich DO white dwarf harboring residual hydrogen becomes a pure-hydrogen DA star through the float-up process and then a helium-dominated, hydrogen-bearing DC star due to convective mixing. We demonstrate that our results are in excellent agreement with available empirical constraints. In particular, our DO-DA-DC simulation perfectly reproduces the lower branch of the bifurcation observed in the Gaia color–magnitude diagram, which can therefore be interpreted as a signature of spectral evolution. |
Author | Brassard, P. Bergeron, P. Blouin, S. Bédard, A. |
Author_xml | – sequence: 1 givenname: A. orcidid: 0000-0002-2384-1326 surname: Bédard fullname: Bédard, A. organization: Université de Montréal Département de Physique, Montréal, QC H3C 3J7, Canada – sequence: 2 givenname: P. surname: Brassard fullname: Brassard, P. organization: Université de Montréal Département de Physique, Montréal, QC H3C 3J7, Canada – sequence: 3 givenname: P. orcidid: 0000-0003-2368-345X surname: Bergeron fullname: Bergeron, P. organization: Université de Montréal Département de Physique, Montréal, QC H3C 3J7, Canada – sequence: 4 givenname: S. orcidid: 0000-0002-9632-1436 surname: Blouin fullname: Blouin, S. organization: University of Victoria Department of Physics and Astronomy, Victoria, BC V8W 2Y2, Canada |
BackLink | https://www.osti.gov/servlets/purl/1865028$$D View this record in Osti.gov |
BookMark | eNp9kcFvFCEYxYmpidvq3SPReHO2DDAMHE1d7SZretht9EYYBlw2szAC28b_wT9apmPUGPVE-PJ7L9_33jk488EbAJ7XaEk4bS_rhvCKkqa9VJpS0T4Ci5-jM7BACNGKkfbTE3Ce0mH6YiEW4NuNh3lv4HY0Okc1wNVdGE7ZBQ-Dhdchw497lw18e6-ihdusYlrC9XoJd-5oqt6MxvfGZ7h1x9OgJl2ahKvBHKfxLiqfxhAzdP7B-s75z79bJnjv8h5ud6vN7Yen4LFVQzLPfrwX4Pbdand1XW1u3q-v3mwqTVGbK90SRnVvBFLcllO7TnAjKBEW9ww3HWqUFahWnWg0M6zHTV-TTtWWMNP0XJAL8GL2DSk7mXTZRu918L5kIGvOGoR5gV7O0BjDl5NJWR7CKfqyl8SMlgAF5qxQbKZ0DClFY2Vxe8ihpOkGWSM51SOnLuTUhZzrKUL0h3CM7qji1_9JXs0SF8Zfy6jxIAUuuKwxl2NvC_f6L9w_bb8Dx12ugQ |
CitedBy_id | crossref_primary_10_1093_mnrasl_slad105 crossref_primary_10_1007_s10509_024_04307_5 crossref_primary_10_3847_1538_4357_acbfaa crossref_primary_10_1093_mnras_stac3733 crossref_primary_10_3847_1538_4357_ac76c7 crossref_primary_10_3847_1538_4357_accb56 crossref_primary_10_3847_1538_4357_ad9827 crossref_primary_10_3847_1538_4357_ad9a6d crossref_primary_10_1093_mnras_stad3773 crossref_primary_10_3847_1538_4357_acbb62 crossref_primary_10_1093_mnras_stad2171 crossref_primary_10_1016_j_newar_2024_101705 crossref_primary_10_3847_1538_4357_ad3440 crossref_primary_10_1051_0004_6361_202451886 crossref_primary_10_1103_PhysRevE_111_025206 crossref_primary_10_1038_s41586_024_07102_y crossref_primary_10_1093_mnras_stad1574 crossref_primary_10_1093_mnras_stad3825 crossref_primary_10_3847_1538_4357_acd057 crossref_primary_10_3847_1538_4357_ac609d crossref_primary_10_1016_j_physrep_2022_09_001 crossref_primary_10_1093_mnrasl_slaf011 crossref_primary_10_1093_mnras_stad1719 crossref_primary_10_3847_1538_4357_ad863b |
Cites_doi | 10.1086/162553 10.1086/301513 10.1088/0004-637X/737/1/28 10.1086/592788 10.1086/169815 10.1088/0067-0049/189/1/240 10.1086/428642 10.1093/mnras/stz3638 10.1086/191420 10.1086/161412 10.1051/0004-6361/202037530 10.3847/1538-4357/ab379e 10.1086/505938 10.1086/177381 10.1016/0092-640X(88)90009-5 10.1051/0004-6361/201832843 10.1086/162241 10.1086/191679 10.1086/516819 10.1086/169937 10.3847/1538-4357/ab153a 10.1086/191111 10.1046/j.1365-8711.1998.01332.x 10.1046/j.1365-8711.1998.01392.x 10.1088/0004-637X/730/2/128 10.1093/mnras/sty2751 10.1086/192204 10.1111/j.1365-2966.2005.08991.x 10.1111/j.1365-2966.2010.16426.x 10.3847/1538-4357/ab6602 10.3847/1538-4357/ab9e75 