The impact of short-chain fatty acids on GLP-1 and PYY secretion from the isolated perfused rat colon
The colonic epithelium harbors a large number of endocrine cells, but little is known about the endocrine functions of the colon. However, the high density of glucagon like peptide-1 (GLP-1)- and peptide-YY (PYY)-secreting L cells is of great interest because of the potential antidiabetic and antiob...
Saved in:
Published in | American journal of physiology: Gastrointestinal and liver physiology Vol. 315; no. 1; pp. G53 - G65 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.07.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The colonic epithelium harbors a large number of endocrine cells, but little is known about the endocrine functions of the colon. However, the high density of glucagon like peptide-1 (GLP-1)- and peptide-YY (PYY)-secreting L cells is of great interest because of the potential antidiabetic and antiobesity effects of GLP-1 and PYY. Short-chain fatty acids (SCFAs) produced by local bacterial fermentation are suggested to activate the colonic free fatty acid receptors FFAR2 (GPR43) and FFAR3 (GPR41), stimulating the colonic L cells. We used the isolated perfused rat colon as a model of colonic endocrine secretion and studied the effects of the predominant SCFAs formed: acetate, propionate, and butyrate. We show that luminal and especially vascular infusion of acetate and butyrate significantly increases colonic GLP-1 secretion, and to a minor extent also PYY secretion, but only after enhancement of intracellular cAMP. Propionate neither affected GLP-1 nor PYY secretion whether administered luminally or vascularly. A FFAR2- and FFAR3–specific agonist [( S)-2-(4-chlorophenyl)-3,3-dimethyl- N-(5-phenylthiazol-2-yl)butamide (CFMB)/ AR420626 ] had no effect on colonic GLP-1 output, and a FFAR3 antagonist ( AR399519 ) did not decrease the SCFA-induced GLP-1 response. However, the voltage-gated Ca
2+
-channel blocker nifedipine, the K
ATP
-channel opener diazoxide, and the ATP synthesis inhibitor 2,4-dinitrophenol completely abolished the responses. FFAR2 receptor studies confirmed low-potent partial agonism of acetate, propionate, and butyrate, compared with CFMB, which is a full agonist with ~750-fold higher potency than the SCFAs. In conclusion, SCFAs may increase colonic GLP-1/PYY secretion, but FFAR2/FFAR3 do not seem to be involved. Rather, SCFAs are metabolized and appear to function as a colonocyte energy source.
NEW & NOTEWORTHY By the use of in situ isolated perfused rat colon we show that short-chain fatty acids (SCFAs) primarily are used as a colonocyte energy source in the rat, subsequently triggering glucagon like peptide-1 (GLP-1) secretion independent of the free fatty acid receptors FFAR2 and FFAR3. Opposite many previous studies on SCFAs and FFAR2/FFAR3 and GLP-1 secretion, this experimental model allows investigation of the physiological interactions between luminal nutrients and secretion from cells whose function depend critically on their blood supply as well as nerve and paracrine interactions. |
---|---|
AbstractList | The colonic epithelium harbors a large number of endocrine cells, but little is known about the endocrine functions of the colon. However, the high density of glucagon like peptide-1 (GLP-1)- and peptide-YY (PYY)-secreting L cells is of great interest because of the potential antidiabetic and antiobesity effects of GLP-1 and PYY. Short-chain fatty acids (SCFAs) produced by local bacterial fermentation are suggested to activate the colonic free fatty acid receptors FFAR2 (GPR43) and FFAR3 (GPR41), stimulating the colonic L cells. We used the isolated perfused rat colon as a model of colonic endocrine secretion and studied the effects of the predominant SCFAs formed: acetate, propionate, and butyrate. We show that luminal and especially vascular infusion of acetate and butyrate significantly increases colonic GLP-1 secretion, and to a minor extent also PYY secretion, but only after enhancement of intracellular cAMP. Propionate neither affected GLP-1 nor PYY secretion whether administered luminally or vascularly. A FFAR2- and FFAR3-specific agonist [( S)-2-(4-chlorophenyl)-3,3-dimethyl- N-(5-phenylthiazol-2-yl)butamide (CFMB)/ AR420626 ] had no effect on colonic GLP-1 output, and a FFAR3 antagonist ( AR399519 ) did not decrease the SCFA-induced GLP-1 response. However, the voltage-gated Ca
