Rescuing zinc anode–electrolyte interface: mechanisms, theoretical simulations and in situ characterizations
The research interest in aqueous zinc-ion batteries (AZIBs) has been surging due to the advantages of safety, abundance, and high electrochemical performance. However, some technique issues, such as dendrites, hydrogen evolution reaction, and corrosion, severely prohibit the development of AZIBs in...
Saved in:
Published in | Chemical science (Cambridge) Vol. 15; no. 19; pp. 7010 - 7033 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
15.05.2024
The Royal Society of Chemistry |
Subjects | |
Online Access | Get full text |
ISSN | 2041-6520 2041-6539 |
DOI | 10.1039/D4SC00711E |
Cover
Loading…
Abstract | The research interest in aqueous zinc-ion batteries (AZIBs) has been surging due to the advantages of safety, abundance, and high electrochemical performance. However, some technique issues, such as dendrites, hydrogen evolution reaction, and corrosion, severely prohibit the development of AZIBs in practical utilizations. The underlying mechanisms regarding electrochemical performance deterioration and structure degradation are too complex to understand, especially when it comes to zinc metal anode–electrolyte interface. Recently, theoretical simulations and
in situ
characterizations have played a crucial role in AZIBs and are exploited to guide the research on electrolyte engineering and solid electrolyte interphase. Herein, we present a comprehensive review of the current state of the fundamental mechanisms involved in the zinc plating/stripping process and underscore the importance of theoretical simulations and
in situ
characterizations in mechanism research. Finally, we summarize the challenges and opportunities for AZIBs in practical applications, especially as a stationary energy storage and conversion device in a smart grid. |
---|---|
AbstractList | The research interest in aqueous zinc-ion batteries (AZIBs) has been surging due to the advantages of safety, abundance, and high electrochemical performance. However, some technique issues, such as dendrites, hydrogen evolution reaction, and corrosion, severely prohibit the development of AZIBs in practical utilizations. The underlying mechanisms regarding electrochemical performance deterioration and structure degradation are too complex to understand, especially when it comes to zinc metal anode-electrolyte interface. Recently, theoretical simulations and in situ characterizations have played a crucial role in AZIBs and are exploited to guide the research on electrolyte engineering and solid electrolyte interphase. Herein, we present a comprehensive review of the current state of the fundamental mechanisms involved in the zinc plating/stripping process and underscore the importance of theoretical simulations and in situ characterizations in mechanism research. Finally, we summarize the challenges and opportunities for AZIBs in practical applications, especially as a stationary energy storage and conversion device in a smart grid.The research interest in aqueous zinc-ion batteries (AZIBs) has been surging due to the advantages of safety, abundance, and high electrochemical performance. However, some technique issues, such as dendrites, hydrogen evolution reaction, and corrosion, severely prohibit the development of AZIBs in practical utilizations. The underlying mechanisms regarding electrochemical performance deterioration and structure degradation are too complex to understand, especially when it comes to zinc metal anode-electrolyte interface. Recently, theoretical simulations and in situ characterizations have played a crucial role in AZIBs and are exploited to guide the research on electrolyte engineering and solid electrolyte interphase. Herein, we present a comprehensive review of the current state of the fundamental mechanisms involved in the zinc plating/stripping process and underscore the importance of theoretical simulations and in situ characterizations in mechanism research. Finally, we summarize the challenges and opportunities for AZIBs in practical applications, especially as a stationary energy storage and conversion device in a smart grid. The research interest in aqueous zinc-ion batteries (AZIBs) has been surging due to the advantages of safety, abundance, and high electrochemical performance. However, some technique issues, such as dendrites, hydrogen evolution reaction, and corrosion, severely prohibit the development of AZIBs in practical utilizations. The underlying mechanisms regarding electrochemical performance deterioration and structure degradation are too complex to understand, especially when it comes to zinc metal anode-electrolyte interface. Recently, theoretical simulations and characterizations have played a crucial role in AZIBs and are exploited to guide the research on electrolyte engineering and solid electrolyte interphase. Herein, we present a comprehensive review of the current state of the fundamental mechanisms involved in the zinc plating/stripping process and underscore the importance of theoretical simulations and characterizations in mechanism research. Finally, we summarize the challenges and opportunities for AZIBs in practical applications, especially as a stationary energy storage and conversion device in a smart grid. The research interest in aqueous zinc-ion batteries (AZIBs) has been surging due to the advantages of safety, abundance, and high electrochemical performance. However, some technique issues, such as dendrites, hydrogen evolution reaction, and corrosion, severely prohibit the development of AZIBs in practical utilizations. The underlying mechanisms regarding electrochemical performance deterioration and structure degradation are too complex to understand, especially when it comes to zinc metal anode–electrolyte interface. Recently, theoretical simulations and in situ characterizations have played a crucial role in AZIBs and are exploited to guide the research on electrolyte engineering and solid electrolyte interphase. Herein, we present a comprehensive review of the current state of the fundamental mechanisms involved in the zinc plating/stripping process and underscore the importance of theoretical simulations and in situ characterizations in mechanism research. Finally, we summarize the challenges and opportunities for AZIBs in practical applications, especially as a stationary energy storage and conversion device in a smart grid. The research interest in aqueous zinc-ion batteries (AZIBs) has been surging due to the advantages of safety, abundance, and high electrochemical performance. However, some technique issues, such as dendrites, hydrogen evolution reaction, and corrosion, severely prohibit the development of AZIBs in practical utilizations. The underlying mechanisms regarding electrochemical performance deterioration and structure degradation are too complex to understand, especially when it comes to zinc metal anode–electrolyte interface. Recently, theoretical simulations and in situ characterizations have played a crucial role in AZIBs and are exploited to guide the research on electrolyte engineering and solid electrolyte interphase. Herein, we present a comprehensive review of the current state of the fundamental mechanisms involved in the zinc plating/stripping process and underscore the importance of theoretical simulations and in situ characterizations in mechanism research. Finally, we summarize the challenges and opportunities for AZIBs in practical applications, especially as a stationary energy storage and conversion device in a smart grid. The protective mechanisms, theoretical simulations and in situ characterizations of zinc metal anode–electrolyte interface are critically analyzed, and the possible development directions are emphasized. The research interest in aqueous zinc-ion batteries (AZIBs) has been surging due to the advantages of safety, abundance, and high electrochemical performance. However, some technique issues, such as dendrites, hydrogen evolution reaction, and corrosion, severely prohibit the development of AZIBs in practical utilizations. The underlying mechanisms regarding electrochemical performance deterioration and structure degradation are too complex to understand, especially when it comes to zinc metal anode–electrolyte interface. Recently, theoretical simulations and in situ characterizations have played a crucial role in AZIBs and are exploited to guide the research on electrolyte engineering and solid electrolyte interphase. Herein, we present a comprehensive review of the current state of the fundamental mechanisms involved in the zinc plating/stripping process and underscore the importance of theoretical simulations and in situ characterizations in mechanism research. Finally, we summarize the challenges and opportunities for AZIBs in practical applications, especially as a stationary energy storage and conversion device in a smart grid. |