10.1146/annurev-earth-060313-054740 10.1086/345787 10.1086/304425 10.1086/168185 10.3847/1538-4357/ab46b9 10.3847/0067-0049/223/1/10 10.1051/0004-6361/202038879 10.1088/0004-637X/799/2/142 10.1086/164410 10.1051/0004-6361/201424861 10.1086/152061 10.1051/0004-6361:20053769 10.1051/0004-6361/200811468 10.1051/0004-6361/201423691 10.1088/0004-637X/720/1/581 10.1086/157657 10.3847/1538-4357/aae2b1 10.1111/j.1365-2966.2011.18355.x 10.3847/1538-4357/aad4a9 10.3847/1538-4357/aab713 10.1051/0004-6361/201220896 10.1086/172399 10.1098/rsos.170192 10.1086/173695 10.1086/500443 10.1088/0004-637X/717/1/183 10.1093/mnras/stz2656 10.1086/173006 10.3847/1538-4357/abafbe 10.1093/mnras/stz1759 10.1086/187909 10.1038/nature25136 10.1086/148357 10.3847/1538-4357/ab4989 10.1086/175566 10.1103/PhysRevLett.111.161101 10.1051/0004-6361/201936346 10.1051/0004-6361:20040021 10.1088/0004-637X/755/2/128 10.1093/mnras/stz2915 10.1086/308153 10.1093/mnras/stz960 10.1016/S0375-9474(99)00030-5 10.1086/430373 10.1086/191112 10.1086/192264 10.3847/1538-4357/833/2/127 10.1086/190482 10.1086/192184 10.1086/152062 10.1086/312955 10.1051/0004-6361:200500159 10.3847/1538-4357/aa6797 10.1086/184203 10.1093/mnras/stu216 10.1146/annurev.astro.38.1.613 10.1086/191728 10.1051/0004-6361/201629272 10.1051/0004-6361:20041965 10.3847/1538-4357/ab1f82 10.1086/523699 10.1103/PhysRevE.103.043204 10.1086/320356 10.1086/190192 10.1086/317235 10.3847/1538-4365/aaa5a8 10.1086/319535 |
ContentType | Journal Article |
Copyright | 2022. The Author(s). Published by the American Astronomical Society. 2022. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022. The Author(s). Published by the American Astronomical Society. – notice: 2022. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
CorporateAuthor | Los Alamos National Lab. (LANL), Los Alamos, NM (United States) |
CorporateAuthor_xml | – name: Los Alamos National Lab. (LANL), Los Alamos, NM (United States) |
DBID | O3W TSCCA AAYXX CITATION 7TG 8FD H8D KL. L7M OIOZB OTOTI |
DOI | 10.3847/1538-4357/ac4497 |
DatabaseName | IOPscience : Institute of Physics Open Access Journal Titles [open access] IOPscience (Open Access) CrossRef Meteorological & Geoastrophysical Abstracts Technology Research Database Aerospace Database Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef Aerospace Database Meteorological & Geoastrophysical Abstracts Technology Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | CrossRef Aerospace Database |
Database_xml | – sequence: 1 dbid: O3W name: IOPscience : Institute of Physics Open Access Journal Titles [open access] url: http://iopscience.iop.org/ sourceTypes: Enrichment Source Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Physics |
EISSN | 1538-4357 |
ExternalDocumentID | 1865028 10_3847_1538_4357_ac4497 apjac4497 |
GrantInformation_xml | – fundername: Gouvernement du Canada ∣ Natural Sciences and Engineering Research Council of Canada (NSERC) grantid: RN000916 funderid: https://doi.org/10.13039/501100000038 |
GroupedDBID | -DZ -~X 123 1JI 23N 2FS 2WC 4.4 6J9 85S AAFWJ AAGCD AAJIO ABHWH ACBEA ACGFS ACHIP ACNCT ADACN AEFHF AENEX AFPKN AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN CJUJL CRLBU CS3 EBS F5P FRP GROUPED_DOAJ IJHAN IOP KOT M~E N5L O3W O43 OK1 PJBAE RIN RNS ROL SJN SY9 T37 TN5 TR2 TSCCA WH7 XSW AAYXX CITATION 7TG 8FD AEINN H8D KL. L7M ABPTK OIOZB OTOTI |
ID | FETCH-LOGICAL-c407t-c7364cde90a8f497bb98e9439f2d625b05af901ab95c6e6d25d13ba1f36e5d893 |
IEDL.DBID | O3W |
ISSN | 0004-637X |
IngestDate | Sat Jun 17 13:45:49 EDT 2023 Wed Aug 13 11:02:01 EDT 2025 Tue Jul 01 03:24:52 EDT 2025 Thu Apr 24 22:58:20 EDT 2025 Wed Mar 23 01:37:34 EDT 2022 Wed Aug 21 03:33:46 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c407t-c7364cde90a8f497bb98e9439f2d625b05af901ab95c6e6d25d13ba1f36e5d893 |