-channel blocker nifedipine, the K
-channel opener diazoxide, and the ATP synthesis inhibitor 2,4-dinitrophenol completely abolished the responses. FFAR2 receptor studies confirmed low-potent partial agonism of acetate, propionate, and butyrate, compared with CFMB, which is a full agonist with ~750-fold higher potency than the SCFAs. In conclusion, SCFAs may increase colonic GLP-1/PYY secretion, but FFAR2/FFAR3 do not seem to be involved. Rather, SCFAs are metabolized and appear to function as a colonocyte energy source. NEW & NOTEWORTHY By the use of in situ isolated perfused rat colon we show that short-chain fatty acids (SCFAs) primarily are used as a colonocyte energy source in the rat, subsequently triggering glucagon like peptide-1 (GLP-1) secretion independent of the free fatty acid receptors FFAR2 and FFAR3. Opposite many previous studies on SCFAs and FFAR2/FFAR3 and GLP-1 secretion, this experimental model allows investigation of the physiological interactions between luminal nutrients and secretion from cells whose function depend critically on their blood supply as well as nerve and paracrine interactions. The colonic epithelium harbors a large number of endocrine cells, but little is known about the endocrine functions of the colon. However, the high density of glucagon like peptide-1 (GLP-1)- and peptide-YY (PYY)-secreting L cells is of great interest because of the potential antidiabetic and antiobesity effects of GLP-1 and PYY. Short-chain fatty acids (SCFAs) produced by local bacterial fermentation are suggested to activate the colonic free fatty acid receptors FFAR2 (GPR43) and FFAR3 (GPR41), stimulating the colonic L cells. We used the isolated perfused rat colon as a model of colonic endocrine secretion and studied the effects of the predominant SCFAs formed: acetate, propionate, and butyrate. We show that luminal and especially vascular infusion of acetate and butyrate significantly increases colonic GLP-1 secretion, and to a minor extent also PYY secretion, but only after enhancement of intracellular cAMP. Propionate neither affected GLP-1 nor PYY secretion whether administered luminally or vascularly. A FFAR2- and FFAR3–specific agonist [( S)-2-(4-chlorophenyl)-3,3-dimethyl- N-(5-phenylthiazol-2-yl)butamide (CFMB)/ AR420626 ] had no effect on colonic GLP-1 output, and a FFAR3 antagonist ( AR399519 ) did not decrease the SCFA-induced GLP-1 response. However, the voltage-gated Ca 2+ -channel blocker nifedipine, the K ATP -channel opener diazoxide, and the ATP synthesis inhibitor 2,4-dinitrophenol completely abolished the responses. FFAR2 receptor studies confirmed low-potent partial agonism of acetate, propionate, and butyrate, compared with CFMB, which is a full agonist with ~750-fold higher potency than the SCFAs. In conclusion, SCFAs may increase colonic GLP-1/PYY secretion, but FFAR2/FFAR3 do not seem to be involved. Rather, SCFAs are metabolized and appear to function as a colonocyte energy source. NEW & NOTEWORTHY By the use of in situ isolated perfused rat colon we show that short-chain fatty acids (SCFAs) primarily are used as a colonocyte energy source in the rat, subsequently triggering glucagon like peptide-1 (GLP-1) secretion independent of the free fatty acid receptors FFAR2 and FFAR3. Opposite many previous studies on SCFAs and FFAR2/FFAR3 and GLP-1 secretion, this experimental model allows investigation of the physiological interactions between luminal nutrients and secretion from cells whose function depend critically on their blood supply as well as nerve and paracrine interactions. The colonic epithelium harbors a large number of endocrine cells, but little is known about the endocrine functions of the colon. However, the high density of glucagon like peptide-1 (GLP-1)- and peptide-YY (PYY)-secreting L cells is of great interest because of the potential antidiabetic and antiobesity effects of GLP-1 and PYY. Short-chain fatty acids (SCFAs) produced by local bacterial fermentation are suggested to activate the colonic free fatty acid receptors FFAR2 (GPR43) and FFAR3 (GPR41), stimulating the colonic L cells. We used the isolated perfused rat colon as a model