Temperature-controlled magnetic nanoparticles hyperthermia inhibits primary tumor growth and metastases dissemination
Magnetic hyperthermia (MHT) is a promising approach for cancer therapy. However, a systematic MHT characterization as function of temperature on the therapeutic efficiency is barely analyzed. Here, we first perform comparative temperature-dependent analysis of the cobalt ferrite nanoparticles-mediat...
Saved in:
Published in | Nanomedicine Vol. 25; p. 102171 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.04.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Magnetic hyperthermia (MHT) is a promising approach for cancer therapy. However, a systematic MHT characterization as function of temperature on the therapeutic efficiency is barely analyzed. Here, we first perform comparative temperature-dependent analysis of the cobalt ferrite nanoparticles-mediated MHT effectiveness in two murine tumors models – breast (4T1) and colon (CT26) cancer in vitro and in vivo. The overall MHT killing capacity in vitro increased with the temperature and CT26 cells were more sensitive than 4T1 when heated to 43 °C. Well in line with the in vitro data, such heating cured non-metastatic CT26 tumors in vivo, while only inhibiting metastatic 4T1 tumor growth without improving the overall survival. High-temperature MHT (>47 °C) resulted in complete 4T1 primary tumor clearance, 25–40% long-term survival rates, and, importantly, more effective prevention of metastasis comparing to surgical extraction. Thus, the specific MHT temperature must be defined for each tumor individually to ensure a successful antitumor therapy.
Controlled magnetic hyperthermia (MHT) provided by cobalt ferrite nanoparticles under alternating magnetic field exposure has different effects on tumor cells in vitro and in vivo depending on the temperature. The number of apoptotic and necrotic cells in cultures increases with temperature. Interestingly, delayed effect of the heating at 42–43 °C (mild MHT) varies in different cell lines. In vivo data further shows that mild MHT is not effective for metastatic 4T1 tumor therapy, while it is efficient for curing non-metastatic CT26-bearing mice. MHT at 46–48 °C and 58–60 °C increases long-term survival of 4T1-bearing mice providing primary tumor clearance and metastasis inhibition. [Display omitted] |
---|---|
AbstractList | Magnetic hyperthermia (MHT) is a promising approach for cancer therapy. However, a systematic MHT characterization as function of temperature on the therapeutic efficiency is barely analyzed. Here, we first perform comparative temperature-dependent analysis of the cobalt ferrite nanoparticles-mediated MHT effectiveness in two murine tumors models - breast (4T1) and colon (CT26) cancer in vitro and in vivo. The overall MHT killing capacity in vitro increased with the temperature and CT26 cells were more sensitive than 4T1 when heated to 43 °C. Well in line with the in vitro data, such heating cured non-metastatic CT26 tumors in vivo, while only inhibiting metastatic 4T1 tumor growth without improving the overall survival. High-temperature MHT (>47 °C) resulted in complete 4T1 primary tumor clearance, 25-40% long-term survival rates, and, importantly, more effective prevention of metastasis comparing to surgical extraction. Thus, the specific MHT temperature must be defined for each tumor individually to ensure a successful antitumor therapy.Magnetic hyperthermia (MHT) is a promising approach for cancer therapy. However, a systematic MHT characterization as function of temperature on the therapeutic efficiency is barely analyzed. Here, we first perform comparative temperature-dependent analysis of the cobalt ferrite nanoparticles-mediated MHT effectiveness in two murine tumors models - breast (4T1) and colon (CT26) cancer in vitro and in vivo. The overall MHT killing capacity in vitro increased with the temperature and CT26 cells were more sensitive than 4T1 when heated to 43 °C. Well in line with the in vitro data, such heating cured non-metastatic CT26 tumors in vivo, while only inhibiting metastatic 4T1 tumor growth without improving the overall survival. High-temperature MHT (>47 °C) resulted in complete 4T1 primary tumor clearance, 25-40% long-term survival rates, and, importantly, more effective prevention of metastasis comparing to surgical extraction. Thus, the specific MHT temperature must be defined for each tumor individually to ensure a successful antitumor therapy. Magnetic hyperthermia (MHT) is a promising approach for cancer therapy. However, a systematic MHT characterization as function of temperature on the therapeutic efficiency is barely analyzed. Here, we first perform comparative temperature-dependent analysis of the cobalt ferrite nanoparticles-mediated MHT effectiveness in two murine tumors models – breast (4T1) and colon (CT26) cancer in vitro and in vivo. The overall MHT killing capacity in vitro increased with the temperature and CT26 cells were more sensitive than 4T1 when heated to 43 °C. Well in line with the in vitro data, such heating cured non-metastatic CT26 tumors in vivo, while only inhibiting metastatic 4T1 tumor growth without improving the overall survival. High-temperature MHT (>47 °C) resulted in complete 4T1 primary tumor clearance, 25–40% long-term survival rates, and, importantly, more effective prevention of metastasis comparing to surgical extraction. Thus, the specific MHT temperature must be defined for each tumor individually to ensure a successful antitumor therapy. Controlled magnetic hyperthermia (MHT) provided by cobalt ferrite nanoparticles under alternating magnetic field exposure has different effects on tumor cells in vitro and in vivo depending on the temperature. The number of apoptotic and necrotic cells in cultures increases with temperature. Interestingly, delayed effect of the heating at 42–43 °C (mild MHT) varies in different cell lines. In vivo data further shows that mild MHT is not effective for metastatic 4T1 tumor therapy, while it is efficient for curing non-metastatic CT26-bearing mice. MHT at 46–48 °C and 58–60 °C increases long-term survival of 4T1-bearing mice providing primary tumor clearance and metastasis inhibition. [Display omitted] Magnetic hyperthermia (MHT) is a promising approach for cancer therapy. However, a systematic MHT characterization as function of temperature on the therapeutic efficiency is barely analyzed. Here, we first perform comparative temperature-dependent analysis of the cobalt ferrite nanoparticles-mediated MHT effectiveness in two murine tumors models - breast (4T1) and colon (CT26) cancer in vitro and in vivo. The overall MHT killing capacity in vitro increased with the temperature and CT26 cells were more sensitive than 4T1 when heated to 43 °C. Well in line with the in vitro data, such heating cured non-metastatic CT26 tumors in vivo, while only inhibiting metastatic 4T1 tumor growth without improving the overall survival. High-temperature MHT (>47 °C) resulted in complete 4T1 primary tumor clearance, 25-40% long-term survival rates, and, importantly, more effective prevention of metastasis comparing to surgical extraction. Thus, the specific MHT temperature must be defined for each tumor individually to ensure a successful antitumor therapy. |