Notes | Stars and Stellar Physics AAS34965 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 Natural Sciences and Engineering Research Council of Canada (NSERC) LA-UR-21-28934 89233218CNA000001; 20190624PRD2 USDOE Laboratory Directed Research and Development (LDRD) Program USDOE National Nuclear Security Administration (NNSA) Fonds de Recherche du Quebec-Nature et Technologie (FRQNT) |
ORCID | 0000-0002-2384-1326 0000-0003-2368-345X 0000-0002-9632-1436 0000000296321436 0000000223841326 000000032368345X |
OpenAccessLink | https://iopscience.iop.org/article/10.3847/1538-4357/ac4497 |
PQID | 2640009286 |
PQPubID | 4562441 |
PageCount | 17 |
ParticipantIDs | crossref_citationtrail_10_3847_1538_4357_ac4497 proquest_journals_2640009286 osti_scitechconnect_1865028 crossref_primary_10_3847_1538_4357_ac4497 iop_journals_10_3847_1538_4357_ac4497 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-03-01 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia – name: United States |
PublicationTitle | The Astrophysical journal |
PublicationTitleAbbrev | APJ |
PublicationTitleAlternate | Astrophys. J |
PublicationYear | 2022 |
Publisher | The American Astronomical Society IOP Publishing |
Publisher_xml | – name: The American Astronomical Society – name: IOP Publishing |
References | Baglin (apjac4497bib9) 1973; 27 Cyburt (apjac4497bib43) 2010; 189 Reindl (apjac4497bib108) 2014; 572 Turcotte (apjac4497bib121) 1993; 413 Quirion (apjac4497bib107) 2012; 755 Canuto (apjac4497bib32) 1991; 370 Pelletier (apjac4497bib106) 1986; 307 Gaia Collaboration (apjac4497bib66) 2016; 595 Unglaub (apjac4497bib123) 2000; 359 Dehner (apjac4497bib45) 1995; 445 Bergeron (apjac4497bib16) 2011; 737 Itoh (apjac4497bib81) 1996; 102 Iben (apjac4497bib77) 1984; 282 D’Antona (apjac4497bib44) 1989; 347 Freytag (apjac4497bib64) 1996; 313 Koester (apjac4497bib93) 1982; 116 Paquette (apjac4497bib104) 1986b; 61 Bergeron (apjac4497bib15) 1995; 443 Cunningham (apjac4497bib41) 2019; 488 Althaus (apjac4497bib4) 2020; 633 Schatzman (apjac4497bib115) 1958 Cukanovaite (apjac4497bib40) 2019; 490 Langer (apjac4497bib96) 1985; 145 Gaia Collaboration (apjac4497bib65) 2018; 616 Camisassa (apjac4497bib31) 2017; 839 Dufour (apjac4497bib50) 2005; 627 Chen (apjac4497bib37) 2011; 413 Dreizler (apjac4497bib48) 1999; 352 Isern (apjac4497bib79) 2000; 528 Kippenhahn (apjac4497bib86) 1980; 91 Lamb (apjac4497bib95) 1974 Althaus (apjac4497bib5) 2005a; 440 Hubbard (apjac4497bib76) 1969; 18 Thoul (apjac4497bib118) 1994; 421 Giammichele (apjac4497bib68) 2018; 554 Cunningham (apjac4497bib42) 2020; 492 Genest-Beaulieu (apjac4497bib67) 2019; 882 Dreizler (apjac4497bib49) 1996; 314 Alcock (apjac4497bib1) 1980; 235 Graboske (apjac4497bib71) 1973; 181 Kitsikis (apjac4497bib88) 2005 Fontaine (apjac4497bib60) 2015 Blouin (apjac4497bib23) 2018; 863 Badnell (apjac4497bib8) 2005; 360 Dufour (apjac4497bib51) 2017 Coutu (apjac4497bib39) 2019; 885 Itoh (apjac4497bib82) 1984; 285 Kippenhahn (apjac4497bib87) 2012 Kudritzki (apjac4497bib94) 2000; 38 Beznogov (apjac4497bib17) 2013; 111 Koester (apjac4497bib89) 1976; 52 Barstow (apjac4497bib10) 2014; 440 Bergeron (apjac4497bib13) 2001; 133 Dupuis (apjac4497bib53) 1992; 82 Scóccola (apjac4497bib116) 2006; 451 Blouin (apjac4497bib25) 2020b; 899 Paxton (apjac4497bib105) 2018; 234 Desharnais (apjac4497bib46) 2008; 672 Herwig (apjac4497bib74) 2000; 360 Kepler (apjac4497bib85) 2019; 486 Salaris (apjac4497bib112) 2017; 4 Althaus (apjac4497bib6) 2005b; 435 Althaus (apjac4497bib3) 2004; 