Author | Jiang, Yue Wu, Dianlun Liu, Zhiming Huang, Yang Hu, Zhe Zhang, Xiaofeng Liu, Zhenjie |
Author_xml | – sequence: 1 givenname: Zhenjie orcidid: 0000-0001-6118-7882 surname: Liu fullname: Liu, Zhenjie organization: Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, Guangdong, P. R. China – sequence: 2 givenname: Xiaofeng surname: Zhang fullname: Zhang, Xiaofeng organization: Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, Guangdong, P. R. China – sequence: 3 givenname: Zhiming surname: Liu fullname: Liu, Zhiming organization: Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, Guangdong, P. R. China – sequence: 4 givenname: Yue surname: Jiang fullname: Jiang, Yue organization: The Hong Kong University of Science and Technology (Guangzhou), Advanced Materials Thrust, Nansha, Guangzhou, 511400, Guangdong, P. R. China – sequence: 5 givenname: Dianlun surname: Wu fullname: Wu, Dianlun organization: The Hong Kong University of Science and Technology (Guangzhou), Advanced Materials Thrust, Nansha, Guangzhou, 511400, Guangdong, P. R. China – sequence: 6 givenname: Yang orcidid: 0000-0001-5060-3414 surname: Huang fullname: Huang, Yang organization: Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, Guangdong, P. R. China, The Hong Kong University of Science and Technology (Guangzhou), Advanced Materials Thrust, Nansha, Guangzhou, 511400, Guangdong, P. R. China – sequence: 7 givenname: Zhe orcidid: 0000-0001-7652-6939 surname: Hu fullname: Hu, Zhe organization: Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, Guangdong, P. R. China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38756795$$D View this record in MEDLINE/PubMed |
BookMark | eNptkc9KHTEYxYNY1KqbPkAZ6KZIr-bPZDLTTZFbawVB6J91iMkXbySTaJIp6Krv0Df0SYxetVWaTUK-3zmc5LxGqyEGQOgNwbsEs2Hvc_t9jrEg5GAFbVDcklnH2bD6dKZ4HW3nfI7rYoxwKtbQOusF78TAN1D4BllPLpw11y7oRoVo4Ob3H_CgS4r-qkDjQoFklYaPzQh6oYLLY_7QlAXEBMVp5Zvsxsmr4mLI1cJUSb0qU1PppHSVu-vldAu9sspn2H7YN9HPLwc_5l9nxyeHR_P945lusSizwTJMe4I5BuhtxxS1RlDAxBrTd5pwy5mwXJhOMEF6AMHoYAyFgUHbnjK2iT4tfS-m0xGMhlCS8vIiuVGlKxmVk88nwS3kWfwlCcEDZz2vDu8fHFK8nCAXObqswXsVIE5ZMsy7rhMUi4q-e4GexymF-r47qu1ZpWil3v4b6SnLYxcVwEtAp5hzAiu1K_ffVhM6LwmWd43Lv41Xyc4LyaPrf-BbGqetmw |
CitedBy_id | crossref_primary_10_34133_energymatadv_0141 crossref_primary_10_1016_j_cej_2025_161327 crossref_primary_10_1016_j_jcis_2024_09_092 crossref_primary_10_1016_j_ensm_2025_104028 crossref_primary_10_1021_acsami_4c22053 crossref_primary_10_1063_5_0244175 crossref_primary_10_1002_smll_202407411 |
Cites_doi | 10.1038/nmat1752 10.1002/adma.202200131 10.1021/jacs.0c09794 10.1002/adma.201903778 10.1039/D3SC01831H 10.1016/j.cej.2022.139577 10.1002/chem.202303211 10.1007/s40242-021-1041-6 10.1002/anie.201813223 10.1016/j.ensm.2022.08.046 10.1002/aenm.202302187 10.1002/aenm.202202219 10.1002/adfm.202304878 10.1021/acsenergylett.2c01958 10.1016/j.nanoen.2023.108858 10.1021/jacs.0c07992 10.1016/j.nanoen.2020.105739 10.1002/anie.202109682 10.1039/D2TA04015H 10.1038/s41565-022-01081-9 10.1002/adma.202206754 10.1021/acsaem.3c01724 10.1021/jacs.2c00551 10.1002/aenm.202003419 10.1016/j.electacta.2014.11.091 10.1021/acsaem.2c01868 10.1002/adma.202205369 10.1002/adma.202203153 10.1021/acs.chemrev.1c00904 10.1002/eom2.12035 10.1021/acsnano.2c09317 10.1021/acsnano.9b05599 10.1021/acsenergylett.0c01792 10.1039/D0EE02079F 10.1016/j.esci.2023.100093 10.1039/D1EE03377H 10.1021/acsnano.2c03398 10.1016/j.ensm.2023.102941 10.1088/2515-7639/ac3f9a 10.1007/s40820-023-01050-4 10.1002/sus2.53 10.1021/acs.nanolett.3c02904 10.1016/j.ensm.2022.05.022 10.1126/science.aax6873 10.1039/D2EE02931F 10.1002/cey2.343 10.1002/adma.202208630 10.1039/D1TA02682H 10.1002/admi.202200564 10.1002/cssc.201600702 10.1002/smtd.202300731 10.1002/adfm.202301530 10.1002/aenm.202300550 10.1002/admt.202000555 10.1021/acsami.2c05887 10.1021/acs.nanolett.3c02379 10.1021/acsenergylett.2c02042 10.1007/s40820-022-01007-z 10.1021/acsami.7b01705 10.1016/j.cej.2022.138772 10.1002/anie.202302302 10.1002/anie.202307880 10.1002/smll.202100722 10.1016/j.chempr.2023.03.033 10.1039/D0EE01538E 10.1002/adma.202007406 10.1002/adfm.202210197 10.1039/D3EE00864A 10.1002/anie.202116560 10.1016/j.ensm.2022.06.058 10.1002/adfm.202305659 10.1039/D2EE03528F 10.1002/anie.202210979 10.1039/D3EE00045A 10.1038/s41467-023-39947-8 10.1002/adma.202200782 10.1021/acsenergylett.1c01054 10.1016/j.ensm.2023.102980 10.1002/aenm.202102707 10.1021/acsnano.2c12587 10.1021/acsenergylett.0c02371 10.1002/adma.202208764 10.1002/anie.202214966 10.1002/aenm.202302846 10.1002/adma.202300073 10.1038/s41467-022-31461-7 10.1039/D2EE02687B 10.1002/aenm.202301193 10.1016/j.cej.2021.131705 10.1021/acsnano.2c02448 10.1016/j.ensm.2023.102928 10.1002/anie.202007567 10.1002/anie.202112304 10.1016/j.jpowsour.2020.228831 10.1002/eem2.12077 10.1002/anie.202309601 10.1002/anie.202212512 10.1002/anie.202308017 10.1021/acsenergylett.2c02455 10.26599/NRE.2023.9120039 10.1002/adma.202203104 10.1002/adma.202300369 10.1002/adma.202210055 10.1039/C9EE00596J 10.1021/acsenergylett.2c00560 10.1039/D1EE00783A 10.1002/adma.202100187 10.1038/s41467-022-30939-8 10.1002/anie.202202780 10.1002/adfm.202107652 10.1002/smll.202207502 10.1021/acsenergylett.9b02306 10.1016/j.ensm.2023.03.005 10.1002/adfm.202200606 10.1038/s41467-023-38460-2 10.1002/adfm.202001263 10.1016/j.cej.2022.140435 10.1149/2.0331813jes 10.1002/adma.202203710 10.1038/s41467-023-39237-3 10.1002/adfm.202207898 10.1002/batt.202200478 10.1149/1945-7111/abc206 10.1002/adma.202206963 10.1039/D2SC01818G 10.1021/acsenergylett.2c01152 10.1002/anie.202215600 10.1002/adma.202209288 10.26599/NRE.2023.9120100 10.1021/acsmaterialslett.1c00566 10.1016/j.electacta.2020.136073 10.1002/anie.202309957 10.1002/anie.201907830 10.1021/acsnano.2c09111 10.1039/D1EE01861B 10.1002/anie.202216934 10.1021/acsnano.2c11516 10.1021/acs.nanolett.2c03433 10.1002/adfm.202305804 10.1002/anie.201106307 10.1039/D2TA03550B 10.1039/D1EE01851E 10.1016/j.cej.2021.134076 10.1016/j.esci.2022.04.003 10.1002/smll.202306211 10.1002/anie.202215552 10.1002/anie.202303557 10.1002/adma.202303550 10.1039/D2SC06276C 10.1021/acsami.1c14947 10.1002/sstr.202200270 10.1002/smll.202200742 10.1016/j.coelec.2023.101376 10.1002/anie.202300125 10.1002/adfm.202209065 10.1002/adma.202106897 10.1016/j.ensm.2020.11.041 10.1002/advs.202104866 10.1016/j.electacta.2005.02.137 10.1016/j.cclet.2021.02.055 10.1007/s40820-021-00782-5 10.1007/s40820-023-01171-w 10.1002/adma.202308086 10.1016/j.ensm.2022.08.033 10.1016/j.jpowsour.2022.231730 10.1007/s40820-022-00939-w 10.1016/j.joule.2022.04.017 10.1002/anie.202310143 10.1002/anie.202208051 10.55713/jmmm.v30i3.900 10.1002/aenm.202101518 10.1002/anie.202301570 10.1038/nature06964 10.1039/D1EE00030F 10.1002/aenm.202003065 10.1021/acs.jpcc.8b03383 10.1002/anie.202307271 10.1002/aenm.202200115 10.1021/acsnano.2c05285 10.1021/nl504336h 10.1002/aenm.202301466 10.1002/advs.202201433 10.1002/anie.202303011 10.1021/jacs.2c06927 10.1002/cnl2.56 10.1021/acsami.1c16263 10.1002/cey2.67 10.1002/smll.202105978 10.1021/acsami.0c17023 10.1002/anie.202311988 10.1016/j.ensm.2023.03.029 10.1016/j.joule.2022.06.002 10.1021/acsnano.3c05369 10.1002/adma.201903675 10.1002/adma.202307708 10.1002/anie.202310290 10.1016/j.jpowsour.2022.232460 10.26599/NRE.2022.9120023 10.1002/aenm.202102780 10.1021/acsami.1c07864 10.1016/j.joule.2023.05.004 10.1002/adma.202101649 10.1039/D1EE00308A 10.55713/jmmm.v29i4.652 10.1016/j.ensm.2022.04.018 10.1002/aenm.202001599 10.1002/aenm.202102982 10.1002/adma.202007416 10.1021/acsami.6b16560 10.1038/s41893-021-00800-9 10.1002/aenm.202200255 10.1002/anie.202218612 10.1021/acsami.9b13174 10.1039/D3TA05650C 10.1002/anie.202301192 10.1002/adma.202100445 10.1002/adma.202207344 10.1016/j.ensm.2023.04.006 10.1002/adma.202202552 10.1039/C8TA03143F 10.1021/acsami.1c11106 10.1038/s41893-023-01172-y 10.1016/S1872-5805(22)60601-2 10.1021/acsnano.3c08095 10.1002/anie.202016531 10.1126/sciadv.abp8960 10.1016/j.electacta.2021.138877 10.1002/anie.202103390 10.1038/s41467-022-35486-w 10.1021/acsnano.3c07257 10.1002/aenm.202003927 10.1038/s41467-023-42333-z 10.1016/j.ensm.2023.03.002 10.1002/smll.202205462 10.3390/molecules28062721 10.1038/s41524-023-01039-y 10.1016/j.electacta.2009.03.062 10.1039/D3EE02522E 10.1021/acsami.3c03376 10.1002/smll.202206634 10.1002/advs.202105980 10.1002/smtd.201900119 10.1038/s41467-019-13436-3 10.1002/aenm.202102010 10.1002/adfm.202207732 10.1002/aenm.202203254 10.1002/celc.202101537 10.1002/anie.202310970 10.1002/anie.202218452 10.1002/adfm.202206695 10.1016/j.jechem.2023.02.036 10.1021/acsenergylett.3c00154 10.1007/s40820-021-00783-4 10.1016/j.nanoen.2018.12.086 10.1002/adma.202305988 10.1149/1945-7111/ac4188 10.1039/D1EE00110H 10.1016/j.ensm.2022.01.059 10.1021/acsami.1c00565 10.1002/anie.202218386 10.1007/s40820-024-01337-0 10.1002/smll.202202363 10.1038/s41467-024-44893-0 10.1002/adfm.202302293 10.1016/j.joule.2023.01.010 10.1002/anie.202218872 |