ArticleNumber | 102171 |
Author | Petukhova, Anna Y. Klimyuk, Svetlana V. Abakumov, Maxim A. Garanina, Anastasiia S. Naumenko, Victor A. Myrovali, Eirini Ilyasov, Artem R. Nalench, Yulia A. Savchenko, Alexander G. Erofeev, Alexander S. Gorelkin, Peter V. Angelakeris, Makis Nikitin, Aleksey A. Majouga Dr, Alexander G. Vodopyanov, Stepan S. Wiedwald, Ulf |
Author_xml | – sequence: 1 givenname: Anastasiia S. surname: Garanina fullname: Garanina, Anastasiia S. email: anastasiacit@gmail.com organization: National University of Science and Technology «MISiS», Moscow, Russia – sequence: 2 givenname: Victor A. surname: Naumenko fullname: Naumenko, Victor A. organization: National University of Science and Technology «MISiS», Moscow, Russia – sequence: 3 givenname: Aleksey A. surname: Nikitin fullname: Nikitin, Aleksey A. organization: National University of Science and Technology «MISiS», Moscow, Russia – sequence: 4 givenname: Eirini surname: Myrovali fullname: Myrovali, Eirini organization: School of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece – sequence: 5 givenname: Anna Y. surname: Petukhova fullname: Petukhova, Anna Y. organization: National University of Science and Technology «MISiS», Moscow, Russia – sequence: 6 givenname: Svetlana V. surname: Klimyuk fullname: Klimyuk, Svetlana V. organization: National University of Science and Technology «MISiS», Moscow, Russia – sequence: 7 givenname: Yulia A. surname: Nalench fullname: Nalench, Yulia A. organization: National University of Science and Technology «MISiS», Moscow, Russia – sequence: 8 givenname: Artem R. surname: Ilyasov fullname: Ilyasov, Artem R. organization: National University of Science and Technology «MISiS», Moscow, Russia – sequence: 9 givenname: Stepan S. surname: Vodopyanov fullname: Vodopyanov, Stepan S. organization: National University of Science and Technology «MISiS», Moscow, Russia – sequence: 10 givenname: Alexander S. surname: Erofeev fullname: Erofeev, Alexander S. organization: National University of Science and Technology «MISiS», Moscow, Russia – sequence: 11 givenname: Peter V. surname: Gorelkin fullname: Gorelkin, Peter V. organization: Medical Nanotechnology LLC, Skolkovo Innovation Center, Moscow, Russia – sequence: 12 givenname: Makis surname: Angelakeris fullname: Angelakeris, Makis organization: School of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece – sequence: 13 givenname: Alexander G. surname: Savchenko fullname: Savchenko, Alexander G. organization: National University of Science and Technology «MISiS», Moscow, Russia – sequence: 14 givenname: Ulf surname: Wiedwald fullname: Wiedwald, Ulf organization: National University of Science and Technology «MISiS», Moscow, Russia – sequence: 15 givenname: Alexander G. surname: Majouga Dr fullname: Majouga Dr, Alexander G. organization: National University of Science and Technology «MISiS», Moscow, Russia – sequence: 16 givenname: Maxim A. surname: Abakumov fullname: Abakumov, Maxim A. organization: National University of Science and Technology «MISiS», Moscow, Russia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32084594$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkcuLFDEQh4OsuA_9BzxIH730mKTf4kUWX7DgZT2HPCo7NaaTMUmvzH9v2hn3sIcVAinC91WRX12SMx88EPKa0Q2jrH-323jpw4ZTvj5wNrBn5IJ17VRPfcvPHuqmPSeXKe0obQZKpxfkvOF0bLupvSDLLcx7iDIvEWodfI7BOTDVLO88ZNTVOmIvYykdpGp7KHDeQpxRVui3qDCnah9xlvFQ5WUOsbqL4XfeVtKXLpBlKqeYBlOCGb3MGPxL8txKl-DV6b4iPz5_ur3-Wt98__Lt-uNNrVs65Fox4NyajvFpohoY6H5QbITODqMelLbaUKWsktZKA2rULcimHyboBjOOdmiuyNtj330MvxZIWcyYNDgnPYQlCd70nE5dy7qCvjmhi5rBiNOfxL-oCsCPgI4hpQj2AWFUrPsQO7GGJdZ9iOM-ijQ-kjTmvxHkKNE9rX44qlACukeIImkEr8FgBJ2FCfi0_v6Rrh161NL9hMP_5D_xZL5W |
CitedBy_id | crossref_primary_10_3390_ph17030300 crossref_primary_10_1038_s41598_022_18306_5 crossref_primary_10_1063_9_0000557 crossref_primary_10_1007_s10853_021_05947_6 crossref_primary_10_1039_D3NR02860G crossref_primary_10_1080_17435390_2024_2386019 crossref_primary_10_3390_ph16101494 crossref_primary_10_1016_j_biopha_2021_112321 crossref_primary_10_1016_j_ultrasmedbio_2020_11_023 crossref_primary_10_1002_adhm_202002163 crossref_primary_10_1039_D2RA02935A crossref_primary_10_3103_S1062873820110295 crossref_primary_10_1007_s11071_022_08153_4 crossref_primary_10_1016_j_matdes_2022_110676 crossref_primary_10_1016_j_mbm_2023_100011 crossref_primary_10_1021_acsami_0c12900 crossref_primary_10_31857_S0015323022601453 crossref_primary_10_3390_polym12081832 crossref_primary_10_1002_adma_202007761 crossref_primary_10_1002_marc_202300737 crossref_primary_10_3390_jcs8020048 crossref_primary_10_1557_s43578_022_00665_4 crossref_primary_10_3390_nano12193539 crossref_primary_10_3390_ma15030788 crossref_primary_10_3390_molecules25153489 crossref_primary_10_3390_nano14191547 crossref_primary_10_1016_j_mssp_2022_106632 crossref_primary_10_1016_j_ceramint_2023_01_101 crossref_primary_10_3390_magnetochemistry10020009 crossref_primary_10_1016_j_bbe_2021_04_002 crossref_primary_10_3390_nano12010038 crossref_primary_10_1039_D1CC05056G crossref_primary_10_1155_2022_9946357 crossref_primary_10_1021_acs_jpclett_1c01984 crossref_primary_10_3390_pharmaceutics17040409 crossref_primary_10_3390_life12111937 crossref_primary_10_1002_tee_23361 crossref_primary_10_1134_S0031918X22602013 crossref_primary_10_1080_17425247_2023_2166484 crossref_primary_10_1166_jbn_2021_3138 crossref_primary_10_3390_cancers12092564 crossref_primary_10_1007_s10967_021_07830_9 crossref_primary_10_1039_D2CC06212G crossref_primary_10_1515_med_2024_0898 crossref_primary_10_1002_adtp_202000267 crossref_primary_10_3390_membranes12111106 crossref_primary_10_1016_j_matpr_2021_07_234 crossref_primary_10_3390_nano13050876 crossref_primary_10_3390_pharmaceutics15071958 crossref_primary_10_3390_nano11020438 crossref_primary_10_1039_D3NA00180F crossref_primary_10_1016_j_jmmm_2022_169957 crossref_primary_10_3389_fbioe_2023_1244569 crossref_primary_10_3390_pharmaceutics14071372 |
