The impact of short-chain fatty acids on GLP-1 and PYY secretion from the isolated perfused rat colon

The colonic epithelium harbors a large number of endocrine cells, but little is known about the endocrine functions of the colon. However, the high density of glucagon like peptide-1 (GLP-1)- and peptide-YY (PYY)-secreting L cells is of great interest because of the potential antidiabetic and antiob...

Full description

Saved in:
Bibliographic Details
Published inAmerican journal of physiology: Gastrointestinal and liver physiology Vol. 315; no. 1; pp. G53 - G65
Main Authors Christiansen, Charlotte Bayer, Gabe, Maria Buur Nordskov, Svendsen, Berit, Dragsted, Lars Ove, Rosenkilde, Mette Marie, Holst, Jens Juul
Format Journal Article
LanguageEnglish
Published United States 01.07.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The colonic epithelium harbors a large number of endocrine cells, but little is known about the endocrine functions of the colon. However, the high density of glucagon like peptide-1 (GLP-1)- and peptide-YY (PYY)-secreting L cells is of great interest because of the potential antidiabetic and antiobesity effects of GLP-1 and PYY. Short-chain fatty acids (SCFAs) produced by local bacterial fermentation are suggested to activate the colonic free fatty acid receptors FFAR2 (GPR43) and FFAR3 (GPR41), stimulating the colonic L cells. We used the isolated perfused rat colon as a model of colonic endocrine secretion and studied the effects of the predominant SCFAs formed: acetate, propionate, and butyrate. We show that luminal and especially vascular infusion of acetate and butyrate significantly increases colonic GLP-1 secretion, and to a minor extent also PYY secretion, but only after enhancement of intracellular cAMP. Propionate neither affected GLP-1 nor PYY secretion whether administered luminally or vascularly. A FFAR2- and FFAR3–specific agonist [( S)-2-(4-chlorophenyl)-3,3-dimethyl- N-(5-phenylthiazol-2-yl)butamide (CFMB)/ AR420626 ] had no effect on colonic GLP-1 output, and a FFAR3 antagonist ( AR399519 ) did not decrease the SCFA-induced GLP-1 response. However, the voltage-gated Ca 2+ -channel blocker nifedipine, the K ATP -channel opener diazoxide, and the ATP synthesis inhibitor 2,4-dinitrophenol completely abolished the responses. FFAR2 receptor studies confirmed low-potent partial agonism of acetate, propionate, and butyrate, compared with CFMB, which is a full agonist with ~750-fold higher potency than the SCFAs. In conclusion, SCFAs may increase colonic GLP-1/PYY secretion, but FFAR2/FFAR3 do not seem to be involved. Rather, SCFAs are metabolized and appear to function as a colonocyte energy source. NEW & NOTEWORTHY By the use of in situ isolated perfused rat colon we show that short-chain fatty acids (SCFAs) primarily are used as a colonocyte energy source in the rat, subsequently triggering glucagon like peptide-1 (GLP-1) secretion independent of the free fatty acid receptors FFAR2 and FFAR3. Opposite many previous studies on SCFAs and FFAR2/FFAR3 and GLP-1 secretion, this experimental model allows investigation of the physiological interactions between luminal nutrients and secretion from cells whose function depend critically on their blood supply as well as nerve and paracrine interactions.
AbstractList The colonic epithelium harbors a large number of endocrine cells, but little is known about the endocrine functions of the colon. However, the high density of glucagon like peptide-1 (GLP-1)- and peptide-YY (PYY)-secreting L cells is of great interest because of the potential antidiabetic and antiobesity effects of GLP-1 and PYY. Short-chain fatty acids (SCFAs) produced by local bacterial fermentation are suggested to activate the colonic free fatty acid receptors FFAR2 (GPR43) and FFAR3 (GPR41), stimulating the colonic L cells. We used the isolated perfused rat colon as a model of colonic endocrine secretion and studied the effects of the predominant SCFAs formed: acetate, propionate, and butyrate. We show that luminal and especially vascular infusion of acetate and butyrate significantly increases colonic GLP-1 secretion, and to a minor extent also PYY secretion, but only after enhancement of intracellular cAMP. Propionate neither affected GLP-1 nor PYY secretion whether administered luminally or vascularly. A FFAR2- and FFAR3-specific agonist [( S)-2-(4-chlorophenyl)-3,3-dimethyl- N-(5-phenylthiazol-2-yl)butamide (CFMB)/ AR420626 ] had no effect on colonic GLP-1 output, and a FFAR3 antagonist ( AR399519 ) did not decrease the SCFA-induced GLP-1 response. However, the voltage-gated Ca -channel blocker nifedipine, the K -channel opener diazoxide, and the ATP synthesis inhibitor 2,4-dinitrophenol completely abolished the responses. FFAR2 receptor studies confirmed low-potent partial agonism of acetate, propionate, and butyrate, compared with CFMB, which is a full agonist with ~750-fold higher potency than the SCFAs. In conclusion, SCFAs may increase colonic GLP-1/PYY secretion, but FFAR2/FFAR3 do not seem to be involved. Rather, SCFAs are metabolized and appear to function as a colonocyte energy source. NEW & NOTEWORTHY By the use of in situ isolated perfused rat colon we show that short-chain fatty acids (SCFAs) primarily are used as a colonocyte energy source in the rat, subsequently triggering glucagon like peptide-1 (GLP-1) secretion independent of the free fatty acid receptors FFAR2 and FFAR3. Opposite many previous studies on SCFAs and FFAR2/FFAR3 and GLP-1 secretion, this experimental model allows investigation of the physiological interactions between luminal nutrients and secretion from cells whose function depend critically on their blood supply as well as nerve and paracrine interactions.
The colonic epithelium harbors a large number of endocrine cells, but little is known about the endocrine functions of the colon. However, the high density of glucagon like peptide-1 (GLP-1)- and peptide-YY (PYY)-secreting L cells is of great interest because of the potential antidiabetic and antiobesity effects of GLP-1 and PYY. Short-chain fatty acids (SCFAs) produced by local bacterial fermentation are suggested to activate the colonic free fatty acid receptors FFAR2 (GPR43) and FFAR3 (GPR41), stimulating the colonic L cells. We used the isolated perfused rat colon as a model of colonic endocrine secretion and studied the effects of the predominant SCFAs formed: acetate, propionate, and butyrate. We show that luminal and especially vascular infusion of acetate and butyrate significantly increases colonic GLP-1 secretion, and to a minor extent also PYY secretion, but only after enhancement of intracellular cAMP. Propionate neither affected GLP-1 nor PYY secretion whether administered luminally or vascularly. A FFAR2- and FFAR3–specific agonist [( S)-2-(4-chlorophenyl)-3,3-dimethyl- N-(5-phenylthiazol-2-yl)butamide (CFMB)/ AR420626 ] had no effect on colonic GLP-1 output, and a FFAR3 antagonist ( AR399519 ) did not decrease the SCFA-induced GLP-1 response. However, the voltage-gated Ca 2+ -channel blocker nifedipine, the K ATP -channel opener diazoxide, and the ATP synthesis inhibitor 2,4-dinitrophenol completely abolished the responses. FFAR2 receptor studies confirmed low-potent partial agonism of acetate, propionate, and butyrate, compared with CFMB, which is a full agonist with ~750-fold higher potency than the SCFAs. In conclusion, SCFAs may increase colonic GLP-1/PYY secretion, but FFAR2/FFAR3 do not seem to be involved. Rather, SCFAs are metabolized and appear to function as a colonocyte energy source. NEW & NOTEWORTHY By the use of in situ isolated perfused rat colon we show that short-chain fatty acids (SCFAs) primarily are used as a colonocyte energy source in the rat, subsequently triggering glucagon like peptide-1 (GLP-1) secretion independent of the free fatty acid receptors FFAR2 and FFAR3. Opposite many previous studies on SCFAs and FFAR2/FFAR3 and GLP-1 secretion, this experimental model allows investigation of the physiological interactions between luminal nutrients and secretion from cells whose function depend critically on their blood supply as well as nerve and paracrine interactions.
The colonic epithelium harbors a large number of endocrine cells, but little is known about the endocrine functions of the colon. However, the high density of glucagon like peptide-1 (GLP-1)- and peptide-YY (PYY)-secreting L cells is of great interest because of the potential antidiabetic and antiobesity effects of GLP-1 and PYY. Short-chain fatty acids (SCFAs) produced by local bacterial fermentation are suggested to activate the colonic free fatty acid receptors FFAR2 (GPR43) and FFAR3 (GPR41), stimulating the colonic L cells. We used the isolated perfused rat colon as a model of colonic endocrine secretion and studied the effects of the predominant SCFAs formed: acetate, propionate, and butyrate. We show that luminal and especially vascular infusion of acetate and butyrate significantly increases colonic GLP-1 secretion, and to a minor extent also PYY secretion, but only after enhancement of intracellular cAMP. Propionate neither affected GLP-1 nor PYY secretion whether administered luminally or vascularly. A FFAR2- and FFAR3-specific agonist [( S)-2-(4-chlorophenyl)-3,3-dimethyl- N-(5-phenylthiazol-2-yl)butamide (CFMB)/ AR420626 ] had no effect on colonic GLP-1 output, and a FFAR3 antagonist ( AR399519 ) did not decrease the SCFA-induced GLP-1 response. However, the voltage-gated Ca2+-channel blocker nifedipine, the KATP-channel opener diazoxide, and the ATP synthesis inhibitor 2,4-dinitrophenol completely abolished the responses. FFAR2 receptor studies confirmed low-potent partial agonism of acetate, propionate, and butyrate, compared with CFMB, which is a full agonist with ~750-fold higher potency than the SCFAs. In conclusion, SCFAs may increase colonic GLP-1/PYY secretion, but FFAR2/FFAR3 do not seem to be involved. Rather, SCFAs are metabolized and appear to function as a colonocyte energy source. NEW & NOTEWORTHY By the use of in situ isolated perfused rat colon we show that short-chain fatty acids (SCFAs) primarily are used as a colonocyte energy source in the rat, subsequently triggering glucagon like peptide-1 (GLP-1) secretion independent of the free fatty acid receptors FFAR2 and FFAR3. Opposite many previous studies on SCFAs and FFAR2/FFAR3 and GLP-1 secretion, this experimental model allows investigation of the physiological interactions between luminal nutrients and secretion from cells whose function depend critically on their blood supply as well as nerve and paracrine interactions.The colonic epithelium harbors a large number of endocrine cells, but little is known about the endocrine functions of the colon. However, the high density of glucagon like peptide-1 (GLP-1)- and peptide-YY (PYY)-secreting L cells is of great interest because of the potential antidiabetic and antiobesity effects of GLP-1 and PYY. Short-chain fatty acids (SCFAs) produced by local bacterial fermentation are suggested to activate the colonic free fatty acid receptors FFAR2 (GPR43) and FFAR3 (GPR41), stimulating the colonic L cells. We used the isolated perfused rat colon as a model of colonic endocrine secretion and studied the effects of the predominant SCFAs formed: acetate, propionate, and butyrate. We show that luminal and especially vascular infusion of acetate and butyrate significantly increases colonic GLP-1 secretion, and to a minor extent also PYY secretion, but only after enhancement of intracellular cAMP. Propionate neither affected GLP-1 nor PYY secretion whether administered luminally or vascularly. A FFAR2- and FFAR3-specific agonist [( S)-2-(4-chlorophenyl)-3,3-dimethyl- N-(5-phenylthiazol-2-yl)butamide (CFMB)/ AR420626 ] had no effect on colonic GLP-1 output, and a FFAR3 antagonist ( AR399519 ) did not decrease the SCFA-induced GLP-1 response. However, the voltage-gated Ca2+-channel blocker nifedipine, the KATP-channel opener diazoxide, and the ATP synthesis inhibitor 2,4-dinitrophenol completely abolished the responses. FFAR2 receptor studies confirmed low-potent partial agonism of acetate, propionate, and butyrate, compared with CFMB, which is a full agonist with ~750-fold higher potency than the SCFAs. In conclusion, SCFAs may increase colonic GLP-1/PYY secretion, but FFAR2/FFAR3 do not seem to be involved. Rather, SCFAs are metabolized and appear to function as a colonocyte energy source. NEW & NOTEWORTHY By the use of in situ isolated perfused rat colon we show that short-chain fatty acids (SCFAs) primarily are used as a colonocyte energy source in the rat, subsequently triggering glucagon like peptide-1 (GLP-1) secretion independent of the free fatty acid receptors FFAR2 and FFAR3. Opposite many previous studies on SCFAs and FFAR2/FFAR3 and GLP-1 secretion, this experimental model allows investigation of the physiological interactions between luminal nutrients and secretion from cells whose function depend critically on their blood supply as well as nerve and paracrine interactions.
Author Christiansen, Charlotte Bayer
Dragsted, Lars Ove
Svendsen, Berit
Holst, Jens Juul
Gabe, Maria Buur Nordskov
Rosenkilde, Mette Marie
Author_xml – sequence: 1
  givenname: Charlotte Bayer
  surname: Christiansen
  fullname: Christiansen, Charlotte Bayer
  organization: Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
– sequence: 2
  givenname: Maria Buur Nordskov
  surname: Gabe
  fullname: Gabe, Maria Buur Nordskov
  organization: Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
– sequence: 3
  givenname: Berit
  surname: Svendsen
  fullname: Svendsen, Berit
  organization: Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
– sequence: 4
  givenname: Lars Ove
  surname: Dragsted
  fullname: Dragsted, Lars Ove
  organization: Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
– sequence: 5
  givenname: Mette Marie
  surname: Rosenkilde
  fullname: Rosenkilde, Mette Marie
  organization: Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
– sequence: 6
  givenname: Jens Juul
  surname: Holst
  fullname: Holst, Jens Juul
  organization: Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29494208$$D View this record in MEDLINE/PubMed
BookMark eNp1kTtPwzAUhS0EglLYmZBHlhS_8hoRgoJUiQ5l6GS5zjU1SuJgOwP_HofCgsR0H_rOke495-i4dz0gdEXJgtKc3ar34c0uCOGiWDBCyyM0S2uW0VyUx2hGaM0zWuXlGToP4Z0QkjNKT9EZq0UtGKlmCDZ7wLYblI7YGRz2zsdM75XtsVExfmKlbROw6_Fytc4oVn2D19stDqA9RJv2xrsOx8kluFZFaPAA3owhNV5FrF3r-gt0YlQb4PKnztHr48Pm_ilbvSyf7-9WmRakjNmuKGtSiZpz3lSMQlUpMKnTQugaDE-TYYyZouC0KaBgTdXQWhhdcpInjM_RzcF38O5jhBBlZ4OGtlU9uDHI9CPCS5bnIqHXP-i466CRg7ed8p_y9zUJKA6A9i4ED0ZqG9V0cvTKtpISOWUgvzOQ3xlM_mUSkj_CX-9_JV9cRYkp
CitedBy_id crossref_primary_10_3390_nu11010156
crossref_primary_10_1007_s00394_021_02570_8
crossref_primary_10_1007_s00592_023_02217_6
crossref_primary_10_14341_probl12835
crossref_primary_10_3390_foods13111680
crossref_primary_10_1186_s13020_023_00717_9
crossref_primary_10_3389_fmicb_2022_980591
crossref_primary_10_22416_1382_4376_2022_32_2_19_34
crossref_primary_10_1080_19490976_2022_2102878
crossref_primary_10_1111_ijcp_14744
crossref_primary_10_3390_ijms20215296
crossref_primary_10_1007_s00125_020_05149_w
crossref_primary_10_3390_molecules26030703
crossref_primary_10_3390_nu16223935
crossref_primary_10_1186_s12974_022_02510_1
crossref_primary_10_1111_omi_12322
crossref_primary_10_2174_1573401318666220629160713
crossref_primary_10_1016_j_tem_2020_12_003
crossref_primary_10_1007_s11695_023_06758_1
crossref_primary_10_1152_ajpheart_00346_2019
crossref_primary_10_1186_s13020_024_00894_1
crossref_primary_10_1016_j_endmts_2024_100167
crossref_primary_10_1016_j_jep_2022_115862
crossref_primary_10_1096_fj_201901061R
crossref_primary_10_2147_DDDT_S334325
crossref_primary_10_3389_fnut_2023_1118229
crossref_primary_10_1002_dmrr_3699
crossref_primary_10_1016_j_scitotenv_2022_158362
crossref_primary_10_1016_j_biopha_2021_111661
crossref_primary_10_1002_efd2_186
crossref_primary_10_1002_mnfr_202200192
crossref_primary_10_1016_j_tem_2023_02_003
crossref_primary_10_1186_s12934_024_02449_3
crossref_primary_10_20935_AcadBiol7397
crossref_primary_10_1002_fft2_301
crossref_primary_10_3390_foods11192961
crossref_primary_10_1016_j_yexmp_2024_104902
crossref_primary_10_3390_life14050559
crossref_primary_10_3390_nu16152558
crossref_primary_10_3177_jnsv_68_104
crossref_primary_10_1016_j_ajcnut_2022_12_008
crossref_primary_10_1016_j_apsb_2025_02_008
crossref_primary_10_1007_s13679_023_00503_6
crossref_primary_10_1016_j_ijbiomac_2025_140126
crossref_primary_10_1210_endocr_bqac159
crossref_primary_10_17816_pmj416109_119
crossref_primary_10_1002_mnfr_202300917
crossref_primary_10_1007_s00592_021_01790_y
crossref_primary_10_1007_s00210_025_03980_9
crossref_primary_10_1042_BST20241062
crossref_primary_10_3389_fmicb_2022_1031498
crossref_primary_10_3389_fphys_2021_662739
crossref_primary_10_1152_ajpregu_00128_2019
crossref_primary_10_3390_ijms21239234
crossref_primary_10_1210_jc_2018_02503
crossref_primary_10_3390_nu13103666
crossref_primary_10_1136_gutjnl_2019_320438
crossref_primary_10_1016_j_clnu_2024_09_045
crossref_primary_10_3390_ijms22126623
crossref_primary_10_3390_nu15112580
crossref_primary_10_1038_s41598_019_48775_0
crossref_primary_10_1016_j_phrs_2023_107041
crossref_primary_10_1080_19490976_2021_1984104
crossref_primary_10_1016_j_jep_2022_116127
crossref_primary_10_3390_ijms21228664
crossref_primary_10_1016_j_aninu_2022_06_003
crossref_primary_10_1038_s41396_019_0492_y
crossref_primary_10_1186_s43042_023_00386_1
crossref_primary_10_3390_ijms231911756
crossref_primary_10_1186_s12964_023_01219_9
crossref_primary_10_3390_microorganisms10112263
crossref_primary_10_1002_fsn3_3596
crossref_primary_10_3389_fphar_2022_963672
crossref_primary_10_12688_f1000research_17870_2
crossref_primary_10_3389_fnut_2022_1037696
crossref_primary_10_1093_eurheartj_ehab723
crossref_primary_10_1016_j_fbio_2020_100793
crossref_primary_10_1038_s41589_019_0270_1
crossref_primary_10_1152_physrev_00041_2018
crossref_primary_10_3390_nu15143120
crossref_primary_10_3390_microorganisms12020242
crossref_primary_10_1155_2021_6632266
crossref_primary_10_1111_jgh_15746
crossref_primary_10_1016_j_nut_2021_111499
crossref_primary_10_3389_fneur_2019_00663
crossref_primary_10_3389_fnut_2022_1067647
crossref_primary_10_1038_s41598_022_25041_4
crossref_primary_10_3389_fphar_2021_693048
crossref_primary_10_1007_s10753_020_01309_7
crossref_primary_10_1186_s12866_021_02415_8
crossref_primary_10_3389_fendo_2023_1169624
crossref_primary_10_1016_j_earlhumdev_2019_05_010
crossref_primary_10_1080_10408398_2022_2067116
crossref_primary_10_1016_j_diabet_2020_09_002
crossref_primary_10_1038_s42255_020_00327_x
crossref_primary_10_1016_j_mce_2022_111797
crossref_primary_10_2147_IDR_S254403
crossref_primary_10_3390_microorganisms10010108
crossref_primary_10_1111_febs_17005
crossref_primary_10_1186_s12986_024_00829_5
crossref_primary_10_3389_fendo_2019_00082
crossref_primary_10_1080_19490976_2020_1847627
crossref_primary_10_1016_j_coph_2022_102189
crossref_primary_10_21886_2219_8075_2022_13_1_24_42
crossref_primary_10_3390_ijms23147503
crossref_primary_10_1016_j_fbio_2024_105726
crossref_primary_10_1038_s12276_021_00677_w
crossref_primary_10_1016_j_jff_2024_106261
crossref_primary_10_1080_19490976_2024_2404141
crossref_primary_10_1016_j_heliyon_2023_e21431
crossref_primary_10_3390_ijms23063303
crossref_primary_10_3389_frmbi_2023_1149808
crossref_primary_10_3389_fmicb_2023_1241259
crossref_primary_10_3389_fnut_2022_917043
crossref_primary_10_3389_fmicb_2024_1436911
crossref_primary_10_3390_nu15061375
crossref_primary_10_1016_j_neuropharm_2022_109140
crossref_primary_10_3389_fphys_2023_1239278
crossref_primary_10_1210_jc_2018_02661
crossref_primary_10_3390_ijms24054275
crossref_primary_10_1038_s41598_021_91027_3
crossref_primary_10_31857_S0006302923040087
crossref_primary_10_1515_biol_2020_0096
crossref_primary_10_1016_j_jff_2022_105321
crossref_primary_10_1002_mnfr_201900922
crossref_primary_10_1177_1758835920913432
crossref_primary_10_3390_microorganisms8040527
crossref_primary_10_1016_j_phymed_2020_153354
crossref_primary_10_3389_fmicb_2024_1392016
crossref_primary_10_1038_s41598_020_73467_5
crossref_primary_10_3389_fendo_2021_694284
crossref_primary_10_3390_microorganisms7030067
crossref_primary_10_3389_fmicb_2022_927883
crossref_primary_10_3389_fimmu_2022_908219
crossref_primary_10_1016_j_neuropharm_2019_02_014
crossref_primary_10_31665_JFB_2022_18323
crossref_primary_10_1016_j_intimp_2023_111428
crossref_primary_10_3390_metabo14070395
crossref_primary_10_1111_1541_4337_12808
crossref_primary_10_1016_j_isci_2024_111699
crossref_primary_10_1111_dom_14967
crossref_primary_10_1210_clinem_dgab666
crossref_primary_10_3390_pharmaceutics15051550
crossref_primary_10_3389_fmicb_2023_1124144
crossref_primary_10_1016_j_chmed_2023_08_001
crossref_primary_10_3748_wjg_v27_i41_7041
crossref_primary_10_1007_s40519_023_01593_w
crossref_primary_10_1002_oby_23456
crossref_primary_10_1152_ajpendo_00023_2020
crossref_primary_10_1016_j_nutres_2021_07_008
crossref_primary_10_3390_nu14030692
crossref_primary_10_1111_dom_13630
crossref_primary_10_1016_j_cophys_2021_01_008
crossref_primary_10_1016_j_ejmech_2023_115990
crossref_primary_10_1186_s12876_021_01613_y
crossref_primary_10_1016_j_jnutbio_2025_109904
crossref_primary_10_2147_DMSO_S434499
crossref_primary_10_3390_nu12103054
crossref_primary_10_5005_jp_journals_10006_2411
crossref_primary_10_1080_19490976_2024_2367342
crossref_primary_10_3389_fendo_2018_00584
crossref_primary_10_1038_s41467_021_21235_y
crossref_primary_10_1111_nyas_14107
crossref_primary_10_1093_jas_skac205
crossref_primary_10_1007_s11010_022_04528_8
crossref_primary_10_1080_19382014_2019_1587976
crossref_primary_10_1016_j_tifs_2024_104354
crossref_primary_10_14341_omet12457
crossref_primary_10_1152_ajpgi_00010_2019
crossref_primary_10_3390_molecules26030682
crossref_primary_10_1111_bph_15603
crossref_primary_10_1002_bit_26793
crossref_primary_10_3390_biom11020303
crossref_primary_10_1016_j_clnu_2024_04_032
crossref_primary_10_3390_metabo11080493
crossref_primary_10_1186_s40104_019_0402_1
crossref_primary_10_3390_biomedicines8060154
crossref_primary_10_1080_1745039X_2019_1639443
crossref_primary_10_1016_j_pharmthera_2024_108605
crossref_primary_10_1021_acs_jafc_1c07851
crossref_primary_10_1186_s12991_023_00469_8
crossref_primary_10_1099_mic_0_000853
crossref_primary_10_1038_s41574_019_0168_8
crossref_primary_10_3390_ijms24054533
crossref_primary_10_3390_microorganisms10102061
crossref_primary_10_1016_j_biopha_2023_114586
crossref_primary_10_3390_foods13244058
crossref_primary_10_3390_pharmaceutics12090790
crossref_primary_10_3389_fcimb_2024_1389925
crossref_primary_10_3389_fnut_2022_842198
crossref_primary_10_1016_j_clineuro_2025_108725
crossref_primary_10_1016_j_tifs_2024_104779
crossref_primary_10_4239_wjd_v9_i8_138
crossref_primary_10_5056_jnm22093
crossref_primary_10_1016_j_tifs_2020_10_010
crossref_primary_10_1093_nutrit_nuac007
crossref_primary_10_1007_s00535_019_01649_8
crossref_primary_10_1016_j_phrs_2022_106237
crossref_primary_10_1080_19490976_2021_1960135
crossref_primary_10_1080_10408398_2023_2272769
crossref_primary_10_1002_elsc_202300065
crossref_primary_10_1210_en_2018_00261
crossref_primary_10_3389_fendo_2023_1315520
crossref_primary_10_1210_endocr_bqaf004
crossref_primary_10_3390_nu13093038
crossref_primary_10_1134_S0022093024070019
crossref_primary_10_1038_s44319_023_00013_5
crossref_primary_10_1096_fj_202301191R
crossref_primary_10_1002_cph4_7
crossref_primary_10_1038_s41598_019_56743_x
crossref_primary_10_1038_s42255_024_01113_9
crossref_primary_10_1111_bph_15611
crossref_primary_10_1016_j_foodres_2022_111653
crossref_primary_10_1186_s13098_024_01266_3
crossref_primary_10_3390_ijms24076585
crossref_primary_10_3390_metabo12050420
crossref_primary_10_7570_jomes22031
crossref_primary_10_1111_ajt_15880
crossref_primary_10_3389_fnut_2023_1219313
crossref_primary_10_1016_j_peptides_2024_171216
crossref_primary_10_3390_ijms222413330
crossref_primary_10_3389_fmicb_2019_02176
crossref_primary_10_1007_s12602_024_10227_1
crossref_primary_10_1016_j_medj_2021_03_018
crossref_primary_10_3389_fcvm_2021_721393
crossref_primary_10_3389_fnut_2024_1434150
crossref_primary_10_1146_annurev_med_042220_012821
crossref_primary_10_3389_fendo_2021_640602
crossref_primary_10_3390_foods13152360
crossref_primary_10_1016_j_cmet_2020_02_014
crossref_primary_10_14814_phy2_14352
crossref_primary_10_3390_ijms251910636
crossref_primary_10_1016_j_mvr_2023_104601
crossref_primary_10_1007_s11695_019_03976_4
crossref_primary_10_1016_j_heliyon_2022_e10887
crossref_primary_10_3390_ijms22042121
crossref_primary_10_1007_s12017_023_08746_1
crossref_primary_10_1016_j_jare_2025_03_001
crossref_primary_10_3390_nu15061539
crossref_primary_10_1016_j_coemr_2022_100318
crossref_primary_10_1210_endocr_bqaa201
Cites_doi 10.1172/JCI942
10.1016/j.trsl.2012.10.007
10.1007/s00125-001-0719-z
10.1007/s00441-005-0140-x
10.1016/j.tips.2009.09.001
10.1371/journal.pone.0178478
10.1586/17446651.2014.862152
10.1038/cti.2016.17
10.2337/diab.43.4.535
10.1152/physrev.2001.81.3.1031
10.1016/0016-5085(83)90146-4
10.1016/S0261-5614(14)50039-8
10.1016/j.peptides.2014.01.020
10.1016/S0016-5085(83)80080-8
10.1210/en.2013-1142
10.2337/db14-0807
10.1074/jbc.M111.243808
10.1677/joe.0.1510421
10.4291/wjgp.v6.i4.110
10.1136/gut.37.5.684
10.1677/joe.0.1450521
10.1016/j.clnu.2009.05.011
10.1194/jlr.R036012
10.1017/S0007114509991462
10.1023/A:1018819428678
10.1152/ajpendo.1997.273.5.E981
10.1007/BF00220741
10.1016/j.coph.2013.09.014
10.1053/gast.2003.50159
10.1172/JCI990
10.1016/j.molmet.2016.10.011
10.1152/physrev.00034.2006
10.3390/nu7042839
10.2337/db11-1019
10.1152/ajpendo.2001.281.1.E155
10.1111/j.1365-2362.1992.tb01464.x
10.1136/gut.47.3.370
10.1016/j.molmet.2013.08.006
10.1053/gast.1996.v111.pm8690193
10.1016/j.aca.2014.11.015
10.1016/j.regpep.2012.08.016
10.1111/j.1365-2982.2008.01111.x
10.1210/en.2013-1789
10.1016/j.cmet.2008.11.002
10.1074/jbc.M211609200
10.1016/0014-5793(95)00983-G
10.1152/ajpgi.1998.275.6.G1415
10.3109/00365529709025084
10.1017/S146239940900132X
10.1074/jbc.M116.736157
10.1017/S0029665110004039
10.1159/000356211
10.1210/en.2014-1710
10.2337/dc14-0769
10.1210/jcem-63-2-492
10.1038/s41598-017-02546-x
10.1007/s00441-015-2165-0
10.1016/S2213-8587(13)70218-3
10.1371/journal.pone.0035240
10.1177/0148607189013002109
10.1074/jbc.M301403200
10.1038/ijo.2014.153
10.1016/j.coph.2013.08.013
10.1016/S0006-291X(03)00342-5
10.1016/S0016-5085(82)80339-9
10.1016/j.ejphar.2015.12.010
10.1136/gut.28.10.1221
10.1079/PNS2002207
10.1002/jms.181
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1152/ajpgi.00346.2017
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1522-1547
EndPage G65
ExternalDocumentID 29494208
10_1152_ajpgi_00346_2017
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
23M
2WC
39C
4.4
5GY
5VS
6J9
AAFWJ
AAYXX
ABJNI
ACPRK
ADBBV
AENEX
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BKKCC
BKOMP
CITATION
E3Z
EBS
EJD
EMOBN
F5P
GX1
H13
ITBOX
KQ8
OK1
P2P
PQQKQ
RAP
RHI
RPL
RPRKH
TR2
W8F
WOQ
XSW
YSK
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c407t-b6790849333d821e88aefd82c44c9ef3aeff222f6631d6e62d8d194fc730582c3
ISSN 0193-1857
1522-1547
IngestDate Thu Jul 10 22:38:51 EDT 2025
Thu Apr 03 07:09:27 EDT 2025
Thu Apr 24 23:03:44 EDT 2025
Tue Jul 01 03:43:02 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c407t-b6790849333d821e88aefd82c44c9ef3aeff222f6631d6e62d8d194fc730582c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://journals.physiology.org/doi/pdf/10.1152/ajpgi.00346.2017
PMID 29494208
PQID 2010372554
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2010372554
pubmed_primary_29494208
crossref_citationtrail_10_1152_ajpgi_00346_2017
crossref_primary_10_1152_ajpgi_00346_2017
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-07-01
20180701
PublicationDateYYYYMMDD 2018-07-01
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-07-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle American journal of physiology: Gastrointestinal and liver physiology
PublicationTitleAlternate Am J Physiol Gastrointest Liver Physiol
PublicationYear 2018
References B20
B64
B21
B65
B22
B66
B67
B24
B68
B25
B69
B26
B27
B28
B29
Sjölund K (B63) 1983; 85
B70
B30
B31
B32
B33
B34
Roediger WE (B61) 1982; 83
B35
B36
B37
B38
B39
B1
B2
B3
B4
B5
B6
B7
B8
B9
B40
B41
B42
B43
B45
B46
B47
B48
B49
Mascord D (B44) 1992; 27
B50
B51
B52
B53
B10
B54
B11
B55
B12
B56
B13
B57
B14
B58
B15
B59
B16
B17
B18
B19
Ferri GL (B23) 1983; 84
B60
B62
References_xml – ident: B67
  doi: 10.1172/JCI942
– ident: B39
  doi: 10.1016/j.trsl.2012.10.007
– ident: B1
  doi: 10.1007/s00125-001-0719-z
– ident: B33
  doi: 10.1007/s00441-005-0140-x
– ident: B2
  doi: 10.1016/j.tips.2009.09.001
– ident: B45
  doi: 10.1371/journal.pone.0178478
– ident: B3
  doi: 10.1586/17446651.2014.862152
– ident: B14
  doi: 10.1038/cti.2016.17
– ident: B50
  doi: 10.2337/diab.43.4.535
– ident: B69
  doi: 10.1152/physrev.2001.81.3.1031
– volume: 84
  start-page: 777
  year: 1983
  ident: B23
  publication-title: Gastroenterology
  doi: 10.1016/0016-5085(83)90146-4
– ident: B70
  doi: 10.1016/S0261-5614(14)50039-8
– ident: B37
  doi: 10.1016/j.peptides.2014.01.020
– volume: 85
  start-page: 1120
  year: 1983
  ident: B63
  publication-title: Gastroenterology
  doi: 10.1016/S0016-5085(83)80080-8
– ident: B48
  doi: 10.1210/en.2013-1142
– ident: B38
  doi: 10.2337/db14-0807
– ident: B66
  doi: 10.1074/jbc.M111.243808
– ident: B56
  doi: 10.1677/joe.0.1510421
– ident: B11
  doi: 10.4291/wjgp.v6.i4.110
– ident: B13
  doi: 10.1136/gut.37.5.684
– ident: B55
  doi: 10.1677/joe.0.1450521
– ident: B5
  doi: 10.1016/j.clnu.2009.05.011
– ident: B18
  doi: 10.1194/jlr.R036012
– ident: B26
  doi: 10.1017/S0007114509991462
– ident: B49
  doi: 10.1023/A:1018819428678
– ident: B47
  doi: 10.1152/ajpendo.1997.273.5.E981
– ident: B9
  doi: 10.1007/BF00220741
– ident: B29
  doi: 10.1016/j.coph.2013.09.014
– ident: B54
  doi: 10.1053/gast.2003.50159
– ident: B25
  doi: 10.1172/JCI990
– ident: B7
  doi: 10.1016/j.molmet.2016.10.011
– ident: B30
  doi: 10.1152/physrev.00034.2006
– ident: B34
  doi: 10.3390/nu7042839
– ident: B68
  doi: 10.2337/db11-1019
– ident: B19
  doi: 10.1152/ajpendo.2001.281.1.E155
– ident: B20
  doi: 10.1111/j.1365-2362.1992.tb01464.x
– ident: B31
  doi: 10.1136/gut.47.3.370
– ident: B21
  doi: 10.1016/j.molmet.2013.08.006
– ident: B62
  doi: 10.1053/gast.1996.v111.pm8690193
– ident: B27
  doi: 10.1016/j.aca.2014.11.015
– ident: B35
  doi: 10.1016/j.regpep.2012.08.016
– ident: B4
  doi: 10.1111/j.1365-2982.2008.01111.x
– ident: B59
  doi: 10.1210/en.2013-1789
– ident: B60
  doi: 10.1016/j.cmet.2008.11.002
– ident: B8
  doi: 10.1074/jbc.M211609200
– ident: B17
  doi: 10.1016/0014-5793(95)00983-G
– ident: B12
  doi: 10.1152/ajpgi.1998.275.6.G1415
– ident: B51
  doi: 10.3109/00365529709025084
– ident: B53
  doi: 10.1017/S146239940900132X
– ident: B6
  doi: 10.1074/jbc.M116.736157
– ident: B16
  doi: 10.1017/S0029665110004039
– ident: B32
  doi: 10.1159/000356211
– ident: B65
  doi: 10.1210/en.2014-1710
– ident: B28
  doi: 10.2337/dc14-0769
– ident: B46
  doi: 10.1210/jcem-63-2-492
– ident: B10
  doi: 10.1038/s41598-017-02546-x
– ident: B24
  doi: 10.1007/s00441-015-2165-0
– ident: B43
  doi: 10.1016/S2213-8587(13)70218-3
– ident: B41
  doi: 10.1371/journal.pone.0035240
– ident: B36
  doi: 10.1177/0148607189013002109
– ident: B40
  doi: 10.1074/jbc.M301403200
– ident: B58
  doi: 10.1038/ijo.2014.153
– ident: B22
  doi: 10.1016/j.coph.2013.08.013
– ident: B64
  doi: 10.1016/S0006-291X(03)00342-5
– volume: 83
  start-page: 424
  year: 1982
  ident: B61
  publication-title: Gastroenterology
  doi: 10.1016/S0016-5085(82)80339-9
– ident: B52
  doi: 10.1016/j.ejphar.2015.12.010
– ident: B15
  doi: 10.1136/gut.28.10.1221
– ident: B42
  doi: 10.1079/PNS2002207
– ident: B57
  doi: 10.1002/jms.181
– volume: 27
  start-page: 25
  year: 1992
  ident: B44
  publication-title: Alcohol Alcohol
SSID ssj0005211
Score 2.6420875
Snippet The colonic epithelium harbors a large number of endocrine cells, but little is known about the endocrine functions of the colon. However, the high density of...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage G53
SubjectTerms Animals
Colon - blood supply
Colon - innervation
Colon - metabolism
Fatty Acids, Volatile - classification
Fatty Acids, Volatile - metabolism
Gastrointestinal Hormones - metabolism
Glucagon-Like Peptide 1 - metabolism
Intestinal Mucosa - metabolism
Models, Theoretical
Paracrine Communication - physiology
Peptide YY - metabolism
Rats
Receptors, G-Protein-Coupled - classification
Receptors, G-Protein-Coupled - metabolism
Title The impact of short-chain fatty acids on GLP-1 and PYY secretion from the isolated perfused rat colon
URI https://www.ncbi.nlm.nih.gov/pubmed/29494208
https://www.proquest.com/docview/2010372554
Volume 315
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtNAEF2FIiFeELRAw02LhJCQ5Ta-xn5MuKSCForUSu2TtTe3gdaOYrtS-TV-jpndteMCRcCL5djOxvI5mZ3ZOTMm5IWnYk_EnLuBiEM3lHnopmwE_yueyNTj45RxrB3e-xjvHIbvj6KjweB7T7XU1HxLfPttXcn_oArHAFeskv0HZLtB4QDsA76wBYRh-9cYr8ocq1NwpV1xCrG-k7MavGsm5lKnA2a7-65nCgOOj50KXUWjMWyLS-Zwowydz4Va5k0FO8AMBztaF333tcvv9BpO6LURU_MSTJwZq-pliU0owHYUthHBGYo_eheuNAXWxNhlIJ37L-taOVN2uZINzxhXtq5ozpxp0ywx3SSrr-VFt0B0gdJeM8oU7rET87xZspN2RXcXgnjnk6kqbVc6vKRTxcJEZa0zRM7g84375jsw5aBXeGqM8cy0If51koiw6Sz7sjiZb2F_HlSqmALSHmcW55o0fhqmqEBYTZediLE9dYPc9CFGQSP74XPS0xd5XpsXj_ztn38Ou1DbAa66RNfEOdrfObhL7thAhU4M6-6RgSrWycakYHV5fklf0v0OzXVya88qNDaIAk5Sw0la5rTHSao5STUnaVlQzUkK9KDASdpxkiInaY2jWE7SlpMUOEk1J--Tw3dvD17vuPZVHq4IR-Pa5fE4HSVhGgSBTHxPJQlTOeyJMBSpygP4lIOnmoP_68lYxb5MpJeGuYAJKILLggdkrSgLtUmoGCkheaCiHJ6elJgp9oUQsYx5kkD4PSTb7dPMhO1zj69bOct0vBv5mYYi01BkCMWQvOq-sTA9Xv5w7fMWoAwMMWbXWKHKpsKzo2AMEXo4JA8Nct1oLdKPrj3zmNxeUf4JWauXjXoK7m7Nn2la_QAoia5w
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+impact+of+short-chain+fatty+acids+on+GLP-1+and+PYY+secretion+from+the+isolated+perfused+rat+colon&rft.jtitle=American+journal+of+physiology%3A+Gastrointestinal+and+liver+physiology&rft.au=Christiansen%2C+Charlotte+Bayer&rft.au=Gabe%2C+Maria+Buur+Nordskov&rft.au=Svendsen%2C+Berit&rft.au=Dragsted%2C+Lars+Ove&rft.date=2018-07-01&rft.eissn=1522-1547&rft.volume=315&rft.issue=1&rft.spage=G53&rft_id=info:doi/10.1152%2Fajpgi.00346.2017&rft_id=info%3Apmid%2F29494208&rft.externalDocID=29494208
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0193-1857&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0193-1857&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0193-1857&client=summon