of colonic endocrine secretion and studied the effects of the predominant SCFAs formed: acetate, propionate, and butyrate. We show that luminal and especially vascular infusion of acetate and butyrate significantly increases colonic GLP-1 secretion, and to a minor extent also PYY secretion, but only after enhancement of intracellular cAMP. Propionate neither affected GLP-1 nor PYY secretion whether administered luminally or vascularly. A FFAR2- and FFAR3-specific agonist [( S)-2-(4-chlorophenyl)-3,3-dimethyl- N-(5-phenylthiazol-2-yl)butamide (CFMB)/ AR420626 ] had no effect on colonic GLP-1 output, and a FFAR3 antagonist ( AR399519 ) did not decrease the SCFA-induced GLP-1 response. However, the voltage-gated Ca2+-channel blocker nifedipine, the KATP-channel opener diazoxide, and the ATP synthesis inhibitor 2,4-dinitrophenol completely abolished the responses. FFAR2 receptor studies confirmed low-potent partial agonism of acetate, propionate, and butyrate, compared with CFMB, which is a full agonist with ~750-fold higher potency than the SCFAs. In conclusion, SCFAs may increase colonic GLP-1/PYY secretion, but FFAR2/FFAR3 do not seem to be involved. Rather, SCFAs are metabolized and appear to function as a colonocyte energy source. NEW & NOTEWORTHY By the use of in situ isolated perfused rat colon we show that short-chain fatty acids (SCFAs) primarily are used as a colonocyte energy source in the rat, subsequently triggering glucagon like peptide-1 (GLP-1) secretion independent of the free fatty acid receptors FFAR2 and FFAR3. Opposite many previous studies on SCFAs and FFAR2/FFAR3 and GLP-1 secretion, this experimental model allows investigation of the physiological interactions between luminal nutrients and secretion from cells whose function depend critically on their blood supply as well as nerve and paracrine interactions.The colonic epithelium harbors a large number of endocrine cells, but little is known about the endocrine functions of the colon. However, the high density of glucagon like peptide-1 (GLP-1)- and peptide-YY (PYY)-secreting L cells is of great interest because of the potential antidiabetic and antiobesity effects of GLP-1 and PYY. Short-chain fatty acids (SCFAs) produced by local bacterial fermentation are suggested to activate the colonic free fatty acid receptors FFAR2 (GPR43) and FFAR3 (GPR41), stimulating the colonic L cells. We used the isolated perfused rat colon as a model of colonic endocrine secretion and studied the effects of the predominant SCFAs formed: acetate, propionate, and butyrate. We show that luminal and especially vascular infusion of acetate and butyrate significantly increases colonic GLP-1 secretion, and to a minor extent also PYY secretion, but only after enhancement of intracellular cAMP. Propionate neither affected GLP-1 nor PYY secretion whether administered luminally or vascularly. A FFAR2- and FFAR3-specific agonist [( S)-2-(4-chlorophenyl)-3,3-dimethyl- N-(5-phenylthiazol-2-yl)butamide (CFMB)/ AR420626 ] had no effect on colonic GLP-1 output, and a FFAR3 antagonist ( AR399519 ) did not decrease the SCFA-induced GLP-1 response. However, the voltage-gated Ca2+-channel blocker nifedipine, the KATP-channel opener diazoxide, and the ATP synthesis inhibitor 2,4-dinitrophenol completely abolished the responses. FFAR2 receptor studies confirmed low-potent partial agonism of acetate, propionate, and butyrate, compared with CFMB, which is a full agonist with ~750-fold higher potency than the SCFAs. In conclusion, SCFAs may increase colonic GLP-1/PYY secretion, but FFAR2/FFAR3 do not seem to be involved. Rather, SCFAs are metabolized and appear to function as a colonocyte energy source. NEW & NOTEWORTHY By the use of in situ isolated perfused rat colon we show that short-chain fatty acids (SCFAs) primarily are used as a colonocyte energy source in the rat, subsequently triggering glucagon like peptide-1 (GLP-1) secretion independent of the free fatty acid receptors FFAR2 and FFAR3. Opposite many previous studies on SCFAs and FFAR2/FFAR3 and GLP-1 secretion, this experimental model allows investigation of the physiological interactions between luminal nutrients and secretion from cells whose function depend critically on their blood supply as well as nerve and paracrine interactions. |