ContentType | Journal Article |
Copyright | This journal is © The Royal Society of Chemistry. Copyright Royal Society of Chemistry 2024 This journal is © The Royal Society of Chemistry 2024 The Royal Society of Chemistry |
Copyright_xml | – notice: This journal is © The Royal Society of Chemistry. – notice: Copyright Royal Society of Chemistry 2024 – notice: This journal is © The Royal Society of Chemistry 2024 The Royal Society of Chemistry |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 5PM |
DOI | 10.1039/D4SC00711E |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Materials Research Database CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2041-6539 |
EndPage | 7033 |
ExternalDocumentID | PMC11095385 38756795 10_1039_D4SC00711E |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: ; grantid: 22209116 – fundername: ; grantid: KQTD20221101093605019 – fundername: ; grantid: 2022YFB2402300 – fundername: ; grantid: 21825302 |
GroupedDBID | 0-7 0R~ 53G 705 7~J AAEMU AAFWJ AAIWI AAJAE AARTK AAXHV AAYXX ABEMK ABIQK ABPDG ABXOH ACGFS ACIWK ADBBV ADMRA AEFDR AENEX AESAV AFLYV AFPKN AGEGJ AGRSR AHGCF AKBGW ALMA_UNASSIGNED_HOLDINGS ANUXI AOIJS APEMP AUDPV AZFZN BCNDV BLAPV BSQNT C6K CITATION D0L EE0 EF- F5P GROUPED_DOAJ H13 HYE HZ~ H~N O-G O9- OK1 PGMZT R7C R7D RAOCF RCNCU RNS RPM RRC RSCEA RVUXY SKA SKF SKH SKJ SKM SKR SKZ SLC SLF SLH -JG AGSTE NPM SMJ 7SR 8BQ 8FD JG9 7X8 5PM |
ID | FETCH-LOGICAL-c407t-9f30281050ee8f63a2fd72e01fdd86c15f537f57d673718ee7329dd2e93e44b33 |
ISSN | 2041-6520 |
IngestDate | Thu Aug 21 18:35:19 EDT 2025 Sun Aug 24 04:05:04 EDT 2025 Fri Jul 25 08:35:11 EDT 2025 Wed Feb 19 02:00:27 EST 2025 Tue Jul 01 01:31:00 EDT 2025 Thu Apr 24 23:09:12 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Language | English |
License | This journal is © The Royal Society of Chemistry. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c407t-9f30281050ee8f63a2fd72e01fdd86c15f537f57d673718ee7329dd2e93e44b33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-6118-7882 0000-0001-7652-6939 0000-0001-5060-3414 |
OpenAccessLink | http://dx.doi.org/10.1039/d4sc00711e |
PMID | 38756795 |
PQID | 3054837202 |
PQPubID | 2047492 |
PageCount | 24 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11095385 proquest_miscellaneous_3056667207 proquest_journals_3054837202 pubmed_primary_38756795 crossref_citationtrail_10_1039_D4SC00711E crossref_primary_10_1039_D4SC00711E |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-05-15 |
PublicationDateYYYYMMDD | 2024-05-15 |
PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Chemical science (Cambridge) |
PublicationTitleAlternate | Chem Sci |
PublicationYear | 2024 |
Publisher | Royal Society of Chemistry The Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry – name: The Royal Society of Chemistry |
References | Song (D4SC00711E/cit131/1) 2023; 58 Chen (D4SC00711E/cit96/1) 2023; 59 Zhou (D4SC00711E/cit227/1) 2022; 34 Li (D4SC00711E/cit264/1) 2021; 6 Zhou (D4SC00711E/cit226/1) 2022; 34 Zhou (D4SC00711E/cit224/1) 2022; 34 Wang (D4SC00711E/cit45/1) 2022; 32 Cora (D4SC00711E/cit271/1) 2021; 13 Lin (D4SC00711E/cit52/1) 2023; 16 Wang (D4SC00711E/cit58/1) 2022; 53 Li (D4SC00711E/cit89/1) 2023; 62 Wang (D4SC00711E/cit113/1) 2022; 7 Bayaguud (D4SC00711E/cit159/1) 2020; 5 Wang (D4SC00711E/cit16/1) 2022; 2 Yu (D4SC00711E/cit27/1) 2023; 7 Wang (D4SC00711E/cit122/1) 2023; 62 Sasaki (D4SC00711E/cit219/1) 2021; 481 Zhang (D4SC00711E/cit202/1) 2021; 11 Feng (D4SC00711E/cit132/1) 2023; 28 Xie (D4SC00711E/cit149/1) 2020; 2 Naveed (D4SC00711E/cit31/1) 2019; 58 Zhao (D4SC00711E/cit108/1) 2023; 454 Zhang (D4SC00711E/cit44/1) 2019; 58 Dong (D4SC00711E/cit272/1) 2022; 13 Yao (D4SC00711E/cit78/1) 2022; 12 Cao (D4SC00711E/cit13/1) 2022; 15 Yang (D4SC00711E/cit67/1) 2022; 7 Wang (D4SC00711E/cit114/1) 2022; 14 Wang (D4SC00711E/cit228/1) 2023; 452 Xiong (D4SC00711E/cit24/1) 2023; 33 Ni (D4SC00711E/cit249/1) 2023; 33 Lyu (D4SC00711E/cit106/1) 2023; 62 Li (D4SC00711E/cit2/1) 2023; 116 Yang (D4SC00711E/cit8/1) 2022; 14 Shen (D4SC00711E/cit86/1) 2020; 59 Li (D4SC00711E/cit237/1) 2023; 14 Liu (D4SC00711E/cit261/1) 2023; 32 Dong (D4SC00711E/cit22/1) 2023; 6 Hu (D4SC00711E/cit194/1) 2022; 34 Wang (D4SC00711E/cit4/1) 2022; 12 Yan (D4SC00711E/cit88/1) 2021; 82 Hao (D4SC00711E/cit101/1) 2022; 34 Zhang (D4SC00711E/cit200/1) 2022; 37 Zhu (D4SC00711E/cit80/1) 2023; 4 Guo (D4SC00711E/cit98/1) 2021; 6 Han (D4SC00711E/cit104/1) 2022; 12 Huang (D4SC00711E/cit123/1) 2023; 33 Qin (D4SC00711E/cit128/1) 2022; 32 Xu (D4SC00711E/cit1/1) 2012; 51 Hou (D4SC00711E/cit177/1) 2022; 8 Zhang (D4SC00711E/cit156/1) 2022; 18 Keist (D4SC00711E/cit205/1) 2020; 342 Lee (D4SC00711E/cit273/1) 2016; 9 Pei (D4SC00711E/cit281/1) 2022; 1 Zeng (D4SC00711E/cit137/1) 2019; 31 He (D4SC00711E/cit176/1) 2023; 62 Zhao (D4SC00711E/cit256/1) 2019; 12 Xie (D4SC00711E/cit139/1) 2021; 14 Amaral (D4SC00711E/cit235/1) 2023; 81 Sun (D4SC00711E/cit280/1) 2023; 17 Yang (D4SC00711E/cit184/1) 2023; 62 Zhao (D4SC00711E/cit99/1) 2022; 18 Zeng (D4SC00711E/cit26/1) 2023; 9 Zhang (D4SC00711E/cit76/1) 2021; 6 Zou (D4SC00711E/cit59/1) 2022; 15 Pu (D4SC00711E/cit211/1) 2022; 34 Hao (D4SC00711E/cit79/1) 2021; 60 Feng (D4SC00711E/cit68/1) 2021; 13 Wei (D4SC00711E/cit69/1) 2023; 17 Xie (D4SC00711E/cit120/1) 2023; 62 Huang (D4SC00711E/cit157/1) 2022; 34 Lv (D4SC00711E/cit229/1) 2022; 15 Zhang (D4SC00711E/cit277/1) 2022; 542 Zhang (D4SC00711E/cit103/1) 2021; 11 Cai (D4SC00711E/cit12/1) 2023; 3 Su (D4SC00711E/cit172/1) 2018; 122 Keist (D4SC00711E/cit201/1) 2015; 152 Ling (D4SC00711E/cit223/1) 2023; 35 Wang (D4SC00711E/cit253/1) 2021; 37 Yang (D4SC00711E/cit19/1) 2023; 11 Gu (D4SC00711E/cit197/1) 2022; 12 Tian (D4SC00711E/cit179/1) 2023; 62 Xu (D4SC00711E/cit77/1) 2022; 16 Li (D4SC00711E/cit189/1) 2023; 41 Cao (D4SC00711E/cit73/1) 2020; 10 Sun (D4SC00711E/cit61/1) 2017; 9 Woottapanit (D4SC00711E/cit23/1) 2023; 6 Zhang (D4SC00711E/cit150/1) 2023; 35 Yuan (D4SC00711E/cit64/1) 2023; 17 Xu (D4SC00711E/cit72/1) 2024; 17 Shang (D4SC00711E/cit183/1) 2022; 32 Ma (D4SC00711E/cit195/1) 2022; 34 Li (D4SC00711E/cit25/1) 2023; 62 Meng (D4SC00711E/cit144/1) 2023; 62 Wang (D4SC00711E/cit206/1) 2021; 14 Bockelmann (D4SC00711E/cit257/1) 2018; 165 Ruan (D4SC00711E/cit234/1) 2023; 15 Yuan (D4SC00711E/cit57/1) 2023; 62 Zhang (D4SC00711E/cit214/1) 2023; 17 Du (D4SC00711E/cit5/1) 2020; 13 Zhao (D4SC00711E/cit51/1) 2023; 6 Wu (D4SC00711E/cit187/1) 2023; 2 Chang (D4SC00711E/cit174/1) 2020; 13 Yu (D4SC00711E/cit232/1) 2020; 142 Jian (D4SC00711E/cit121/1) 2022; 53 Ma (D4SC00711E/cit246/1) 2021; 33 Rossi (D4SC00711E/cit215/1) 2022; 9 Zheng (D4SC00711E/cit276/1) 2024; 15 Wang (D4SC00711E/cit279/1) 2018; 6 Mu (D4SC00711E/cit134/1) 2023; 14 Khan (D4SC00711E/cit40/1) 2023; 35 Meng (D4SC00711E/cit65/1) 2022; 32 Han (D4SC00711E/cit94/1) 2022; 5 Li (D4SC00711E/cit142/1) 2022; 61 Liang (D4SC00711E/cit160/1) 2023; 63 Duan (D4SC00711E/cit268/1) 2023; 17 Li (D4SC00711E/cit239/1) 2022; 6 Zhao (D4SC00711E/cit48/1) 2022; 13 Wu (D4SC00711E/cit35/1) 2022; 14 Li (D4SC00711E/cit53/1) 2020; 2 Gou (D4SC00711E/cit145/1) 2023; 19 Liu (D4SC00711E/cit233/1) 2023; 5 Ge (D4SC00711E/cit243/1) 2023; 2 Yu (D4SC00711E/cit129/1) 2023; 13 Zeng (D4SC00711E/cit231/1) 2021; 14 Li (D4SC00711E/cit17/1) 2023; 35 Zhang (D4SC00711E/cit83/1) 2021; 60 Yang (D4SC00711E/cit30/1) 2023; 62 Yang (D4SC00711E/cit74/1) 2022; 34 Du (D4SC00711E/cit41/1) 2023; 35 Zhang (D4SC00711E/cit278/1) 2022; 34 Li (D4SC00711E/cit164/1) 2023; 14 Yao (D4SC00711E/cit171/1) 2022; 122 Jiao (D4SC00711E/cit112/1) 2021; 31 Zhang (D4SC00711E/cit107/1) 2023; 35 Liu (D4SC00711E/cit247/1) 2022; 47 Ouyang (D4SC00711E/cit14/1) 2023; 62 Liu (D4SC00711E/cit18/1) 2021; 32 Liu (D4SC00711E/cit238/1) 2023; 62 Zhou (D4SC00711E/cit55/1) 2021; 33 Han (D4SC00711E/cit15/1) 2023; 36 Graae (D4SC00711E/cit241/1) 2022; 5 Wen (D4SC00711E/cit70/1) 2022; 10 Wang (D4SC00711E/cit161/1) 2023; 62 Qiu (D4SC00711E/cit66/1) 2022; 61 Foroozan (D4SC00711E/cit153/1) 2019; 11 Chen (D4SC00711E/cit188/1) 2020; 5 Zhang (D4SC00711E/cit109/1) 2023; 62 Hao (D4SC00711E/cit236/1) 2020; 30 Greeley (D4SC00711E/cit147/1) 2006; 5 Zhang (D4SC00711E/cit84/1) 2022; 144 Xin (D4SC00711E/cit117/1) 2021; 3 Kosacki (D4SC00711E/cit217/1) 2021; 168 Luo (D4SC00711E/cit175/1) 2023; 15 Chen (D4SC00711E/cit193/1) 2023; 16 Ye (D4SC00711E/cit245/1) 2023; 33 Qiu (D4SC00711E/cit63/1) 2022; 49 Liu (D4SC00711E/cit191/1) 2022; 13 Xue (D4SC00711E/cit242/1) 2023; 17 Agrisuelas (D4SC00711E/cit269/1) 2009; 54 Garcia (D4SC00711E/cit265/1) 2017; 9 Chen (D4SC00711E/cit100/1) 2023; 15 Zhou (D4SC00711E/cit248/1) 2023; 23 Yang (D4SC00711E/cit135/1) 2019; 31 Zhang (D4SC00711E/cit102/1) 2023; 62 Agarwal (D4SC00711E/cit173/1) 2021; 13 Zhang (D4SC00711E/cit91/1) 2023; 33 Zeng (D4SC00711E/cit169/1) 2023; 23 Xia (D4SC00711E/cit240/1) 2019; 3 Dai (D4SC00711E/cit49/1) 2023; 62 Sun (D4SC00711E/cit270/1) 2023; 62 Han (D4SC00711E/cit267/1) 2023; 62 Zhao (D4SC00711E/cit141/1) 2022; 34 Cui (D4SC00711E/cit43/1) 2021; 17 Zhang (D4SC00711E/cit9/1) 2021; 11 Wang (D4SC00711E/cit90/1) 2023; 62 Zheng (D4SC00711E/cit56/1) 2019; 366 Liang (D4SC00711E/cit251/1) 2022; 9 Li (D4SC00711E/cit75/1) 2021; 14 Qian (D4SC00711E/cit213/1) 2022; 12 Na Li (D4SC00711E/cit263/1) 2023; 635 Du (D4SC00711E/cit190/1) 2023; 15 Scharf (D4SC00711E/cit208/1) 2022; 17 Zhang (D4SC00711E/cit62/1) 2023; 13 Cui (D4SC00711E/cit87/1) 2023; 13 Yang (D4SC00711E/cit97/1) 2022; 61 Zhu (D4SC00711E/cit140/1) 2022; 50 Zhou (D4SC00711E/cit203/1) 2020; 12 Liang (D4SC00711E/cit28/1) 2023; 17 Ko (D4SC00711E/cit209/1) 2020; 167 Zhang (D4SC00711E/cit33/1) 2022; 12 Li (D4SC00711E/cit39/1) 2023; 62 Luo (D4SC00711E/cit82/1) 2023; 62 Han (D4SC00711E/cit38/1) 2022; 32 Ouyang (D4SC00711E/cit259/1) 2022; 32 Li (D4SC00711E/cit6/1) 2022; 6 Wu (D4SC00711E/cit162/1) 2022; 18 He (D4SC00711E/cit20/1) 2024; 3 Zhao (D4SC00711E/cit218/1) 2023; 7 Qin (D4SC00711E/cit266/1) 2020; 39 Luo (D4SC00711E/cit275/1) 2023; 23 Liu (D4SC00711E/cit133/1) 2024; 16 Pande (D4SC00711E/cit158/1) 2019; 4 Qian (D4SC00711E/cit222/1) 2023; 58 Qin (D4SC00711E/cit230/1) 2022; 34 Feng (D4SC00711E/cit29/1) 2023; 8 Li (D4SC00711E/cit119/1) 2021; 60 Li (D4SC00711E/cit47/1) 2021; 14 Guo (D4SC00711E/cit178/1) 2023; 62 Zhao (D4SC00711E/cit46/1) 2022; 144 Hong (D4SC00711E/cit148/1) 2022; 9 Wang (D4SC00711E/cit274/1) 2023; 14 Abdulla (D4SC00711E/cit262/1) 2020; 30 Du (D4SC00711E/cit180/1) 2022; 427 Xiong (D4SC00711E/cit182/1) 2023; 8 Ren (D4SC00711E/cit93/1) 2023; 35 Zhou (D4SC00711E/cit167/1) 2023; 62 Zhang (D4SC00711E/cit186/1) 2022; 2 Yuan (D4SC00711E/cit220/1) 2023; 36 Zhao (D4SC00711E/cit252/1) 2019; 57 Wei (D4SC00711E/cit255/1) 2022; 16 Luo (D4SC00711E/cit166/1) 2023; 57 Kao (D4SC00711E/cit250/1) 2023; 17 Zhang (D4SC00711E/cit258/1) 2006; 51 Yi (D4SC00711E/cit7/1) 2021; 11 Wu (D4SC00711E/cit136/1) 2023; 19 Zeng (D4SC00711E/cit125/1) 2021; 33 Cao (D4SC00711E/cit127/1) 2020; 142 Chen (D4SC00711E/cit165/1) 2023; 14 Huang (D4SC00711E/cit216/1) 2023; 9 Lolupiman (D4SC00711E/cit244/1) 2019; 29 Qiu (D4SC00711E/cit260/1) 2023; 13 Qi (D4SC00711E/cit111/1) 2022; 16 Zhou (D4SC00711E/cit225/1) 2021; 33 Liu (D4SC00711E/cit42/1) 2023; 14 Yang (D4SC00711E/cit54/1) 2008; 453 Chen (D4SC00711E/cit221/1) 2022; 9 Yu (D4SC00711E/cit155/1) 2022; 16 Rakov (D4SC00711E/cit115/1) 2023; 16 Chen (D4SC00711E/cit3/1) 2023; 13 Li (D4SC00711E/cit36/1) 2022; 61 Hack (D4SC00711E/cit207/1) 2022; 5 Yang (D4SC00711E/cit181/1) 2023; 17 Meng (D4SC00711E/cit81/1) 2022; 34 Jeon (D4SC00711E/cit198/1) 2021; 391 Chen (D4SC00711E/cit11/1) 2022; 7 Zhou (D4SC00711E/cit95/1) 2022; 61 Cai (D4SC00711E/cit199/1) 2022; 61 Zhang (D4SC00711E/cit60/1) 2023; 42 Huang (D4SC00711E/cit116/1) 2023; 16 Chu (D4SC00711E/cit126/1) 2021; 14 Yang (D4SC00711E/cit21/1) 2023; 15 Xie (D4SC00711E/cit50/1) 2021; 11 Huang (D4SC00711E/cit130/1) 2021; 33 Guida (D4SC00711E/cit210/1) 2023; 556 Yang (D4SC00711E/cit85/1) 2022; 7 Li (D4SC00711E/cit168/1) 2015; 15 Lin (D4SC00711E/cit105/1) 2022; 9 Zhang (D4SC00711E/cit192/1) 2021; 9 Ma (D4SC00711E/cit163/1) 2020; 3 Lu (D4SC00711E/cit10/1) 2023; 451 Qiu (D4SC00711E/cit37/1) 2019; 10 Yuan (D4SC00711E/cit118/1) 2022; 431 Pu (D4SC00711E/cit185/1) 2021; 14 Liu (D4SC00711E/cit71/1) 2023; 36 Zhou (D4SC00711E/cit146/1) 2022; 52 Cong (D4SC00711E/cit34/1) 2021; 35 Pu (D4SC00711E/cit212/1) 2023; 7 Cao (D4SC00711E/cit151/1) 2021; 13 Huang (D4SC00711E/cit254/1) 2023; 20 Hu (D4SC00711E/cit92/1) 2023; 62 Shen (D4SC00711E/cit32/1) 2023; 62 Tian (D4SC00711E/cit138/1) 2019; 13 Li (D4SC00711E/cit152/1) 2022; 10 Liu (D4SC00711E/cit124/1) 2023; 17 Zhou (D4SC00711E/cit204/1) 2021; 13 Zhan (D4SC00711E/cit154/1) 2024; 30 Zhao (D4SC00711E/cit143/1) 2023; 35 Xie (D4SC00711E/cit170/1) 2023; 62 Jin (D4SC00711E/cit110/1) 2022; 18 Li (D4SC00711E/cit196/1) 2022; 13 |
References_xml | – volume: 5 start-page: 909 year: 2006 ident: D4SC00711E/cit147/1 publication-title: Nat. Mater. doi: 10.1038/nmat1752 – volume: 39 start-page: 605 year: 2020 ident: D4SC00711E/cit266/1 publication-title: Chin. J. Struct. Chem. – volume: 34 start-page: 2200131 year: 2022 ident: D4SC00711E/cit224/1 publication-title: Adv. Mater. doi: 10.1002/adma.202200131 – volume: 142 start-page: 21404 year: 2020 ident: D4SC00711E/cit127/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c09794 – volume: 31 start-page: 1903778 year: 2019 ident: D4SC00711E/cit135/1 publication-title: Adv. Mater. doi: 10.1002/adma.201903778 – volume: 14 start-page: 8076 year: 2023 ident: D4SC00711E/cit274/1 publication-title: Chem. Sci. doi: 10.1039/D3SC01831H – volume: 452 start-page: 139577 year: 2023 ident: D4SC00711E/cit228/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.139577 – volume: 30 start-page: e202303211 year: 2024 ident: D4SC00711E/cit154/1 publication-title: Chem.–Eur. J. doi: 10.1002/chem.202303211 – volume: 37 start-page: 328 year: 2021 ident: D4SC00711E/cit253/1 publication-title: Chem. Res. Chin. Univ. doi: 10.1007/s40242-021-1041-6 – volume: 58 start-page: 2760 year: 2019 ident: D4SC00711E/cit31/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201813223 – volume: 53 start-page: 273 year: 2022 ident: D4SC00711E/cit58/1 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2022.08.046 – volume: 13 start-page: 2302187 year: 2023 ident: D4SC00711E/cit3/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202302187 – volume: 12 start-page: 2202219 year: 2022 ident: D4SC00711E/cit33/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202202219 – volume: 17 start-page: 2304878 year: 2023 ident: D4SC00711E/cit28/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202304878 – volume: 7 start-page: 4168 year: 2022 ident: D4SC00711E/cit113/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.2c01958 – volume: 116 start-page: 108858 year: 2023 ident: D4SC00711E/cit2/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2023.108858 – volume: 142 start-page: 19570 year: 2020 ident: D4SC00711E/cit232/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c07992 – volume: 82 start-page: 105739 year: 2021 ident: D4SC00711E/cit88/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105739 – volume: 60 start-page: 23357 year: 2021 ident: D4SC00711E/cit83/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202109682 – volume: 10 start-page: 17501 year: 2022 ident: D4SC00711E/cit70/1 publication-title: J. Mater. Chem. A doi: 10.1039/D2TA04015H – volume: 17 start-page: 446 year: 2022 ident: D4SC00711E/cit208/1 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-022-01081-9 – volume: 34 start-page: 2206754 year: 2022 ident: D4SC00711E/cit74/1 publication-title: Adv. Mater. doi: 10.1002/adma.202206754 – volume: 6 start-page: 10578 year: 2023 ident: D4SC00711E/cit23/1 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.3c01724 – volume: 32 start-page: 221458 year: 2023 ident: D4SC00711E/cit261/1 publication-title: Adv. Funct. Mater. – volume: 144 start-page: 11129 year: 2022 ident: D4SC00711E/cit46/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c00551 – volume: 11 start-page: 2003419 year: 2021 ident: D4SC00711E/cit50/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202003419 – volume: 152 start-page: 161 year: 2015 ident: D4SC00711E/cit201/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2014.11.091 – volume: 5 start-page: 11392 year: 2022 ident: D4SC00711E/cit241/1 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.2c01868 – volume: 34 start-page: 2205369 year: 2022 ident: D4SC00711E/cit278/1 publication-title: Adv. Mater. doi: 10.1002/adma.202205369 – volume: 34 start-page: 2203153 year: 2022 ident: D4SC00711E/cit141/1 publication-title: Adv. Mater. doi: 10.1002/adma.202203153 – volume: 122 start-page: 10970 year: 2022 ident: D4SC00711E/cit171/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.1c00904 – volume: 2 start-page: e12035 year: 2020 ident: D4SC00711E/cit53/1 publication-title: EcoMat doi: 10.1002/eom2.12035 – volume: 17 start-page: 552 year: 2023 ident: D4SC00711E/cit124/1 publication-title: ACS Nano doi: 10.1021/acsnano.2c09317 – volume: 13 start-page: 11676 year: 2019 ident: D4SC00711E/cit138/1 publication-title: ACS Nano doi: 10.1021/acsnano.9b05599 – volume: 5 start-page: 3012 year: 2020 ident: D4SC00711E/cit159/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.0c01792 – volume: 13 start-page: 333 year: 2020 ident: D4SC00711E/cit5/1 publication-title: Energy Environ. Sci. doi: 10.1039/D0EE02079F – volume: 3 start-page: 100093 year: 2023 ident: D4SC00711E/cit12/1 publication-title: eScience doi: 10.1016/j.esci.2023.100093 – volume: 15 start-page: 499 year: 2022 ident: D4SC00711E/cit13/1 publication-title: Energy Environ. Sci. doi: 10.1039/D1EE03377H – volume: 16 start-page: 9736 year: 2022 ident: D4SC00711E/cit155/1 publication-title: ACS Nano doi: 10.1021/acsnano.2c03398 – volume: 62 start-page: 102941 year: 2023 ident: D4SC00711E/cit176/1 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2023.102941 – volume: 5 start-page: 14001 year: 2022 ident: D4SC00711E/cit207/1 publication-title: JPhys Mater. doi: 10.1088/2515-7639/ac3f9a – volume: 15 start-page: 81 year: 2023 ident: D4SC00711E/cit100/1 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-023-01050-4 – volume: 2 start-page: 114 year: 2022 ident: D4SC00711E/cit186/1 publication-title: SusMat doi: 10.1002/sus2.53 – volume: 23 start-page: 9491 year: 2023 ident: D4SC00711E/cit275/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.3c02904 – volume: 50 start-page: 243 year: 2022 ident: D4SC00711E/cit140/1 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2022.05.022 – volume: 366 start-page: 645 year: 2019 ident: D4SC00711E/cit56/1 publication-title: Science doi: 10.1126/science.aax6873 – volume: 16 start-page: 275 year: 2023 ident: D4SC00711E/cit193/1 publication-title: Energy Environ. Sci. doi: 10.1039/D2EE02931F – volume: 5 start-page: e343 year: 2023 ident: D4SC00711E/cit233/1 publication-title: Carbon Energy doi: 10.1002/cey2.343 – volume: 35 start-page: 2208630 year: 2023 ident: D4SC00711E/cit107/1 publication-title: Adv. Mater. doi: 10.1002/adma.202208630 – volume: 9 start-page: 15355 year: 2021 ident: D4SC00711E/cit192/1 publication-title: J. Mater. Chem. A doi: 10.1039/D1TA02682H – volume: 635 start-page: 157704 year: 2023 ident: D4SC00711E/cit263/1 publication-title: Energy Storage Mater. – volume: 9 start-page: 2200564 year: 2022 ident: D4SC00711E/cit251/1 publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.202200564 – volume: 9 start-page: 2948 year: 2016 ident: D4SC00711E/cit273/1 publication-title: ChemSusChem doi: 10.1002/cssc.201600702 – volume: 7 start-page: 2300731 year: 2023 ident: D4SC00711E/cit218/1 publication-title: Small Methods doi: 10.1002/smtd.202300731 – volume: 35 start-page: 202300019 year: 2023 ident: D4SC00711E/cit17/1 publication-title: Adv. Mater. – volume: 33 start-page: 2301530 year: 2023 ident: D4SC00711E/cit24/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202301530 – volume: 13 start-page: 2300550 year: 2023 ident: D4SC00711E/cit129/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202300550 – volume: 5 start-page: 2000555 year: 2020 ident: D4SC00711E/cit188/1 publication-title: Adv. Mater. Technol. doi: 10.1002/admt.202000555 – volume: 14 start-page: 34612 year: 2022 ident: D4SC00711E/cit35/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.2c05887 – volume: 23 start-page: 10148 year: 2023 ident: D4SC00711E/cit248/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.3c02379 – volume: 7 start-page: 4028 year: 2022 ident: D4SC00711E/cit11/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.2c02042 – volume: 15 start-page: 37 year: 2023 ident: D4SC00711E/cit234/1 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-022-01007-z – volume: 9 start-page: 18691 year: 2017 ident: D4SC00711E/cit265/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b01705 – volume: 451 start-page: 138772 year: 2023 ident: D4SC00711E/cit10/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.138772 – volume: 62 start-page: e202302302 year: 2023 ident: D4SC00711E/cit82/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202302302 – volume: 62 start-page: e202307880 year: 2023 ident: D4SC00711E/cit167/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202307880 – volume: 17 start-page: 2100722 year: 2021 ident: D4SC00711E/cit43/1 publication-title: Small doi: 10.1002/smll.202100722 – volume: 9 start-page: 1118 year: 2023 ident: D4SC00711E/cit26/1 publication-title: Chem doi: 10.1016/j.chempr.2023.03.033 – volume: 13 start-page: 3527 year: 2020 ident: D4SC00711E/cit174/1 publication-title: Energy Environ. Sci. doi: 10.1039/D0EE01538E – volume: 33 start-page: 2007406 year: 2021 ident: D4SC00711E/cit246/1 publication-title: Adv. Mater. doi: 10.1002/adma.202007406 – volume: 33 start-page: 2210197 year: 2023 ident: D4SC00711E/cit123/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202210197 – volume: 16 start-page: 3919 year: 2023 ident: D4SC00711E/cit115/1 publication-title: Energy Environ. Sci. doi: 10.1039/D3EE00864A – volume: 61 start-page: e202116560 year: 2022 ident: D4SC00711E/cit199/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202116560 – volume: 52 start-page: 161 year: 2022 ident: D4SC00711E/cit146/1 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2022.06.058 – volume: 33 start-page: 2305659 year: 2023 ident: D4SC00711E/cit245/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202305659 – volume: 16 start-page: 687 year: 2023 ident: D4SC00711E/cit52/1 publication-title: Energy Environ. Sci. doi: 10.1039/D2EE03528F – volume: 61 start-page: e202210979 year: 2022 ident: D4SC00711E/cit66/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202210979 – volume: 16 start-page: 1721 year: 2023 ident: D4SC00711E/cit116/1 publication-title: Energy Environ. Sci. doi: 10.1039/D3EE00045A – volume: 14 start-page: 4205 year: 2023 ident: D4SC00711E/cit134/1 publication-title: Nat. Commun. doi: 10.1038/s41467-023-39947-8 – volume: 34 start-page: 2200782 year: 2022 ident: D4SC00711E/cit226/1 publication-title: Adv. Mater. doi: 10.1002/adma.202200782 – volume: 6 start-page: 2704 year: 2021 ident: D4SC00711E/cit76/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.1c01054 – volume: 63 start-page: 102980 year: 2023 ident: D4SC00711E/cit160/1 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2023.102980 – volume: 6 start-page: 269 year: 2021 ident: D4SC00711E/cit264/1 publication-title: Joule – volume: 12 start-page: 2102707 year: 2022 ident: D4SC00711E/cit4/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202102707 – volume: 17 start-page: 3948 year: 2023 ident: D4SC00711E/cit250/1 publication-title: ACS Nano doi: 10.1021/acsnano.2c12587 – volume: 6 start-page: 395 year: 2021 ident: D4SC00711E/cit98/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.0c02371 – volume: 35 start-page: 2208764 year: 2023 ident: D4SC00711E/cit223/1 publication-title: Adv. Mater. doi: 10.1002/adma.202208764 – volume: 62 start-page: e202214966 year: 2023 ident: D4SC00711E/cit161/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202214966 – volume: 17 start-page: 2302846 year: 2023 ident: D4SC00711E/cit280/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202302846 – volume: 35 start-page: e2300073 year: 2023 ident: D4SC00711E/cit150/1 publication-title: Adv. Mater. doi: 10.1002/adma.202300073 – volume: 13 start-page: 3699 year: 2022 ident: D4SC00711E/cit196/1 publication-title: Nat. Commun. doi: 10.1038/s41467-022-31461-7 – volume: 15 start-page: 4748 year: 2022 ident: D4SC00711E/cit229/1 publication-title: Energy Environ. Sci. doi: 10.1039/D2EE02687B – volume: 13 start-page: 2301193 year: 2023 ident: D4SC00711E/cit260/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202301193 – volume: 427 start-page: 131705 year: 2022 ident: D4SC00711E/cit180/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.131705 – volume: 16 start-page: 9461 year: 2022 ident: D4SC00711E/cit111/1 publication-title: ACS Nano doi: 10.1021/acsnano.2c02448 – volume: 62 start-page: 102928 year: 2023 ident: D4SC00711E/cit267/1 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2023.102928 – volume: 59 start-page: 22397 year: 2020 ident: D4SC00711E/cit86/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202007567 – volume: 61 start-page: e202112304 year: 2022 ident: D4SC00711E/cit97/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202112304 – volume: 481 start-page: 228831 year: 2021 ident: D4SC00711E/cit219/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2020.228831 – volume: 3 start-page: 516 year: 2020 ident: D4SC00711E/cit163/1 publication-title: Energy Environ. Mater. doi: 10.1002/eem2.12077 – volume: 34 start-page: 2200667 year: 2022 ident: D4SC00711E/cit81/1 publication-title: Adv. Mater. – volume: 62 start-page: e202309601 year: 2023 ident: D4SC00711E/cit92/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202309601 – volume: 61 start-page: e202212512 year: 2022 ident: D4SC00711E/cit36/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202212512 – volume: 62 start-page: e202308017 year: 2023 ident: D4SC00711E/cit184/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202308017 – volume: 8 start-page: 1192 year: 2023 ident: D4SC00711E/cit29/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.2c02455 – volume: 2 start-page: e9120039 year: 2023 ident: D4SC00711E/cit243/1 publication-title: Nano Res. Energy doi: 10.26599/NRE.2023.9120039 – volume: 34 start-page: 2203104 year: 2022 ident: D4SC00711E/cit194/1 publication-title: Adv. Mater. doi: 10.1002/adma.202203104 – volume: 35 start-page: 2300369 year: 2023 ident: D4SC00711E/cit40/1 publication-title: Adv. Mater. doi: 10.1002/adma.202300369 – volume: 35 start-page: 2210055 year: 2023 ident: D4SC00711E/cit41/1 publication-title: Adv. Mater. doi: 10.1002/adma.202210055 – volume: 12 start-page: 1938 year: 2019 ident: D4SC00711E/cit256/1 publication-title: Energy Environ. Sci. doi: 10.1039/C9EE00596J – volume: 7 start-page: 2331 year: 2022 ident: D4SC00711E/cit67/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.2c00560 – volume: 14 start-page: 4077 year: 2021 ident: D4SC00711E/cit206/1 publication-title: Energy Environ. Sci. doi: 10.1039/D1EE00783A – volume: 33 start-page: e2100187 year: 2021 ident: D4SC00711E/cit55/1 publication-title: Adv. Mater. doi: 10.1002/adma.202100187 – volume: 13 start-page: 3252 year: 2022 ident: D4SC00711E/cit48/1 publication-title: Nat. Commun. doi: 10.1038/s41467-022-30939-8 – volume: 61 start-page: e202202780 year: 2022 ident: D4SC00711E/cit142/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202202780 – volume: 31 start-page: 2107652 year: 2021 ident: D4SC00711E/cit112/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202107652 – volume: 19 start-page: 2207502 year: 2023 ident: D4SC00711E/cit145/1 publication-title: Small doi: 10.1002/smll.202207502 – volume: 4 start-page: 2952 year: 2019 ident: D4SC00711E/cit158/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.9b02306 – volume: 58 start-page: 85 year: 2023 ident: D4SC00711E/cit131/1 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2023.03.005 – volume: 32 start-page: 2200606 year: 2022 ident: D4SC00711E/cit183/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202200606 – volume: 14 start-page: 3067 year: 2023 ident: D4SC00711E/cit164/1 publication-title: Nat. Commun. doi: 10.1038/s41467-023-38460-2 – volume: 30 start-page: 2001263 year: 2020 ident: D4SC00711E/cit236/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202001263 – volume: 454 start-page: 140435 year: 2023 ident: D4SC00711E/cit108/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.140435 – volume: 62 start-page: e2022126695 year: 2023 ident: D4SC00711E/cit102/1 publication-title: Angew. Chem., Int. Ed. – volume: 165 start-page: A3048 year: 2018 ident: D4SC00711E/cit257/1 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0331813jes – volume: 34 start-page: 2203710 year: 2022 ident: D4SC00711E/cit157/1 publication-title: Adv. Mater. doi: 10.1002/adma.202203710 – volume: 14 start-page: 3526 year: 2023 ident: D4SC00711E/cit165/1 publication-title: Nat. Commun. doi: 10.1038/s41467-023-39237-3 – volume: 32 start-page: 2207898 year: 2022 ident: D4SC00711E/cit45/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202207898 – volume: 6 start-page: e202200478 year: 2023 ident: D4SC00711E/cit51/1 publication-title: Batteries Supercaps doi: 10.1002/batt.202200478 – volume: 167 start-page: 140520 year: 2020 ident: D4SC00711E/cit209/1 publication-title: J. Electrochem. Soc. doi: 10.1149/1945-7111/abc206 – volume: 34 start-page: 2206963 year: 2022 ident: D4SC00711E/cit101/1 publication-title: Adv. Mater. doi: 10.1002/adma.202206963 – volume: 13 start-page: 8243 year: 2022 ident: D4SC00711E/cit272/1 publication-title: Chem. Sci. doi: 10.1039/D2SC01818G – volume: 7 start-page: 2515 year: 2022 ident: D4SC00711E/cit85/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.2c01152 – volume: 62 start-page: e202215600 year: 2023 ident: D4SC00711E/cit238/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202215600 – volume: 35 start-page: 2209288 year: 2023 ident: D4SC00711E/cit143/1 publication-title: Adv. Mater. doi: 10.1002/adma.202209288 – volume: 3 start-page: e9120100 year: 2024 ident: D4SC00711E/cit20/1 publication-title: Nano Res. Energy doi: 10.26599/NRE.2023.9120100 – volume: 3 start-page: 1819 year: 2021 ident: D4SC00711E/cit117/1 publication-title: ACS Mater. Lett. doi: 10.1021/acsmaterialslett.1c00566 – volume: 342 start-page: 136073 year: 2020 ident: D4SC00711E/cit205/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2020.136073 – volume: 62 start-page: e202309957 year: 2023 ident: D4SC00711E/cit25/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202309957 – volume: 58 start-page: 15841 year: 2019 ident: D4SC00711E/cit44/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201907830 – volume: 16 start-page: 21152 year: 2022 ident: D4SC00711E/cit255/1 publication-title: ACS Nano doi: 10.1021/acsnano.2c09111 – volume: 14 start-page: 5563 year: 2021 ident: D4SC00711E/cit47/1 publication-title: Energy Environ. Sci. doi: 10.1039/D1EE01861B – volume: 62 start-page: e202216934 year: 2023 ident: D4SC00711E/cit120/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202216934 – volume: 17 start-page: 3765 year: 2023 ident: D4SC00711E/cit69/1 publication-title: ACS Nano doi: 10.1021/acsnano.2c11516 – volume: 23 start-page: 1135 year: 2023 ident: D4SC00711E/cit169/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.2c03433 – volume: 33 start-page: 2305804 year: 2023 ident: D4SC00711E/cit91/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202305804 – volume: 51 start-page: 933 year: 2012 ident: D4SC00711E/cit1/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201106307 – volume: 10 start-page: 14399 year: 2022 ident: D4SC00711E/cit152/1 publication-title: J. Mater. Chem. A doi: 10.1039/D2TA03550B – volume: 14 start-page: 5947 year: 2021 ident: D4SC00711E/cit231/1 publication-title: Energy Environ. Sci. doi: 10.1039/D1EE01851E – volume: 431 start-page: 134076 year: 2022 ident: D4SC00711E/cit118/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.134076 – volume: 2 start-page: 509 year: 2022 ident: D4SC00711E/cit16/1 publication-title: eScience doi: 10.1016/j.esci.2022.04.003 – volume: 20 start-page: 2306211 year: 2023 ident: D4SC00711E/cit254/1 publication-title: Small doi: 10.1002/smll.202306211 – volume: 62 start-page: e202215552 year: 2023 ident: D4SC00711E/cit39/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202215552 – volume: 62 start-page: e202303557 year: 2023 ident: D4SC00711E/cit270/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202303557 – volume: 17 start-page: 2303550 year: 2023 ident: D4SC00711E/cit181/1 publication-title: Adv. Mater. doi: 10.1002/adma.202303550 – volume: 14 start-page: 2114 year: 2023 ident: D4SC00711E/cit42/1 publication-title: Chem. Sci. doi: 10.1039/D2SC06276C – volume: 13 start-page: 48855 year: 2021 ident: D4SC00711E/cit151/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c14947 – volume: 4 start-page: 2200270 year: 2023 ident: D4SC00711E/cit80/1 publication-title: Small Struct. doi: 10.1002/sstr.202200270 – volume: 18 start-page: e2200742 year: 2022 ident: D4SC00711E/cit99/1 publication-title: Small doi: 10.1002/smll.202200742 – volume: 41 start-page: 101376 year: 2023 ident: D4SC00711E/cit189/1 publication-title: Curr. Opin. Electrochem. doi: 10.1016/j.coelec.2023.101376 – volume: 62 start-page: e202300125 year: 2023 ident: D4SC00711E/cit178/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202300125 – volume: 32 start-page: 2209065 year: 2022 ident: D4SC00711E/cit38/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202209065 – volume: 34 start-page: 2106897 year: 2022 ident: D4SC00711E/cit227/1 publication-title: Adv. Mater. doi: 10.1002/adma.202106897 – volume: 35 start-page: 586 year: 2021 ident: D4SC00711E/cit34/1 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2020.11.041 – volume: 9 start-page: 2104866 year: 2022 ident: D4SC00711E/cit148/1 publication-title: Adv. Sci. doi: 10.1002/advs.202104866 – volume: 51 start-page: 1636 year: 2006 ident: D4SC00711E/cit258/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2005.02.137 – volume: 32 start-page: 2899 year: 2021 ident: D4SC00711E/cit18/1 publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2021.02.055 – volume: 14 start-page: 42 year: 2022 ident: D4SC00711E/cit8/1 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-021-00782-5 – volume: 15 start-page: 205 year: 2023 ident: D4SC00711E/cit175/1 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-023-01171-w – volume: 36 start-page: 2308086 year: 2023 ident: D4SC00711E/cit15/1 publication-title: Adv. Mater. doi: 10.1002/adma.202308086 – volume: 53 start-page: 559 year: 2022 ident: D4SC00711E/cit121/1 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2022.08.033 – volume: 542 start-page: 231730 year: 2022 ident: D4SC00711E/cit277/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2022.231730 – volume: 14 start-page: 205 year: 2022 ident: D4SC00711E/cit114/1 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-022-00939-w – volume: 6 start-page: 1103 year: 2022 ident: D4SC00711E/cit239/1 publication-title: Joule doi: 10.1016/j.joule.2022.04.017 – volume: 62 start-page: e202310143 year: 2023 ident: D4SC00711E/cit89/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202310143 – volume: 61 start-page: e202208051 year: 2022 ident: D4SC00711E/cit95/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202208051 – volume: 30 start-page: 1 year: 2020 ident: D4SC00711E/cit262/1 publication-title: J. Met., Mater. Miner. doi: 10.55713/jmmm.v30i3.900 – volume: 11 start-page: 2101518 year: 2021 ident: D4SC00711E/cit202/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202101518 – volume: 62 start-page: e202301570 year: 2023 ident: D4SC00711E/cit109/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202301570 – volume: 453 start-page: 638 year: 2008 ident: D4SC00711E/cit54/1 publication-title: Nature doi: 10.1038/nature06964 – volume: 14 start-page: 3796 year: 2021 ident: D4SC00711E/cit75/1 publication-title: Energy Environ. Sci. doi: 10.1039/D1EE00030F – volume: 11 start-page: 2003065 year: 2021 ident: D4SC00711E/cit7/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202003065 – volume: 122 start-page: 21108 year: 2018 ident: D4SC00711E/cit172/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.8b03383 – volume: 62 start-page: e202307271 year: 2023 ident: D4SC00711E/cit144/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202307271 – volume: 12 start-page: 2200115 year: 2022 ident: D4SC00711E/cit197/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202200115 – volume: 16 start-page: 11392 year: 2022 ident: D4SC00711E/cit77/1 publication-title: ACS Nano doi: 10.1021/acsnano.2c05285 – volume: 15 start-page: 1691 year: 2015 ident: D4SC00711E/cit168/1 publication-title: Nano Lett. doi: 10.1021/nl504336h – volume: 13 start-page: 2301466 year: 2023 ident: D4SC00711E/cit87/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202301466 – volume: 9 start-page: e2201433 year: 2022 ident: D4SC00711E/cit105/1 publication-title: Adv. Sci. doi: 10.1002/advs.202201433 – volume: 62 start-page: e202303011 year: 2023 ident: D4SC00711E/cit106/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202303011 – volume: 144 start-page: 18435 year: 2022 ident: D4SC00711E/cit84/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c06927 – volume: 2 start-page: 310 year: 2023 ident: D4SC00711E/cit187/1 publication-title: Carbon Neutralization doi: 10.1002/cnl2.56 – volume: 13 start-page: 53227 year: 2021 ident: D4SC00711E/cit204/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c16263 – volume: 2 start-page: 540 year: 2020 ident: D4SC00711E/cit149/1 publication-title: Carbon Energy doi: 10.1002/cey2.67 – volume: 18 start-page: 2105978 year: 2022 ident: D4SC00711E/cit156/1 publication-title: Small doi: 10.1002/smll.202105978 – volume: 12 start-page: 55476 year: 2020 ident: D4SC00711E/cit203/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c17023 – volume: 62 start-page: e202311988 year: 2023 ident: D4SC00711E/cit14/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202311988 – volume: 58 start-page: 204 year: 2023 ident: D4SC00711E/cit222/1 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2023.03.029 – volume: 6 start-page: 1733 year: 2022 ident: D4SC00711E/cit6/1 publication-title: Joule doi: 10.1016/j.joule.2022.06.002 – volume: 17 start-page: 17359 year: 2023 ident: D4SC00711E/cit242/1 publication-title: ACS Nano doi: 10.1021/acsnano.3c05369 – volume: 31 start-page: 1903675 year: 2019 ident: D4SC00711E/cit137/1 publication-title: Adv. Mater. doi: 10.1002/adma.201903675 – volume: 36 start-page: 2307708 year: 2023 ident: D4SC00711E/cit220/1 publication-title: Adv. Mater. doi: 10.1002/adma.202307708 – volume: 62 start-page: e202310290 year: 2023 ident: D4SC00711E/cit122/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202310290 – volume: 556 start-page: 232460 year: 2023 ident: D4SC00711E/cit210/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2022.232460 – volume: 1 start-page: e9120023 year: 2022 ident: D4SC00711E/cit281/1 publication-title: Nano Res. Energy doi: 10.26599/NRE.2022.9120023 – volume: 12 start-page: 2102780 year: 2022 ident: D4SC00711E/cit78/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202102780 – volume: 13 start-page: 38816 year: 2021 ident: D4SC00711E/cit173/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c07864 – volume: 7 start-page: 1145 year: 2023 ident: D4SC00711E/cit27/1 publication-title: Joule doi: 10.1016/j.joule.2023.05.004 – volume: 33 start-page: 2101649 year: 2021 ident: D4SC00711E/cit225/1 publication-title: Adv. Mater. doi: 10.1002/adma.202101649 – volume: 35 start-page: e202309601 year: 2023 ident: D4SC00711E/cit93/1 publication-title: Adv. Mater. – volume: 15 start-page: 14196 year: 2023 ident: D4SC00711E/cit190/1 publication-title: ACS Appl. Mater. Interfaces – volume: 62 start-page: e202218545 year: 2023 ident: D4SC00711E/cit30/1 publication-title: Angew. Chem., Int. Ed. – volume: 14 start-page: 3609 year: 2021 ident: D4SC00711E/cit126/1 publication-title: Energy Environ. Sci. doi: 10.1039/D1EE00308A – volume: 29 start-page: 120 year: 2019 ident: D4SC00711E/cit244/1 publication-title: J. Met., Mater. Miner. doi: 10.55713/jmmm.v29i4.652 – volume: 49 start-page: 463 year: 2022 ident: D4SC00711E/cit63/1 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2022.04.018 – volume: 10 start-page: 2001599 year: 2020 ident: D4SC00711E/cit73/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202001599 – volume: 12 start-page: 2102982 year: 2022 ident: D4SC00711E/cit104/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202102982 – volume: 33 start-page: 2007416 year: 2021 ident: D4SC00711E/cit125/1 publication-title: Adv. Mater. doi: 10.1002/adma.202007416 – volume: 9 start-page: 9681 year: 2017 ident: D4SC00711E/cit61/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b16560 – volume: 5 start-page: 205 year: 2022 ident: D4SC00711E/cit94/1 publication-title: Nat. Sustain. doi: 10.1038/s41893-021-00800-9 – volume: 12 start-page: 2200255 year: 2022 ident: D4SC00711E/cit213/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202200255 – volume: 17 start-page: 2303590 year: 2023 ident: D4SC00711E/cit214/1 publication-title: Adv. Funct. Mater. – volume: 62 start-page: e202218612 year: 2023 ident: D4SC00711E/cit170/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202218612 – volume: 11 start-page: 44077 year: 2019 ident: D4SC00711E/cit153/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b13174 – volume: 11 start-page: 24902 year: 2023 ident: D4SC00711E/cit19/1 publication-title: J. Mater. Chem. A doi: 10.1039/D3TA05650C – volume: 62 start-page: e202301192 year: 2023 ident: D4SC00711E/cit49/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202301192 – volume: 33 start-page: 2100445 year: 2021 ident: D4SC00711E/cit130/1 publication-title: Adv. Mater. doi: 10.1002/adma.202100445 – volume: 34 start-page: 2207344 year: 2022 ident: D4SC00711E/cit195/1 publication-title: Adv. Mater. doi: 10.1002/adma.202207344 – volume: 59 start-page: 102767 year: 2023 ident: D4SC00711E/cit96/1 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2023.04.006 – volume: 34 start-page: e2202552 year: 2022 ident: D4SC00711E/cit211/1 publication-title: Adv. Mater. doi: 10.1002/adma.202202552 – volume: 6 start-page: 11113 year: 2018 ident: D4SC00711E/cit279/1 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA03143F – volume: 13 start-page: 40638 year: 2021 ident: D4SC00711E/cit68/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c11106 – volume: 6 start-page: 1474 year: 2023 ident: D4SC00711E/cit22/1 publication-title: Nat. Sustain. doi: 10.1038/s41893-023-01172-y – volume: 37 start-page: 371 year: 2022 ident: D4SC00711E/cit200/1 publication-title: New Carbon Mater. doi: 10.1016/S1872-5805(22)60601-2 – volume: 32 start-page: 202109749 year: 2022 ident: D4SC00711E/cit259/1 publication-title: Adv. Funct. Mater. – volume: 17 start-page: 23861 year: 2023 ident: D4SC00711E/cit64/1 publication-title: ACS Nano doi: 10.1021/acsnano.3c08095 – volume: 60 start-page: 7366 year: 2021 ident: D4SC00711E/cit79/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202016531 – volume: 8 start-page: eabp8960 year: 2022 ident: D4SC00711E/cit177/1 publication-title: Sci. Adv. doi: 10.1126/sciadv.abp8960 – volume: 391 start-page: 138877 year: 2021 ident: D4SC00711E/cit198/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2021.138877 – volume: 60 start-page: 13035 year: 2021 ident: D4SC00711E/cit119/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202103390 – volume: 13 start-page: 7822 year: 2022 ident: D4SC00711E/cit191/1 publication-title: Nat. Commun. doi: 10.1038/s41467-022-35486-w – volume: 17 start-page: 22722 year: 2023 ident: D4SC00711E/cit268/1 publication-title: ACS Nano doi: 10.1021/acsnano.3c07257 – volume: 15 start-page: 517 year: 2022 ident: D4SC00711E/cit59/1 publication-title: Energy Environ. Sci. – volume: 34 start-page: 22007118 year: 2022 ident: D4SC00711E/cit230/1 publication-title: Adv. Mater. – volume: 11 start-page: 2003927 year: 2021 ident: D4SC00711E/cit9/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202003927 – volume: 14 start-page: 6526 year: 2023 ident: D4SC00711E/cit237/1 publication-title: Nat. Commun. doi: 10.1038/s41467-023-42333-z – volume: 57 start-page: 628 year: 2023 ident: D4SC00711E/cit166/1 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2023.03.002 – volume: 18 start-page: 2205462 year: 2022 ident: D4SC00711E/cit110/1 publication-title: Small doi: 10.1002/smll.202205462 – volume: 28 start-page: 2721 year: 2023 ident: D4SC00711E/cit132/1 publication-title: Molecules doi: 10.3390/molecules28062721 – volume: 9 start-page: 93 year: 2023 ident: D4SC00711E/cit216/1 publication-title: npj Comput. Mater. doi: 10.1038/s41524-023-01039-y – volume: 54 start-page: 6046 year: 2009 ident: D4SC00711E/cit269/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2009.03.062 – volume: 17 start-page: 642 year: 2024 ident: D4SC00711E/cit72/1 publication-title: Energy Environ. Sci. doi: 10.1039/D3EE02522E – volume: 15 start-page: 26718 year: 2023 ident: D4SC00711E/cit21/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.3c03376 – volume: 19 start-page: 2206634 year: 2023 ident: D4SC00711E/cit136/1 publication-title: Small doi: 10.1002/smll.202206634 – volume: 9 start-page: 2105980 year: 2022 ident: D4SC00711E/cit221/1 publication-title: Adv. Sci. doi: 10.1002/advs.202105980 – volume: 42 start-page: 2504 year: 2023 ident: D4SC00711E/cit60/1 publication-title: Chem. Ind. Eng. Prog. – volume: 3 start-page: 1900119 year: 2019 ident: D4SC00711E/cit240/1 publication-title: Small Methods doi: 10.1002/smtd.201900119 – volume: 10 start-page: 5374 year: 2019 ident: D4SC00711E/cit37/1 publication-title: Nat. Commun. doi: 10.1038/s41467-019-13436-3 – volume: 11 start-page: 2102010 year: 2021 ident: D4SC00711E/cit103/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202102010 – volume: 32 start-page: 2207732 year: 2022 ident: D4SC00711E/cit65/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202207732 – volume: 13 start-page: 2203254 year: 2023 ident: D4SC00711E/cit62/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202203254 – volume: 9 start-page: e202101537 year: 2022 ident: D4SC00711E/cit215/1 publication-title: ChemElectroChem doi: 10.1002/celc.202101537 – volume: 62 start-page: e202310970 year: 2023 ident: D4SC00711E/cit179/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202310970 – volume: 62 start-page: e202218452 year: 2023 ident: D4SC00711E/cit32/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202218452 – volume: 32 start-page: 2206695 year: 2022 ident: D4SC00711E/cit128/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202206695 – volume: 81 start-page: 472 year: 2023 ident: D4SC00711E/cit235/1 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2023.02.036 – volume: 8 start-page: 1613 year: 2023 ident: D4SC00711E/cit182/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.3c00154 – volume: 14 start-page: 39 year: 2021 ident: D4SC00711E/cit139/1 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-021-00783-4 – volume: 57 start-page: 625 year: 2019 ident: D4SC00711E/cit252/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.12.086 – volume: 36 start-page: 2305988 year: 2023 ident: D4SC00711E/cit71/1 publication-title: Adv. Mater. doi: 10.1002/adma.202305988 – volume: 168 start-page: 120540 year: 2021 ident: D4SC00711E/cit217/1 publication-title: J. Electrochem. Soc. doi: 10.1149/1945-7111/ac4188 – volume: 14 start-page: 3872 year: 2021 ident: D4SC00711E/cit185/1 publication-title: Energy Environ. Sci. doi: 10.1039/D1EE00110H – volume: 47 start-page: 98 year: 2022 ident: D4SC00711E/cit247/1 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2022.01.059 – volume: 13 start-page: 10131 year: 2021 ident: D4SC00711E/cit271/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c00565 – volume: 62 start-page: e202218386 year: 2023 ident: D4SC00711E/cit57/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202218386 – volume: 16 start-page: 111 year: 2024 ident: D4SC00711E/cit133/1 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-024-01337-0 – volume: 18 start-page: 2202363 year: 2022 ident: D4SC00711E/cit162/1 publication-title: Small doi: 10.1002/smll.202202363 – volume: 15 start-page: 753 year: 2024 ident: D4SC00711E/cit276/1 publication-title: Nat. Commun. doi: 10.1038/s41467-024-44893-0 – volume: 33 start-page: 2302293 year: 2023 ident: D4SC00711E/cit249/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202302293 – volume: 7 start-page: 366 year: 2023 ident: D4SC00711E/cit212/1 publication-title: Joule doi: 10.1016/j.joule.2023.01.010 – volume: 62 start-page: e202218872 year: 2023 ident: D4SC00711E/cit90/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202218872 |
SSID | ssj0000331527 |
Score | 2.4843264 |
SecondaryResourceType | review_article |
Snippet | The research interest in aqueous zinc-ion batteries (AZIBs) has been surging due to the advantages of safety, abundance, and high electrochemical performance.... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 7010 |
SubjectTerms | Chemistry Electrochemical analysis Electrolytes Energy storage Hydrogen evolution reactions Performance degradation Rechargeable batteries Simulation Smart grid Solid electrolytes Zinc Zinc plating |
Title | Rescuing zinc anode–electrolyte interface: mechanisms, theoretical simulations and in situ characterizations |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38756795 https://www.proquest.com/docview/3054837202 https://www.proquest.com/docview/3056667207 https://pubmed.ncbi.nlm.nih.gov/PMC11095385 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELZK9wAXxD-FZRUEFyQCSWznhxtaulqtyiItLeqeoja2tUG7KdomB3riHXgHHownYSaxXZeuEHCJWsd1I8_neGY88w0hzxmYGCrlzI-loD4TkvqZVMJP8cxIUBpxgf6O98fx4YQdTfm01_vhRC019fxVsboyr-R_pAptIFfMkv0HydpBoQE-g3zhChKG61_J-EQuiwZt_VVZIe3qQkgTvEB1fZvzr7VsOSEuFfrLwf6_kJjsWy47H4ubyLgsLxoTGteRMkFT3WBysCZ1Xjn-PUNvYBgHTIIQHgubRDDHzzAqm_Yg5ExWn0uLJuuvnpazhZJ6G3W7Y9Ux23pU6u6njXT9FRHDo_YuY1MHOqFXxISktiEnurDd-s0XBSz0Yx51BzbSbeuYj-yrm7sQzZwXcRLoaFmpv3Z0G1sbRkCRb1WwZYHKVijX26IJBTj-kB9MRqN8PJyOr5GdCMyRoE92Tj5NpqfWmwfD6_rA9tkNFy7NXq-H39R-tkya3yNzHVVnfIvc1DaK97YD3G3Sk9Udct3O4F1SGeB5CDyvBd7Pb98dyHkWcm-8NeBeeg7cPAduMISAn3gIN28LbvfI5GA43j_0deEOv4AlXvuZoqC2guYeSJmqmM4iJZJIBqESIo2LkCtOE8UTgUWSwlTKhEaZEJGExcHYnNL7pF8tKvmQeCFNshlYLTTjigWRms_DAtV2NUM-LR4OyAszoXmhWe2xuMp53kZX0Cx_xz7ut5M_HJBntu-Xjsvlyl67Ri65XuvLHHZFLL0AeB6Qp_Y2zDoer80quWjaPnEcQ59kQB50YrR_Q9OEx0nGByTdELDtgCzvm3eq8qxle0dKYNBK-KM_P9djcmO92nZJv75s5BPQl-v5Xutn2tOQ_QW6OshZ |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rescuing+zinc+anode%E2%80%93electrolyte+interface%3A+mechanisms%2C+theoretical+simulations+and+in+situ+characterizations&rft.jtitle=Chemical+science+%28Cambridge%29&rft.au=Liu%2C+Zhenjie&rft.au=Zhang%2C+Xiaofeng&rft.au=Liu%2C+Zhiming&rft.au=Jiang%2C+Yue&rft.date=2024-05-15&rft.pub=Royal+Society+of+Chemistry&rft.issn=2041-6520&rft.eissn=2041-6539&rft.volume=15&rft.issue=19&rft.spage=7010&rft.epage=7033&rft_id=info:doi/10.1039%2Fd4sc00711e&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-6520&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-6520&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-6520&client=summon |