Temperature-controlled magnetic nanoparticles hyperthermia inhibits primary tumor growth and metastases dissemination

Magnetic hyperthermia (MHT) is a promising approach for cancer therapy. However, a systematic MHT characterization as function of temperature on the therapeutic efficiency is barely analyzed. Here, we first perform comparative temperature-dependent analysis of the cobalt ferrite nanoparticles-mediat...

Full description

Saved in:
Bibliographic Details
Published inNanomedicine Vol. 25; p. 102171
Main Authors Garanina, Anastasiia S., Naumenko, Victor A., Nikitin, Aleksey A., Myrovali, Eirini, Petukhova, Anna Y., Klimyuk, Svetlana V., Nalench, Yulia A., Ilyasov, Artem R., Vodopyanov, Stepan S., Erofeev, Alexander S., Gorelkin, Peter V., Angelakeris, Makis, Savchenko, Alexander G., Wiedwald, Ulf, Majouga Dr, Alexander G., Abakumov, Maxim A.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.04.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Magnetic hyperthermia (MHT) is a promising approach for cancer therapy. However, a systematic MHT characterization as function of temperature on the therapeutic efficiency is barely analyzed. Here, we first perform comparative temperature-dependent analysis of the cobalt ferrite nanoparticles-mediated MHT effectiveness in two murine tumors models – breast (4T1) and colon (CT26) cancer in vitro and in vivo. The overall MHT killing capacity in vitro increased with the temperature and CT26 cells were more sensitive than 4T1 when heated to 43 °C. Well in line with the in vitro data, such heating cured non-metastatic CT26 tumors in vivo, while only inhibiting metastatic 4T1 tumor growth without improving the overall survival. High-temperature MHT (>47 °C) resulted in complete 4T1 primary tumor clearance, 25–40% long-term survival rates, and, importantly, more effective prevention of metastasis comparing to surgical extraction. Thus, the specific MHT temperature must be defined for each tumor individually to ensure a successful antitumor therapy. Controlled magnetic hyperthermia (MHT) provided by cobalt ferrite nanoparticles under alternating magnetic field exposure has different effects on tumor cells in vitro and in vivo depending on the temperature. The number of apoptotic and necrotic cells in cultures increases with temperature. Interestingly, delayed effect of the heating at 42–43 °C (mild MHT) varies in different cell lines. In vivo data further shows that mild MHT is not effective for metastatic 4T1 tumor therapy, while it is efficient for curing non-metastatic CT26-bearing mice. MHT at 46–48 °C and 58–60 °C increases long-term survival of 4T1-bearing mice providing primary tumor clearance and metastasis inhibition. [Display omitted]
AbstractList Magnetic hyperthermia (MHT) is a promising approach for cancer therapy. However, a systematic MHT characterization as function of temperature on the therapeutic efficiency is barely analyzed. Here, we first perform comparative temperature-dependent analysis of the cobalt ferrite nanoparticles-mediated MHT effectiveness in two murine tumors models - breast (4T1) and colon (CT26) cancer in vitro and in vivo. The overall MHT killing capacity in vitro increased with the temperature and CT26 cells were more sensitive than 4T1 when heated to 43 °C. Well in line with the in vitro data, such heating cured non-metastatic CT26 tumors in vivo, while only inhibiting metastatic 4T1 tumor growth without improving the overall survival. High-temperature MHT (>47 °C) resulted in complete 4T1 primary tumor clearance, 25-40% long-term survival rates, and, importantly, more effective prevention of metastasis comparing to surgical extraction. Thus, the specific MHT temperature must be defined for each tumor individually to ensure a successful antitumor therapy.Magnetic hyperthermia (MHT) is a promising approach for cancer therapy. However, a systematic MHT characterization as function of temperature on the therapeutic efficiency is barely analyzed. Here, we first perform comparative temperature-dependent analysis of the cobalt ferrite nanoparticles-mediated MHT effectiveness in two murine tumors models - breast (4T1) and colon (CT26) cancer in vitro and in vivo. The overall MHT killing capacity in vitro increased with the temperature and CT26 cells were more sensitive than 4T1 when heated to 43 °C. Well in line with the in vitro data, such heating cured non-metastatic CT26 tumors in vivo, while only inhibiting metastatic 4T1 tumor growth without improving the overall survival. High-temperature MHT (>47 °C) resulted in complete 4T1 primary tumor clearance, 25-40% long-term survival rates, and, importantly, more effective prevention of metastasis comparing to surgical extraction. Thus, the specific MHT temperature must be defined for each tumor individually to ensure a successful antitumor therapy.
Magnetic hyperthermia (MHT) is a promising approach for cancer therapy. However, a systematic MHT characterization as function of temperature on the therapeutic efficiency is barely analyzed. Here, we first perform comparative temperature-dependent analysis of the cobalt ferrite nanoparticles-mediated MHT effectiveness in two murine tumors models – breast (4T1) and colon (CT26) cancer in vitro and in vivo. The overall MHT killing capacity in vitro increased with the temperature and CT26 cells were more sensitive than 4T1 when heated to 43 °C. Well in line with the in vitro data, such heating cured non-metastatic CT26 tumors in vivo, while only inhibiting metastatic 4T1 tumor growth without improving the overall survival. High-temperature MHT (>47 °C) resulted in complete 4T1 primary tumor clearance, 25–40% long-term survival rates, and, importantly, more effective prevention of metastasis comparing to surgical extraction. Thus, the specific MHT temperature must be defined for each tumor individually to ensure a successful antitumor therapy. Controlled magnetic hyperthermia (MHT) provided by cobalt ferrite nanoparticles under alternating magnetic field exposure has different effects on tumor cells in vitro and in vivo depending on the temperature. The number of apoptotic and necrotic cells in cultures increases with temperature. Interestingly, delayed effect of the heating at 42–43 °C (mild MHT) varies in different cell lines. In vivo data further shows that mild MHT is not effective for metastatic 4T1 tumor therapy, while it is efficient for curing non-metastatic CT26-bearing mice. MHT at 46–48 °C and 58–60 °C increases long-term survival of 4T1-bearing mice providing primary tumor clearance and metastasis inhibition. [Display omitted]
Magnetic hyperthermia (MHT) is a promising approach for cancer therapy. However, a systematic MHT characterization as function of temperature on the therapeutic efficiency is barely analyzed. Here, we first perform comparative temperature-dependent analysis of the cobalt ferrite nanoparticles-mediated MHT effectiveness in two murine tumors models - breast (4T1) and colon (CT26) cancer in vitro and in vivo. The overall MHT killing capacity in vitro increased with the temperature and CT26 cells were more sensitive than 4T1 when heated to 43 °C. Well in line with the in vitro data, such heating cured non-metastatic CT26 tumors in vivo, while only inhibiting metastatic 4T1 tumor growth without improving the overall survival. High-temperature MHT (>47 °C) resulted in complete 4T1 primary tumor clearance, 25-40% long-term survival rates, and, importantly, more effective prevention of metastasis comparing to surgical extraction. Thus, the specific MHT temperature must be defined for each tumor individually to ensure a successful antitumor therapy.
ArticleNumber 102171
Author Petukhova, Anna Y.
Klimyuk, Svetlana V.
Abakumov, Maxim A.
Garanina, Anastasiia S.
Naumenko, Victor A.
Myrovali, Eirini
Ilyasov, Artem R.
Nalench, Yulia A.
Savchenko, Alexander G.
Erofeev, Alexander S.
Gorelkin, Peter V.
Angelakeris, Makis
Nikitin, Aleksey A.
Majouga Dr, Alexander G.
Vodopyanov, Stepan S.