Author | Christiansen, Charlotte Bayer Dragsted, Lars Ove Svendsen, Berit Holst, Jens Juul Gabe, Maria Buur Nordskov Rosenkilde, Mette Marie |
Author_xml | – sequence: 1 givenname: Charlotte Bayer surname: Christiansen fullname: Christiansen, Charlotte Bayer organization: Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark – sequence: 2 givenname: Maria Buur Nordskov surname: Gabe fullname: Gabe, Maria Buur Nordskov organization: Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark – sequence: 3 givenname: Berit surname: Svendsen fullname: Svendsen, Berit organization: Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark – sequence: 4 givenname: Lars Ove surname: Dragsted fullname: Dragsted, Lars Ove organization: Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark – sequence: 5 givenname: Mette Marie surname: Rosenkilde fullname: Rosenkilde, Mette Marie organization: Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark – sequence: 6 givenname: Jens Juul surname: Holst fullname: Holst, Jens Juul organization: Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29494208$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kTtPwzAUhS0EglLYmZBHlhS_8hoRgoJUiQ5l6GS5zjU1SuJgOwP_HofCgsR0H_rOke495-i4dz0gdEXJgtKc3ar34c0uCOGiWDBCyyM0S2uW0VyUx2hGaM0zWuXlGToP4Z0QkjNKT9EZq0UtGKlmCDZ7wLYblI7YGRz2zsdM75XtsVExfmKlbROw6_Fytc4oVn2D19stDqA9RJv2xrsOx8kluFZFaPAA3owhNV5FrF3r-gt0YlQb4PKnztHr48Pm_ilbvSyf7-9WmRakjNmuKGtSiZpz3lSMQlUpMKnTQugaDE-TYYyZouC0KaBgTdXQWhhdcpInjM_RzcF38O5jhBBlZ4OGtlU9uDHI9CPCS5bnIqHXP-i466CRg7ed8p_y9zUJKA6A9i4ED0ZqG9V0cvTKtpISOWUgvzOQ3xlM_mUSkj_CX-9_JV9cRYkp |
CitedBy_id | crossref_primary_10_3390_nu11010156 crossref_primary_10_1007_s00394_021_02570_8 crossref_primary_10_1007_s00592_023_02217_6 crossref_primary_10_14341_probl12835 crossref_primary_10_3390_foods13111680 crossref_primary_10_1186_s13020_023_00717_9 crossref_primary_10_3389_fmicb_2022_980591 crossref_primary_10_22416_1382_4376_2022_32_2_19_34 crossref_primary_10_1080_19490976_2022_2102878 crossref_primary_10_1111_ijcp_14744 crossref_primary_10_3390_ijms20215296 crossref_primary_10_1007_s00125_020_05149_w crossref_primary_10_3390_molecules26030703 crossref_primary_10_3390_nu16223935 crossref_primary_10_1186_s12974_022_02510_1 crossref_primary_10_1111_omi_12322 crossref_primary_10_2174_1573401318666220629160713 crossref_primary_10_1016_j_tem_2020_12_003 crossref_primary_10_1007_s11695_023_06758_1 crossref_primary_10_1152_ajpheart_00346_2019 crossref_primary_10_1186_s13020_024_00894_1 crossref_primary_10_1016_j_endmts_2024_100167 crossref_primary_10_1016_j_jep_2022_115862 crossref_primary_10_1096_fj_201901061R crossref_primary_10_2147_DDDT_S334325 crossref_primary_10_3389_fnut_2023_1118229 crossref_primary_10_1002_dmrr_3699 crossref_primary_10_1016_j_scitotenv_2022_158362 crossref_primary_10_1016_j_biopha_2021_111661 crossref_primary_10_1002_efd2_186 crossref_primary_10_1002_mnfr_202200192 crossref_primary_10_1016_j_tem_2023_02_003 crossref_primary_10_1186_s12934_024_02449_3 crossref_primary_10_20935_AcadBiol7397 crossref_primary_10_1002_fft2_301 crossref_primary_10_3390_foods11192961 crossref_primary_10_1016_j_yexmp_2024_104902 crossref_primary_10_3390_life14050559 crossref_primary_10_3390_nu16152558 crossref_primary_10_3177_jnsv_68_104 crossref_primary_10_1016_j_ajcnut_2022_12_008 crossref_primary_10_1016_j_apsb_2025_02_008 crossref_primary_10_1007_s13679_023_00503_6 crossref_primary_10_1016_j_ijbiomac_2025_140126 crossref_primary_10_1210_endocr_bqac159 crossref_primary_10_17816_pmj416109_119 crossref_primary_10_1002_mnfr_202300917 crossref_primary_10_1007_s00592_021_01790_y crossref_primary_10_1007_s00210_025_03980_9 crossref_primary_10_1042_BST20241062 crossref_primary_10_3389_fmicb_2022_1031498 crossref_primary_10_3389_fphys_2021_662739 crossref_primary_10_1152_ajpregu_00128_2019 crossref_primary_10_3390_ijms21239234 crossref_primary_10_1210_jc_2018_02503 crossref_primary_10_3390_nu13103666 crossref_primary_10_1136_gutjnl_2019_320438 crossref_primary_10_1016_j_clnu_2024_09_045 crossref_primary_10_3390_ijms22126623 crossref_primary_10_3390_nu15112580 crossref_primary_10_1038_s41598_019_48775_0 crossref_primary_10_1016_j_phrs_2023_107041 crossref_primary_10_1080_19490976_2021_1984104 crossref_primary_10_1016_j_jep_2022_116127 