417 Giammichele (apjac4497bib69) 2016; 223 Fontaine (apjac4497bib57) 2005 Dunlap (apjac4497bib52) 2015 Unglaub (apjac4497bib122) 1998; 338 Dewitt (apjac4497bib47) 1973; 181 Blouin (apjac4497bib24) 2019; 878 Michaud (apjac4497bib100) 2015 Brassard (apjac4497bib29) 1992; 80 Tremblay (apjac4497bib120) 2015; 799 Althaus (apjac4497bib2) 1998; 296 Fontaine (apjac4497bib58) 2008; 120 Iglesias (apjac4497bib78) 1996; 464 Hairer (apjac4497bib72) 1996 Brassard (apjac4497bib28) 2007 Holberg (apjac4497bib75) 2006; 132 MacDonald (apjac4497bib98) 1991; 371 Fontaine (apjac4497bib61) 1977; 35 Mihalas (apjac4497bib101) 1978 Burgers (apjac4497bib30) 1969 Charbonneau (apjac4497bib35) 1993; 405 Isern (apjac4497bib80) 1997; 485 Koester (apjac4497bib91) 2014; 566 Angulo (apjac4497bib7) 1999; 656 Ourique (apjac4497bib102) 2019; 482 Caughlan (apjac4497bib34) 1988; 40 Bischoff-Kim (apjac4497bib18) 2019; 871 Henyey (apjac4497bib73) 1965; 142 Saumon (apjac4497bib114) 1995; 99 Paquette (apjac4497bib103) 1986a; 61 Koester (apjac4497bib90) 2009; 498 Tremblay (apjac4497bib119) 2011; 730 Bédard (apjac4497bib11) 2020; 901 Cassisi (apjac4497bib33) 2007; 661 Farihi (apjac4497bib54) 2010; 404 Renedo (apjac4497bib109) 2010; 717 Ferguson (apjac4497bib55) 2005; 623 Fontaine (apjac4497bib62) 1984; 277 Werner (apjac4497bib125) 1996; 309 Blouin (apjac4497bib20) 2021; 103 MacDonald (apjac4497bib97) 1998; 296 Rolland (apjac4497bib111) 2020; 889 Blouin (apjac4497bib21) 2020a; 640 Brassard (apjac4497bib27) 2015 Manseau (apjac4497bib99) 2016; 833 Rolland (apjac4497bib110) 2018; 857 Jura (apjac4497bib84) 2014; 42 Werner (apjac4497bib126) 2006; 118 Salaris (apjac4497bib113) 2000; 544 Fontaine (apjac4497bib63) 1987 Gianninas (apjac4497bib70) 2010; 720 Van Grootel (apjac4497bib124) 2013; 553 Chayer (apjac4497bib36) 1995; 99 Tassoul (apjac4497bib117) 1990; 72 Fontaine (apjac4497bib59) 2001; 113 Blöcker (apjac4497bib19) 1995; 299 Fontaine (apjac4497bib56) 2002; 581 York (apjac4497bib127) 2000; 120 Bergeron (apjac4497bib12) 2019; 876 Cheng (apjac4497bib38) 2019; 886 Koester (apjac4497bib92) 2020; 635 Bergeron (apjac4497bib14) 1997; 108 Blouin (apjac4497bib22) 2019; 490 Itoh (apjac4497bib83) 1983; 273 Böhm-Vitense (apjac4497bib26) 1958; 46 |
References_xml | – volume: 285 start-page: 758 year: 1984 ident: apjac4497bib82 publication-title: ApJ doi: 10.1086/162553 – start-page: 19 year: 2007 ident: apjac4497bib28 – volume: 120 start-page: 1579 year: 2000 ident: apjac4497bib127 publication-title: AJ doi: 10.1086/301513 – volume: 737 start-page: 28 year: 2011 ident: apjac4497bib16 publication-title: ApJ doi: 10.1088/0004-637X/737/1/28 – volume: 120 start-page: 1043 year: 2008 ident: apjac4497bib58 publication-title: PASP doi: 10.1086/592788 – volume: 370 start-page: 295 year: 1991 ident: apjac4497bib32 publication-title: ApJ doi: 10.1086/169815 – volume: 189 start-page: 240 year: 2010 ident: apjac4497bib43 publication-title: ApJS doi: 10.1088/0067-0049/189/1/240 – volume: 623 start-page: 585 year: 2005 ident: apjac4497bib55 publication-title: ApJ doi: 10.1086/428642 – start-page: 113 year: 2015 ident: apjac4497bib60 – volume: 145 start-page: 179 year: 1985 ident: apjac4497bib96 publication-title: A&A – volume: 492 start-page: 3540 year: 2020 ident: apjac4497bib42 publication-title: MNRAS doi: 10.1093/mnras/stz3638 – year: 1958 ident: apjac4497bib115 – volume: 72 start-page: 335 year: 1990 ident: apjac4497bib117 publication-title: ApJS doi: 10.1086/191420 – volume: 273 start-page: 774 year: 1983 ident: apjac4497bib83 publication-title: ApJ doi: 10.1086/161412 – volume: 635 start-page: A103 year: 2020 ident: apjac4497bib92 publication-title: A&A doi: 10.1051/0004-6361/202037530 – volume: 882 start-page: 106 year: 2019 ident: apjac4497bib67 publication-title: ApJ doi: 10.3847/1538-4357/ab379e – volume: 132 start-page: 1221 year: 2006 ident: apjac4497bib75 publication-title: AJ doi: 10.1086/505938 – volume: 352 start-page: 632 year: 1999 ident: apjac4497bib48 publication-title: A&A – volume: 464 start-page: 943 year: 1996 ident: apjac4497bib78 publication-title: ApJ doi: 10.1086/177381 – volume: 40 start-page: 283 year: 1988 ident: apjac4497bib34 publication-title: ADNDT doi: 10.1016/0092-640X(88)90009-5 – volume: 616 start-page: A10 year: 2018 ident: apjac4497bib65 publication-title: A&A doi: 10.1051/0004-6361/201832843 – volume: 282 start-page: 615 year: 1984 ident: apjac4497bib77 publication-title: ApJ doi: 10.1086/162241 – year: 1996 ident: apjac4497bib72 – start-page: 3 year: 2017 ident: apjac4497bib51 – volume: 80 start-page: 725 year: 1992 ident: apjac4497bib29 publication-title: ApJS doi: 10.1086/191679 – volume: 91 start-page: 175 year: 1980 ident: apjac4497bib86 publication-title: A&A – volume: 661 start-page: 1094 year: 2007 ident: apjac4497bib33 publication-title: ApJ doi: 10.1086/516819 – volume: 371 start-page: 719 year: 1991 ident: apjac4497bib98 publication-title: ApJ doi: 10.1086/169937 – volume: 876 start-page: 67 year: 2019 ident: apjac4497bib12 publication-title: ApJ doi: 10.3847/1538-4357/ab153a – volume: 61 start-page: 177 year: 1986b ident: apjac4497bib104 publication-title: ApJS doi: 10.1086/191111 – volume: 296 start-page: 206 year: 1998 ident: apjac4497bib2 publication-title: MNRAS doi: 10.1046/j.1365-8711.1998.01332.x – volume: 296 start-page: 523 year: 1998 ident: apjac4497bib97 publication-title: MNRAS doi: 10.1046/j.1365-8711.1998.01392.x – volume: 730 start-page: 128 year: 2011 ident: apjac4497bib119 publication-title: ApJ doi: 10.1088/0004-637X/730/2/128 – volume: 482 start-page: 649 year: 2019 ident: apjac4497bib102 publication-title: MNRAS doi: 10.1093/mnras/sty2751 – volume: 99 start-page: 713 year: 1995 ident: apjac4497bib114 publication-title: ApJS doi: 10.1086/192204 – volume: 360 start-page: 458 year: 2005 ident: apjac4497bib8 publication-title: MNRAS doi: 10.1111/j.1365-2966.2005.08991.x – volume: 404 start-page: 2123 year: 2010 ident: apjac4497bib54 publication-title: MNRAS doi: 10.1111/j.1365-2966.2010.16426.x – volume: 889 start-page: 87 year: 2020 ident: apjac4497bib111 publication-title: ApJ doi: 10.3847/1538-4357/ab6602 – volume: 899 start-page: 46 year: 2020b ident: apjac4497bib25 publication-title: ApJ doi: 10.3847/1538-4357/ab9e75 – volume: 42 start-page: 45 year: 2014 ident: apjac4497bib84 publication-title: AREPS doi: 10.1146/annurev-earth-060313-054740 – volume: 581 start-page: L33 year: 2002 ident: apjac4497bib56 publication-title: ApJL doi: 10.1086/345787 – volume: 485 start-page: 308 year: 1997 ident: apjac4497bib80 publication-title: ApJ doi: 10.1086/304425 – volume: 347 start-page: 934 year: 1989 ident: apjac4497bib44 publication-title: ApJ doi: 10.1086/168185 – volume: 299 start-page: 755 year: 1995 ident: apjac4497bib19 publication-title: A&A – volume: 27 start-page: 307 year: 1973 ident: apjac4497bib9 publication-title: A&A – volume: 885 start-page: 74 year: 2019 ident: apjac4497bib39 publication-title: ApJ doi: 10.3847/1538-4357/ab46b9 – volume: 223 start-page: 10 year: 2016 ident: apjac4497bib69 publication-title: ApJS doi: 10.3847/0067-0049/223/1/10 – volume: 640 start-page: L11 year: 2020a ident: apjac4497bib21 publication-title: A&A doi: 10.1051/0004-6361/202038879 – volume: 799 start-page: 142 year: 2015 ident: apjac4497bib120 publication-title: ApJ doi: 