Wiedwald, Ulf
Author_xml – sequence: 1
  givenname: Anastasiia S.
  surname: Garanina
  fullname: Garanina, Anastasiia S.
  email: anastasiacit@gmail.com
  organization: National University of Science and Technology «MISiS», Moscow, Russia
– sequence: 2
  givenname: Victor A.
  surname: Naumenko
  fullname: Naumenko, Victor A.
  organization: National University of Science and Technology «MISiS», Moscow, Russia
– sequence: 3
  givenname: Aleksey A.
  surname: Nikitin
  fullname: Nikitin, Aleksey A.
  organization: National University of Science and Technology «MISiS», Moscow, Russia
– sequence: 4
  givenname: Eirini
  surname: Myrovali
  fullname: Myrovali, Eirini
  organization: School of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
– sequence: 5
  givenname: Anna Y.
  surname: Petukhova
  fullname: Petukhova, Anna Y.
  organization: National University of Science and Technology «MISiS», Moscow, Russia
– sequence: 6
  givenname: Svetlana V.
  surname: Klimyuk
  fullname: Klimyuk, Svetlana V.
  organization: National University of Science and Technology «MISiS», Moscow, Russia
– sequence: 7
  givenname: Yulia A.
  surname: Nalench
  fullname: Nalench, Yulia A.
  organization: National University of Science and Technology «MISiS», Moscow, Russia
– sequence: 8
  givenname: Artem R.
  surname: Ilyasov
  fullname: Ilyasov, Artem R.
  organization: National University of Science and Technology «MISiS», Moscow, Russia
– sequence: 9
  givenname: Stepan S.
  surname: Vodopyanov
  fullname: Vodopyanov, Stepan S.
  organization: National University of Science and Technology «MISiS», Moscow, Russia
– sequence: 10
  givenname: Alexander S.
  surname: Erofeev
  fullname: Erofeev, Alexander S.
  organization: National University of Science and Technology «MISiS», Moscow, Russia
– sequence: 11
  givenname: Peter V.
  surname: Gorelkin
  fullname: Gorelkin, Peter V.
  organization: Medical Nanotechnology LLC, Skolkovo Innovation Center, Moscow, Russia
– sequence: 12
  givenname: Makis
  surname: Angelakeris
  fullname: Angelakeris, Makis
  organization: School of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
– sequence: 13
  givenname: Alexander G.
  surname: Savchenko
  fullname: Savchenko, Alexander G.
  organization: National University of Science and Technology «MISiS», Moscow, Russia
– sequence: 14
  givenname: Ulf
  surname: Wiedwald
  fullname: Wiedwald, Ulf
  organization: National University of Science and Technology «MISiS», Moscow, Russia
– sequence: 15
  givenname: Alexander G.
  surname: Majouga Dr
  fullname: Majouga Dr, Alexander G.
  organization: National University of Science and Technology «MISiS», Moscow, Russia
– sequence: 16
  givenname: Maxim A.
  surname: Abakumov
  fullname: Abakumov, Maxim A.
  organization: National University of Science and Technology «MISiS», Moscow, Russia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32084594$$D View this record in MEDLINE/PubMed
BookMark eNqFkcuLFDEQh4OsuA_9BzxIH730mKTf4kUWX7DgZT2HPCo7NaaTMUmvzH9v2hn3sIcVAinC91WRX12SMx88EPKa0Q2jrH-323jpw4ZTvj5wNrBn5IJ17VRPfcvPHuqmPSeXKe0obQZKpxfkvOF0bLupvSDLLcx7iDIvEWodfI7BOTDVLO88ZNTVOmIvYykdpGp7KHDeQpxRVui3qDCnah9xlvFQ5WUOsbqL4XfeVtKXLpBlKqeYBlOCGb3MGPxL8txKl-DV6b4iPz5_ur3-Wt98__Lt-uNNrVs65Fox4NyajvFpohoY6H5QbITODqMelLbaUKWsktZKA2rULcimHyboBjOOdmiuyNtj330MvxZIWcyYNDgnPYQlCd70nE5dy7qCvjmhi5rBiNOfxL-oCsCPgI4hpQj2AWFUrPsQO7GGJdZ9iOM-ijQ-kjTmvxHkKNE9rX44qlACukeIImkEr8FgBJ2FCfi0_v6Rrh161NL9hMP_5D_xZL5W
CitedBy_id crossref_primary_10_3390_ph17030300
crossref_primary_10_1038_s41598_022_18306_5
crossref_primary_10_1063_9_0000557
crossref_primary_10_1007_s10853_021_05947_6
crossref_primary_10_1039_D3NR02860G
crossref_primary_10_1080_17435390_2024_2386019
crossref_primary_10_3390_ph16101494
crossref_primary_10_1016_j_biopha_2021_112321
crossref_primary_10_1016_j_ultrasmedbio_2020_11_023
crossref_primary_10_1002_adhm_202002163
crossref_primary_10_1039_D2RA02935A
crossref_primary_10_3103_S1062873820110295
crossref_primary_10_1007_s11071_022_08153_4
crossref_primary_10_1016_j_matdes_2022_110676
crossref_primary_10_1016_j_mbm_2023_100011
crossref_primary_10_1021_acsami_0c12900
crossref_primary_10_31857_S0015323022601453
crossref_primary_10_3390_polym12081832
crossref_primary_10_1002_adma_202007761
crossref_primary_10_1002_marc_202300737
crossref_primary_10_3390_jcs8020048
crossref_primary_10_1557_s43578_022_00665_4
crossref_primary_10_3390_nano12193539
crossref_primary_10_3390_ma15030788
crossref_primary_10_3390_molecules25153489
crossref_primary_10_3390_nano14191547
crossref_primary_10_1016_j_mssp_2022_106632
crossref_primary_10_1016_j_ceramint_2023_01_101
crossref_primary_10_3390_magnetochemistry10020009
crossref_primary_10_1016_j_bbe_2021_04_002
crossref_primary_10_3390_nano12010038
crossref_primary_10_1039_D1CC05056G
crossref_primary_10_1155_2022_9946357
crossref_primary_10_1021_acs_jpclett_1c01984
crossref_primary_10_3390_pharmaceutics17040409
crossref_primary_10_3390_life12111937
crossref_primary_10_1002_tee_23361
crossref_primary_10_1134_S0031918X22602013
crossref_primary_10_1080_17425247_2023_2166484
crossref_primary_10_1166_jbn_2021_3138
crossref_primary_10_3390_cancers12092564
crossref_primary_10_1007_s10967_021_07830_9
crossref_primary_10_1039_D2CC06212G
crossref_primary_10_1515_med_2024_0898
crossref_primary_10_1002_adtp_202000267
crossref_primary_10_3390_membranes12111106
crossref_primary_10_1016_j_matpr_2021_07_234
crossref_primary_10_3390_nano13050876
crossref_primary_10_3390_pharmaceutics15071958
crossref_primary_10_3390_nano11020438
crossref_primary_10_1039_D3NA00180F
crossref_primary_10_1016_j_jmmm_2022_169957
crossref_primary_10_3389_fbioe_2023_1244569
crossref_primary_10_3390_pharmaceutics14071372
Cites_doi 10.1021/nn2048137
10.1080/02656730802104757
10.3892/ol.2014.1852
10.3109/02656739009140824
10.1186/2051-1426-2-S3-P267
10.3762/bjnano.9.251
10.7150/thno.18927
10.3390/cancers3043799
10.1023/A:1009616228304
10.1016/j.bbagen.2017.02.022
10.1038/srep05029
10.1089/ars.2017.7485
10.1503/cmaj.081291
10.1054/ijom.2001.0176
10.1590/S0100-879X1997000800005
10.1038/ncb1279
10.1038/cdd.2008.150
10.1021/nn405356r
10.1038/cdd.2012.93
10.1038/nrc1950
10.1080/02656736.2017.1279757
10.1016/j.nano.2014.01.011
10.1007/s11060-006-9195-0
10.1038/sj.bjc.6601457
10.1016/0360-3016(83)90074-3
10.1016/j.tox.2011.02.010
10.3390/cancers3033279
10.1002/adma.201401825
10.1023/B:APPT.0000031452.75162.75
10.1016/j.jmmm.2009.02.058
10.1039/C8TB01365A
10.1016/j.jmmm.2011.10.017
10.1007/s11060-004-9168-0
10.4103/0973-0168.184606
10.1039/C7NR02858J
10.1111/j.1365-2613.2007.00539.x
10.2174/092986710791959774
10.1177/1177271918755391
10.1073/pnas.89.6.2036
10.1016/j.jmmm.2016.02.098
10.1155/2012/282570
10.1016/j.otohns.2008.12.004
10.1158/0008-5472.CAN-18-0707
10.1016/j.cell.2008.12.004
10.1016/j.jmmm.2006.10.1156
10.1007/s13577-015-0127-1
10.1142/S1793984410000067
ContentType Journal Article
Copyright 2020 Elsevier Inc.
Copyright © 2020 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2020 Elsevier Inc.
– notice: Copyright © 2020 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.nano.2020.102171
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1549-9642
ExternalDocumentID 32084594
10_1016_j_nano_2020_102171
S154996342030023X
Genre Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
123
1B1
1P~
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
AAAJQ
AABXZ
AAEDT
AAEDW
AAEPC
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARKO
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABGSF
ABMAC
ABMZM
ABUDA
ABWVN
ABXDB
ABXRA
ABZDS
ACDAQ
ACGFS
ACIEU
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADTZH
ADUVX
AEBSH
AECPX
AEHWI
AEIPS
AEKER
AEUPX
AEVXI
AEZYN
AFJKZ
AFPUW
AFRHN
AFRZQ
AFTJW
AFXIZ
AGCQF
AGEKW
AGHFR
AGUBO
AGYEJ
AHJVU
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AXJTR
BJAXD
BKOJK
BLXMC
BNPGV
CJTIS
CS3
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LUGTX
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OD~
OGGZJ
OO0
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SEL
SES
SEW
SPC
SSH
SSI
SSM
SSP
SST
SSU
SSZ
T5K
Z5R
~G-
AACTN
AAIAV
AATCM
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
DOVZS
EFLBG
LCYCR
RIG
AAYXX
AGRNS
CITATION
NPM
7X8
ID FETCH-LOGICAL-c407t-b1e22fd512990ce1ec67b18e5f78c7bcfcd0bbfbaffadeb8c4ea3679e57d88f73
IEDL.DBID .~1
ISSN 1549-9634
1549-9642
IngestDate Fri Jul 11 04:11:27 EDT 2025
Wed Feb 19 02:30:05 EST 2025
Thu Apr 24 23:05:58 EDT 2025
Tue Jul 01 01:49:56 EDT 2025
Fri Feb 23 02:49:36 EST 2024
Tue Aug 26 16:33:34 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords PS
Cobalt ferrite nanoparticles
DLS
XRD
Metastasis
PDI
FBS
SLP
EDX
MHT
Magnetic hyperthermia
AMF
MNPs
Temperature-dependent heating
Hsp
s.c
i.p
i.t
AES
i.v
IVIS
ROS
Murine tumor models
SEM
TEM
Language English
License Copyright © 2020 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c407t-b1e22fd512990ce1ec67b18e5f78c7bcfcd0bbfbaffadeb8c4ea3679e57d88f73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 32084594
PQID 2362095415
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2362095415
pubmed_primary_32084594
crossref_primary_10_1016_j_nano_2020_102171
crossref_citationtrail_10_1016_j_nano_2020_102171
elsevier_sciencedirect_doi_10_1016_j_nano_2020_102171
elsevier_clinicalkey_doi_10_1016_j_nano_2020_102171
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2020
2020-04-00
2020-Apr
20200401
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: April 2020
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Nanomedicine
PublicationTitleAlternate Nanomedicine
PublicationYear 2020
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Landsberg, DeRowe, Katzir, Shtabsky, Fliss, Gil (bb0200) 2009; 140
Baklaushev, Kilpeläinen, Petkov, Abakumov, Grinenko, Yusubalieva (bb0210) 2017; 7
Zhang, Zhang, Geng, Lin, Wang, Zhao (bb0120) 2009; 19
Espinosa, Kolosnjaj-Tabi, Abou-Hassan, Sangnier, Curcio, Silva (bb0225) 2018; 28
Dahele, Brade, Pearson, Bezjak (bb0010) 2009; 180
Newman, Lele, Bowman (bb0110) 1990; 6
Takagi, Azuma, Tsuka, Imagawa, Osaki, Okamoto (bb0130) 2014; 7
Sak (bb0015) 2012; 2012
Bentzen (bb0020) 2006; 6
Nagashima, Takagi, Hoshina (bb0135) 2002; 31
Datta, Ordóñez, Gaipl, Paulides, Crezee, Gellermann (bb0080) 2015; 41
Kelleher, Thews, Scherz, Salomon, Vaupel (bb0085) 2003; 89
Gao, Zheng, Ren, Tang, Liang (bb0035) 2016; 7
Chaiswing, St Clair, St Clair (bb0260) 2018; 29
Magin, Johnson (bb0065) 1979; 39
Oleson, Heusinkveld, Manning (bb0155) 1983; 9
Haghniaz, Umrani, Paknikar (bb0250) 2015; 10
Le Fèvre, Durand-Dubief, Chebbi, Mandawala, Lagroix, Valet (bb0070) 2017; 7
Guardia, Di Corato, Lartigue, Wilhelm, Espinosa, Garcia-Hernandez (bb0090) 2012; 6
Rysavy, Shimoda, Dixon, Speck, Stokes, Turner (bb0180) 2014; 4
Kim, Skora, Li, Tam, Diaz, Papadopolous (bb0285) 2014; 2
Simon, Haj-Yehia, Levi-Schaffer (bb0195) 2000; 5
Oliveira-Filho, Bevilacqua, Chammas (bb0145) 1997; 30
Schildkopf, Ott, Frey, Wadepohl, Sauer, Fietkau (bb0030) 2010; 17
Li, Li, Liu, Rehman, Lee (bb0270) 1992; 89
Hergt, Dutz (bb0160) 2007; 311
Ahamed, Akhtar, Siddiqui, Ahmad, Musarrat, Al-Khedhairy (bb0240) 2011; 283
Kroemer, Galluzzi, Vandenabeele, Abrams, Alnemri, Baehrecke (bb0190) 2009; 16
Chang, Lim, Goos, Qiao, Ng, Mansfeld (bb0040) 2018; 9
Zhu, Hu, Wu, Hu (bb0265) 2015; 4
Agostinis, Berg, Cengel, Foster, Girotti, Gollnick (bb0025) 2011; 61
Liang, Diao, Wang, Gong, Liu, Hong (bb0140) 2014; 26
Wang, Zhang, Shi, Javidiparsijani, Wang, Li (bb0125) 2014; 7
Wu, Song, Chen, Huang, Wu, Zang (bb0295) 2017; 9
Arruebo, Vilaboa, Sáez-Gutierrez, Lambea, Tres, Valladares (bb0005) 2011; 3
Elliott, Surprenant, Marelli-Berg, Cooper, Cassady-Cain, Wooding (bb0170) 2005; 7
Liébana-Viñas, Simeonidis, Li, Ma, Myrovali, Makridis (bb0150) 2016; 415
Fukami, Nakasu, Baba, Nakajima, Matsuda (bb0290) 2004; 70
Angelakeris (bb0230) 2017; 1861
Galluzzi, Kroemer (bb0185) 2008; 135
Maier-Hauff, Rothe, Scholz, Gneveckow, Wust, Thiesen (bb0045) 2007; 81
Tomitaka, Hirukawa, Yamada, Morishita, Takemura (bb0235) 2009; 321
Kaur, Hurwitz, Krishnan, Asea, Kaur, Hurwitz (bb0075) 2011; 3
Skitzki, Repasky, Evans (bb0300) 2009; 10
Kumari, Badana, G, G, Malla (bb0255) 2018; 13
Lee, Meng, Flatten, Loegering, Kaufmann (bb0165) 2013; 20
Abe, Wada, Baghdadi, Nakanishi, Usui, Tsuchikawa (bb0280) 2016; 29
Shetake, Balla, Kumar, Pandey (bb0060) 2016; 7
Stangl, Tei, De Rose, Reder, Martinelli, Sievert (bb0275) 2018; 78
DuPre, Redelman, Hunter (bb0205) 2007; 88
Kumar, Chauhan, Jha, Kuanr (bb0245) 2018; 6
Giustini, Petryk, Cassim, Tate, Baker, Hoopes (bb0115) 2010; 01
Toraya-Brown, Sheen, Zhang, Chen, Baird, Demidenko (bb0100) 2014; 10
Krysko, de Ridder, Cornelissen (bb0175) 2004; 9
Thiesen, Jordan (bb0050) 2008; 24
Sharifi, Shokrollahi, Amiri (bb0215) 2012; 324
Efremova, Nalench, Myrovali, Garanina, Grebennikov, Gifer (bb0220) 2018; 9
Oei, Vriend, Krawczyk, Horsman, Franken, Crezee (bb0105) 2017; 33
Kolosnjaj-Tabi, Di Corato, Lartigue, Marangon, Guardia, Silva (bb0095) 2014; 8
Sun, Guo, Pang, Qi, Zhang, Ge (bb0055) 2013; 8
Giustini (10.1016/j.nano.2020.102171_bb0115) 2010; 01
Skitzki (10.1016/j.nano.2020.102171_bb0300) 2009; 10
Chang (10.1016/j.nano.2020.102171_bb0040) 2018; 9
Schildkopf (10.1016/j.nano.2020.102171_bb0030) 2010; 17
Oliveira-Filho (10.1016/j.nano.2020.102171_bb0145) 1997; 30
Lee (10.1016/j.nano.2020.102171_bb0165) 2013; 20
Haghniaz (10.1016/j.nano.2020.102171_bb0250) 2015; 10
Kumari (10.1016/j.nano.2020.102171_bb0255) 2018; 13
Bentzen (10.1016/j.nano.2020.102171_bb0020) 2006; 6
Zhu (10.1016/j.nano.2020.102171_bb0265) 2015; 4
Thiesen (10.1016/j.nano.2020.102171_bb0050) 2008; 24
Sak (10.1016/j.nano.2020.102171_bb0015) 2012; 2012
Newman (10.1016/j.nano.2020.102171_bb0110) 1990; 6
Zhang (10.1016/j.nano.2020.102171_bb0120) 2009; 19
Gao (10.1016/j.nano.2020.102171_bb0035) 2016; 7
Maier-Hauff (10.1016/j.nano.2020.102171_bb0045) 2007; 81
Kelleher (10.1016/j.nano.2020.102171_bb0085) 2003; 89
Li (10.1016/j.nano.2020.102171_bb0270) 1992; 89
Dahele (10.1016/j.nano.2020.102171_bb0010) 2009; 180
Simon (10.1016/j.nano.2020.102171_bb0195) 2000; 5
Arruebo (10.1016/j.nano.2020.102171_bb0005) 2011; 3
Kaur (10.1016/j.nano.2020.102171_bb0075) 2011; 3
DuPre (10.1016/j.nano.2020.102171_bb0205) 2007; 88
Krysko (10.1016/j.nano.2020.102171_bb0175) 2004; 9
Sun (10.1016/j.nano.2020.102171_bb0055) 2013; 8
Magin (10.1016/j.nano.2020.102171_bb0065) 1979; 39
Shetake (10.1016/j.nano.2020.102171_bb0060) 2016; 7
Sharifi (10.1016/j.nano.2020.102171_bb0215) 2012; 324
Stangl (10.1016/j.nano.2020.102171_bb0275) 2018; 78
Kumar (10.1016/j.nano.2020.102171_bb0245) 2018; 6
Baklaushev (10.1016/j.nano.2020.102171_bb0210) 2017; 7
Chaiswing (10.1016/j.nano.2020.102171_bb0260) 2018; 29
Guardia (10.1016/j.nano.2020.102171_bb0090) 2012; 6
Oleson (10.1016/j.nano.2020.102171_bb0155) 1983; 9
Ahamed (10.1016/j.nano.2020.102171_bb0240) 2011; 283
Efremova (10.1016/j.nano.2020.102171_bb0220) 2018; 9
Abe (10.1016/j.nano.2020.102171_bb0280) 2016; 29
Tomitaka (10.1016/j.nano.2020.102171_bb0235) 2009; 321
Toraya-Brown (10.1016/j.nano.2020.102171_bb0100) 2014; 10
Takagi (10.1016/j.nano.2020.102171_bb0130) 2014; 7
Rysavy (10.1016/j.nano.2020.102171_bb0180) 2014; 4
Le Fèvre (10.1016/j.nano.2020.102171_bb0070) 2017; 7
Datta (10.1016/j.nano.2020.102171_bb0080) 2015; 41
Liébana-Viñas (10.1016/j.nano.2020.102171_bb0150) 2016; 415
Kolosnjaj-Tabi (10.1016/j.nano.2020.102171_bb0095) 2014; 8
Galluzzi (10.1016/j.nano.2020.102171_bb0185) 2008; 135
Kim (10.1016/j.nano.2020.102171_bb0285) 2014; 2
Elliott (10.1016/j.nano.2020.102171_bb0170) 2005; 7
Kroemer (10.1016/j.nano.2020.102171_bb0190) 2009; 16
Hergt (10.1016/j.nano.2020.102171_bb0160) 2007; 311
Agostinis (10.1016/j.nano.2020.102171_bb0025) 2011; 61
Wu (10.1016/j.nano.2020.102171_bb0295) 2017; 9
Wang (10.1016/j.nano.2020.102171_bb0125) 2014; 7
Fukami (10.1016/j.nano.2020.102171_bb0290) 2004; 70
Espinosa (10.1016/j.nano.2020.102171_bb0225) 2018; 28
Angelakeris (10.1016/j.nano.2020.102171_bb0230) 2017; 1861
Nagashima (10.1016/j.nano.2020.102171_bb0135) 2002; 31
Landsberg (10.1016/j.nano.2020.102171_bb0200) 2009; 140
Oei (10.1016/j.nano.2020.102171_bb0105) 2017; 33
Liang (10.1016/j.nano.2020.102171_bb0140) 2014; 26
References_xml – volume: 31
  start-page: 84
  year: 2002
  end-page: 89
  ident: bb0135
  article-title: Effect of local hyperthermia on metastases in oral squamous cell carcinoma
  publication-title: Int J Oral Maxillofac Surg
– volume: 39
  start-page: 4534
  year: 1979
  end-page: 4539
  ident: bb0065
  article-title: Effects of local tumor hyperthermia on the growth of solid mouse tumors
  publication-title: Cancer Res
– volume: 26
  start-page: 5646
  year: 2014
  end-page: 5652
  ident: bb0140
  article-title: Tumor metastasis inhibition by imaging-guided Photothermal therapy with single-walled carbon nanotubes
  publication-title: Adv Mater
– volume: 9
  start-page: 16175
  year: 2017
  end-page: 16182
  ident: bb0295
  article-title: Injectable thermosensitive magnetic nanoemulsion hydrogel for multimodal-imaging-guided accurate thermoablative cancer therapy
  publication-title: Nanoscale
– volume: 41
  start-page: 742
  year: 2015
  end-page: 753
  ident: bb0080
  article-title: Local hyperthermia combined with radiotherapy and−/or chemotherapy: recent advances and promises for the future.
  publication-title: Rev
– volume: 415
  start-page: 20
  year: 2016
  end-page: 23
  ident: bb0150
  article-title: Tuning the magnetism of ferrite nanoparticles
  publication-title: J. Magn. Magn. Mater
– volume: 10
  start-page: 1273
  year: 2014
  end-page: 1285
  ident: bb0100
  article-title: Local hyperthermia treatment of tumors induces CD8+ T cell-mediated resistance against distal and secondary tumors
  publication-title: Nanomedicine
– volume: 2
  start-page: P267
  year: 2014
  ident: bb0285
  article-title: Eradication of metastatic mouse cancers resistant to immune checkpoint blockade by suppression of myeloid-derived cells
  publication-title: J Immunother Cancer
– volume: 7
  start-page: 808
  year: 2005
  end-page: 816
  ident: bb0170
  article-title: Membrane phosphatidylserine distribution as a non-apoptotic signalling mechanism in lymphocytes
  publication-title: Nat Cell Biol
– volume: 311
  start-page: 187
  year: 2007
  end-page: 192
  ident: bb0160
  article-title: Magnetic particle hyperthermia—biophysical limitations of a visionary tumour therapy
  publication-title: J. Magn. Magn. Mater
– volume: 20
  start-page: 64
  year: 2013
  end-page: 76
  ident: bb0165
  article-title: Phosphatidylserine exposure during apoptosis reflects bidirectional trafficking between plasma membrane and cytoplasm
  publication-title: Cell Death Differ
– volume: 6
  start-page: 5385
  year: 2018
  end-page: 5399
  ident: bb0245
  article-title: Localized cancer treatment by radio-frequency hyperthermia using magnetic nanoparticles immobilized on graphene oxide: from novel synthesis to
  publication-title: J Mater Chem B
– volume: 61
  start-page: 250
  year: 2011
  end-page: 281
  ident: bb0025
  article-title: Photodynamic therapy of cancer: an update.
  publication-title: J Clin
– volume: 283
  start-page: 101
  year: 2011
  end-page: 108
  ident: bb0240
  article-title: Oxidative stress mediated apoptosis induced by nickel ferrite nanoparticles in cultured A549 cells
  publication-title: Toxicology
– volume: 7
  start-page: 1007
  year: 2014
  end-page: 1010
  ident: bb0130
  article-title: Antitumor effects of high-temperature hyperthermia on a glioma rat model
  publication-title: Oncol Lett
– volume: 324
  start-page: 903
  year: 2012
  end-page: 915
  ident: bb0215
  article-title: Ferrite-based magnetic nanofluids used in hyperthermia applications
  publication-title: J. Magn. Magn. Mater
– volume: 13
  year: 2018
  ident: bb0255
  article-title: Reactive oxygen species: a key constituent in cancer survival
  publication-title: Biomark Insights
– volume: 3
  start-page: 3799
  year: 2011
  end-page: 3823
  ident: bb0075
  article-title: Combined hyperthermia and radiotherapy for the treatment of cancer
  publication-title: Cancers (Basel)
– volume: 1861
  start-page: 1642
  year: 2017
  end-page: 1651
  ident: bb0230
  article-title: Magnetic nanoparticles: a multifunctional vehicle for modern theranostics
  publication-title: Biochim Biophys Acta Gen Subj
– volume: 7
  start-page: 13
  year: 2016
  ident: bb0060
  article-title: Magnetic hyperthermia therapy: an emerging modality of cancer treatment in combination with radiotherapy
  publication-title: J Radiat Cancer Res
– volume: 180
  start-page: 1326
  year: 2009
  end-page: 1328
  ident: bb0010
  article-title: Stereotactic radiation therapy for inoperable, early-stage non-small-cell lung cancer
  publication-title: CMAJ
– volume: 135
  start-page: 1161
  year: 2008
  end-page: 1163
  ident: bb0185
  article-title: Necroptosis: a specialized pathway of programmed necrosis
  publication-title: Cell
– volume: 88
  start-page: 351
  year: 2007
  end-page: 360
  ident: bb0205
  article-title: The mouse mammary carcinoma 4T1: characterization of the cellular landscape of primary tumours and metastatic tumour foci
  publication-title: Int J Exp Pathol
– volume: 17
  start-page: 3045
  year: 2010
  end-page: 3057
  ident: bb0030
  article-title: Biological rationales and clinical applications of temperature controlled hyperthermia – implications for multimodal cancer treatments
  publication-title: Curr Med Chem
– volume: 9
  start-page: 549
  year: 1983
  end-page: 556
  ident: bb0155
  article-title: Hyperthermia by magnetic induction: II. Clinical experience with concentric electrodes.
  publication-title: J Radiat Oncol
– volume: 7
  start-page: 7715
  year: 2017
  ident: bb0210
  article-title: Luciferase expression allows bioluminescence imaging but imposes limitations on the Orthotopic mouse (4T1) model of breast Cancer.
  publication-title: Rep
– volume: 89
  start-page: 2036
  year: 1992
  end-page: 2040
  ident: bb0270
  article-title: Heat shock protein hsp70 protects cells from thermal stress even after deletion of its ATP-binding domain
  publication-title: Proc Natl Acad Sci U S A
– volume: 29
  start-page: 1237
  year: 2018
  end-page: 1272
  ident: bb0260
  article-title: Redox paradox: a novel approach to therapeutics-resistant Cancer
  publication-title: Antioxid Redox Signal
– volume: 7
  start-page: 764
  year: 2014
  end-page: 770
  ident: bb0125
  article-title: Abscopal antitumor immune effects of magnet-mediated hyperthermia at a high therapeutic temperature on Walker-256 carcinosarcomas in rats.
  publication-title: Lett
– volume: 10
  start-page: 1609
  year: 2015
  end-page: 1623
  ident: bb0250
  article-title: Temperature-dependent and time-dependent effects of hyperthermia mediated by dextran-coated La0.7Sr0.3MnO3:
  publication-title: Int J Nanomedicine
– volume: 9
  start-page: 831
  year: 2018
  ident: bb0040
  article-title: Biologically targeted magnetic hyperthermia: potential and limitations.
  publication-title: Pharmacol
– volume: 9
  start-page: 2684
  year: 2018
  end-page: 2699
  ident: bb0220
  article-title: Size-selected Fe3O4-au hybrid nanoparticles for improved magnetism-based theranostics
  publication-title: Beilstein J Nanotechnol
– volume: 7
  start-page: 4618
  year: 2017
  end-page: 4631
  ident: bb0070
  article-title: Enhanced antitumor efficacy of biocompatible magnetosomes for the magnetic hyperthermia treatment of glioblastoma
  publication-title: Theranostics
– volume: 70
  start-page: 319
  year: 2004
  end-page: 331
  ident: bb0290
  article-title: Hyperthermia induces translocation of apoptosis-inducing factor (AIF) and apoptosis in human glioma cell lines
  publication-title: J Neurooncol
– volume: 8
  start-page: 4268
  year: 2014
  end-page: 4283
  ident: bb0095
  article-title: Heat-generating iron oxide nanocubes: subtle “Destructurators” of the tumoral microenvironment
  publication-title: ACS Nano
– volume: 33
  start-page: 419
  year: 2017
  end-page: 427
  ident: bb0105
  article-title: Targeting therapy-resistant cancer stem cells by hyperthermia
  publication-title: Int J Hyperthermia
– volume: 6
  start-page: 702
  year: 2006
  end-page: 713
  ident: bb0020
  article-title: Preventing or reducing late side effects of radiation therapy: radiobiology meets molecular pathology
  publication-title: Nat Rev Cancer
– volume: 89
  start-page: 2333
  year: 2003
  end-page: 2339
  ident: bb0085
  article-title: Combined hyperthermia and chlorophyll-based photodynamic therapy: tumour growth and metabolic microenvironment
  publication-title: Br J Cancer
– volume: 10
  start-page: 550
  year: 2009
  end-page: 558
  ident: bb0300
  article-title: Hyperthermia as an immunotherapy strategy for cancer
  publication-title: Curr Opin Investig Drugs
– volume: 16
  start-page: 3
  year: 2009
  end-page: 11
  ident: bb0190
  article-title: Classification of cell death: recommendations of the nomenclature committee on cell death 2009
  publication-title: Cell Death Differ
– volume: 321
  start-page: 1482
  year: 2009
  end-page: 1484
  ident: bb0235
  article-title: Biocompatibility of various ferrite nanoparticles evaluated by in vitro cytotoxicity assays using HeLa cells
  publication-title: J Magn Magn Mater
– volume: 140
  start-page: 480
  year: 2009
  end-page: 486
  ident: bb0200
  article-title: Laser-induced hyperthermia for treatment of granulation tissue growth in rats
  publication-title: Otolaryngol Neck Surg
– volume: 24
  start-page: 467
  year: 2008
  end-page: 474
  ident: bb0050
  article-title: Clinical applications of magnetic nanoparticles for hyperthermia
  publication-title: Int J Hyperthermia
– volume: 19
  start-page: 1699
  year: 2009
  end-page: 1704
  ident: bb0120
  article-title: Thermal ablation versus conventional regional hyperthermia has greater anti-tumor activity against melanoma in mice by upregulating CD4+ cells and enhancing IL-2 secretion.
  publication-title: Sci
– volume: 6
  start-page: 3080
  year: 2012
  end-page: 3091
  ident: bb0090
  article-title: Water-soluble Iron oxide Nanocubes with high values of specific absorption rate for cancer cell hyperthermia treatment
  publication-title: ACS Nano
– volume: 28
  year: 2018
  ident: bb0225
  article-title: Magnetic (hyper)Thermia or Photothermia? Progressive comparison of Iron oxide and gold nanoparticles heating in water, in cells
  publication-title: and In Vivo
– volume: 2012
  start-page: 1
  year: 2012
  end-page: 11
  ident: bb0015
  article-title: Chemotherapy and dietary phytochemical agents
  publication-title: Chemother Res Pract
– volume: 8
  start-page: 2775
  year: 2013
  end-page: 2782
  ident: bb0055
  article-title: Treatment of malignant glioma using hyperthermia
  publication-title: Neural Regen Res
– volume: 81
  start-page: 53
  year: 2007
  end-page: 60
  ident: bb0045
  article-title: Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: results of a feasibility study on patients with glioblastoma multiforme
  publication-title: J Neurooncol
– volume: 6
  start-page: 771
  year: 1990
  end-page: 784
  ident: bb0110
  article-title: Limitations and significance of thermal washout data obtained during microwave and ultrasound hyperthermia
  publication-title: Int J Hyperthermia
– volume: 01
  start-page: 17
  year: 2010
  end-page: 32
  ident: bb0115
  article-title: Magnetic nanoparticle hyperthermia in cancer treatment
  publication-title: Nano Life
– volume: 78
  start-page: 6268
  year: 2018
  end-page: 6281
  ident: bb0275
  article-title: Preclinical evaluation of the Hsp70 peptide tracer TPP-PEG
  publication-title: Cancer Res
– volume: 5
  start-page: 415
  year: 2000
  end-page: 418
  ident: bb0195
  article-title: Role of reactive oxygen species (ROS) in apoptosis induction
  publication-title: Apoptosis
– volume: 4
  start-page: 127
  year: 2014
  end-page: 137
  ident: bb0180
  article-title: Beyond apoptosis: the mechanism and function of phosphatidylserine asymmetry in the membrane of activating mast cells
  publication-title: Bioarchitecture
– volume: 4
  start-page: 5029
  year: 2015
  ident: bb0265
  article-title: No evident dose-response relationship between cellular ROS level and its cytotoxicity – a paradoxical issue in ROS-based cancer therapy
  publication-title: Sci Rep
– volume: 9
  start-page: 495
  year: 2004
  end-page: 500
  ident: bb0175
  article-title: Phosphatidylserine exposure during early primary necrosis (oncosis) in JB6 cells as evidenced by immunogold labeling technique
  publication-title: Apoptosis
– volume: 29
  start-page: 58
  year: 2016
  end-page: 66
  ident: bb0280
  article-title: Identification of a highly immunogenic mouse breast cancer sub cell line, 4T1-S
  publication-title: Hum Cell
– volume: 3
  start-page: 3279
  year: 2011
  end-page: 3330
  ident: bb0005
  article-title: Assessment of the evolution of cancer treatment therapies
  publication-title: Cancers (Basel)
– volume: 7
  start-page: 57367
  year: 2016
  end-page: 57378
  ident: bb0035
  article-title: Local hyperthermia in head and neck cancer: mechanism
  publication-title: application and advance
– volume: 30
  start-page: 941
  year: 1997
  end-page: 945
  ident: bb0145
  article-title: Hyperthermia increases the metastatic potential of murine melanoma
  publication-title: Brazilian J Med Biol Res
– volume: 6
  start-page: 3080
  year: 2012
  ident: 10.1016/j.nano.2020.102171_bb0090
  article-title: Water-soluble Iron oxide Nanocubes with high values of specific absorption rate for cancer cell hyperthermia treatment
  publication-title: ACS Nano
  doi: 10.1021/nn2048137
– volume: 4
  start-page: 127
  year: 2014
  ident: 10.1016/j.nano.2020.102171_bb0180
  article-title: Beyond apoptosis: the mechanism and function of phosphatidylserine asymmetry in the membrane of activating mast cells
  publication-title: Bioarchitecture
– volume: 24
  start-page: 467
  year: 2008
  ident: 10.1016/j.nano.2020.102171_bb0050
  article-title: Clinical applications of magnetic nanoparticles for hyperthermia
  publication-title: Int J Hyperthermia
  doi: 10.1080/02656730802104757
– volume: 7
  start-page: 1007
  year: 2014
  ident: 10.1016/j.nano.2020.102171_bb0130
  article-title: Antitumor effects of high-temperature hyperthermia on a glioma rat model
  publication-title: Oncol Lett
  doi: 10.3892/ol.2014.1852
– volume: 6
  start-page: 771
  year: 1990
  ident: 10.1016/j.nano.2020.102171_bb0110
  article-title: Limitations and significance of thermal washout data obtained during microwave and ultrasound hyperthermia
  publication-title: Int J Hyperthermia
  doi: 10.3109/02656739009140824
– volume: 2
  start-page: P267
  year: 2014
  ident: 10.1016/j.nano.2020.102171_bb0285
  article-title: Eradication of metastatic mouse cancers resistant to immune checkpoint blockade by suppression of myeloid-derived cells
  publication-title: J Immunother Cancer
  doi: 10.1186/2051-1426-2-S3-P267
– volume: 9
  start-page: 2684
  year: 2018
  ident: 10.1016/j.nano.2020.102171_bb0220
  article-title: Size-selected Fe3O4-au hybrid nanoparticles for improved magnetism-based theranostics
  publication-title: Beilstein J Nanotechnol
  doi: 10.3762/bjnano.9.251
– volume: 7
  start-page: 4618
  year: 2017
  ident: 10.1016/j.nano.2020.102171_bb0070
  article-title: Enhanced antitumor efficacy of biocompatible magnetosomes for the magnetic hyperthermia treatment of glioblastoma
  publication-title: Theranostics
  doi: 10.7150/thno.18927
– volume: 3
  start-page: 3799
  year: 2011
  ident: 10.1016/j.nano.2020.102171_bb0075
  article-title: Combined hyperthermia and radiotherapy for the treatment of cancer
  publication-title: Cancers (Basel)
  doi: 10.3390/cancers3043799
– volume: 39
  start-page: 4534
  year: 1979
  ident: 10.1016/j.nano.2020.102171_bb0065
  article-title: Effects of local tumor hyperthermia on the growth of solid mouse tumors
  publication-title: Cancer Res
– volume: 5
  start-page: 415
  year: 2000
  ident: 10.1016/j.nano.2020.102171_bb0195
  article-title: Role of reactive oxygen species (ROS) in apoptosis induction
  publication-title: Apoptosis
  doi: 10.1023/A:1009616228304
– volume: 19
  start-page: 1699
  year: 2009
  ident: 10.1016/j.nano.2020.102171_bb0120
  article-title: Thermal ablation versus conventional regional hyperthermia has greater anti-tumor activity against melanoma in mice by upregulating CD4+ cells and enhancing IL-2 secretion. Prog. Nat
  publication-title: Sci
– volume: 1861
  start-page: 1642
  issue: 6
  year: 2017
  ident: 10.1016/j.nano.2020.102171_bb0230
  article-title: Magnetic nanoparticles: a multifunctional vehicle for modern theranostics
  publication-title: Biochim Biophys Acta Gen Subj
  doi: 10.1016/j.bbagen.2017.02.022
– volume: 10
  start-page: 550
  year: 2009
  ident: 10.1016/j.nano.2020.102171_bb0300
  article-title: Hyperthermia as an immunotherapy strategy for cancer
  publication-title: Curr Opin Investig Drugs
– volume: 4
  start-page: 5029
  year: 2015
  ident: 10.1016/j.nano.2020.102171_bb0265
  article-title: No evident dose-response relationship between cellular ROS level and its cytotoxicity – a paradoxical issue in ROS-based cancer therapy
  publication-title: Sci Rep
  doi: 10.1038/srep05029
– volume: 29
  start-page: 1237
  issue: 13
  year: 2018
  ident: 10.1016/j.nano.2020.102171_bb0260
  article-title: Redox paradox: a novel approach to therapeutics-resistant Cancer
  publication-title: Antioxid Redox Signal
  doi: 10.1089/ars.2017.7485
– volume: 180
  start-page: 1326
  year: 2009
  ident: 10.1016/j.nano.2020.102171_bb0010
  article-title: Stereotactic radiation therapy for inoperable, early-stage non-small-cell lung cancer
  publication-title: CMAJ
  doi: 10.1503/cmaj.081291
– volume: 31
  start-page: 84
  year: 2002
  ident: 10.1016/j.nano.2020.102171_bb0135
  article-title: Effect of local hyperthermia on metastases in oral squamous cell carcinoma
  publication-title: Int J Oral Maxillofac Surg
  doi: 10.1054/ijom.2001.0176
– volume: 7
  start-page: 57367
  year: 2016
  ident: 10.1016/j.nano.2020.102171_bb0035
  article-title: Local hyperthermia in head and neck cancer: mechanism
  publication-title: application and advance Oncotarget
– volume: 30
  start-page: 941
  year: 1997
  ident: 10.1016/j.nano.2020.102171_bb0145
  article-title: Hyperthermia increases the metastatic potential of murine melanoma
  publication-title: Brazilian J Med Biol Res
  doi: 10.1590/S0100-879X1997000800005
– volume: 61
  start-page: 250
  year: 2011
  ident: 10.1016/j.nano.2020.102171_bb0025
  article-title: Photodynamic therapy of cancer: an update. CA. Cancer
  publication-title: J Clin
– volume: 7
  start-page: 808
  year: 2005
  ident: 10.1016/j.nano.2020.102171_bb0170
  article-title: Membrane phosphatidylserine distribution as a non-apoptotic signalling mechanism in lymphocytes
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb1279
– volume: 41
  start-page: 742
  year: 2015
  ident: 10.1016/j.nano.2020.102171_bb0080
  article-title: Local hyperthermia combined with radiotherapy and−/or chemotherapy: recent advances and promises for the future. Cancer Treat
  publication-title: Rev
– volume: 28
  issue: 37
  year: 2018
  ident: 10.1016/j.nano.2020.102171_bb0225
  article-title: Magnetic (hyper)Thermia or Photothermia? Progressive comparison of Iron oxide and gold nanoparticles heating in water, in cells
  publication-title: and In Vivo Adv Funct Mater
– volume: 16
  start-page: 3
  year: 2009
  ident: 10.1016/j.nano.2020.102171_bb0190
  article-title: Classification of cell death: recommendations of the nomenclature committee on cell death 2009
  publication-title: Cell Death Differ
  doi: 10.1038/cdd.2008.150
– volume: 9
  start-page: 831
  year: 2018
  ident: 10.1016/j.nano.2020.102171_bb0040
  article-title: Biologically targeted magnetic hyperthermia: potential and limitations. Front
  publication-title: Pharmacol
– volume: 8
  start-page: 4268
  year: 2014
  ident: 10.1016/j.nano.2020.102171_bb0095
  article-title: Heat-generating iron oxide nanocubes: subtle “Destructurators” of the tumoral microenvironment
  publication-title: ACS Nano
  doi: 10.1021/nn405356r
– volume: 20
  start-page: 64
  year: 2013
  ident: 10.1016/j.nano.2020.102171_bb0165
  article-title: Phosphatidylserine exposure during apoptosis reflects bidirectional trafficking between plasma membrane and cytoplasm
  publication-title: Cell Death Differ
  doi: 10.1038/cdd.2012.93
– volume: 6
  start-page: 702
  year: 2006
  ident: 10.1016/j.nano.2020.102171_bb0020
  article-title: Preventing or reducing late side effects of radiation therapy: radiobiology meets molecular pathology
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc1950
– volume: 33
  start-page: 419
  year: 2017
  ident: 10.1016/j.nano.2020.102171_bb0105
  article-title: Targeting therapy-resistant cancer stem cells by hyperthermia
  publication-title: Int J Hyperthermia
  doi: 10.1080/02656736.2017.1279757
– volume: 10
  start-page: 1273
  year: 2014
  ident: 10.1016/j.nano.2020.102171_bb0100
  article-title: Local hyperthermia treatment of tumors induces CD8+ T cell-mediated resistance against distal and secondary tumors
  publication-title: Nanomedicine
  doi: 10.1016/j.nano.2014.01.011
– volume: 7
  start-page: 764
  year: 2014
  ident: 10.1016/j.nano.2020.102171_bb0125
  article-title: Abscopal antitumor immune effects of magnet-mediated hyperthermia at a high therapeutic temperature on Walker-256 carcinosarcomas in rats. Oncol
  publication-title: Lett
– volume: 81
  start-page: 53
  year: 2007
  ident: 10.1016/j.nano.2020.102171_bb0045
  article-title: Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: results of a feasibility study on patients with glioblastoma multiforme
  publication-title: J Neurooncol
  doi: 10.1007/s11060-006-9195-0
– volume: 89
  start-page: 2333
  year: 2003
  ident: 10.1016/j.nano.2020.102171_bb0085
  article-title: Combined hyperthermia and chlorophyll-based photodynamic therapy: tumour growth and metabolic microenvironment
  publication-title: Br J Cancer
  doi: 10.1038/sj.bjc.6601457
– volume: 9
  start-page: 549
  year: 1983
  ident: 10.1016/j.nano.2020.102171_bb0155
  article-title: Hyperthermia by magnetic induction: II. Clinical experience with concentric electrodes. Int
  publication-title: J Radiat Oncol
  doi: 10.1016/0360-3016(83)90074-3
– volume: 283
  start-page: 101
  issue: 2–3
  year: 2011
  ident: 10.1016/j.nano.2020.102171_bb0240
  article-title: Oxidative stress mediated apoptosis induced by nickel ferrite nanoparticles in cultured A549 cells
  publication-title: Toxicology
  doi: 10.1016/j.tox.2011.02.010
– volume: 3
  start-page: 3279
  year: 2011
  ident: 10.1016/j.nano.2020.102171_bb0005
  article-title: Assessment of the evolution of cancer treatment therapies
  publication-title: Cancers (Basel)
  doi: 10.3390/cancers3033279
– volume: 26
  start-page: 5646
  year: 2014
  ident: 10.1016/j.nano.2020.102171_bb0140
  article-title: Tumor metastasis inhibition by imaging-guided Photothermal therapy with single-walled carbon nanotubes
  publication-title: Adv Mater
  doi: 10.1002/adma.201401825
– volume: 9
  start-page: 495
  year: 2004
  ident: 10.1016/j.nano.2020.102171_bb0175
  article-title: Phosphatidylserine exposure during early primary necrosis (oncosis) in JB6 cells as evidenced by immunogold labeling technique
  publication-title: Apoptosis
  doi: 10.1023/B:APPT.0000031452.75162.75
– volume: 321
  start-page: 1482
  issue: 10
  year: 2009
  ident: 10.1016/j.nano.2020.102171_bb0235
  article-title: Biocompatibility of various ferrite nanoparticles evaluated by in vitro cytotoxicity assays using HeLa cells
  publication-title: J Magn Magn Mater
  doi: 10.1016/j.jmmm.2009.02.058
– volume: 6
  start-page: 5385
  year: 2018
  ident: 10.1016/j.nano.2020.102171_bb0245
  article-title: Localized cancer treatment by radio-frequency hyperthermia using magnetic nanoparticles immobilized on graphene oxide: from novel synthesis to in vitro studies
  publication-title: J Mater Chem B
  doi: 10.1039/C8TB01365A
– volume: 324
  start-page: 903
  issue: 6
  year: 2012
  ident: 10.1016/j.nano.2020.102171_bb0215
  article-title: Ferrite-based magnetic nanofluids used in hyperthermia applications
  publication-title: J. Magn. Magn. Mater
  doi: 10.1016/j.jmmm.2011.10.017
– volume: 70
  start-page: 319
  year: 2004
  ident: 10.1016/j.nano.2020.102171_bb0290
  article-title: Hyperthermia induces translocation of apoptosis-inducing factor (AIF) and apoptosis in human glioma cell lines
  publication-title: J Neurooncol
  doi: 10.1007/s11060-004-9168-0
– volume: 8
  start-page: 2775
  year: 2013
  ident: 10.1016/j.nano.2020.102171_bb0055
  article-title: Treatment of malignant glioma using hyperthermia
  publication-title: Neural Regen Res
– volume: 10
  start-page: 1609
  year: 2015
  ident: 10.1016/j.nano.2020.102171_bb0250
  article-title: Temperature-dependent and time-dependent effects of hyperthermia mediated by dextran-coated La0.7Sr0.3MnO3: in vitro studies
  publication-title: Int J Nanomedicine
– volume: 7
  start-page: 13
  year: 2016
  ident: 10.1016/j.nano.2020.102171_bb0060
  article-title: Magnetic hyperthermia therapy: an emerging modality of cancer treatment in combination with radiotherapy
  publication-title: J Radiat Cancer Res
  doi: 10.4103/0973-0168.184606
– volume: 9
  start-page: 16175
  year: 2017
  ident: 10.1016/j.nano.2020.102171_bb0295
  article-title: Injectable thermosensitive magnetic nanoemulsion hydrogel for multimodal-imaging-guided accurate thermoablative cancer therapy
  publication-title: Nanoscale
  doi: 10.1039/C7NR02858J
– volume: 88
  start-page: 351
  year: 2007
  ident: 10.1016/j.nano.2020.102171_bb0205
  article-title: The mouse mammary carcinoma 4T1: characterization of the cellular landscape of primary tumours and metastatic tumour foci
  publication-title: Int J Exp Pathol
  doi: 10.1111/j.1365-2613.2007.00539.x
– volume: 17
  start-page: 3045
  year: 2010
  ident: 10.1016/j.nano.2020.102171_bb0030
  article-title: Biological rationales and clinical applications of temperature controlled hyperthermia – implications for multimodal cancer treatments
  publication-title: Curr Med Chem
  doi: 10.2174/092986710791959774
– volume: 13
  year: 2018
  ident: 10.1016/j.nano.2020.102171_bb0255
  article-title: Reactive oxygen species: a key constituent in cancer survival
  publication-title: Biomark Insights
  doi: 10.1177/1177271918755391
– volume: 89
  start-page: 2036
  issue: 6
  year: 1992
  ident: 10.1016/j.nano.2020.102171_bb0270
  article-title: Heat shock protein hsp70 protects cells from thermal stress even after deletion of its ATP-binding domain
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.89.6.2036
– volume: 415
  start-page: 20
  year: 2016
  ident: 10.1016/j.nano.2020.102171_bb0150
  article-title: Tuning the magnetism of ferrite nanoparticles
  publication-title: J. Magn. Magn. Mater
  doi: 10.1016/j.jmmm.2016.02.098
– volume: 2012
  start-page: 1
  year: 2012
  ident: 10.1016/j.nano.2020.102171_bb0015
  article-title: Chemotherapy and dietary phytochemical agents
  publication-title: Chemother Res Pract
  doi: 10.1155/2012/282570
– volume: 140
  start-page: 480
  year: 2009
  ident: 10.1016/j.nano.2020.102171_bb0200
  article-title: Laser-induced hyperthermia for treatment of granulation tissue growth in rats
  publication-title: Otolaryngol Neck Surg
  doi: 10.1016/j.otohns.2008.12.004
– volume: 78
  start-page: 6268
  issue: 21
  year: 2018
  ident: 10.1016/j.nano.2020.102171_bb0275
  article-title: Preclinical evaluation of the Hsp70 peptide tracer TPP-PEG24-DFO[89Zr] for tumor-specific PET/CT imaging
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-18-0707
– volume: 135
  start-page: 1161
  year: 2008
  ident: 10.1016/j.nano.2020.102171_bb0185
  article-title: Necroptosis: a specialized pathway of programmed necrosis
  publication-title: Cell
  doi: 10.1016/j.cell.2008.12.004
– volume: 311
  start-page: 187
  year: 2007
  ident: 10.1016/j.nano.2020.102171_bb0160
  article-title: Magnetic particle hyperthermia—biophysical limitations of a visionary tumour therapy
  publication-title: J. Magn. Magn. Mater
  doi: 10.1016/j.jmmm.2006.10.1156
– volume: 29
  start-page: 58
  year: 2016
  ident: 10.1016/j.nano.2020.102171_bb0280
  article-title: Identification of a highly immunogenic mouse breast cancer sub cell line, 4T1-S
  publication-title: Hum Cell
  doi: 10.1007/s13577-015-0127-1
– volume: 01
  start-page: 17
  year: 2010
  ident: 10.1016/j.nano.2020.102171_bb0115
  article-title: Magnetic nanoparticle hyperthermia in cancer treatment
  publication-title: Nano Life
  doi: 10.1142/S1793984410000067
– volume: 7
  start-page: 7715
  year: 2017
  ident: 10.1016/j.nano.2020.102171_bb0210
  article-title: Luciferase expression allows bioluminescence imaging but imposes limitations on the Orthotopic mouse (4T1) model of breast Cancer. Sci
  publication-title: Rep
SSID ssj0037009
Score 2.4925797
Snippet Magnetic hyperthermia (MHT) is a promising approach for cancer therapy. However, a systematic MHT characterization as function of temperature on the...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 102171
SubjectTerms Cobalt ferrite nanoparticles
Magnetic hyperthermia
Metastasis
Murine tumor models
Temperature-dependent heating
Title Temperature-controlled magnetic nanoparticles hyperthermia inhibits primary tumor growth and metastases dissemination
URI https://www.clinicalkey.com/#!/content/1-s2.0-S154996342030023X
https://dx.doi.org/10.1016/j.nano.2020.102171
https://www.ncbi.nlm.nih.gov/pubmed/32084594
https://www.proquest.com/docview/2362095415
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEF5CCqWX0nfdR9hCb0W1VlpppWMwDe4jobQJ-LbsYzZWiWVjy9f-9s5IK0MPSaEnIbEj7WM08432mxFj79PaGqprkgDIAgMU6RJra5_4VPjKpxCcow_65xfl_Ep-WRSLIzYbc2GIVhlt_2DTe2sdr0zjbE43TTP9ScXFUH1khnqKnmdBGexSkZZ__H2geeQq7Wke1Dih1jFxZuB4taalBMCsr2AglLjNOd0GPnsndPaIPYzokZ8OHXzMjqB9wu6fx_3xp2x_CQiDhzLJSWSh34DnK3PdUrYip65sRjIcX2IQuiUEuGoMb9plY5tuxzdDAQre7VfrLb_GOL1bctPiXaAzCCZ3KNlv4xOLhtb1Gbs6-3Q5myfxxwqJw_itS6yALAuefH2dOhDgSmVFBUVQlVPWBedTa4M1IRgPtnISTF6qGgrlqyqo_Dk7btctvGS8zEuQOZpUIzPpbFlLo5w1woqy8qUJEybGGdUuVh2nn1_c6JFe9kvT0DWtgh5WYcI-HGTikO9snY8LpcdsUrR_Gl3CnVLFQeovffun3LtRFzS-iLS7YlpY73c6QyiAeBUB0YS9GJTk0Ps8SytZ1PLVfz71NXtAZwNj6A077rZ7eItgqLMnvbafsHunsx_fvtPx89f5xR-Yeg5o
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBa6Dth6Gbpns6cG7DZ4sWzZso9D0SLbml6WArkJejYeGiVInGt_e0lbDrBDO2BXW7T1oMmP1keKkC9prRXWNUmc4wUEKNwkWtc2sSmzlU2dNwZ_6E8vy8kV_zkv5gfkdMiFQVpltP29Te-sdbwyjrM5XjfN-DcWFwP14RnoKXie-SPymMPni8cYfLvd8zxykXY8D2ydYPOYOdOTvIIKmAGYdSUMmGD3eaf70Gfnhc6PybMIH-n3vofPyYELL8iTadwgf0l2Mwc4uK-TnEQa-o2zdKmuA6YrUuzKemDD0QVEoRuEgMtG0SYsGt20W7ruK1DQdrdcbeg1BOrtgqoAT3GtAjS5BcluHx9pNLiwr8jV-dnsdJLEkxUSAwFcm2jmssxbdPZ1ahxzphSaVa7wojJCG29sqrXXyntlna4MdyovRe0KYavKi_w1OQyr4E4ILfPS8RxsquIZN7qsuRJGK6ZZWdlS-RFhw4xKE8uO4-kXN3Lgl_2ROHSJqyD7VRiRr3uZOOQHW-fDQskhnRQMoASf8KBUsZf6S-H-Kfd50AUJXyJur6jgVrutzAALAGAFRDQib3ol2fc-z9KKFzV_-59v_USeTmbTC3nx4_LXO3KEd3r60Hty2G527gMgo1Z_7DT_DjBFDmE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temperature-controlled+magnetic+nanoparticles+hyperthermia+inhibits+primary+tumor+growth+and+metastases+dissemination&rft.jtitle=Nanomedicine&rft.au=Garanina%2C+Anastasiia+S&rft.au=Naumenko%2C+Victor+A&rft.au=Nikitin%2C+Aleksey+A&rft.au=Myrovali%2C+Eirini&rft.date=2020-04-01&rft.eissn=1549-9642&rft.volume=25&rft.spage=102171&rft_id=info:doi/10.1016%2Fj.nano.2020.102171&rft_id=info%3Apmid%2F32084594&rft.externalDocID=32084594
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-9634&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-9634&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-9634&client=summon