crossref_primary_10_3390_ijms21228664 crossref_primary_10_1016_j_aninu_2022_06_003 crossref_primary_10_1038_s41396_019_0492_y crossref_primary_10_1186_s43042_023_00386_1 crossref_primary_10_3390_ijms231911756 crossref_primary_10_1186_s12964_023_01219_9 crossref_primary_10_3390_microorganisms10112263 crossref_primary_10_1002_fsn3_3596 crossref_primary_10_3389_fphar_2022_963672 crossref_primary_10_12688_f1000research_17870_2 crossref_primary_10_3389_fnut_2022_1037696 crossref_primary_10_1093_eurheartj_ehab723 crossref_primary_10_1016_j_fbio_2020_100793 crossref_primary_10_1038_s41589_019_0270_1 crossref_primary_10_1152_physrev_00041_2018 crossref_primary_10_3390_nu15143120 crossref_primary_10_3390_microorganisms12020242 crossref_primary_10_1155_2021_6632266 crossref_primary_10_1111_jgh_15746 crossref_primary_10_1016_j_nut_2021_111499 crossref_primary_10_3389_fneur_2019_00663 crossref_primary_10_3389_fnut_2022_1067647 crossref_primary_10_1038_s41598_022_25041_4 crossref_primary_10_3389_fphar_2021_693048 crossref_primary_10_1007_s10753_020_01309_7 crossref_primary_10_1186_s12866_021_02415_8 crossref_primary_10_3389_fendo_2023_1169624 crossref_primary_10_1016_j_earlhumdev_2019_05_010 crossref_primary_10_1080_10408398_2022_2067116 crossref_primary_10_1016_j_diabet_2020_09_002 crossref_primary_10_1038_s42255_020_00327_x crossref_primary_10_1016_j_mce_2022_111797 crossref_primary_10_2147_IDR_S254403 crossref_primary_10_3390_microorganisms10010108 crossref_primary_10_1111_febs_17005 crossref_primary_10_1186_s12986_024_00829_5 crossref_primary_10_3389_fendo_2019_00082 crossref_primary_10_1080_19490976_2020_1847627 crossref_primary_10_1016_j_coph_2022_102189 crossref_primary_10_21886_2219_8075_2022_13_1_24_42 crossref_primary_10_3390_ijms23147503 crossref_primary_10_1016_j_fbio_2024_105726 crossref_primary_10_1038_s12276_021_00677_w crossref_primary_10_1016_j_jff_2024_106261 crossref_primary_10_1080_19490976_2024_2404141 crossref_primary_10_1016_j_heliyon_2023_e21431 crossref_primary_10_3390_ijms23063303 crossref_primary_10_3389_frmbi_2023_1149808 crossref_primary_10_3389_fmicb_2023_1241259 crossref_primary_10_3389_fnut_2022_917043 crossref_primary_10_3389_fmicb_2024_1436911 crossref_primary_10_3390_nu15061375 crossref_primary_10_1016_j_neuropharm_2022_109140 crossref_primary_10_3389_fphys_2023_1239278 crossref_primary_10_1210_jc_2018_02661 crossref_primary_10_3390_ijms24054275 crossref_primary_10_1038_s41598_021_91027_3 crossref_primary_10_31857_S0006302923040087 crossref_primary_10_1515_biol_2020_0096 crossref_primary_10_1016_j_jff_2022_105321 crossref_primary_10_1002_mnfr_201900922 crossref_primary_10_1177_1758835920913432 crossref_primary_10_3390_microorganisms8040527 crossref_primary_10_1016_j_phymed_2020_153354 crossref_primary_10_3389_fmicb_2024_1392016 crossref_primary_10_1038_s41598_020_73467_5 crossref_primary_10_3389_fendo_2021_694284 crossref_primary_10_3390_microorganisms7030067 crossref_primary_10_3389_fmicb_2022_927883 crossref_primary_10_3389_fimmu_2022_908219 crossref_primary_10_1016_j_neuropharm_2019_02_014 crossref_primary_10_31665_JFB_2022_18323 crossref_primary_10_1016_j_intimp_2023_111428 crossref_primary_10_3390_metabo14070395 crossref_primary_10_1111_1541_4337_12808 crossref_primary_10_1016_j_isci_2024_111699 crossref_primary_10_1111_dom_14967 crossref_primary_10_1210_clinem_dgab666 crossref_primary_10_3390_pharmaceutics15051550 crossref_primary_10_3389_fmicb_2023_1124144 crossref_primary_10_1016_j_chmed_2023_08_001 crossref_primary_10_3748_wjg_v27_i41_7041 crossref_primary_10_1007_s40519_023_01593_w crossref_primary_10_1002_oby_23456 crossref_primary_10_1152_ajpendo_00023_2020 crossref_primary_10_1016_j_nutres_2021_07_008 crossref_primary_10_3390_nu14030692 crossref_primary_10_1111_dom_13630 crossref_primary_10_1016_j_cophys_2021_01_008 crossref_primary_10_1016_j_ejmech_2023_115990 crossref_primary_10_1186_s12876_021_01613_y crossref_primary_10_1016_j_jnutbio_2025_109904 crossref_primary_10_2147_DMSO_S434499 crossref_primary_10_3390_nu12103054 crossref_primary_10_5005_jp_journals_10006_2411 crossref_primary_10_1080_19490976_2024_2367342 crossref_primary_10_3389_fendo_2018_00584 crossref_primary_10_1038_s41467_021_21235_y crossref_primary_10_1111_nyas_14107 crossref_primary_10_1093_jas_skac205 