Cites_doi | 10.1021/nn2048137 10.1080/02656730802104757 10.3892/ol.2014.1852 10.3109/02656739009140824 10.1186/2051-1426-2-S3-P267 10.3762/bjnano.9.251 10.7150/thno.18927 10.3390/cancers3043799 10.1023/A:1009616228304 10.1016/j.bbagen.2017.02.022 10.1038/srep05029 10.1089/ars.2017.7485 10.1503/cmaj.081291 10.1054/ijom.2001.0176 10.1590/S0100-879X1997000800005 10.1038/ncb1279 10.1038/cdd.2008.150 10.1021/nn405356r 10.1038/cdd.2012.93 10.1038/nrc1950 10.1080/02656736.2017.1279757 10.1016/j.nano.2014.01.011 10.1007/s11060-006-9195-0 10.1038/sj.bjc.6601457 10.1016/0360-3016(83)90074-3 10.1016/j.tox.2011.02.010 10.3390/cancers3033279 10.1002/adma.201401825 10.1023/B:APPT.0000031452.75162.75 10.1016/j.jmmm.2009.02.058 10.1039/C8TB01365A 10.1016/j.jmmm.2011.10.017 10.1007/s11060-004-9168-0 10.4103/0973-0168.184606 10.1039/C7NR02858J 10.1111/j.1365-2613.2007.00539.x 10.2174/092986710791959774 10.1177/1177271918755391 10.1073/pnas.89.6.2036 10.1016/j.jmmm.2016.02.098 10.1155/2012/282570 10.1016/j.otohns.2008.12.004 10.1158/0008-5472.CAN-18-0707 10.1016/j.cell.2008.12.004 10.1016/j.jmmm.2006.10.1156 10.1007/s13577-015-0127-1 10.1142/S1793984410000067 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Inc. Copyright © 2020 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2020 Elsevier Inc. – notice: Copyright © 2020 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.nano.2020.102171 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1549-9642 |
ExternalDocumentID | 32084594 10_1016_j_nano_2020_102171 S154996342030023X |
Genre | Journal Article |
GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 123 1B1 1P~ 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ AAAJQ AABXZ AAEDT AAEDW AAEPC AAIKJ AAKOC AALRI AAOAW AAQFI AARKO AATTM AAXKI AAXUO AAYWO ABBQC ABGSF ABMAC ABMZM ABUDA ABWVN ABXDB ABXRA ABZDS ACDAQ ACGFS ACIEU ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADTZH ADUVX AEBSH AECPX AEHWI AEIPS AEKER AEUPX AEVXI AEZYN AFJKZ AFPUW AFRHN AFRZQ AFTJW AFXIZ AGCQF AGEKW AGHFR AGUBO AGYEJ AHJVU AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALCLG ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AXJTR BJAXD BKOJK BLXMC BNPGV CJTIS CS3 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LUGTX M41 MAGPM MO0 N9A O-L O9- OAUVE OD~ OGGZJ OO0 OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SEL SES SEW SPC SSH SSI SSM SSP SST SSU SSZ T5K Z5R ~G- AACTN AAIAV AATCM ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW DOVZS EFLBG LCYCR RIG AAYXX AGRNS CITATION NPM 7X8 |
ID | FETCH-LOGICAL-c407t-b1e22fd512990ce1ec67b18e5f78c7bcfcd0bbfbaffadeb8c4ea3679e57d88f73 |
IEDL.DBID | .~1 |
ISSN | 1549-9634 1549-9642 |
IngestDate | Fri Jul 11 04:11:27 EDT 2025 Wed Feb 19 02:30:05 EST 2025 Thu Apr 24 23:05:58 EDT 2025 Tue Jul 01 01:49:56 EDT 2025 Fri Feb 23 02:49:36 EST 2024 Tue Aug 26 16:33:34 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | PS Cobalt ferrite nanoparticles DLS XRD Metastasis PDI FBS SLP EDX MHT Magnetic hyperthermia AMF MNPs Temperature-dependent heating Hsp s.c i.p i.t AES i.v IVIS ROS Murine tumor models SEM TEM |
Language | English |
License | Copyright © 2020 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c407t-b1e22fd512990ce1ec67b18e5f78c7bcfcd0bbfbaffadeb8c4ea3679e57d88f73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 32084594 |
PQID | 2362095415 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2362095415 pubmed_primary_32084594 crossref_primary_10_1016_j_nano_2020_102171 crossref_citationtrail_10_1016_j_nano_2020_102171 elsevier_sciencedirect_doi_10_1016_j_nano_2020_102171 elsevier_clinicalkey_doi_10_1016_j_nano_2020_102171 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2020 2020-04-00 2020-Apr 20200401 |
PublicationDateYYYYMMDD | 2020-04-01 |
PublicationDate_xml | – month: 04 year: 2020 text: April 2020 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Nanomedicine |
PublicationTitleAlternate | Nanomedicine |
PublicationYear | 2020 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Landsberg, DeRowe, Katzir, Shtabsky, Fliss, Gil (bb0200) 2009; 140 Baklaushev, Kilpeläinen, Petkov, Abakumov, Grinenko, Yusubalieva (bb0210) 2017; 7 Zhang, Zhang, Geng, Lin, Wang, Zhao (bb0120) 2009; 19 Espinosa, Kolosnjaj-Tabi, Abou-Hassan, Sangnier, Curcio, Silva (bb0225) 2018; 28 Dahele, Brade, Pearson, Bezjak (bb0010) 2009; 180 Newman, Lele, Bowman (bb0110) 1990; 6 Takagi, Azuma, Tsuka, Imagawa, Osaki, Okamoto (bb0130) 2014; 7 Sak (bb0015) 2012; 2012 Bentzen (bb0020) 2006; 6 Nagashima, Takagi, Hoshina (bb0135) 2002; 31 Datta, Ordóñez, Gaipl, Paulides, Crezee, Gellermann (bb0080) 2015; 41 Kelleher, Thews, Scherz, Salomon, Vaupel (bb0085) 2003; 89 Gao, Zheng, Ren, Tang, Liang (bb0035) 2016; 7 Chaiswing, St Clair, St Clair (bb0260) 2018; 29 Magin, Johnson (bb0065) 1979; 39 Oleson, Heusinkveld, Manning (bb0155) 1983; 9 Haghniaz, Umrani, Paknikar (bb0250) 2015; 10 Le Fèvre, Durand-Dubief, Chebbi, Mandawala, Lagroix, Valet (bb0070) 2017; 7 Guardia, Di Corato, Lartigue, Wilhelm, Espinosa, Garcia-Hernandez (bb0090) 2012; 6 Rysavy, Shimoda, Dixon, Speck, Stokes, Turner (bb0180) 2014; 4 Kim, Skora, Li, Tam, Diaz, Papadopolous (bb0285) 2014; 2 Simon, Haj-Yehia, Levi-Schaffer (bb0195) 2000; 5 Oliveira-Filho, Bevilacqua, Chammas (bb0145) 1997; 30 Schildkopf, Ott, Frey, Wadepohl, Sauer, Fietkau (bb0030) 2010; 17 Li, Li, Liu, Rehman, Lee (bb0270) 1992; 89 Hergt, Dutz (bb0160) 2007; 311 Ahamed, Akhtar, Siddiqui, Ahmad, Musarrat, Al-Khedhairy (bb0240) 2011; 283 Kroemer, Galluzzi, Vandenabeele, Abrams, Alnemri, Baehrecke (bb0190) 2009; 16 Chang, Lim, Goos, Qiao, Ng, Mansfeld (bb0040) 2018; 9 Zhu, Hu, Wu, Hu (bb0265) 2015; 4 Agostinis, Berg, Cengel, Foster, Girotti, Gollnick (bb0025) 2011; 61 Liang, Diao, Wang, Gong, Liu, Hong (bb0140) 2014; 26 Wang, Zhang, Shi, Javidiparsijani, Wang, Li (bb0125) 2014; 7 Wu, Song, Chen, Huang, Wu, Zang (bb0295) 2017; 9 Arruebo, Vilaboa, Sáez-Gutierrez, Lambea, Tres, Valladares (bb0005) 2011; 3 Elliott, Surprenant, Marelli-Berg, Cooper, Cassady-Cain, Wooding (bb0170) 2005; 7 Liébana-Viñas, Simeonidis, Li, Ma, Myrovali, Makridis (bb0150) 2016; 415 Fukami, Nakasu, Baba, Nakajima, Matsuda (bb0290) 2004; 70 Angelakeris (bb0230) 2017; 1861 Galluzzi, Kroemer (bb0185) 2008; 135 Maier-Hauff, Rothe, Scholz, Gneveckow, Wust, Thiesen (bb0045) 2007; 81 Tomitaka, Hirukawa, Yamada, Morishita, Takemura (bb0235) 2009; 321 Kaur, Hurwitz, Krishnan, Asea, Kaur, Hurwitz (bb0075) 2011; 3 Skitzki, Repasky, Evans (bb0300) 2009; 10 Kumari, Badana, G, G, Malla (bb0255) 2018; 13 Lee, Meng, Flatten, Loegering, Kaufmann (bb0165) 2013; 20 Abe, Wada, Baghdadi, Nakanishi, Usui, Tsuchikawa (bb0280) 2016; 29 Shetake, Balla, Kumar, Pandey (bb0060) 2016; 7 Stangl, Tei, De Rose, Reder, Martinelli, Sievert (bb0275) 2018; 78 DuPre, Redelman, Hunter (bb0205) 2007; 88 Kumar, Chauhan, Jha, Kuanr (bb0245) 2018; 6 Giustini, Petryk, Cassim, Tate, Baker, Hoopes (bb0115) 2010; 01 Toraya-Brown, Sheen, Zhang, Chen, Baird, Demidenko (bb0100) 2014; 10 Krysko, de