10.1088/0004-637X/799/2/142 – year: 1969 ident: apjac4497bib30 – volume: 307 start-page: 242 year: 1986 ident: apjac4497bib106 publication-title: ApJ doi: 10.1086/164410 – volume: 572 start-page: A117 year: 2014 ident: apjac4497bib108 publication-title: A&A doi: 10.1051/0004-6361/201424861 – volume: 181 start-page: 439 year: 1973 ident: apjac4497bib47 publication-title: ApJ doi: 10.1086/152061 – volume: 451 start-page: 147 year: 2006 ident: apjac4497bib116 publication-title: A&A doi: 10.1051/0004-6361:20053769 – volume: 498 start-page: 517 year: 2009 ident: apjac4497bib90 publication-title: A&A doi: 10.1051/0004-6361/200811468 – start-page: 319 year: 1987 ident: apjac4497bib63 – volume: 566 start-page: A34 year: 2014 ident: apjac4497bib91 publication-title: A&A doi: 10.1051/0004-6361/201423691 – volume: 720 start-page: 581 year: 2010 ident: apjac4497bib70 publication-title: ApJ doi: 10.1088/0004-637X/720/1/581 – volume: 235 start-page: 541 year: 1980 ident: apjac4497bib1 publication-title: ApJ doi: 10.1086/157657 – start-page: 65 year: 2005 ident: apjac4497bib88 – volume: 871 start-page: 13 year: 2019 ident: apjac4497bib18 publication-title: ApJ doi: 10.3847/1538-4357/aae2b1 – volume: 413 start-page: 2827 year: 2011 ident: apjac4497bib37 publication-title: MNRAS doi: 10.1111/j.1365-2966.2011.18355.x – volume: 863 start-page: 184 year: 2018 ident: apjac4497bib23 publication-title: ApJ doi: 10.3847/1538-4357/aad4a9 – year: 2015 ident: apjac4497bib100 – volume: 857 start-page: 56 year: 2018 ident: apjac4497bib110 publication-title: ApJ doi: 10.3847/1538-4357/aab713 – volume: 553 start-page: A97 year: 2013 ident: apjac4497bib124 publication-title: A&A doi: 10.1051/0004-6361/201220896 – volume: 405 start-page: 720 year: 1993 ident: apjac4497bib35 publication-title: ApJ doi: 10.1086/172399 – volume: 4 year: 2017 ident: apjac4497bib112 publication-title: RSOS doi: 10.1098/rsos.170192 – volume: 421 start-page: 828 year: 1994 ident: apjac4497bib118 publication-title: ApJ doi: 10.1086/173695 – volume: 309 start-page: 861 year: 1996 ident: apjac4497bib125 publication-title: A&A – volume: 314 start-page: 217 year: 1996 ident: apjac4497bib49 publication-title: A&A – volume: 52 start-page: 415 year: 1976 ident: apjac4497bib89 publication-title: A&A – volume: 118 start-page: 183 year: 2006 ident: apjac4497bib126 publication-title: PASP doi: 10.1086/500443 – volume: 717 start-page: 183 year: 2010 ident: apjac4497bib109 publication-title: ApJ doi: 10.1088/0004-637X/717/1/183 – volume: 490 start-page: 1010 year: 2019 ident: apjac4497bib40 publication-title: MNRAS doi: 10.1093/mnras/stz2656 – volume: 360 start-page: 952 year: 2000 ident: apjac4497bib74 publication-title: A&A – volume: 413 start-page: 376 year: 1993 ident: apjac4497bib121 publication-title: ApJ doi: 10.1086/173006 – year: 1978 ident: apjac4497bib101 – volume: 901 start-page: 93 year: 2020 ident: apjac4497bib11 publication-title: ApJ doi: 10.3847/1538-4357/abafbe – volume: 488 start-page: 2503 year: 2019 ident: apjac4497bib41 publication-title: MNRAS doi: 10.1093/mnras/stz1759 – start-page: 49 year: 2005 ident: apjac4497bib57 – volume: 46 start-page: 108 year: 1958 ident: apjac4497bib26 publication-title: ZAp – volume: 445 start-page: L141 year: 1995 ident: apjac4497bib45 publication-title: ApJL doi: 10.1086/187909 – volume: 554 start-page: 73 year: 2018 ident: apjac4497bib68 publication-title: Natur doi: 10.1038/nature25136 – volume: 142 start-page: 841 year: 1965 ident: apjac4497bib73 publication-title: ApJ doi: 10.1086/148357 – volume: 338 start-page: 75 year: 1998 ident: apjac4497bib122 publication-title: A&A – volume: 886 start-page: 