crossref_primary_10_1007_s11010_022_04528_8 crossref_primary_10_1080_19382014_2019_1587976 crossref_primary_10_1016_j_tifs_2024_104354 crossref_primary_10_14341_omet12457 crossref_primary_10_1152_ajpgi_00010_2019 crossref_primary_10_3390_molecules26030682 crossref_primary_10_1111_bph_15603 crossref_primary_10_1002_bit_26793 crossref_primary_10_3390_biom11020303 crossref_primary_10_1016_j_clnu_2024_04_032 crossref_primary_10_3390_metabo11080493 crossref_primary_10_1186_s40104_019_0402_1 crossref_primary_10_3390_biomedicines8060154 crossref_primary_10_1080_1745039X_2019_1639443 crossref_primary_10_1016_j_pharmthera_2024_108605 crossref_primary_10_1021_acs_jafc_1c07851 crossref_primary_10_1186_s12991_023_00469_8 crossref_primary_10_1099_mic_0_000853 crossref_primary_10_1038_s41574_019_0168_8 crossref_primary_10_3390_ijms24054533 crossref_primary_10_3390_microorganisms10102061 crossref_primary_10_1016_j_biopha_2023_114586 crossref_primary_10_3390_foods13244058 crossref_primary_10_3390_pharmaceutics12090790 crossref_primary_10_3389_fcimb_2024_1389925 crossref_primary_10_3389_fnut_2022_842198 crossref_primary_10_1016_j_clineuro_2025_108725 crossref_primary_10_1016_j_tifs_2024_104779 crossref_primary_10_4239_wjd_v9_i8_138 crossref_primary_10_5056_jnm22093 crossref_primary_10_1016_j_tifs_2020_10_010 crossref_primary_10_1093_nutrit_nuac007 crossref_primary_10_1007_s00535_019_01649_8 crossref_primary_10_1016_j_phrs_2022_106237 crossref_primary_10_1080_19490976_2021_1960135 crossref_primary_10_1080_10408398_2023_2272769 crossref_primary_10_1002_elsc_202300065 crossref_primary_10_1210_en_2018_00261 crossref_primary_10_3389_fendo_2023_1315520 crossref_primary_10_1210_endocr_bqaf004 crossref_primary_10_3390_nu13093038 crossref_primary_10_1134_S0022093024070019 crossref_primary_10_1038_s44319_023_00013_5 crossref_primary_10_1096_fj_202301191R crossref_primary_10_1002_cph4_7 crossref_primary_10_1038_s41598_019_56743_x crossref_primary_10_1038_s42255_024_01113_9 crossref_primary_10_1111_bph_15611 crossref_primary_10_1016_j_foodres_2022_111653 crossref_primary_10_1186_s13098_024_01266_3 crossref_primary_10_3390_ijms24076585 crossref_primary_10_3390_metabo12050420 crossref_primary_10_7570_jomes22031 crossref_primary_10_1111_ajt_15880 crossref_primary_10_3389_fnut_2023_1219313 crossref_primary_10_1016_j_peptides_2024_171216 crossref_primary_10_3390_ijms222413330 crossref_primary_10_3389_fmicb_2019_02176 crossref_primary_10_1007_s12602_024_10227_1 crossref_primary_10_1016_j_medj_2021_03_018 crossref_primary_10_3389_fcvm_2021_721393 crossref_primary_10_3389_fnut_2024_1434150 crossref_primary_10_1146_annurev_med_042220_012821 crossref_primary_10_3389_fendo_2021_640602 crossref_primary_10_3390_foods13152360 crossref_primary_10_1016_j_cmet_2020_02_014 crossref_primary_10_14814_phy2_14352 crossref_primary_10_3390_ijms251910636 crossref_primary_10_1016_j_mvr_2023_104601 crossref_primary_10_1007_s11695_019_03976_4 crossref_primary_10_1016_j_heliyon_2022_e10887 crossref_primary_10_3390_ijms22042121 crossref_primary_10_1007_s12017_023_08746_1 crossref_primary_10_1016_j_jare_2025_03_001 crossref_primary_10_3390_nu15061539 crossref_primary_10_1016_j_coemr_2022_100318 crossref_primary_10_1210_endocr_bqaa201 |
Cites_doi | 10.1172/JCI942 10.1016/j.trsl.2012.10.007 10.1007/s00125-001-0719-z 10.1007/s00441-005-0140-x 10.1016/j.tips.2009.09.001 10.1371/journal.pone.0178478 10.1586/17446651.2014.862152 10.1038/cti.2016.17 10.2337/diab.43.4.535 10.1152/physrev.2001.81.3.1031 10.1016/0016-5085(83)90146-4 10.1016/S0261-5614(14)50039-8 10.1016/j.peptides.2014.01.020 10.1016/S0016-5085(83)80080-8 10.1210/en.2013-1142 10.2337/db14-0807 10.1074/jbc.M111.243808 10.1677/joe.0.1510421 10.4291/wjgp.v6.i4.110 10.1136/gut.37.5.684 10.1677/joe.0.1450521 10.1016/j.clnu.2009.05.011 10.1194/jlr.R036012 10.1017/S0007114509991462 10.1023/A:1018819428678 10.1152/ajpendo.1997.273.5.E981 10.1007/BF00220741 10.1016/j.coph.2013.09.014 10.1053/gast.2003.50159 10.1172/JCI990 10.1016/j.molmet.2016.10.011 10.1152/physrev.00034.2006 10.3390/nu7042839 10.2337/db11-1019 10.1152/ajpendo.2001.281.1.E155 10.1111/j.1365-2362.1992.tb01464.x 10.1136/gut.47.3.370 10.1016/j.molmet.2013.08.006 10.1053/gast.1996.v111.pm8690193 10.1016/j.aca.2014.11.015 10.1016/j.regpep.2012.08.016 10.1111/j.1365-2982.2008.01111.x 