Ridder, Cornelissen (bb0175) 2004; 9 Thiesen, Jordan (bb0050) 2008; 24 Sharifi, Shokrollahi, Amiri (bb0215) 2012; 324 Efremova, Nalench, Myrovali, Garanina, Grebennikov, Gifer (bb0220) 2018; 9 Oei, Vriend, Krawczyk, Horsman, Franken, Crezee (bb0105) 2017; 33 Kolosnjaj-Tabi, Di Corato, Lartigue, Marangon, Guardia, Silva (bb0095) 2014; 8 Sun, Guo, Pang, Qi, Zhang, Ge (bb0055) 2013; 8 Giustini (10.1016/j.nano.2020.102171_bb0115) 2010; 01 Skitzki (10.1016/j.nano.2020.102171_bb0300) 2009; 10 Chang (10.1016/j.nano.2020.102171_bb0040) 2018; 9 Schildkopf (10.1016/j.nano.2020.102171_bb0030) 2010; 17 Oliveira-Filho (10.1016/j.nano.2020.102171_bb0145) 1997; 30 Lee (10.1016/j.nano.2020.102171_bb0165) 2013; 20 Haghniaz (10.1016/j.nano.2020.102171_bb0250) 2015; 10 Kumari (10.1016/j.nano.2020.102171_bb0255) 2018; 13 Bentzen (10.1016/j.nano.2020.102171_bb0020) 2006; 6 Zhu (10.1016/j.nano.2020.102171_bb0265) 2015; 4 Thiesen (10.1016/j.nano.2020.102171_bb0050) 2008; 24 Sak (10.1016/j.nano.2020.102171_bb0015) 2012; 2012 Newman (10.1016/j.nano.2020.102171_bb0110) 1990; 6 Zhang (10.1016/j.nano.2020.102171_bb0120) 2009; 19 Gao (10.1016/j.nano.2020.102171_bb0035) 2016; 7 Maier-Hauff (10.1016/j.nano.2020.102171_bb0045) 2007; 81 Kelleher (10.1016/j.nano.2020.102171_bb0085) 2003; 89 Li (10.1016/j.nano.2020.102171_bb0270) 1992; 89 Dahele (10.1016/j.nano.2020.102171_bb0010) 2009; 180 Simon (10.1016/j.nano.2020.102171_bb0195) 2000; 5 Arruebo (10.1016/j.nano.2020.102171_bb0005) 2011; 3 Kaur (10.1016/j.nano.2020.102171_bb0075) 2011; 3 DuPre (10.1016/j.nano.2020.102171_bb0205) 2007; 88 Krysko (10.1016/j.nano.2020.102171_bb0175) 2004; 9 Sun (10.1016/j.nano.2020.102171_bb0055) 2013; 8 Magin (10.1016/j.nano.2020.102171_bb0065) 1979; 39 Shetake (10.1016/j.nano.2020.102171_bb0060) 2016; 7 Sharifi (10.1016/j.nano.2020.102171_bb0215) 2012; 324 Stangl (10.1016/j.nano.2020.102171_bb0275) 2018; 78 Kumar (10.1016/j.nano.2020.102171_bb0245) 2018; 6 Baklaushev (10.1016/j.nano.2020.102171_bb0210) 2017; 7 Chaiswing (10.1016/j.nano.2020.102171_bb0260) 2018; 29 Guardia (10.1016/j.nano.2020.102171_bb0090) 2012; 6 Oleson (10.1016/j.nano.2020.102171_bb0155) 1983; 9 Ahamed (10.1016/j.nano.2020.102171_bb0240) 2011; 283 Efremova (10.1016/j.nano.2020.102171_bb0220) 2018; 9 Abe (10.1016/j.nano.2020.102171_bb0280) 2016; 29 Tomitaka (10.1016/j.nano.2020.102171_bb0235) 2009; 321 Toraya-Brown (10.1016/j.nano.2020.102171_bb0100) 2014; 10 Takagi (10.1016/j.nano.2020.102171_bb0130) 2014; 7 Rysavy (10.1016/j.nano.2020.102171_bb0180) 2014; 4 Le Fèvre (10.1016/j.nano.2020.102171_bb0070) 2017; 7 Datta (10.1016/j.nano.2020.102171_bb0080) 2015; 41 Liébana-Viñas (10.1016/j.nano.2020.102171_bb0150) 2016; 415 Kolosnjaj-Tabi (10.1016/j.nano.2020.102171_bb0095) 2014; 8 Galluzzi (10.1016/j.nano.2020.102171_bb0185) 2008; 135 Kim (10.1016/j.nano.2020.102171_bb0285) 2014; 2 Elliott (10.1016/j.nano.2020.102171_bb0170) 2005; 7 Kroemer (10.1016/j.nano.2020.102171_bb0190) 2009; 16 Hergt (10.1016/j.nano.2020.102171_bb0160) 2007; 311 Agostinis (10.1016/j.nano.2020.102171_bb0025) 2011; 61 Wu (10.1016/j.nano.2020.102171_bb0295) 2017; 9 Wang (10.1016/j.nano.2020.102171_bb0125) 2014; 7 Fukami (10.1016/j.nano.2020.102171_bb0290) 2004; 70 Espinosa (10.1016/j.nano.2020.102171_bb0225) 2018; 28 Angelakeris (10.1016/j.nano.2020.102171_bb0230) 2017; 1861 Nagashima (10.1016/j.nano.2020.102171_bb0135) 2002; 31 Landsberg (10.1016/j.nano.2020.102171_bb0200) 2009; 140 Oei (10.1016/j.nano.2020.102171_bb0105) 2017; 33 Liang (10.1016/j.nano.2020.102171_bb0140) 2014; 26 |
References_xml | – volume: 31 start-page: 84 year: 2002 end-page: 89 ident: bb0135 article-title: Effect of local hyperthermia on metastases in oral squamous cell carcinoma publication-title: Int J Oral Maxillofac Surg – volume: 39 start-page: 4534 year: 1979 end-page: 4539 ident: bb0065 article-title: Effects of local tumor hyperthermia on the growth of solid mouse tumors publication-title: Cancer Res – volume: 26 start-page: 5646 year: 2014 end-page: 5652 ident: bb0140 article-title: Tumor metastasis inhibition by imaging-guided Photothermal therapy with single-walled carbon nanotubes publication-title: Adv Mater – volume: 9 start-page: 16175 year: 2017 end-page: 16182 ident: bb0295 article-title: Injectable thermosensitive magnetic nanoemulsion hydrogel for multimodal-imaging-guided accurate thermoablative cancer therapy publication-title: Nanoscale – volume: 41 start-page: 742 year: 2015 end-page: 753 ident: bb0080 article-title: Local hyperthermia combined with radiotherapy and−/or chemotherapy: recent advances and promises for the future. publication-title: Rev – volume: 415 start-page: 20 year: 2016 end-page: 23 ident: bb0150 article-title: Tuning the magnetism of ferrite nanoparticles publication-title: J. Magn. Magn. Mater – volume: 10 start-page: 1273 year: 2014 end-page: 1285 ident: bb0100 article-title: Local hyperthermia treatment of tumors induces CD8+ T cell-mediated resistance against distal and secondary tumors publication-title: Nanomedicine – volume: 2 start-page: P267 year: 2014 ident: bb0285 article-title: Eradication of metastatic mouse cancers resistant to immune checkpoint blockade by suppression of myeloid-derived cells publication-title: J Immunother Cancer – volume: 7 start-page: 808 year: 2005 end-page: 816 ident: bb0170 article-title: Membrane phosphatidylserine distribution as a non-apoptotic signalling mechanism in lymphocytes publication-title: Nat Cell Biol – volume: 311 start-page: 187 year: 2007 end-page: 192 ident: bb0160 article-title: Magnetic particle hyperthermia—biophysical limitations of a visionary tumour therapy publication-title: J. Magn. Magn. Mater – volume: 20 start-page: 64 year: 2013 end-page: 76 ident: bb0165 article-title: Phosphatidylserine exposure during apoptosis reflects bidirectional trafficking between plasma membrane and cytoplasm publication-title: Cell Death Differ – volume: 6 start-page: 5385 year: 2018 end-page: 5399 ident: bb0245 article-title: Localized cancer treatment by radio-frequency hyperthermia using magnetic nanoparticles immobilized on graphene oxide: from novel synthesis to publication-title: J Mater Chem B – volume: 61 start-page: 250 year: 2011 end-page: 281 ident: bb0025 article-title: Photodynamic therapy of cancer: an update. publication-title: J Clin – volume: 283 start-page: 101 year: 2011 end-page: 108 ident: bb0240 article-title: Oxidative stress mediated apoptosis induced by nickel ferrite nanoparticles in cultured A549 cells publication-title: Toxicology – volume: 7 start-page: 1007 year: 2014 end-page: 1010 ident: bb0130 article-title: Antitumor effects of high-temperature hyperthermia on a glioma rat model publication-title: Oncol Lett – volume: 324 start-page: 903 year: 2012 