100 year: 2019 ident: apjac4497bib38 publication-title: ApJ doi: 10.3847/1538-4357/ab4989 – year: 1974 ident: apjac4497bib95 – volume: 443 start-page: 764 year: 1995 ident: apjac4497bib15 publication-title: ApJ doi: 10.1086/175566 – volume: 111 year: 2013 ident: apjac4497bib17 publication-title: PhRvL doi: 10.1103/PhysRevLett.111.161101 – start-page: 125 year: 2015 ident: apjac4497bib27 – volume: 633 start-page: A20 year: 2020 ident: apjac4497bib4 publication-title: A&A doi: 10.1051/0004-6361/201936346 – volume: 417 start-page: 1115 year: 2004 ident: apjac4497bib3 publication-title: A&A doi: 10.1051/0004-6361:20040021 – volume: 755 start-page: 128 year: 2012 ident: apjac4497bib107 publication-title: ApJ doi: 10.1088/0004-637X/755/2/128 – volume: 490 start-page: 4166 year: 2019 ident: apjac4497bib22 publication-title: MNRAS doi: 10.1093/mnras/stz2915 – volume: 313 start-page: 497 year: 1996 ident: apjac4497bib64 publication-title: A&A – volume: 528 start-page: 397 year: 2000 ident: apjac4497bib79 publication-title: ApJ doi: 10.1086/308153 – volume: 486 start-page: 2169 year: 2019 ident: apjac4497bib85 publication-title: MNRAS doi: 10.1093/mnras/stz960 – volume: 656 start-page: 3 year: 1999 ident: apjac4497bib7 publication-title: NuPhA doi: 10.1016/S0375-9474(99)00030-5 – volume: 116 start-page: 147 year: 1982 ident: apjac4497bib93 publication-title: A&A – volume: 627 start-page: 404 year: 2005 ident: apjac4497bib50 publication-title: ApJ doi: 10.1086/430373 – volume: 61 start-page: 197 year: 1986a ident: apjac4497bib103 publication-title: ApJS doi: 10.1086/191112 – volume: 102 start-page: 411 year: 1996 ident: apjac4497bib81 publication-title: ApJS doi: 10.1086/192264 – volume: 833 start-page: 127 year: 2016 ident: apjac4497bib99 publication-title: ApJ doi: 10.3847/1538-4357/833/2/127 – volume: 35 start-page: 293 year: 1977 ident: apjac4497bib61 publication-title: ApJS doi: 10.1086/190482 – volume: 99 start-page: 189 year: 1995 ident: apjac4497bib36 publication-title: ApJS doi: 10.1086/192184 – volume: 181 start-page: 457 year: 1973 ident: apjac4497bib71 publication-title: ApJ doi: 10.1086/152062 – start-page: 547 year: 2015 ident: apjac4497bib52 – volume: 108 start-page: 339 year: 1997 ident: apjac4497bib14 publication-title: ApJS doi: 10.1086/312955 – volume: 440 start-page: L1 year: 2005a ident: apjac4497bib5 publication-title: A&A doi: 10.1051/0004-6361:200500159 – volume: 839 start-page: 11 year: 2017 ident: apjac4497bib31 publication-title: ApJ doi: 10.3847/1538-4357/aa6797 – volume: 277 start-page: L61 year: 1984 ident: apjac4497bib62 publication-title: ApJL doi: 10.1086/184203 – volume: 440 start-page: 1607 year: 2014 ident: apjac4497bib10 publication-title: MNRAS doi: 10.1093/mnras/stu216 – volume: 38 start-page: 613 year: 2000 ident: apjac4497bib94 publication-title: ARA&A doi: 10.1146/annurev.astro.38.1.613 – volume: 359 start-page: 1042 year: 2000 ident: apjac4497bib123 publication-title: A&A – volume: 82 start-page: 505 year: 1992 ident: apjac4497bib53 publication-title: ApJS doi: 10.1086/191728 – volume: 595 start-page: A1 year: 2016 ident: apjac4497bib66 publication-title: A&A doi: 10.1051/0004-6361/201629272 – volume: 435 start-page: 631 year: 2005b ident: apjac4497bib6 publication-title: A&A doi: 10.1051/0004-6361:20041965 – volume: 878 start-page: 63 year: 2019 ident: apjac4497bib24 publication-title: ApJ doi: 10.3847/1538-4357/ab1f82 – volume: 672 start-page: 540 year: 2008 ident: apjac4497bib46 publication-title: ApJ doi: 10.1086/523699 – volume: 103 year: 2021 ident: apjac4497bib20 publication-title: PhRvE doi: 10.1103/PhysRevE.103.043204 – volume: 133 start-page: 