10.1210/en.2013-1789 10.1016/j.cmet.2008.11.002 10.1074/jbc.M211609200 10.1016/0014-5793(95)00983-G 10.1152/ajpgi.1998.275.6.G1415 10.3109/00365529709025084 10.1017/S146239940900132X 10.1074/jbc.M116.736157 10.1017/S0029665110004039 10.1159/000356211 10.1210/en.2014-1710 10.2337/dc14-0769 10.1210/jcem-63-2-492 10.1038/s41598-017-02546-x 10.1007/s00441-015-2165-0 10.1016/S2213-8587(13)70218-3 10.1371/journal.pone.0035240 10.1177/0148607189013002109 10.1074/jbc.M301403200 10.1038/ijo.2014.153 10.1016/j.coph.2013.08.013 10.1016/S0006-291X(03)00342-5 10.1016/S0016-5085(82)80339-9 10.1016/j.ejphar.2015.12.010 10.1136/gut.28.10.1221 10.1079/PNS2002207 10.1002/jms.181 |
ContentType | Journal Article |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1152/ajpgi.00346.2017 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1522-1547 |
EndPage | G65 |
ExternalDocumentID | 29494208 10_1152_ajpgi_00346_2017 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 23M 2WC 39C 4.4 5GY 5VS 6J9 AAFWJ AAYXX ABJNI ACPRK ADBBV AENEX ALMA_UNASSIGNED_HOLDINGS BAWUL BKKCC BKOMP CITATION E3Z EBS EJD EMOBN F5P GX1 H13 ITBOX KQ8 OK1 P2P PQQKQ RAP RHI RPL RPRKH TR2 W8F WOQ XSW YSK CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c407t-b6790849333d821e88aefd82c44c9ef3aeff222f6631d6e62d8d194fc730582c3 |
ISSN | 0193-1857 1522-1547 |
IngestDate | Thu Jul 10 22:38:51 EDT 2025 Thu Apr 03 07:09:27 EDT 2025 Thu Apr 24 23:03:44 EDT 2025 Tue Jul 01 03:43:02 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c407t-b6790849333d821e88aefd82c44c9ef3aeff222f6631d6e62d8d194fc730582c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://journals.physiology.org/doi/pdf/10.1152/ajpgi.00346.2017 |
PMID | 29494208 |
PQID | 2010372554 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2010372554 pubmed_primary_29494208 crossref_citationtrail_10_1152_ajpgi_00346_2017 crossref_primary_10_1152_ajpgi_00346_2017 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-07-01 20180701 |
PublicationDateYYYYMMDD | 2018-07-01 |
PublicationDate_xml | – month: 07 year: 2018 text: 2018-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | American journal of physiology: Gastrointestinal and liver physiology |
PublicationTitleAlternate | Am J Physiol Gastrointest Liver Physiol |
PublicationYear | 2018 |
References | B20 B64 B21 B65 B22 B66 B67 B24 B68 B25 B69 B26 B27 B28 B29 Sjölund K (B63) 1983; 85 B70 B30 B31 B32 B33 B34 Roediger WE (B61) 1982; 83 B35 B36 B37 B38 B39 B1 B2 B3 B4 B5 B6 B7 B8 B9 B40 B41 B42 B43 B45 B46 B47 B48 B49 Mascord D (B44) 1992; 27 B50 B51 B52 B53 B10 B54 B11 B55 B12 B56 B13 B57 B14 B58 B15 B59 B16 B17 B18 B19 Ferri GL (B23) 1983; 84 B60 B62 |
References_xml | – ident: B67 doi: 10.1172/JCI942 – ident: B39 doi: 10.1016/j.trsl.2012.10.007 – ident: B1 doi: 10.1007/s00125-001-0719-z – ident: B33 doi: 10.1007/s00441-005-0140-x – ident: B2 doi: 10.1016/j.tips.2009.09.001 – ident: B45 doi: 10.1371/journal.pone.0178478 – ident: B3 doi: 10.1586/17446651.2014.862152 – ident: B14 doi: 10.1038/cti.2016.17 – ident: B50 doi: 10.2337/diab.43.4.535 – ident: B69 doi: 10.1152/physrev.2001.81.3.1031 – volume: 84 start-page: 777 year: 1983 ident: B23 publication-title: Gastroenterology doi: 10.1016/0016-5085(83)90146-4 – ident: B70 doi: 10.1016/S0261-5614(14)50039-8 – ident: B37 doi: 10.1016/j.peptides.2014.01.020 – volume: 85 start-page: 1120 year: 1983 ident: B63 publication-title: Gastroenterology doi: 10.1016/S0016-5085(83)80080-8 – ident: B48 doi: 10.1210/en.2013-1142 – ident: B38 doi: 10.2337/db14-0807 – ident: B66 doi: 10.1074/jbc.M111.243808 – ident: B56 doi: 10.1677/joe.0.1510421 – ident: B11 doi: 10.4291/wjgp.v6.i4.110 – ident: B13 doi: 10.1136/gut.37.5.684 – ident: B55 doi: 10.1677/joe.0.1450521 – ident: B5 doi: 10.1016/j.clnu.2009.05.011 – ident: B18 doi: 10.1194/jlr.R036012 – ident: B26 doi: 10.1017/S0007114509991462 – ident: B49 doi: 10.1023/A:1018819428678 – ident: B47 doi: 10.1152/ajpendo.1997.273.5.E981 – ident: B9 doi: 10.1007/BF00220741 – ident: B29 doi: 10.1016/j.coph.2013.09.014 – ident: B54 doi: 10.1053/gast.2003.50159 – ident: B25 doi: 10.1172/JCI990 – ident: B7 doi: 10.1016/j.molmet.2016.10.011 – ident: B30 doi: 10.1152/physrev.00034.2006 – ident: B34 doi: 10.3390/nu7042839 – ident: B68 doi: 10.2337/db11-1019 – ident: B19 doi: 10.1152/ajpendo.2001.281.1.E155 – ident: B20 doi: 10.1111/j.1365-2362.1992.tb01464.x – ident: B31 doi: 10.1136/gut.47.3.370 – ident: B21 doi: 10.1016/j.molmet.2013.08.006 – ident: B62 doi: 10.1053/gast.1996.v111.pm8690193 – ident: B27 doi: 10.1016/j.aca.2014.11.015 – ident: B35 doi: 10.1016/j.regpep.2012.08.016 – ident: B4 doi: 10.1111/j.1365-2982.2008.01111.x – ident: B59 doi: 10.1210/en.2013-1789 – ident: B60 doi: 10.1016/j.cmet.2008.11.002 – ident: B8 doi: 10.1074/jbc.M211609200 – ident: B17 doi: 10.1016/0014-5793(95)00983-G – ident: B12 doi: 10.1152/ajpgi.1998.275.6.G1415 – ident: B51 doi: 10.3109/00365529709025084 – ident: B53 doi: 10.1017/S146239940900132X – ident: B6 doi: 10.1074/jbc.M116.736157 – ident: B16 doi: 10.1017/S0029665110004039 – ident: B32 doi: 10.1159/000356211 – ident: B65 doi: 10.1210/en.2014-1710 – ident: B28 doi: 10.2337/dc14-0769 – ident: B46 doi: 10.1210/jcem-63-2-492 – ident: B10 doi: 10.1038/s41598-017-02546-x – ident: B24 doi: 10.1007/s00441-015-2165-0 – ident: B43 doi: 10.1016/S2213-8587(13)70218-3 – ident: B41 doi: 10.1371/journal.pone.0035240 – ident: B36 doi: 10.1177/0148607189013002109 – ident: B40 doi: 10.1074/jbc.M301403200 – ident: B58 doi: 10.1038/ijo.2014.153 – ident: B22 doi: 10.1016/j.coph.2013.08.013 – ident: B64 doi: 10.1016/S0006-291X(03)00342-5 – volume: 83 start-page: 424 year: 1982 ident: B61 publication-title: Gastroenterology doi: 10.1016/S0016-5085(82)80339-9 – ident: B52 doi: 10.1016/j.ejphar.2015.12.010 – ident: B15 doi: 10.1136/gut.28.10.1221 – ident: B42 doi: 10.1079/PNS2002207 – ident: B57 doi: 10.1002/jms.181 – volume: 27 start-page: 25 year: 1992 ident: B44 publication-title: Alcohol Alcohol |
SSID | ssj0005211 |
Score | 2.6420875 |
Snippet | The colonic epithelium harbors a large number of endocrine cells, but little is known about the endocrine functions of the colon. However, the high density of... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | G53 |
SubjectTerms | Animals Colon - blood supply Colon - innervation Colon - metabolism Fatty Acids, Volatile - classification Fatty Acids, Volatile - metabolism Gastrointestinal Hormones - metabolism Glucagon-Like Peptide 1 - metabolism Intestinal Mucosa - metabolism Models, Theoretical Paracrine Communication - physiology Peptide YY - metabolism Rats Receptors, G-Protein-Coupled - classification Receptors, G-Protein-Coupled - metabolism |
Title | The impact of short-chain fatty acids on GLP-1 and PYY secretion from the isolated perfused rat colon |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29494208 https://www.proquest.com/docview/2010372554 |
Volume | 315 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtNAEF2FIiFeELRAw02LhJCQ5Ta-xn5MuKSCForUSu2TtTe3gdaOYrtS-TV-jpndteMCRcCL5djOxvI5mZ3ZOTMm5IWnYk_EnLuBiEM3lHnopmwE_yueyNTj45RxrB3e-xjvHIbvj6KjweB7T7XU1HxLfPttXcn_oArHAFeskv0HZLtB4QDsA76wBYRh-9cYr8ocq1NwpV1xCrG-k7MavGsm5lKnA2a7-65nCgOOj50KXUWjMWyLS-Zwowydz4Va5k0FO8AMBztaF333tcvv9BpO6LURU_MSTJwZq-pliU0owHYUthHBGYo_eheuNAXWxNhlIJ37L-taOVN2uZINzxhXtq5ozpxp0ywx3SSrr-VFt0B0gdJeM8oU7rET87xZspN2RXcXgnjnk6kqbVc6vKRTxcJEZa0zRM7g84375jsw5aBXeGqM8cy0If51koiw6Sz7sjiZb2F_HlSqmALSHmcW55o0fhqmqEBYTZediLE9dYPc9CFGQSP74XPS0xd5XpsXj_ztn38Ou1DbAa66RNfEOdrfObhL7thAhU4M6-6RgSrWycakYHV5fklf0v0OzXVya88qNDaIAk5Sw0la5rTHSao5STUnaVlQzUkK9KDASdpxkiInaY2jWE7SlpMUOEk1J--Tw3dvD17vuPZVHq4IR-Pa5fE4HSVhGgSBTHxPJQlTOeyJMBSpygP4lIOnmoP_68lYxb5MpJeGuYAJKILLggdkrSgLtUmoGCkheaCiHJ6elJgp9oUQsYx5kkD4PSTb7dPMhO1zj69bOct0vBv5mYYi01BkCMWQvOq-sTA9Xv5w7fMWoAwMMWbXWKHKpsKzo2AMEXo4JA8Nct1oLdKPrj3zmNxeUf4JWauXjXoK7m7Nn2la_QAoia5w |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+impact+of+short-chain+fatty+acids+on+GLP-1+and+PYY+secretion+from+the+isolated+perfused+rat+colon&rft.jtitle=American+journal+of+physiology%3A+Gastrointestinal+and+liver+physiology&rft.au=Christiansen%2C+Charlotte+Bayer&rft.au=Gabe%2C+Maria+Buur+Nordskov&rft.au=Svendsen%2C+Berit&rft.au=Dragsted%2C+Lars+Ove&rft.date=2018-07-01&rft.eissn=1522-1547&rft.volume=315&rft.issue=1&rft.spage=G53&rft_id=info:doi/10.1152%2Fajpgi.00346.2017&rft_id=info%3Apmid%2F29494208&rft.externalDocID=29494208 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0193-1857&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0193-1857&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0193-1857&client=summon |