end-page: 915 ident: bb0215 article-title: Ferrite-based magnetic nanofluids used in hyperthermia applications publication-title: J. Magn. Magn. Mater – volume: 13 year: 2018 ident: bb0255 article-title: Reactive oxygen species: a key constituent in cancer survival publication-title: Biomark Insights – volume: 3 start-page: 3799 year: 2011 end-page: 3823 ident: bb0075 article-title: Combined hyperthermia and radiotherapy for the treatment of cancer publication-title: Cancers (Basel) – volume: 1861 start-page: 1642 year: 2017 end-page: 1651 ident: bb0230 article-title: Magnetic nanoparticles: a multifunctional vehicle for modern theranostics publication-title: Biochim Biophys Acta Gen Subj – volume: 7 start-page: 13 year: 2016 ident: bb0060 article-title: Magnetic hyperthermia therapy: an emerging modality of cancer treatment in combination with radiotherapy publication-title: J Radiat Cancer Res – volume: 180 start-page: 1326 year: 2009 end-page: 1328 ident: bb0010 article-title: Stereotactic radiation therapy for inoperable, early-stage non-small-cell lung cancer publication-title: CMAJ – volume: 135 start-page: 1161 year: 2008 end-page: 1163 ident: bb0185 article-title: Necroptosis: a specialized pathway of programmed necrosis publication-title: Cell – volume: 88 start-page: 351 year: 2007 end-page: 360 ident: bb0205 article-title: The mouse mammary carcinoma 4T1: characterization of the cellular landscape of primary tumours and metastatic tumour foci publication-title: Int J Exp Pathol – volume: 17 start-page: 3045 year: 2010 end-page: 3057 ident: bb0030 article-title: Biological rationales and clinical applications of temperature controlled hyperthermia – implications for multimodal cancer treatments publication-title: Curr Med Chem – volume: 9 start-page: 549 year: 1983 end-page: 556 ident: bb0155 article-title: Hyperthermia by magnetic induction: II. Clinical experience with concentric electrodes. publication-title: J Radiat Oncol – volume: 7 start-page: 7715 year: 2017 ident: bb0210 article-title: Luciferase expression allows bioluminescence imaging but imposes limitations on the Orthotopic mouse (4T1) model of breast Cancer. publication-title: Rep – volume: 89 start-page: 2036 year: 1992 end-page: 2040 ident: bb0270 article-title: Heat shock protein hsp70 protects cells from thermal stress even after deletion of its ATP-binding domain publication-title: Proc Natl Acad Sci U S A – volume: 29 start-page: 1237 year: 2018 end-page: 1272 ident: bb0260 article-title: Redox paradox: a novel approach to therapeutics-resistant Cancer publication-title: Antioxid Redox Signal – volume: 7 start-page: 764 year: 2014 end-page: 770 ident: bb0125 article-title: Abscopal antitumor immune effects of magnet-mediated hyperthermia at a high therapeutic temperature on Walker-256 carcinosarcomas in rats. publication-title: Lett – volume: 10 start-page: 1609 year: 2015 end-page: 1623 ident: bb0250 article-title: Temperature-dependent and time-dependent effects of hyperthermia mediated by dextran-coated La0.7Sr0.3MnO3: publication-title: Int J Nanomedicine – volume: 9 start-page: 831 year: 2018 ident: bb0040 article-title: Biologically targeted magnetic hyperthermia: potential and limitations. publication-title: Pharmacol – volume: 9 start-page: 2684 year: 2018 end-page: 2699 ident: bb0220 article-title: Size-selected Fe3O4-au hybrid nanoparticles for improved magnetism-based theranostics publication-title: Beilstein J Nanotechnol – volume: 7 start-page: 4618 year: 2017 end-page: 4631 ident: bb0070 article-title: Enhanced antitumor efficacy of biocompatible magnetosomes for the magnetic hyperthermia treatment of glioblastoma publication-title: Theranostics – volume: 70 start-page: 319 year: 2004 end-page: 331 ident: bb0290 article-title: Hyperthermia induces translocation of apoptosis-inducing factor (AIF) and apoptosis in human glioma cell lines publication-title: J Neurooncol – volume: 8 start-page: 4268 year: 2014 end-page: 4283 ident: bb0095 article-title: Heat-generating iron oxide nanocubes: subtle “Destructurators” of the tumoral microenvironment publication-title: ACS Nano – volume: 33 start-page: 419 year: 2017 end-page: 427 ident: bb0105 article-title: Targeting therapy-resistant cancer stem cells by hyperthermia publication-title: Int J Hyperthermia – volume: 6 start-page: 702 year: 2006 end-page: 713 ident: bb0020 article-title: Preventing or reducing late side effects of radiation therapy: radiobiology meets molecular pathology publication-title: Nat Rev Cancer – volume: 89 start-page: 2333 year: 2003 end-page: 2339 ident: bb0085 article-title: Combined hyperthermia and chlorophyll-based photodynamic therapy: tumour growth and metabolic microenvironment publication-title: Br J Cancer – volume: 10 start-page: 550 year: 2009 end-page: 558 ident: bb0300 article-title: Hyperthermia as an immunotherapy strategy for cancer publication-title: Curr Opin Investig Drugs – volume: 16 start-page: 3 year: 2009 end-page: 11 ident: bb0190 article-title: Classification of cell death: recommendations of the nomenclature committee on cell death 2009 publication-title: Cell Death Differ – volume: 321 start-page: 1482 year: 2009 end-page: 1484 ident: bb0235 article-title: Biocompatibility of various ferrite nanoparticles evaluated by in vitro cytotoxicity assays using HeLa cells publication-title: J Magn Magn Mater – volume: 140 start-page: 480 year: 2009 end-page: 486 ident: bb0200 article-title: Laser-induced hyperthermia for treatment of granulation tissue growth in rats publication-title: Otolaryngol Neck Surg – volume: 24 start-page: 467 year: 2008 end-page: 474 ident: bb0050 article-title: Clinical applications of magnetic nanoparticles for hyperthermia publication-title: Int J Hyperthermia – volume: 19 start-page: 1699 year: 2009 end-page: 1704 ident: bb0120 article-title: Thermal ablation versus conventional regional hyperthermia has greater anti-tumor activity against melanoma in mice by upregulating CD4+ cells and enhancing IL-2 secretion. publication-title: Sci – volume: 6 start-page: 3080 year: 2012 end-page: 3091 ident: bb0090 article-title: Water-soluble Iron oxide Nanocubes with high values of specific absorption rate for cancer cell hyperthermia treatment publication-title: ACS Nano – volume: 28 year: 2018 ident: bb0225 article-title: Magnetic (hyper)Thermia or Photothermia? Progressive comparison of Iron oxide and gold nanoparticles heating in water, in cells publication-title: and In Vivo – volume: 2012 start-page: 1 year: 2012 end-page: 11 ident: bb0015 article-title: Chemotherapy and dietary phytochemical agents publication-title: Chemother Res Pract – volume: 8 start-page: 2775 year: 2013 end-page: 2782 ident: bb0055 article-title: Treatment of malignant glioma using hyperthermia publication-title: Neural Regen Res – volume: 81 start-page: 53 year: 2007 end-page: 60 ident: bb0045 article-title: Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: results of a feasibility study on patients with glioblastoma multiforme publication-title: J Neurooncol – volume: 6 start-page: 771 year: 1990 end-page: 784 ident: bb0110 article-title: Limitations and significance of thermal washout data obtained during microwave and ultrasound hyperthermia publication-title: Int J Hyperthermia – volume: 01 start-page: 17 year: 2010 end-page: 32 ident: bb0115 article-title: Magnetic nanoparticle hyperthermia in cancer treatment publication-title: Nano Life – volume: 78 start-page: 6268 year: 2018 end-page: 6281 ident: bb0275 article-title: Preclinical evaluation of the Hsp70 peptide tracer TPP-PEG publication-title: Cancer Res – volume: 5 start-page: 415 year: 2000 end-page: 418 ident: bb0195 article-title: Role of reactive oxygen species (ROS) in apoptosis induction publication-title: Apoptosis – volume: 4 start-page: 127 year: 2014 end-page: 137 ident: bb0180 article-title: Beyond apoptosis: the mechanism and function of phosphatidylserine asymmetry in the membrane of activating mast cells publication-title: Bioarchitecture – volume: 4 start-page: 5029 year: 2015 ident: bb0265 article-title: No evident dose-response relationship between cellular ROS level and its cytotoxicity – a paradoxical issue in ROS-based cancer therapy publication-title: Sci Rep – volume: 9 start-page: 495 year: 2004 end-page: 500 ident: bb0175 article-title: Phosphatidylserine exposure during early primary necrosis (oncosis) in JB6 cells as evidenced by immunogold labeling technique publication-title: Apoptosis – volume: 29 start-page: 58 year: 2016 end-page: 66 ident: bb0280 article-title: Identification of a highly immunogenic mouse breast cancer sub cell line, 4T1-S publication-title: Hum Cell – volume: 3 start-page: 3279 year: 2011 end-page: 3330 ident: bb0005 article-title: Assessment of the evolution of cancer treatment therapies publication-title: Cancers (Basel) – volume: 7 start-page: 57367 year: 2016 end-page: 57378 ident: bb0035 article-title: Local hyperthermia in head and neck cancer: mechanism publication-title: application and advance – volume: 30 start-page: 941 year: 1997 end-page: 945 ident: bb0145 article-title: Hyperthermia increases the metastatic potential of murine melanoma publication-title: Brazilian J Med Biol Res – volume: 6 start-page: 3080 year: 2012 ident: 10.1016/j.nano.2020.102171_bb0090 article-title: Water-soluble Iron oxide Nanocubes with high values of specific absorption rate for cancer cell hyperthermia treatment publication-title: ACS Nano doi: 10.1021/nn2048137 – volume: 4 start-page: 127 year: 2014 ident: 10.1016/j.nano.2020.102171_bb0180 article-title: Beyond apoptosis: the mechanism and function of phosphatidylserine asymmetry in the membrane of activating mast cells publication-title: Bioarchitecture – volume: 24 start-page: 467 year: 2008 ident: 10.1016/j.nano.2020.102171_bb0050 article-title: Clinical applications of magnetic nanoparticles for hyperthermia publication-title: Int J Hyperthermia doi: 10.1080/02656730802104757 – volume: 7 start-page: 1007 year: 2014 ident: 10.1016/j.nano.2020.102171_bb0130 article-title: Antitumor effects of high-temperature hyperthermia on a glioma rat model publication-title: Oncol Lett doi: 10.3892/ol.2014.1852 – volume: 6 start-page: 771 year: 1990 ident: 10.1016/j.nano.2020.102171_bb0110 article-title: Limitations and significance of thermal washout data obtained during microwave and ultrasound hyperthermia publication-title: Int J Hyperthermia doi: 10.3109/02656739009140824 – volume: 2 start-page: P267 year: 2014 ident: 10.1016/j.nano.2020.102171_bb0285 article-title: Eradication of metastatic mouse cancers resistant to immune checkpoint blockade by suppression of myeloid-derived cells publication-title: J Immunother Cancer doi: 10.1186/2051-1426-2-S3-P267 – volume: 9 start-page: 2684 year: 2018 ident: 10.1016/j.nano.2020.102171_bb0220 article-title: Size-selected Fe3O4-au hybrid nanoparticles for improved magnetism-based theranostics publication-title: Beilstein J Nanotechnol doi: 10.3762/bjnano.9.251 – volume: 7 start-page: 4618 year: 2017 ident: 10.1016/j.nano.2020.102171_bb0070 article-title: Enhanced antitumor efficacy of biocompatible magnetosomes for the magnetic hyperthermia treatment of glioblastoma publication-title: Theranostics doi: 10.7150/thno.18927 – volume: 3 start-page: 3799 year: 2011 ident: 10.1016/j.nano.2020.102171_bb0075 article-title: Combined hyperthermia and radiotherapy for the treatment of cancer publication-title: Cancers (Basel) doi: 10.3390/cancers3043799 – volume: 39 start-page: 4534 year: 1979 ident: 10.1016/j.nano.2020.102171_bb0065 article-title: Effects of local tumor hyperthermia on the growth of solid mouse tumors publication-title: Cancer Res – volume: 5 start-page: 415 year: 2000 ident: 10.1016/j.nano.2020.102171_bb0195 article-title: Role of reactive oxygen species (ROS) in apoptosis induction publication-title: Apoptosis doi: 10.1023/A:1009616228304 – volume: 19 start-page: 1699 year: 2009 ident: 10.1016/j.nano.2020.102171_bb0120 article-title: Thermal ablation versus conventional regional hyperthermia has greater anti-tumor activity against melanoma in mice by upregulating CD4+ cells and enhancing IL-2 secretion. Prog. Nat publication-title: Sci – volume: 1861 start-page: 1642 issue: 6 year: 2017 ident: 10.1016/j.nano.2020.102171_bb0230 article-title: Magnetic nanoparticles: a multifunctional vehicle for modern theranostics publication-title: Biochim Biophys Acta Gen Subj doi: 10.1016/j.bbagen.2017.02.022 – volume: 10 start-page: 550 year: 2009 ident: 10.1016/j.nano.2020.102171_bb0300 article-title: Hyperthermia as an immunotherapy strategy for cancer publication-title: Curr Opin Investig Drugs – volume: 4 start-page: 5029 year: 2015 ident: 10.1016/j.nano.2020.102171_bb0265 article-title: No evident dose-response relationship between cellular ROS level and its cytotoxicity – a paradoxical issue in ROS-based cancer therapy publication-title: Sci Rep doi: 10.1038/srep05029 – volume: 29 start-page: 1237 issue: 13 year: 2018 ident: 10.1016/j.nano.2020.102171_bb0260 article-title: Redox paradox: a novel approach to therapeutics-resistant Cancer publication-title: Antioxid Redox Signal doi: 10.1089/ars.2017.7485 – volume: 180 start-page: 1326 year: 2009 ident: 10.1016/j.nano.2020.102171_bb0010 article-title: Stereotactic radiation therapy for inoperable, early-stage non-small-cell lung cancer publication-title: CMAJ doi: 10.1503/cmaj.081291 – volume: 31 start-page: 84 year: 2002 ident: 10.1016/j.nano.2020.102171_bb0135 article-title: Effect of local hyperthermia on metastases in oral squamous cell carcinoma publication-title: Int J Oral Maxillofac Surg doi: 10.1054/ijom.2001.0176 – volume: 7 start-page: 57367 year: 2016 ident: 10.1016/j.nano.2020.102171_bb0035 article-title: Local hyperthermia in head and neck cancer: mechanism publication-title: application and advance Oncotarget – volume: 30 start-page: 941 year: 1997 ident: 10.1016/j.nano.2020.102171_bb0145 article-title: Hyperthermia increases the metastatic potential of murine melanoma publication-title: Brazilian J Med Biol Res doi: 10.1590/S0100-879X1997000800005 – volume: 61 start-page: 250 year: 2011 ident: 10.1016/j.nano.2020.102171_bb0025 article-title: Photodynamic therapy of cancer: an update. CA. Cancer publication-title: J Clin – volume: 7 start-page: 808 year: 2005 ident: 10.1016/j.nano.2020.102171_bb0170 article-title: Membrane phosphatidylserine distribution as a non-apoptotic signalling mechanism in lymphocytes publication-title: Nat Cell Biol doi: 10.1038/ncb1279 – volume: 41 start-page: 742 year: 2015 ident: 10.1016/j.nano.2020.102171_bb0080 article-title: Local hyperthermia combined with radiotherapy and−/or chemotherapy: recent advances and promises for the future. Cancer Treat publication-title: Rev – volume: 28 issue: 37 year: 2018 ident: 10.1016/j.nano.2020.102171_bb0225 article-title: Magnetic (hyper)Thermia or Photothermia? Progressive comparison of Iron oxide and gold nanoparticles heating in water, in cells publication-title: and In Vivo Adv Funct Mater – volume: 16 start-page: 3 year: 2009 ident: 10.1016/j.nano.2020.102171_bb0190 article-title: Classification of cell death: recommendations of the nomenclature committee on cell death 2009 publication-title: Cell Death Differ doi: 10.1038/cdd.2008.150 – volume: 9 start-page: 831 year: 2018 ident: 10.1016/j.nano.2020.102171_bb0040 article-title: Biologically targeted magnetic hyperthermia: potential and limitations. Front publication-title: Pharmacol – volume: 8 start-page: 4268 year: 2014 ident: 10.1016/j.nano.2020.102171_bb0095 article-title: Heat-generating iron oxide nanocubes: subtle “Destructurators” of the tumoral microenvironment publication-title: ACS Nano doi: 10.1021/nn405356r – volume: 20 start-page: 64 year: 2013 ident: 10.1016/j.nano.2020.102171_bb0165 article-title: Phosphatidylserine exposure during apoptosis reflects bidirectional trafficking between plasma membrane and cytoplasm publication-title: Cell Death Differ doi: 10.1038/cdd.2012.93 – volume: 6 start-page: 702 year: 2006 ident: 10.1016/j.nano.2020.102171_bb0020 article-title: Preventing or reducing late side effects of radiation therapy: radiobiology meets molecular pathology publication-title: Nat Rev Cancer doi: 10.1038/nrc1950 – volume: 33 start-page: 419 year: 2017 ident: 10.1016/j.nano.2020.102171_bb0105 article-title: Targeting therapy-resistant cancer stem cells by hyperthermia publication-title: Int J Hyperthermia doi: 10.1080/02656736.2017.1279757 – volume: 10 start-page: 1273 year: 2014 ident: 10.1016/j.nano.2020.102171_bb0100 article-title: Local hyperthermia treatment of tumors induces CD8+ T cell-mediated resistance against distal and secondary tumors publication-title: Nanomedicine doi: 10.1016/j.nano.2014.01.011 – volume: 7 start-page: 764 year: 2014 ident: 10.1016/j.nano.2020.102171_bb0125 article-title: Abscopal antitumor immune effects of magnet-mediated hyperthermia at a high therapeutic temperature on Walker-256 carcinosarcomas in rats. Oncol publication-title: Lett – volume: 81 start-page: 53 year: 2007 ident: 10.1016/j.nano.2020.102171_bb0045 article-title: Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: results of a feasibility study on patients with glioblastoma multiforme publication-title: J Neurooncol doi: 10.1007/s11060-006-9195-0 – volume: 89 start-page: 2333 year: 2003 ident: 10.1016/j.nano.2020.102171_bb0085 article-title: Combined hyperthermia and chlorophyll-based photodynamic therapy: tumour growth and metabolic microenvironment publication-title: Br J Cancer doi: 10.1038/sj.bjc.6601457 – volume: 9 start-page: 549 year: 1983 ident: 10.1016/j.nano.2020.102171_bb0155 article-title: Hyperthermia by magnetic induction: II. Clinical experience with concentric electrodes. Int publication-title: J Radiat Oncol doi: 10.1016/0360-3016(83)90074-3 – volume: 283 start-page: 101 issue: 2–3 year: 2011 ident: 10.1016/j.nano.2020.102171_bb0240 article-title: Oxidative stress mediated apoptosis induced by nickel ferrite nanoparticles in cultured A549 cells publication-title: Toxicology doi: 10.1016/j.tox.2011.02.010 – volume: 3 start-page: 3279 year: 2011 ident: 10.1016/j.nano.2020.102171_bb0005 article-title: Assessment of the evolution of cancer treatment therapies publication-title: Cancers (Basel) doi: 10.3390/cancers3033279 – volume: 26 start-page: 5646 year: 2014 ident: 10.1016/j.nano.2020.102171_bb0140 article-title: Tumor metastasis inhibition by imaging-guided Photothermal therapy with single-walled carbon nanotubes publication-title: Adv Mater doi: 10.1002/adma.201401825 – volume: 9 start-page: 495 year: 2004 ident: 10.1016/j.nano.2020.102171_bb0175 article-title: Phosphatidylserine exposure during early primary necrosis (oncosis) in JB6 cells as evidenced by immunogold labeling technique publication-title: Apoptosis doi: 10.1023/B:APPT.0000031452.75162.75 – volume: 321 start-page: 1482 issue: 10 year: 2009 ident: 10.1016/j.nano.2020.102171_bb0235 article-title: Biocompatibility of various ferrite nanoparticles evaluated by in vitro cytotoxicity assays using HeLa cells publication-title: J Magn Magn Mater doi: 10.1016/j.jmmm.2009.02.058 – volume: 6 start-page: 5385 year: 2018 ident: 10.1016/j.nano.2020.102171_bb0245 article-title: Localized cancer treatment by radio-frequency hyperthermia using magnetic nanoparticles immobilized on graphene oxide: from novel synthesis to in vitro studies publication-title: J Mater Chem B doi: 10.1039/C8TB01365A – volume: 324 start-page: 903 issue: 6 year: 2012 ident: 10.1016/j.nano.2020.102171_bb0215 article-title: Ferrite-based magnetic nanofluids used in hyperthermia applications publication-title: J. Magn. Magn. Mater doi: 10.1016/j.jmmm.2011.10.017 – volume: 70 start-page: 319 year: 2004 ident: 10.1016/j.nano.2020.102171_bb0290 article-title: Hyperthermia induces translocation of apoptosis-inducing factor (AIF) and apoptosis in human glioma cell lines publication-title: J Neurooncol doi: 10.1007/s11060-004-9168-0 – volume: 8 start-page: 2775 year: 2013 ident: 10.1016/j.nano.2020.102171_bb0055 article-title: Treatment of malignant glioma using hyperthermia publication-title: Neural Regen Res – volume: 10 start-page: 1609 year: 2015 ident: 10.1016/j.nano.2020.102171_bb0250 article-title: Temperature-dependent and time-dependent effects of hyperthermia mediated by dextran-coated La0.7Sr0.3MnO3: in vitro studies publication-title: Int J Nanomedicine – volume: 7 start-page: 13 year: 2016 ident: 10.1016/j.nano.2020.102171_bb0060 article-title: Magnetic hyperthermia therapy: an emerging modality of cancer treatment in combination with radiotherapy publication-title: J Radiat Cancer Res doi: 10.4103/0973-0168.184606 – volume: 9 start-page: 16175 year: 2017 ident: 10.1016/j.nano.2020.102171_bb0295 article-title: Injectable thermosensitive magnetic nanoemulsion hydrogel for multimodal-imaging-guided accurate thermoablative cancer therapy publication-title: Nanoscale doi: 10.1039/C7NR02858J – volume: 88 start-page: 351 year: 2007 ident: 10.1016/j.nano.2020.102171_bb0205 article-title: The mouse mammary carcinoma 4T1: characterization of the cellular landscape of primary tumours and metastatic tumour foci publication-title: Int J Exp Pathol doi: 10.1111/j.1365-2613.2007.00539.x – volume: 17 start-page: 3045 year: 2010 ident: 10.1016/j.nano.2020.102171_bb0030 article-title: Biological rationales and clinical applications of temperature controlled hyperthermia – implications for multimodal cancer treatments publication-title: Curr Med Chem doi: 10.2174/092986710791959774 – volume: 13 year: 2018 ident: 10.1016/j.nano.2020.102171_bb0255 article-title: Reactive oxygen species: a key constituent in cancer survival publication-title: Biomark Insights doi: 10.1177/1177271918755391 – volume: 89 start-page: 2036 issue: 6 year: 1992 ident: 10.1016/j.nano.2020.102171_bb0270 article-title: Heat shock protein hsp70 protects cells from thermal stress even after deletion of its ATP-binding domain publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.89.6.2036 – volume: 415 start-page: 20 year: 2016 ident: 10.1016/j.nano.2020.102171_bb0150 article-title: Tuning the magnetism of ferrite nanoparticles publication-title: J. Magn. Magn. Mater doi: 10.1016/j.jmmm.2016.02.098 – volume: 2012 start-page: 1 year: 2012 ident: 10.1016/j.nano.2020.102171_bb0015 article-title: Chemotherapy and dietary phytochemical agents publication-title: Chemother Res Pract doi: 10.1155/2012/282570 – volume: 140 start-page: 480 year: 2009 ident: 10.1016/j.nano.2020.102171_bb0200 article-title: Laser-induced hyperthermia for treatment of granulation tissue growth in rats publication-title: Otolaryngol Neck Surg doi: 10.1016/j.otohns.2008.12.004 – volume: 78 start-page: 6268 issue: 21 year: 2018 ident: 10.1016/j.nano.2020.102171_bb0275 article-title: Preclinical evaluation of the Hsp70 peptide tracer TPP-PEG24-DFO[89Zr] for tumor-specific PET/CT imaging publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-18-0707 – volume: 135 start-page: 1161 year: 2008 ident: 10.1016/j.nano.2020.102171_bb0185 article-title: Necroptosis: a specialized pathway of programmed necrosis publication-title: Cell doi: 10.1016/j.cell.2008.12.004 – volume: 311 start-page: 187 year: 2007 ident: 10.1016/j.nano.2020.102171_bb0160 article-title: Magnetic particle hyperthermia—biophysical limitations of a visionary tumour therapy publication-title: J. Magn. Magn. Mater doi: 10.1016/j.jmmm.2006.10.1156 – volume: 29 start-page: 58 year: 2016 ident: 10.1016/j.nano.2020.102171_bb0280 article-title: Identification of a highly immunogenic mouse breast cancer sub cell line, 4T1-S publication-title: Hum Cell doi: 10.1007/s13577-015-0127-1 – volume: 01 start-page: 17 year: 2010 ident: 10.1016/j.nano.2020.102171_bb0115 article-title: Magnetic nanoparticle hyperthermia in cancer treatment publication-title: Nano Life doi: 10.1142/S1793984410000067 – volume: 7 start-page: 7715 year: 2017 ident: 10.1016/j.nano.2020.102171_bb0210 article-title: Luciferase expression allows bioluminescence imaging but imposes limitations on the Orthotopic mouse (4T1) model of breast Cancer. Sci publication-title: Rep |
SSID | ssj0037009 |
Score | 2.4925797 |
Snippet | Magnetic hyperthermia (MHT) is a promising approach for cancer therapy. However, a systematic MHT characterization as function of temperature on the... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 102171 |
SubjectTerms | Cobalt ferrite nanoparticles Magnetic hyperthermia Metastasis Murine tumor models Temperature-dependent heating |
Title | Temperature-controlled magnetic nanoparticles hyperthermia inhibits primary tumor growth and metastases dissemination |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S154996342030023X https://dx.doi.org/10.1016/j.nano.2020.102171 https://www.ncbi.nlm.nih.gov/pubmed/32084594 https://www.proquest.com/docview/2362095415 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEF5CCqWX0nfdR9hCb0W1VlpppWMwDe4jobQJ-LbsYzZWiWVjy9f-9s5IK0MPSaEnIbEj7WM08432mxFj79PaGqprkgDIAgMU6RJra5_4VPjKpxCcow_65xfl_Ep-WRSLIzYbc2GIVhlt_2DTe2sdr0zjbE43TTP9ScXFUH1khnqKnmdBGexSkZZ__H2geeQq7Wke1Dih1jFxZuB4taalBMCsr2AglLjNOd0GPnsndPaIPYzokZ8OHXzMjqB9wu6fx_3xp2x_CQiDhzLJSWSh34DnK3PdUrYip65sRjIcX2IQuiUEuGoMb9plY5tuxzdDAQre7VfrLb_GOL1bctPiXaAzCCZ3KNlv4xOLhtb1Gbs6-3Q5myfxxwqJw_itS6yALAuefH2dOhDgSmVFBUVQlVPWBedTa4M1IRgPtnISTF6qGgrlqyqo_Dk7btctvGS8zEuQOZpUIzPpbFlLo5w1woqy8qUJEybGGdUuVh2nn1_c6JFe9kvT0DWtgh5WYcI-HGTikO9snY8LpcdsUrR_Gl3CnVLFQeovffun3LtRFzS-iLS7YlpY73c6QyiAeBUB0YS9GJTk0Ps8SytZ1PLVfz71NXtAZwNj6A077rZ7eItgqLMnvbafsHunsx_fvtPx89f5xR-Yeg5o |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBa6Dth6Gbpns6cG7DZ4sWzZso9D0SLbml6WArkJejYeGiVInGt_e0lbDrBDO2BXW7T1oMmP1keKkC9prRXWNUmc4wUEKNwkWtc2sSmzlU2dNwZ_6E8vy8kV_zkv5gfkdMiFQVpltP29Te-sdbwyjrM5XjfN-DcWFwP14RnoKXie-SPymMPni8cYfLvd8zxykXY8D2ydYPOYOdOTvIIKmAGYdSUMmGD3eaf70Gfnhc6PybMIH-n3vofPyYELL8iTadwgf0l2Mwc4uK-TnEQa-o2zdKmuA6YrUuzKemDD0QVEoRuEgMtG0SYsGt20W7ruK1DQdrdcbeg1BOrtgqoAT3GtAjS5BcluHx9pNLiwr8jV-dnsdJLEkxUSAwFcm2jmssxbdPZ1ahxzphSaVa7wojJCG29sqrXXyntlna4MdyovRe0KYavKi_w1OQyr4E4ILfPS8RxsquIZN7qsuRJGK6ZZWdlS-RFhw4xKE8uO4-kXN3Lgl_2ROHSJqyD7VRiRr3uZOOQHW-fDQskhnRQMoASf8KBUsZf6S-H-Kfd50AUJXyJur6jgVrutzAALAGAFRDQib3ol2fc-z9KKFzV_-59v_USeTmbTC3nx4_LXO3KEd3r60Hty2G527gMgo1Z_7DT_DjBFDmE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temperature-controlled+magnetic+nanoparticles+hyperthermia+inhibits+primary+tumor+growth+and+metastases+dissemination&rft.jtitle=Nanomedicine&rft.au=Garanina%2C+Anastasiia+S&rft.au=Naumenko%2C+Victor+A&rft.au=Nikitin%2C+Aleksey+A&rft.au=Myrovali%2C+Eirini&rft.date=2020-04-01&rft.eissn=1549-9642&rft.volume=25&rft.spage=102171&rft_id=info:doi/10.1016%2Fj.nano.2020.102171&rft_id=info%3Apmid%2F32084594&rft.externalDocID=32084594 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-9634&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-9634&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-9634&client=summon |