413 year: 2001 ident: apjac4497bib13 publication-title: ApJS doi: 10.1086/320356 – volume: 18 start-page: 297 year: 1969 ident: apjac4497bib76 publication-title: ApJS doi: 10.1086/190192 – volume: 544 start-page: 1036 year: 2000 ident: apjac4497bib113 publication-title: ApJ doi: 10.1086/317235 – volume: 234 start-page: 34 year: 2018 ident: apjac4497bib105 publication-title: ApJS doi: 10.3847/1538-4365/aaa5a8 – year: 2012 ident: apjac4497bib87 – volume: 113 start-page: 409 year: 2001 ident: apjac4497bib59 publication-title: PASP doi: 10.1086/319535 |
SSID | ssj0004299 |
Score | 2.508923 |
Snippet | White dwarf stars are subject to various element transport mechanisms that can cause their surface composition to change radically as they cool, a phenomenon... |
SourceID | osti proquest crossref iop |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 128 |
SubjectTerms | ASTRONOMY AND ASTROPHYSICS Astrophysics Atomic properties Carbon Chemical transport Convective mixing Diffusion Dwarf stars Helium Hydrogen Late stellar evolution Mathematical models Numerical simulations Oxygen Simulation Spectra Stars Stellar convection envelopes Stellar diffusion Stellar evolution Stellar evolutionary models Stellar winds Time dependent analysis White dwarf stars White dwarfs |
Title | On the Spectral Evolution of Hot White Dwarf Stars. II. Time-dependent Simulations of Element Transport in Evolving White Dwarfs with STELUM |
URI | https://iopscience.iop.org/article/10.3847/1538-4357/ac4497 https://www.proquest.com/docview/2640009286 https://www.osti.gov/servlets/purl/1865028 |
Volume | 927 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbaIiQuCAqoS8tqDoDEIfuI87DFqYKtdhFlK7Ur9mY5fkhFNFlt0iL-Az-aGSe7pQJVXCIfxk7keX0zsWcYe228QKdQ8GgkCxElfKQjaRNUd6oVJp2RPvQiOP2STRfJp2W63GHvt3dhqlVn-gc4bAsFt1tI-s3Rlg6DjqKXz4faJInMd9kDLjJBkdecf729FBnLDvsmUcbzZfuP8p8r3PFJu_hetM8Vathf9jk4nZMn7HGHFuG4_banbMeV--zguKb8dXX1E95CGLfpiXqfPTxrR8_Yr3kJiO2A-stTMgMmN52QQeVhWjUQWuPBxx967QEh57oewGw2ALoTEm1a4zZwfnnVNfiqaeKkPW0O25rocFmGpSkv8eeSNVCGF84vJp8Xp8_Z4mRy8WEadZ0XIoMBXhOZnGeJsU6OtPC4QUUhhZOIXXxsMWAqRqn2CCR0IVOTuczGqR3zQo89z1xqEQK9YHtlVboDBgjIMothECK3PHGSY3ykEWW5WLvY5tz02HCz98p0ZcmpO8Z3heEJcUsRtxRxS7Xc6rF32xmrtiTHPbRvkJ2q08v6Hrr-HTq9-qZkjHQK_bdaWd9jhyQRCoWTiusaOoVkGjUWiHBj0WNHG0G5XQOhJiHYWGQv__MrDtmjmG5XhCNuR2yvWV-7V4h5mqIfcgX4nM3P-kHOfwNZMfjJ |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoEYgLggLq0lLmAEgcso84ceJjRXe1C31J7Yq9WY5jS0U0WW3SIv4DP5qZ2NtSgSpuPtiO5ZnxfDOx52PsnXE5OoWCR0NZ5FHChzqSZYLmTrXCpDXSdVwER8diOk8-L9JF4Dnt3sLUy3D097HpCwX7LST75niWDjobRS-fDbRJEpkNlqXbYA9TLgRxN5zwr7cPI2MZ8G8SCZ4t_H_Kf85yxy9t4LfxjK7Ryv46ozvHM3nGngbECPt-fc_ZA1ttse39hnLY9eVP-ABd26comi326NS3XrBfJxUgvgPimKeEBoyvg6JB7WBat9DR48HBD71ygLBz1fRhNusDvQuJ1vS4LZxdXAaSr4YGjv2Nc7ipiw4XVTc15Sb-nLIByvLC2fn4cH70ks0n4_NP0yiwL0QGg7w2MhkXiSmtHOrc4QYVhcytRPzi4hKDpmKYaodgQhcyNcKKMk7LES_0yHFh0xJh0Cu2WdWV3WaAoEyUGAohessSKznGSBqRlo21jcuMmx4brPdemVCanBgyvisMUUhaiqSlSFrKS6vHPt6MWPqyHPf0fY_iVME2m3v67d3pp5fflIyxn0IfrlDJemyHNEKhglKBXUM3kUyrRjmi3Djvsd21otzOgXCTUGyci9f_uYq37PHpwUQdzo6_7LAnMT226G687bLNdnVl3yAEaou9Ts1_AwKm-ro |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Spectral+Evolution+of+Hot+White+Dwarf+Stars.+II.+Time-dependent+Simulations+of+Element+Transport+in+Evolving+White+Dwarfs+with+STELUM&rft.jtitle=The+Astrophysical+journal&rft.au=B%C3%A9dard%2C+A.&rft.au=Brassard%2C+P.&rft.au=Bergeron%2C+P.&rft.au=Blouin%2C+S.&rft.date=2022-03-01&rft.pub=IOP+Publishing&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=927&rft.issue=1&rft_id=info:doi/10.3847%2F1538-4357%2Fac4497&rft.externalDocID=1865028 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon |