Rescuing zinc anode–electrolyte interface: mechanisms, theoretical simulations and in situ characterizations

The research interest in aqueous zinc-ion batteries (AZIBs) has been surging due to the advantages of safety, abundance, and high electrochemical performance. However, some technique issues, such as dendrites, hydrogen evolution reaction, and corrosion, severely prohibit the development of AZIBs in...

Full description

Saved in:
Bibliographic Details
Published inChemical science (Cambridge) Vol. 15; no. 19; pp. 7010 - 7033
Main Authors Liu, Zhenjie, Zhang, Xiaofeng, Liu, Zhiming, Jiang, Yue, Wu, Dianlun, Huang, Yang, Hu, Zhe
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 15.05.2024
The Royal Society of Chemistry
Subjects
Online AccessGet full text
ISSN2041-6520
2041-6539
DOI10.1039/D4SC00711E

Cover

Loading…
Abstract The research interest in aqueous zinc-ion batteries (AZIBs) has been surging due to the advantages of safety, abundance, and high electrochemical performance. However, some technique issues, such as dendrites, hydrogen evolution reaction, and corrosion, severely prohibit the development of AZIBs in practical utilizations. The underlying mechanisms regarding electrochemical performance deterioration and structure degradation are too complex to understand, especially when it comes to zinc metal anode–electrolyte interface. Recently, theoretical simulations and in situ characterizations have played a crucial role in AZIBs and are exploited to guide the research on electrolyte engineering and solid electrolyte interphase. Herein, we present a comprehensive review of the current state of the fundamental mechanisms involved in the zinc plating/stripping process and underscore the importance of theoretical simulations and in situ characterizations in mechanism research. Finally, we summarize the challenges and opportunities for AZIBs in practical applications, especially as a stationary energy storage and conversion device in a smart grid.
AbstractList The research interest in aqueous zinc-ion batteries (AZIBs) has been surging due to the advantages of safety, abundance, and high electrochemical performance. However, some technique issues, such as dendrites, hydrogen evolution reaction, and corrosion, severely prohibit the development of AZIBs in practical utilizations. The underlying mechanisms regarding electrochemical performance deterioration and structure degradation are too complex to understand, especially when it comes to zinc metal anode-electrolyte interface. Recently, theoretical simulations and in situ characterizations have played a crucial role in AZIBs and are exploited to guide the research on electrolyte engineering and solid electrolyte interphase. Herein, we present a comprehensive review of the current state of the fundamental mechanisms involved in the zinc plating/stripping process and underscore the importance of theoretical simulations and in situ characterizations in mechanism research. Finally, we summarize the challenges and opportunities for AZIBs in practical applications, especially as a stationary energy storage and conversion device in a smart grid.The research interest in aqueous zinc-ion batteries (AZIBs) has been surging due to the advantages of safety, abundance, and high electrochemical performance. However, some technique issues, such as dendrites, hydrogen evolution reaction, and corrosion, severely prohibit the development of AZIBs in practical utilizations. The underlying mechanisms regarding electrochemical performance deterioration and structure degradation are too complex to understand, especially when it comes to zinc metal anode-electrolyte interface. Recently, theoretical simulations and in situ characterizations have played a crucial role in AZIBs and are exploited to guide the research on electrolyte engineering and solid electrolyte interphase. Herein, we present a comprehensive review of the current state of the fundamental mechanisms involved in the zinc plating/stripping process and underscore the importance of theoretical simulations and in situ characterizations in mechanism research. Finally, we summarize the challenges and opportunities for AZIBs in practical applications, especially as a stationary energy storage and conversion device in a smart grid.
The research interest in aqueous zinc-ion batteries (AZIBs) has been surging due to the advantages of safety, abundance, and high electrochemical performance. However, some technique issues, such as dendrites, hydrogen evolution reaction, and corrosion, severely prohibit the development of AZIBs in practical utilizations. The underlying mechanisms regarding electrochemical performance deterioration and structure degradation are too complex to understand, especially when it comes to zinc metal anode-electrolyte interface. Recently, theoretical simulations and characterizations have played a crucial role in AZIBs and are exploited to guide the research on electrolyte engineering and solid electrolyte interphase. Herein, we present a comprehensive review of the current state of the fundamental mechanisms involved in the zinc plating/stripping process and underscore the importance of theoretical simulations and characterizations in mechanism research. Finally, we summarize the challenges and opportunities for AZIBs in practical applications, especially as a stationary energy storage and conversion device in a smart grid.
The research interest in aqueous zinc-ion batteries (AZIBs) has been surging due to the advantages of safety, abundance, and high electrochemical performance. However, some technique issues, such as dendrites, hydrogen evolution reaction, and corrosion, severely prohibit the development of AZIBs in practical utilizations. The underlying mechanisms regarding electrochemical performance deterioration and structure degradation are too complex to understand, especially when it comes to zinc metal anode–electrolyte interface. Recently, theoretical simulations and in situ characterizations have played a crucial role in AZIBs and are exploited to guide the research on electrolyte engineering and solid electrolyte interphase. Herein, we present a comprehensive review of the current state of the fundamental mechanisms involved in the zinc plating/stripping process and underscore the importance of theoretical simulations and in situ characterizations in mechanism research. Finally, we summarize the challenges and opportunities for AZIBs in practical applications, especially as a stationary energy storage and conversion device in a smart grid.
The research interest in aqueous zinc-ion batteries (AZIBs) has been surging due to the advantages of safety, abundance, and high electrochemical performance. However, some technique issues, such as dendrites, hydrogen evolution reaction, and corrosion, severely prohibit the development of AZIBs in practical utilizations. The underlying mechanisms regarding electrochemical performance deterioration and structure degradation are too complex to understand, especially when it comes to zinc metal anode–electrolyte interface. Recently, theoretical simulations and in situ characterizations have played a crucial role in AZIBs and are exploited to guide the research on electrolyte engineering and solid electrolyte interphase. Herein, we present a comprehensive review of the current state of the fundamental mechanisms involved in the zinc plating/stripping process and underscore the importance of theoretical simulations and in situ characterizations in mechanism research. Finally, we summarize the challenges and opportunities for AZIBs in practical applications, especially as a stationary energy storage and conversion device in a smart grid. The protective mechanisms, theoretical simulations and in situ characterizations of zinc metal anode–electrolyte interface are critically analyzed, and the possible development directions are emphasized.
The research interest in aqueous zinc-ion batteries (AZIBs) has been surging due to the advantages of safety, abundance, and high electrochemical performance. However, some technique issues, such as dendrites, hydrogen evolution reaction, and corrosion, severely prohibit the development of AZIBs in practical utilizations. The underlying mechanisms regarding electrochemical performance deterioration and structure degradation are too complex to understand, especially when it comes to zinc metal anode–electrolyte interface. Recently, theoretical simulations and in situ characterizations have played a crucial role in AZIBs and are exploited to guide the research on electrolyte engineering and solid electrolyte interphase. Herein, we present a comprehensive review of the current state of the fundamental mechanisms involved in the zinc plating/stripping process and underscore the importance of theoretical simulations and in situ characterizations in mechanism research. Finally, we summarize the challenges and opportunities for AZIBs in practical applications, especially as a stationary energy storage and conversion device in a smart grid.
Author Jiang, Yue
Wu, Dianlun
Liu, Zhiming
Huang, Yang
Hu, Zhe
Zhang, Xiaofeng
Liu, Zhenjie
Author_xml – sequence: 1
  givenname: Zhenjie
  orcidid: 0000-0001-6118-7882
  surname: Liu
  fullname: Liu, Zhenjie
  organization: Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, Guangdong, P. R. China
– sequence: 2
  givenname: Xiaofeng
  surname: Zhang
  fullname: Zhang, Xiaofeng
  organization: Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, Guangdong, P. R. China
– sequence: 3
  givenname: Zhiming
  surname: Liu
  fullname: Liu, Zhiming
  organization: Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, Guangdong, P. R. China
– sequence: 4
  givenname: Yue
  surname: Jiang
  fullname: Jiang, Yue
  organization: The Hong Kong University of Science and Technology (Guangzhou), Advanced Materials Thrust, Nansha, Guangzhou, 511400, Guangdong, P. R. China
– sequence: 5
  givenname: Dianlun
  surname: Wu
  fullname: Wu, Dianlun
  organization: The Hong Kong University of Science and Technology (Guangzhou), Advanced Materials Thrust, Nansha, Guangzhou, 511400, Guangdong, P. R. China
– sequence: 6
  givenname: Yang
  orcidid: 0000-0001-5060-3414
  surname: Huang
  fullname: Huang, Yang
  organization: Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, Guangdong, P. R. China, The Hong Kong University of Science and Technology (Guangzhou), Advanced Materials Thrust, Nansha, Guangzhou, 511400, Guangdong, P. R. China
– sequence: 7
  givenname: Zhe
  orcidid: 0000-0001-7652-6939
  surname: Hu
  fullname: Hu, Zhe
  organization: Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, Guangdong, P. R. China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38756795$$D View this record in MEDLINE/PubMed
BookMark eNptkc9KHTEYxYNY1KqbPkAZ6KZIr-bPZDLTTZFbawVB6J91iMkXbySTaJIp6Krv0Df0SYxetVWaTUK-3zmc5LxGqyEGQOgNwbsEs2Hvc_t9jrEg5GAFbVDcklnH2bD6dKZ4HW3nfI7rYoxwKtbQOusF78TAN1D4BllPLpw11y7oRoVo4Ob3H_CgS4r-qkDjQoFklYaPzQh6oYLLY_7QlAXEBMVp5Zvsxsmr4mLI1cJUSb0qU1PppHSVu-vldAu9sspn2H7YN9HPLwc_5l9nxyeHR_P945lusSizwTJMe4I5BuhtxxS1RlDAxBrTd5pwy5mwXJhOMEF6AMHoYAyFgUHbnjK2iT4tfS-m0xGMhlCS8vIiuVGlKxmVk88nwS3kWfwlCcEDZz2vDu8fHFK8nCAXObqswXsVIE5ZMsy7rhMUi4q-e4GexymF-r47qu1ZpWil3v4b6SnLYxcVwEtAp5hzAiu1K_ffVhM6LwmWd43Lv41Xyc4LyaPrf-BbGqetmw
CitedBy_id crossref_primary_10_34133_energymatadv_0141
crossref_primary_10_1016_j_cej_2025_161327
crossref_primary_10_1016_j_jcis_2024_09_092
crossref_primary_10_1016_j_ensm_2025_104028
crossref_primary_10_1021_acsami_4c22053
crossref_primary_10_1063_5_0244175
crossref_primary_10_1002_smll_202407411
Cites_doi 10.1038/nmat1752
10.1002/adma.202200131
10.1021/jacs.0c09794
10.1002/adma.201903778
10.1039/D3SC01831H
10.1016/j.cej.2022.139577
10.1002/chem.202303211
10.1007/s40242-021-1041-6
10.1002/anie.201813223
10.1016/j.ensm.2022.08.046
10.1002/aenm.202302187
10.1002/aenm.202202219
10.1002/adfm.202304878
10.1021/acsenergylett.2c01958
10.1016/j.nanoen.2023.108858
10.1021/jacs.0c07992
10.1016/j.nanoen.2020.105739
10.1002/anie.202109682
10.1039/D2TA04015H
10.1038/s41565-022-01081-9
10.1002/adma.202206754
10.1021/acsaem.3c01724
10.1021/jacs.2c00551
10.1002/aenm.202003419
10.1016/j.electacta.2014.11.091
10.1021/acsaem.2c01868
10.1002/adma.202205369
10.1002/adma.202203153
10.1021/acs.chemrev.1c00904
10.1002/eom2.12035
10.1021/acsnano.2c09317
10.1021/acsnano.9b05599
10.1021/acsenergylett.0c01792
10.1039/D0EE02079F
10.1016/j.esci.2023.100093
10.1039/D1EE03377H
10.1021/acsnano.2c03398
10.1016/j.ensm.2023.102941
10.1088/2515-7639/ac3f9a
10.1007/s40820-023-01050-4
10.1002/sus2.53
10.1021/acs.nanolett.3c02904
10.1016/j.ensm.2022.05.022
10.1126/science.aax6873
10.1039/D2EE02931F
10.1002/cey2.343
10.1002/adma.202208630
10.1039/D1TA02682H
10.1002/admi.202200564
10.1002/cssc.201600702
10.1002/smtd.202300731
10.1002/adfm.202301530
10.1002/aenm.202300550
10.1002/admt.202000555
10.1021/acsami.2c05887
10.1021/acs.nanolett.3c02379
10.1021/acsenergylett.2c02042
10.1007/s40820-022-01007-z
10.1021/acsami.7b01705
10.1016/j.cej.2022.138772
10.1002/anie.202302302
10.1002/anie.202307880
10.1002/smll.202100722
10.1016/j.chempr.2023.03.033
10.1039/D0EE01538E
10.1002/adma.202007406
10.1002/adfm.202210197
10.1039/D3EE00864A
10.1002/anie.202116560
10.1016/j.ensm.2022.06.058
10.1002/adfm.202305659
10.1039/D2EE03528F
10.1002/anie.202210979
10.1039/D3EE00045A
10.1038/s41467-023-39947-8
10.1002/adma.202200782
10.1021/acsenergylett.1c01054
10.1016/j.ensm.2023.102980
10.1002/aenm.202102707
10.1021/acsnano.2c12587
10.1021/acsenergylett.0c02371
10.1002/adma.202208764
10.1002/anie.202214966
10.1002/aenm.202302846
10.1002/adma.202300073
10.1038/s41467-022-31461-7
10.1039/D2EE02687B
10.1002/aenm.202301193
10.1016/j.cej.2021.131705
10.1021/acsnano.2c02448
10.1016/j.ensm.2023.102928
10.1002/anie.202007567
10.1002/anie.202112304
10.1016/j.jpowsour.2020.228831
10.1002/eem2.12077
10.1002/anie.202309601
10.1002/anie.202212512
10.1002/anie.202308017
10.1021/acsenergylett.2c02455
10.26599/NRE.2023.9120039
10.1002/adma.202203104
10.1002/adma.202300369
10.1002/adma.202210055
10.1039/C9EE00596J
10.1021/acsenergylett.2c00560
10.1039/D1EE00783A
10.1002/adma.202100187
10.1038/s41467-022-30939-8
10.1002/anie.202202780
10.1002/adfm.202107652
10.1002/smll.202207502
10.1021/acsenergylett.9b02306
10.1016/j.ensm.2023.03.005
10.1002/adfm.202200606
10.1038/s41467-023-38460-2
10.1002/adfm.202001263
10.1016/j.cej.2022.140435
10.1149/2.0331813jes
10.1002/adma.202203710
10.1038/s41467-023-39237-3
10.1002/adfm.202207898
10.1002/batt.202200478
10.1149/1945-7111/abc206
10.1002/adma.202206963
10.1039/D2SC01818G
10.1021/acsenergylett.2c01152
10.1002/anie.202215600
10.1002/adma.202209288
10.26599/NRE.2023.9120100
10.1021/acsmaterialslett.1c00566
10.1016/j.electacta.2020.136073
10.1002/anie.202309957
10.1002/anie.201907830
10.1021/acsnano.2c09111
10.1039/D1EE01861B
10.1002/anie.202216934
10.1021/acsnano.2c11516
10.1021/acs.nanolett.2c03433
10.1002/adfm.202305804
10.1002/anie.201106307
10.1039/D2TA03550B
10.1039/D1EE01851E
10.1016/j.cej.2021.134076
10.1016/j.esci.2022.04.003
10.1002/smll.202306211
10.1002/anie.202215552
10.1002/anie.202303557
10.1002/adma.202303550
10.1039/D2SC06276C
10.1021/acsami.1c14947
10.1002/sstr.202200270
10.1002/smll.202200742
10.1016/j.coelec.2023.101376
10.1002/anie.202300125
10.1002/adfm.202209065
10.1002/adma.202106897
10.1016/j.ensm.2020.11.041
10.1002/advs.202104866
10.1016/j.electacta.2005.02.137
10.1016/j.cclet.2021.02.055
10.1007/s40820-021-00782-5
10.1007/s40820-023-01171-w
10.1002/adma.202308086
10.1016/j.ensm.2022.08.033
10.1016/j.jpowsour.2022.231730
10.1007/s40820-022-00939-w
10.1016/j.joule.2022.04.017
10.1002/anie.202310143
10.1002/anie.202208051
10.55713/jmmm.v30i3.900
10.1002/aenm.202101518
10.1002/anie.202301570
10.1038/nature06964
10.1039/D1EE00030F
10.1002/aenm.202003065
10.1021/acs.jpcc.8b03383
10.1002/anie.202307271
10.1002/aenm.202200115
10.1021/acsnano.2c05285
10.1021/nl504336h
10.1002/aenm.202301466
10.1002/advs.202201433
10.1002/anie.202303011
10.1021/jacs.2c06927
10.1002/cnl2.56
10.1021/acsami.1c16263
10.1002/cey2.67
10.1002/smll.202105978
10.1021/acsami.0c17023
10.1002/anie.202311988
10.1016/j.ensm.2023.03.029
10.1016/j.joule.2022.06.002
10.1021/acsnano.3c05369
10.1002/adma.201903675
10.1002/adma.202307708
10.1002/anie.202310290
10.1016/j.jpowsour.2022.232460
10.26599/NRE.2022.9120023
10.1002/aenm.202102780
10.1021/acsami.1c07864
10.1016/j.joule.2023.05.004
10.1002/adma.202101649
10.1039/D1EE00308A
10.55713/jmmm.v29i4.652
10.1016/j.ensm.2022.04.018
10.1002/aenm.202001599
10.1002/aenm.202102982
10.1002/adma.202007416
10.1021/acsami.6b16560
10.1038/s41893-021-00800-9
10.1002/aenm.202200255
10.1002/anie.202218612
10.1021/acsami.9b13174
10.1039/D3TA05650C
10.1002/anie.202301192
10.1002/adma.202100445
10.1002/adma.202207344
10.1016/j.ensm.2023.04.006
10.1002/adma.202202552
10.1039/C8TA03143F
10.1021/acsami.1c11106
10.1038/s41893-023-01172-y
10.1016/S1872-5805(22)60601-2
10.1021/acsnano.3c08095
10.1002/anie.202016531
10.1126/sciadv.abp8960
10.1016/j.electacta.2021.138877
10.1002/anie.202103390
10.1038/s41467-022-35486-w
10.1021/acsnano.3c07257
10.1002/aenm.202003927
10.1038/s41467-023-42333-z
10.1016/j.ensm.2023.03.002
10.1002/smll.202205462
10.3390/molecules28062721
10.1038/s41524-023-01039-y
10.1016/j.electacta.2009.03.062
10.1039/D3EE02522E
10.1021/acsami.3c03376
10.1002/smll.202206634
10.1002/advs.202105980
10.1002/smtd.201900119
10.1038/s41467-019-13436-3
10.1002/aenm.202102010
10.1002/adfm.202207732
10.1002/aenm.202203254
10.1002/celc.202101537
10.1002/anie.202310970
10.1002/anie.202218452
10.1002/adfm.202206695
10.1016/j.jechem.2023.02.036
10.1021/acsenergylett.3c00154
10.1007/s40820-021-00783-4
10.1016/j.nanoen.2018.12.086
10.1002/adma.202305988
10.1149/1945-7111/ac4188
10.1039/D1EE00110H
10.1016/j.ensm.2022.01.059
10.1021/acsami.1c00565
10.1002/anie.202218386
10.1007/s40820-024-01337-0
10.1002/smll.202202363
10.1038/s41467-024-44893-0
10.1002/adfm.202302293
10.1016/j.joule.2023.01.010
10.1002/anie.202218872
ContentType Journal Article
Copyright This journal is © The Royal Society of Chemistry.
Copyright Royal Society of Chemistry 2024
This journal is © The Royal Society of Chemistry 2024 The Royal Society of Chemistry
Copyright_xml – notice: This journal is © The Royal Society of Chemistry.
– notice: Copyright Royal Society of Chemistry 2024
– notice: This journal is © The Royal Society of Chemistry 2024 The Royal Society of Chemistry
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
5PM
DOI 10.1039/D4SC00711E
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Materials Research Database

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2041-6539
EndPage 7033
ExternalDocumentID PMC11095385
38756795
10_1039_D4SC00711E
Genre Journal Article
Review
GrantInformation_xml – fundername: ;
  grantid: 22209116
– fundername: ;
  grantid: KQTD20221101093605019
– fundername: ;
  grantid: 2022YFB2402300
– fundername: ;
  grantid: 21825302
GroupedDBID 0-7
0R~
53G
705
7~J
AAEMU
AAFWJ
AAIWI
AAJAE
AARTK
AAXHV
AAYXX
ABEMK
ABIQK
ABPDG
ABXOH
ACGFS
ACIWK
ADBBV
ADMRA
AEFDR
AENEX
AESAV
AFLYV
AFPKN
AGEGJ
AGRSR
AHGCF
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANUXI
AOIJS
APEMP
AUDPV
AZFZN
BCNDV
BLAPV
BSQNT
C6K
CITATION
D0L
EE0
EF-
F5P
GROUPED_DOAJ
H13
HYE
HZ~
H~N
O-G
O9-
OK1
PGMZT
R7C
R7D
RAOCF
RCNCU
RNS
RPM
RRC
RSCEA
RVUXY
SKA
SKF
SKH
SKJ
SKM
SKR
SKZ
SLC
SLF
SLH
-JG
AGSTE
NPM
SMJ
7SR
8BQ
8FD
JG9
7X8
5PM
ID FETCH-LOGICAL-c407t-9f30281050ee8f63a2fd72e01fdd86c15f537f57d673718ee7329dd2e93e44b33
ISSN 2041-6520
IngestDate Thu Aug 21 18:35:19 EDT 2025
Sun Aug 24 04:05:04 EDT 2025
Fri Jul 25 08:35:11 EDT 2025
Wed Feb 19 02:00:27 EST 2025
Tue Jul 01 01:31:00 EDT 2025
Thu Apr 24 23:09:12 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
License This journal is © The Royal Society of Chemistry.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c407t-9f30281050ee8f63a2fd72e01fdd86c15f537f57d673718ee7329dd2e93e44b33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-6118-7882
0000-0001-7652-6939
0000-0001-5060-3414
OpenAccessLink http://dx.doi.org/10.1039/d4sc00711e
PMID 38756795
PQID 3054837202
PQPubID 2047492
PageCount 24
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11095385
proquest_miscellaneous_3056667207
proquest_journals_3054837202
pubmed_primary_38756795
crossref_citationtrail_10_1039_D4SC00711E
crossref_primary_10_1039_D4SC00711E
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-05-15
PublicationDateYYYYMMDD 2024-05-15
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-15
  day: 15
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Chemical science (Cambridge)
PublicationTitleAlternate Chem Sci
PublicationYear 2024
Publisher Royal Society of Chemistry
The Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
– name: The Royal Society of Chemistry
References Song (D4SC00711E/cit131/1) 2023; 58
Chen (D4SC00711E/cit96/1) 2023; 59
Zhou (D4SC00711E/cit227/1) 2022; 34
Li (D4SC00711E/cit264/1) 2021; 6
Zhou (D4SC00711E/cit226/1) 2022; 34
Zhou (D4SC00711E/cit224/1) 2022; 34
Wang (D4SC00711E/cit45/1) 2022; 32
Cora (D4SC00711E/cit271/1) 2021; 13
Lin (D4SC00711E/cit52/1) 2023; 16
Wang (D4SC00711E/cit58/1) 2022; 53
Li (D4SC00711E/cit89/1) 2023; 62
Wang (D4SC00711E/cit113/1) 2022; 7
Bayaguud (D4SC00711E/cit159/1) 2020; 5
Wang (D4SC00711E/cit16/1) 2022; 2
Yu (D4SC00711E/cit27/1) 2023; 7
Wang (D4SC00711E/cit122/1) 2023; 62
Sasaki (D4SC00711E/cit219/1) 2021; 481
Zhang (D4SC00711E/cit202/1) 2021; 11
Feng (D4SC00711E/cit132/1) 2023; 28
Xie (D4SC00711E/cit149/1) 2020; 2
Naveed (D4SC00711E/cit31/1) 2019; 58
Zhao (D4SC00711E/cit108/1) 2023; 454
Zhang (D4SC00711E/cit44/1) 2019; 58
Dong (D4SC00711E/cit272/1) 2022; 13
Yao (D4SC00711E/cit78/1) 2022; 12
Cao (D4SC00711E/cit13/1) 2022; 15
Yang (D4SC00711E/cit67/1) 2022; 7
Wang (D4SC00711E/cit114/1) 2022; 14
Wang (D4SC00711E/cit228/1) 2023; 452
Xiong (D4SC00711E/cit24/1) 2023; 33
Ni (D4SC00711E/cit249/1) 2023; 33
Lyu (D4SC00711E/cit106/1) 2023; 62
Li (D4SC00711E/cit2/1) 2023; 116
Yang (D4SC00711E/cit8/1) 2022; 14
Shen (D4SC00711E/cit86/1) 2020; 59
Li (D4SC00711E/cit237/1) 2023; 14
Liu (D4SC00711E/cit261/1) 2023; 32
Dong (D4SC00711E/cit22/1) 2023; 6
Hu (D4SC00711E/cit194/1) 2022; 34
Wang (D4SC00711E/cit4/1) 2022; 12
Yan (D4SC00711E/cit88/1) 2021; 82
Hao (D4SC00711E/cit101/1) 2022; 34
Zhang (D4SC00711E/cit200/1) 2022; 37
Zhu (D4SC00711E/cit80/1) 2023; 4
Guo (D4SC00711E/cit98/1) 2021; 6
Han (D4SC00711E/cit104/1) 2022; 12
Huang (D4SC00711E/cit123/1) 2023; 33
Qin (D4SC00711E/cit128/1) 2022; 32
Xu (D4SC00711E/cit1/1) 2012; 51
Hou (D4SC00711E/cit177/1) 2022; 8
Zhang (D4SC00711E/cit156/1) 2022; 18
Keist (D4SC00711E/cit205/1) 2020; 342
Lee (D4SC00711E/cit273/1) 2016; 9
Pei (D4SC00711E/cit281/1) 2022; 1
Zeng (D4SC00711E/cit137/1) 2019; 31
He (D4SC00711E/cit176/1) 2023; 62
Zhao (D4SC00711E/cit256/1) 2019; 12
Xie (D4SC00711E/cit139/1) 2021; 14
Amaral (D4SC00711E/cit235/1) 2023; 81
Sun (D4SC00711E/cit280/1) 2023; 17
Yang (D4SC00711E/cit184/1) 2023; 62
Zhao (D4SC00711E/cit99/1) 2022; 18
Zeng (D4SC00711E/cit26/1) 2023; 9
Zhang (D4SC00711E/cit76/1) 2021; 6
Zou (D4SC00711E/cit59/1) 2022; 15
Pu (D4SC00711E/cit211/1) 2022; 34
Hao (D4SC00711E/cit79/1) 2021; 60
Feng (D4SC00711E/cit68/1) 2021; 13
Wei (D4SC00711E/cit69/1) 2023; 17
Xie (D4SC00711E/cit120/1) 2023; 62
Huang (D4SC00711E/cit157/1) 2022; 34
Lv (D4SC00711E/cit229/1) 2022; 15
Zhang (D4SC00711E/cit277/1) 2022; 542
Zhang (D4SC00711E/cit103/1) 2021; 11
Cai (D4SC00711E/cit12/1) 2023; 3
Su (D4SC00711E/cit172/1) 2018; 122
Keist (D4SC00711E/cit201/1) 2015; 152
Ling (D4SC00711E/cit223/1) 2023; 35
Wang (D4SC00711E/cit253/1) 2021; 37
Yang (D4SC00711E/cit19/1) 2023; 11
Gu (D4SC00711E/cit197/1) 2022; 12
Tian (D4SC00711E/cit179/1) 2023; 62
Xu (D4SC00711E/cit77/1) 2022; 16
Li (D4SC00711E/cit189/1) 2023; 41
Cao (D4SC00711E/cit73/1) 2020; 10
Sun (D4SC00711E/cit61/1) 2017; 9
Woottapanit (D4SC00711E/cit23/1) 2023; 6
Zhang (D4SC00711E/cit150/1) 2023; 35
Yuan (D4SC00711E/cit64/1) 2023; 17
Xu (D4SC00711E/cit72/1) 2024; 17
Shang (D4SC00711E/cit183/1) 2022; 32
Ma (D4SC00711E/cit195/1) 2022; 34
Li (D4SC00711E/cit25/1) 2023; 62
Meng (D4SC00711E/cit144/1) 2023; 62
Wang (D4SC00711E/cit206/1) 2021; 14
Bockelmann (D4SC00711E/cit257/1) 2018; 165
Ruan (D4SC00711E/cit234/1) 2023; 15
Yuan (D4SC00711E/cit57/1) 2023; 62
Zhang (D4SC00711E/cit214/1) 2023; 17
Du (D4SC00711E/cit5/1) 2020; 13
Zhao (D4SC00711E/cit51/1) 2023; 6
Wu (D4SC00711E/cit187/1) 2023; 2
Chang (D4SC00711E/cit174/1) 2020; 13
Yu (D4SC00711E/cit232/1) 2020; 142
Jian (D4SC00711E/cit121/1) 2022; 53
Ma (D4SC00711E/cit246/1) 2021; 33
Rossi (D4SC00711E/cit215/1) 2022; 9
Zheng (D4SC00711E/cit276/1) 2024; 15
Wang (D4SC00711E/cit279/1) 2018; 6
Mu (D4SC00711E/cit134/1) 2023; 14
Khan (D4SC00711E/cit40/1) 2023; 35
Meng (D4SC00711E/cit65/1) 2022; 32
Han (D4SC00711E/cit94/1) 2022; 5
Li (D4SC00711E/cit142/1) 2022; 61
Liang (D4SC00711E/cit160/1) 2023; 63
Duan (D4SC00711E/cit268/1) 2023; 17
Li (D4SC00711E/cit239/1) 2022; 6
Zhao (D4SC00711E/cit48/1) 2022; 13
Wu (D4SC00711E/cit35/1) 2022; 14
Li (D4SC00711E/cit53/1) 2020; 2
Gou (D4SC00711E/cit145/1) 2023; 19
Liu (D4SC00711E/cit233/1) 2023; 5
Ge (D4SC00711E/cit243/1) 2023; 2
Yu (D4SC00711E/cit129/1) 2023; 13
Zeng (D4SC00711E/cit231/1) 2021; 14
Li (D4SC00711E/cit17/1) 2023; 35
Zhang (D4SC00711E/cit83/1) 2021; 60
Yang (D4SC00711E/cit30/1) 2023; 62
Yang (D4SC00711E/cit74/1) 2022; 34
Du (D4SC00711E/cit41/1) 2023; 35
Zhang (D4SC00711E/cit278/1) 2022; 34
Li (D4SC00711E/cit164/1) 2023; 14
Yao (D4SC00711E/cit171/1) 2022; 122
Jiao (D4SC00711E/cit112/1) 2021; 31
Zhang (D4SC00711E/cit107/1) 2023; 35
Liu (D4SC00711E/cit247/1) 2022; 47
Ouyang (D4SC00711E/cit14/1) 2023; 62
Liu (D4SC00711E/cit18/1) 2021; 32
Liu (D4SC00711E/cit238/1) 2023; 62
Zhou (D4SC00711E/cit55/1) 2021; 33
Han (D4SC00711E/cit15/1) 2023; 36
Graae (D4SC00711E/cit241/1) 2022; 5
Wen (D4SC00711E/cit70/1) 2022; 10
Wang (D4SC00711E/cit161/1) 2023; 62
Qiu (D4SC00711E/cit66/1) 2022; 61
Foroozan (D4SC00711E/cit153/1) 2019; 11
Chen (D4SC00711E/cit188/1) 2020; 5
Zhang (D4SC00711E/cit109/1) 2023; 62
Hao (D4SC00711E/cit236/1) 2020; 30
Greeley (D4SC00711E/cit147/1) 2006; 5
Zhang (D4SC00711E/cit84/1) 2022; 144
Xin (D4SC00711E/cit117/1) 2021; 3
Kosacki (D4SC00711E/cit217/1) 2021; 168
Luo (D4SC00711E/cit175/1) 2023; 15
Chen (D4SC00711E/cit193/1) 2023; 16
Ye (D4SC00711E/cit245/1) 2023; 33
Qiu (D4SC00711E/cit63/1) 2022; 49
Liu (D4SC00711E/cit191/1) 2022; 13
Xue (D4SC00711E/cit242/1) 2023; 17
Agrisuelas (D4SC00711E/cit269/1) 2009; 54
Garcia (D4SC00711E/cit265/1) 2017; 9
Chen (D4SC00711E/cit100/1) 2023; 15
Zhou (D4SC00711E/cit248/1) 2023; 23
Yang (D4SC00711E/cit135/1) 2019; 31
Zhang (D4SC00711E/cit102/1) 2023; 62
Agarwal (D4SC00711E/cit173/1) 2021; 13
Zhang (D4SC00711E/cit91/1) 2023; 33
Zeng (D4SC00711E/cit169/1) 2023; 23
Xia (D4SC00711E/cit240/1) 2019; 3
Dai (D4SC00711E/cit49/1) 2023; 62
Sun (D4SC00711E/cit270/1) 2023; 62
Han (D4SC00711E/cit267/1) 2023; 62
Zhao (D4SC00711E/cit141/1) 2022; 34
Cui (D4SC00711E/cit43/1) 2021; 17
Zhang (D4SC00711E/cit9/1) 2021; 11
Wang (D4SC00711E/cit90/1) 2023; 62
Zheng (D4SC00711E/cit56/1) 2019; 366
Liang (D4SC00711E/cit251/1) 2022; 9
Li (D4SC00711E/cit75/1) 2021; 14
Qian (D4SC00711E/cit213/1) 2022; 12
Na Li (D4SC00711E/cit263/1) 2023; 635
Du (D4SC00711E/cit190/1) 2023; 15
Scharf (D4SC00711E/cit208/1) 2022; 17
Zhang (D4SC00711E/cit62/1) 2023; 13
Cui (D4SC00711E/cit87/1) 2023; 13
Yang (D4SC00711E/cit97/1) 2022; 61
Zhu (D4SC00711E/cit140/1) 2022; 50
Zhou (D4SC00711E/cit203/1) 2020; 12
Liang (D4SC00711E/cit28/1) 2023; 17
Ko (D4SC00711E/cit209/1) 2020; 167
Zhang (D4SC00711E/cit33/1) 2022; 12
Li (D4SC00711E/cit39/1) 2023; 62
Luo (D4SC00711E/cit82/1) 2023; 62
Han (D4SC00711E/cit38/1) 2022; 32
Ouyang (D4SC00711E/cit259/1) 2022; 32
Li (D4SC00711E/cit6/1) 2022; 6
Wu (D4SC00711E/cit162/1) 2022; 18
He (D4SC00711E/cit20/1) 2024; 3
Zhao (D4SC00711E/cit218/1) 2023; 7
Qin (D4SC00711E/cit266/1) 2020; 39
Luo (D4SC00711E/cit275/1) 2023; 23
Liu (D4SC00711E/cit133/1) 2024; 16
Pande (D4SC00711E/cit158/1) 2019; 4
Qian (D4SC00711E/cit222/1) 2023; 58
Qin (D4SC00711E/cit230/1) 2022; 34
Feng (D4SC00711E/cit29/1) 2023; 8
Li (D4SC00711E/cit119/1) 2021; 60
Li (D4SC00711E/cit47/1) 2021; 14
Guo (D4SC00711E/cit178/1) 2023; 62
Zhao (D4SC00711E/cit46/1) 2022; 144
Hong (D4SC00711E/cit148/1) 2022; 9
Wang (D4SC00711E/cit274/1) 2023; 14
Abdulla (D4SC00711E/cit262/1) 2020; 30
Du (D4SC00711E/cit180/1) 2022; 427
Xiong (D4SC00711E/cit182/1) 2023; 8
Ren (D4SC00711E/cit93/1) 2023; 35
Zhou (D4SC00711E/cit167/1) 2023; 62
Zhang (D4SC00711E/cit186/1) 2022; 2
Yuan (D4SC00711E/cit220/1) 2023; 36
Zhao (D4SC00711E/cit252/1) 2019; 57
Wei (D4SC00711E/cit255/1) 2022; 16
Luo (D4SC00711E/cit166/1) 2023; 57
Kao (D4SC00711E/cit250/1) 2023; 17
Zhang (D4SC00711E/cit258/1) 2006; 51
Yi (D4SC00711E/cit7/1) 2021; 11
Wu (D4SC00711E/cit136/1) 2023; 19
Zeng (D4SC00711E/cit125/1) 2021; 33
Cao (D4SC00711E/cit127/1) 2020; 142
Chen (D4SC00711E/cit165/1) 2023; 14
Huang (D4SC00711E/cit216/1) 2023; 9
Lolupiman (D4SC00711E/cit244/1) 2019; 29
Qiu (D4SC00711E/cit260/1) 2023; 13
Qi (D4SC00711E/cit111/1) 2022; 16
Zhou (D4SC00711E/cit225/1) 2021; 33
Liu (D4SC00711E/cit42/1) 2023; 14
Yang (D4SC00711E/cit54/1) 2008; 453
Chen (D4SC00711E/cit221/1) 2022; 9
Yu (D4SC00711E/cit155/1) 2022; 16
Rakov (D4SC00711E/cit115/1) 2023; 16
Chen (D4SC00711E/cit3/1) 2023; 13
Li (D4SC00711E/cit36/1) 2022; 61
Hack (D4SC00711E/cit207/1) 2022; 5
Yang (D4SC00711E/cit181/1) 2023; 17
Meng (D4SC00711E/cit81/1) 2022; 34
Jeon (D4SC00711E/cit198/1) 2021; 391
Chen (D4SC00711E/cit11/1) 2022; 7
Zhou (D4SC00711E/cit95/1) 2022; 61
Cai (D4SC00711E/cit199/1) 2022; 61
Zhang (D4SC00711E/cit60/1) 2023; 42
Huang (D4SC00711E/cit116/1) 2023; 16
Chu (D4SC00711E/cit126/1) 2021; 14
Yang (D4SC00711E/cit21/1) 2023; 15
Xie (D4SC00711E/cit50/1) 2021; 11
Huang (D4SC00711E/cit130/1) 2021; 33
Guida (D4SC00711E/cit210/1) 2023; 556
Yang (D4SC00711E/cit85/1) 2022; 7
Li (D4SC00711E/cit168/1) 2015; 15
Lin (D4SC00711E/cit105/1) 2022; 9
Zhang (D4SC00711E/cit192/1) 2021; 9
Ma (D4SC00711E/cit163/1) 2020; 3
Lu (D4SC00711E/cit10/1) 2023; 451
Qiu (D4SC00711E/cit37/1) 2019; 10
Yuan (D4SC00711E/cit118/1) 2022; 431
Pu (D4SC00711E/cit185/1) 2021; 14
Liu (D4SC00711E/cit71/1) 2023; 36
Zhou (D4SC00711E/cit146/1) 2022; 52
Cong (D4SC00711E/cit34/1) 2021; 35
Pu (D4SC00711E/cit212/1) 2023; 7
Cao (D4SC00711E/cit151/1) 2021; 13
Huang (D4SC00711E/cit254/1) 2023; 20
Hu (D4SC00711E/cit92/1) 2023; 62
Shen (D4SC00711E/cit32/1) 2023; 62
Tian (D4SC00711E/cit138/1) 2019; 13
Li (D4SC00711E/cit152/1) 2022; 10
Liu (D4SC00711E/cit124/1) 2023; 17
Zhou (D4SC00711E/cit204/1) 2021; 13
Zhan (D4SC00711E/cit154/1) 2024; 30
Zhao (D4SC00711E/cit143/1) 2023; 35
Xie (D4SC00711E/cit170/1) 2023; 62
Jin (D4SC00711E/cit110/1) 2022; 18
Li (D4SC00711E/cit196/1) 2022; 13
References_xml – volume: 5
  start-page: 909
  year: 2006
  ident: D4SC00711E/cit147/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1752
– volume: 39
  start-page: 605
  year: 2020
  ident: D4SC00711E/cit266/1
  publication-title: Chin. J. Struct. Chem.
– volume: 34
  start-page: 2200131
  year: 2022
  ident: D4SC00711E/cit224/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202200131
– volume: 142
  start-page: 21404
  year: 2020
  ident: D4SC00711E/cit127/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c09794
– volume: 31
  start-page: 1903778
  year: 2019
  ident: D4SC00711E/cit135/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201903778
– volume: 14
  start-page: 8076
  year: 2023
  ident: D4SC00711E/cit274/1
  publication-title: Chem. Sci.
  doi: 10.1039/D3SC01831H
– volume: 452
  start-page: 139577
  year: 2023
  ident: D4SC00711E/cit228/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.139577
– volume: 30
  start-page: e202303211
  year: 2024
  ident: D4SC00711E/cit154/1
  publication-title: Chem.–Eur. J.
  doi: 10.1002/chem.202303211
– volume: 37
  start-page: 328
  year: 2021
  ident: D4SC00711E/cit253/1
  publication-title: Chem. Res. Chin. Univ.
  doi: 10.1007/s40242-021-1041-6
– volume: 58
  start-page: 2760
  year: 2019
  ident: D4SC00711E/cit31/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201813223
– volume: 53
  start-page: 273
  year: 2022
  ident: D4SC00711E/cit58/1
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2022.08.046
– volume: 13
  start-page: 2302187
  year: 2023
  ident: D4SC00711E/cit3/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202302187
– volume: 12
  start-page: 2202219
  year: 2022
  ident: D4SC00711E/cit33/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202202219
– volume: 17
  start-page: 2304878
  year: 2023
  ident: D4SC00711E/cit28/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202304878
– volume: 7
  start-page: 4168
  year: 2022
  ident: D4SC00711E/cit113/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.2c01958
– volume: 116
  start-page: 108858
  year: 2023
  ident: D4SC00711E/cit2/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2023.108858
– volume: 142
  start-page: 19570
  year: 2020
  ident: D4SC00711E/cit232/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c07992
– volume: 82
  start-page: 105739
  year: 2021
  ident: D4SC00711E/cit88/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105739
– volume: 60
  start-page: 23357
  year: 2021
  ident: D4SC00711E/cit83/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202109682
– volume: 10
  start-page: 17501
  year: 2022
  ident: D4SC00711E/cit70/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D2TA04015H
– volume: 17
  start-page: 446
  year: 2022
  ident: D4SC00711E/cit208/1
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-022-01081-9
– volume: 34
  start-page: 2206754
  year: 2022
  ident: D4SC00711E/cit74/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202206754
– volume: 6
  start-page: 10578
  year: 2023
  ident: D4SC00711E/cit23/1
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.3c01724
– volume: 32
  start-page: 221458
  year: 2023
  ident: D4SC00711E/cit261/1
  publication-title: Adv. Funct. Mater.
– volume: 144
  start-page: 11129
  year: 2022
  ident: D4SC00711E/cit46/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c00551
– volume: 11
  start-page: 2003419
  year: 2021
  ident: D4SC00711E/cit50/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202003419
– volume: 152
  start-page: 161
  year: 2015
  ident: D4SC00711E/cit201/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2014.11.091
– volume: 5
  start-page: 11392
  year: 2022
  ident: D4SC00711E/cit241/1
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.2c01868
– volume: 34
  start-page: 2205369
  year: 2022
  ident: D4SC00711E/cit278/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202205369
– volume: 34
  start-page: 2203153
  year: 2022
  ident: D4SC00711E/cit141/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202203153
– volume: 122
  start-page: 10970
  year: 2022
  ident: D4SC00711E/cit171/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.1c00904
– volume: 2
  start-page: e12035
  year: 2020
  ident: D4SC00711E/cit53/1
  publication-title: EcoMat
  doi: 10.1002/eom2.12035
– volume: 17
  start-page: 552
  year: 2023
  ident: D4SC00711E/cit124/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c09317
– volume: 13
  start-page: 11676
  year: 2019
  ident: D4SC00711E/cit138/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b05599
– volume: 5
  start-page: 3012
  year: 2020
  ident: D4SC00711E/cit159/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.0c01792
– volume: 13
  start-page: 333
  year: 2020
  ident: D4SC00711E/cit5/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE02079F
– volume: 3
  start-page: 100093
  year: 2023
  ident: D4SC00711E/cit12/1
  publication-title: eScience
  doi: 10.1016/j.esci.2023.100093
– volume: 15
  start-page: 499
  year: 2022
  ident: D4SC00711E/cit13/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D1EE03377H
– volume: 16
  start-page: 9736
  year: 2022
  ident: D4SC00711E/cit155/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c03398
– volume: 62
  start-page: 102941
  year: 2023
  ident: D4SC00711E/cit176/1
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2023.102941
– volume: 5
  start-page: 14001
  year: 2022
  ident: D4SC00711E/cit207/1
  publication-title: JPhys Mater.
  doi: 10.1088/2515-7639/ac3f9a
– volume: 15
  start-page: 81
  year: 2023
  ident: D4SC00711E/cit100/1
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-023-01050-4
– volume: 2
  start-page: 114
  year: 2022
  ident: D4SC00711E/cit186/1
  publication-title: SusMat
  doi: 10.1002/sus2.53
– volume: 23
  start-page: 9491
  year: 2023
  ident: D4SC00711E/cit275/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.3c02904
– volume: 50
  start-page: 243
  year: 2022
  ident: D4SC00711E/cit140/1
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2022.05.022
– volume: 366
  start-page: 645
  year: 2019
  ident: D4SC00711E/cit56/1
  publication-title: Science
  doi: 10.1126/science.aax6873
– volume: 16
  start-page: 275
  year: 2023
  ident: D4SC00711E/cit193/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D2EE02931F
– volume: 5
  start-page: e343
  year: 2023
  ident: D4SC00711E/cit233/1
  publication-title: Carbon Energy
  doi: 10.1002/cey2.343
– volume: 35
  start-page: 2208630
  year: 2023
  ident: D4SC00711E/cit107/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202208630
– volume: 9
  start-page: 15355
  year: 2021
  ident: D4SC00711E/cit192/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA02682H
– volume: 635
  start-page: 157704
  year: 2023
  ident: D4SC00711E/cit263/1
  publication-title: Energy Storage Mater.
– volume: 9
  start-page: 2200564
  year: 2022
  ident: D4SC00711E/cit251/1
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.202200564
– volume: 9
  start-page: 2948
  year: 2016
  ident: D4SC00711E/cit273/1
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201600702
– volume: 7
  start-page: 2300731
  year: 2023
  ident: D4SC00711E/cit218/1
  publication-title: Small Methods
  doi: 10.1002/smtd.202300731
– volume: 35
  start-page: 202300019
  year: 2023
  ident: D4SC00711E/cit17/1
  publication-title: Adv. Mater.
– volume: 33
  start-page: 2301530
  year: 2023
  ident: D4SC00711E/cit24/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202301530
– volume: 13
  start-page: 2300550
  year: 2023
  ident: D4SC00711E/cit129/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202300550
– volume: 5
  start-page: 2000555
  year: 2020
  ident: D4SC00711E/cit188/1
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.202000555
– volume: 14
  start-page: 34612
  year: 2022
  ident: D4SC00711E/cit35/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.2c05887
– volume: 23
  start-page: 10148
  year: 2023
  ident: D4SC00711E/cit248/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.3c02379
– volume: 7
  start-page: 4028
  year: 2022
  ident: D4SC00711E/cit11/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.2c02042
– volume: 15
  start-page: 37
  year: 2023
  ident: D4SC00711E/cit234/1
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-022-01007-z
– volume: 9
  start-page: 18691
  year: 2017
  ident: D4SC00711E/cit265/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b01705
– volume: 451
  start-page: 138772
  year: 2023
  ident: D4SC00711E/cit10/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.138772
– volume: 62
  start-page: e202302302
  year: 2023
  ident: D4SC00711E/cit82/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202302302
– volume: 62
  start-page: e202307880
  year: 2023
  ident: D4SC00711E/cit167/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202307880
– volume: 17
  start-page: 2100722
  year: 2021
  ident: D4SC00711E/cit43/1
  publication-title: Small
  doi: 10.1002/smll.202100722
– volume: 9
  start-page: 1118
  year: 2023
  ident: D4SC00711E/cit26/1
  publication-title: Chem
  doi: 10.1016/j.chempr.2023.03.033
– volume: 13
  start-page: 3527
  year: 2020
  ident: D4SC00711E/cit174/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE01538E
– volume: 33
  start-page: 2007406
  year: 2021
  ident: D4SC00711E/cit246/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202007406
– volume: 33
  start-page: 2210197
  year: 2023
  ident: D4SC00711E/cit123/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202210197
– volume: 16
  start-page: 3919
  year: 2023
  ident: D4SC00711E/cit115/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D3EE00864A
– volume: 61
  start-page: e202116560
  year: 2022
  ident: D4SC00711E/cit199/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202116560
– volume: 52
  start-page: 161
  year: 2022
  ident: D4SC00711E/cit146/1
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2022.06.058
– volume: 33
  start-page: 2305659
  year: 2023
  ident: D4SC00711E/cit245/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202305659
– volume: 16
  start-page: 687
  year: 2023
  ident: D4SC00711E/cit52/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D2EE03528F
– volume: 61
  start-page: e202210979
  year: 2022
  ident: D4SC00711E/cit66/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202210979
– volume: 16
  start-page: 1721
  year: 2023
  ident: D4SC00711E/cit116/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D3EE00045A
– volume: 14
  start-page: 4205
  year: 2023
  ident: D4SC00711E/cit134/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-39947-8
– volume: 34
  start-page: 2200782
  year: 2022
  ident: D4SC00711E/cit226/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202200782
– volume: 6
  start-page: 2704
  year: 2021
  ident: D4SC00711E/cit76/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.1c01054
– volume: 63
  start-page: 102980
  year: 2023
  ident: D4SC00711E/cit160/1
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2023.102980
– volume: 6
  start-page: 269
  year: 2021
  ident: D4SC00711E/cit264/1
  publication-title: Joule
– volume: 12
  start-page: 2102707
  year: 2022
  ident: D4SC00711E/cit4/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202102707
– volume: 17
  start-page: 3948
  year: 2023
  ident: D4SC00711E/cit250/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c12587
– volume: 6
  start-page: 395
  year: 2021
  ident: D4SC00711E/cit98/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.0c02371
– volume: 35
  start-page: 2208764
  year: 2023
  ident: D4SC00711E/cit223/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202208764
– volume: 62
  start-page: e202214966
  year: 2023
  ident: D4SC00711E/cit161/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202214966
– volume: 17
  start-page: 2302846
  year: 2023
  ident: D4SC00711E/cit280/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202302846
– volume: 35
  start-page: e2300073
  year: 2023
  ident: D4SC00711E/cit150/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202300073
– volume: 13
  start-page: 3699
  year: 2022
  ident: D4SC00711E/cit196/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-31461-7
– volume: 15
  start-page: 4748
  year: 2022
  ident: D4SC00711E/cit229/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D2EE02687B
– volume: 13
  start-page: 2301193
  year: 2023
  ident: D4SC00711E/cit260/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202301193
– volume: 427
  start-page: 131705
  year: 2022
  ident: D4SC00711E/cit180/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.131705
– volume: 16
  start-page: 9461
  year: 2022
  ident: D4SC00711E/cit111/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c02448
– volume: 62
  start-page: 102928
  year: 2023
  ident: D4SC00711E/cit267/1
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2023.102928
– volume: 59
  start-page: 22397
  year: 2020
  ident: D4SC00711E/cit86/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202007567
– volume: 61
  start-page: e202112304
  year: 2022
  ident: D4SC00711E/cit97/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202112304
– volume: 481
  start-page: 228831
  year: 2021
  ident: D4SC00711E/cit219/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2020.228831
– volume: 3
  start-page: 516
  year: 2020
  ident: D4SC00711E/cit163/1
  publication-title: Energy Environ. Mater.
  doi: 10.1002/eem2.12077
– volume: 34
  start-page: 2200667
  year: 2022
  ident: D4SC00711E/cit81/1
  publication-title: Adv. Mater.
– volume: 62
  start-page: e202309601
  year: 2023
  ident: D4SC00711E/cit92/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202309601
– volume: 61
  start-page: e202212512
  year: 2022
  ident: D4SC00711E/cit36/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202212512
– volume: 62
  start-page: e202308017
  year: 2023
  ident: D4SC00711E/cit184/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202308017
– volume: 8
  start-page: 1192
  year: 2023
  ident: D4SC00711E/cit29/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.2c02455
– volume: 2
  start-page: e9120039
  year: 2023
  ident: D4SC00711E/cit243/1
  publication-title: Nano Res. Energy
  doi: 10.26599/NRE.2023.9120039
– volume: 34
  start-page: 2203104
  year: 2022
  ident: D4SC00711E/cit194/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202203104
– volume: 35
  start-page: 2300369
  year: 2023
  ident: D4SC00711E/cit40/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202300369
– volume: 35
  start-page: 2210055
  year: 2023
  ident: D4SC00711E/cit41/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202210055
– volume: 12
  start-page: 1938
  year: 2019
  ident: D4SC00711E/cit256/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE00596J
– volume: 7
  start-page: 2331
  year: 2022
  ident: D4SC00711E/cit67/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.2c00560
– volume: 14
  start-page: 4077
  year: 2021
  ident: D4SC00711E/cit206/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D1EE00783A
– volume: 33
  start-page: e2100187
  year: 2021
  ident: D4SC00711E/cit55/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202100187
– volume: 13
  start-page: 3252
  year: 2022
  ident: D4SC00711E/cit48/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-30939-8
– volume: 61
  start-page: e202202780
  year: 2022
  ident: D4SC00711E/cit142/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202202780
– volume: 31
  start-page: 2107652
  year: 2021
  ident: D4SC00711E/cit112/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202107652
– volume: 19
  start-page: 2207502
  year: 2023
  ident: D4SC00711E/cit145/1
  publication-title: Small
  doi: 10.1002/smll.202207502
– volume: 4
  start-page: 2952
  year: 2019
  ident: D4SC00711E/cit158/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.9b02306
– volume: 58
  start-page: 85
  year: 2023
  ident: D4SC00711E/cit131/1
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2023.03.005
– volume: 32
  start-page: 2200606
  year: 2022
  ident: D4SC00711E/cit183/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202200606
– volume: 14
  start-page: 3067
  year: 2023
  ident: D4SC00711E/cit164/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-38460-2
– volume: 30
  start-page: 2001263
  year: 2020
  ident: D4SC00711E/cit236/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202001263
– volume: 454
  start-page: 140435
  year: 2023
  ident: D4SC00711E/cit108/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.140435
– volume: 62
  start-page: e2022126695
  year: 2023
  ident: D4SC00711E/cit102/1
  publication-title: Angew. Chem., Int. Ed.
– volume: 165
  start-page: A3048
  year: 2018
  ident: D4SC00711E/cit257/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0331813jes
– volume: 34
  start-page: 2203710
  year: 2022
  ident: D4SC00711E/cit157/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202203710
– volume: 14
  start-page: 3526
  year: 2023
  ident: D4SC00711E/cit165/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-39237-3
– volume: 32
  start-page: 2207898
  year: 2022
  ident: D4SC00711E/cit45/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202207898
– volume: 6
  start-page: e202200478
  year: 2023
  ident: D4SC00711E/cit51/1
  publication-title: Batteries Supercaps
  doi: 10.1002/batt.202200478
– volume: 167
  start-page: 140520
  year: 2020
  ident: D4SC00711E/cit209/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1945-7111/abc206
– volume: 34
  start-page: 2206963
  year: 2022
  ident: D4SC00711E/cit101/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202206963
– volume: 13
  start-page: 8243
  year: 2022
  ident: D4SC00711E/cit272/1
  publication-title: Chem. Sci.
  doi: 10.1039/D2SC01818G
– volume: 7
  start-page: 2515
  year: 2022
  ident: D4SC00711E/cit85/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.2c01152
– volume: 62
  start-page: e202215600
  year: 2023
  ident: D4SC00711E/cit238/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202215600
– volume: 35
  start-page: 2209288
  year: 2023
  ident: D4SC00711E/cit143/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202209288
– volume: 3
  start-page: e9120100
  year: 2024
  ident: D4SC00711E/cit20/1
  publication-title: Nano Res. Energy
  doi: 10.26599/NRE.2023.9120100
– volume: 3
  start-page: 1819
  year: 2021
  ident: D4SC00711E/cit117/1
  publication-title: ACS Mater. Lett.
  doi: 10.1021/acsmaterialslett.1c00566
– volume: 342
  start-page: 136073
  year: 2020
  ident: D4SC00711E/cit205/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2020.136073
– volume: 62
  start-page: e202309957
  year: 2023
  ident: D4SC00711E/cit25/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202309957
– volume: 58
  start-page: 15841
  year: 2019
  ident: D4SC00711E/cit44/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201907830
– volume: 16
  start-page: 21152
  year: 2022
  ident: D4SC00711E/cit255/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c09111
– volume: 14
  start-page: 5563
  year: 2021
  ident: D4SC00711E/cit47/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D1EE01861B
– volume: 62
  start-page: e202216934
  year: 2023
  ident: D4SC00711E/cit120/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202216934
– volume: 17
  start-page: 3765
  year: 2023
  ident: D4SC00711E/cit69/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c11516
– volume: 23
  start-page: 1135
  year: 2023
  ident: D4SC00711E/cit169/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.2c03433
– volume: 33
  start-page: 2305804
  year: 2023
  ident: D4SC00711E/cit91/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202305804
– volume: 51
  start-page: 933
  year: 2012
  ident: D4SC00711E/cit1/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201106307
– volume: 10
  start-page: 14399
  year: 2022
  ident: D4SC00711E/cit152/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D2TA03550B
– volume: 14
  start-page: 5947
  year: 2021
  ident: D4SC00711E/cit231/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D1EE01851E
– volume: 431
  start-page: 134076
  year: 2022
  ident: D4SC00711E/cit118/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.134076
– volume: 2
  start-page: 509
  year: 2022
  ident: D4SC00711E/cit16/1
  publication-title: eScience
  doi: 10.1016/j.esci.2022.04.003
– volume: 20
  start-page: 2306211
  year: 2023
  ident: D4SC00711E/cit254/1
  publication-title: Small
  doi: 10.1002/smll.202306211
– volume: 62
  start-page: e202215552
  year: 2023
  ident: D4SC00711E/cit39/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202215552
– volume: 62
  start-page: e202303557
  year: 2023
  ident: D4SC00711E/cit270/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202303557
– volume: 17
  start-page: 2303550
  year: 2023
  ident: D4SC00711E/cit181/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202303550
– volume: 14
  start-page: 2114
  year: 2023
  ident: D4SC00711E/cit42/1
  publication-title: Chem. Sci.
  doi: 10.1039/D2SC06276C
– volume: 13
  start-page: 48855
  year: 2021
  ident: D4SC00711E/cit151/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c14947
– volume: 4
  start-page: 2200270
  year: 2023
  ident: D4SC00711E/cit80/1
  publication-title: Small Struct.
  doi: 10.1002/sstr.202200270
– volume: 18
  start-page: e2200742
  year: 2022
  ident: D4SC00711E/cit99/1
  publication-title: Small
  doi: 10.1002/smll.202200742
– volume: 41
  start-page: 101376
  year: 2023
  ident: D4SC00711E/cit189/1
  publication-title: Curr. Opin. Electrochem.
  doi: 10.1016/j.coelec.2023.101376
– volume: 62
  start-page: e202300125
  year: 2023
  ident: D4SC00711E/cit178/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202300125
– volume: 32
  start-page: 2209065
  year: 2022
  ident: D4SC00711E/cit38/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202209065
– volume: 34
  start-page: 2106897
  year: 2022
  ident: D4SC00711E/cit227/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202106897
– volume: 35
  start-page: 586
  year: 2021
  ident: D4SC00711E/cit34/1
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2020.11.041
– volume: 9
  start-page: 2104866
  year: 2022
  ident: D4SC00711E/cit148/1
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202104866
– volume: 51
  start-page: 1636
  year: 2006
  ident: D4SC00711E/cit258/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2005.02.137
– volume: 32
  start-page: 2899
  year: 2021
  ident: D4SC00711E/cit18/1
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2021.02.055
– volume: 14
  start-page: 42
  year: 2022
  ident: D4SC00711E/cit8/1
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-021-00782-5
– volume: 15
  start-page: 205
  year: 2023
  ident: D4SC00711E/cit175/1
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-023-01171-w
– volume: 36
  start-page: 2308086
  year: 2023
  ident: D4SC00711E/cit15/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202308086
– volume: 53
  start-page: 559
  year: 2022
  ident: D4SC00711E/cit121/1
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2022.08.033
– volume: 542
  start-page: 231730
  year: 2022
  ident: D4SC00711E/cit277/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2022.231730
– volume: 14
  start-page: 205
  year: 2022
  ident: D4SC00711E/cit114/1
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-022-00939-w
– volume: 6
  start-page: 1103
  year: 2022
  ident: D4SC00711E/cit239/1
  publication-title: Joule
  doi: 10.1016/j.joule.2022.04.017
– volume: 62
  start-page: e202310143
  year: 2023
  ident: D4SC00711E/cit89/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202310143
– volume: 61
  start-page: e202208051
  year: 2022
  ident: D4SC00711E/cit95/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202208051
– volume: 30
  start-page: 1
  year: 2020
  ident: D4SC00711E/cit262/1
  publication-title: J. Met., Mater. Miner.
  doi: 10.55713/jmmm.v30i3.900
– volume: 11
  start-page: 2101518
  year: 2021
  ident: D4SC00711E/cit202/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202101518
– volume: 62
  start-page: e202301570
  year: 2023
  ident: D4SC00711E/cit109/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202301570
– volume: 453
  start-page: 638
  year: 2008
  ident: D4SC00711E/cit54/1
  publication-title: Nature
  doi: 10.1038/nature06964
– volume: 14
  start-page: 3796
  year: 2021
  ident: D4SC00711E/cit75/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D1EE00030F
– volume: 11
  start-page: 2003065
  year: 2021
  ident: D4SC00711E/cit7/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202003065
– volume: 122
  start-page: 21108
  year: 2018
  ident: D4SC00711E/cit172/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.8b03383
– volume: 62
  start-page: e202307271
  year: 2023
  ident: D4SC00711E/cit144/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202307271
– volume: 12
  start-page: 2200115
  year: 2022
  ident: D4SC00711E/cit197/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202200115
– volume: 16
  start-page: 11392
  year: 2022
  ident: D4SC00711E/cit77/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c05285
– volume: 15
  start-page: 1691
  year: 2015
  ident: D4SC00711E/cit168/1
  publication-title: Nano Lett.
  doi: 10.1021/nl504336h
– volume: 13
  start-page: 2301466
  year: 2023
  ident: D4SC00711E/cit87/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202301466
– volume: 9
  start-page: e2201433
  year: 2022
  ident: D4SC00711E/cit105/1
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202201433
– volume: 62
  start-page: e202303011
  year: 2023
  ident: D4SC00711E/cit106/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202303011
– volume: 144
  start-page: 18435
  year: 2022
  ident: D4SC00711E/cit84/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c06927
– volume: 2
  start-page: 310
  year: 2023
  ident: D4SC00711E/cit187/1
  publication-title: Carbon Neutralization
  doi: 10.1002/cnl2.56
– volume: 13
  start-page: 53227
  year: 2021
  ident: D4SC00711E/cit204/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c16263
– volume: 2
  start-page: 540
  year: 2020
  ident: D4SC00711E/cit149/1
  publication-title: Carbon Energy
  doi: 10.1002/cey2.67
– volume: 18
  start-page: 2105978
  year: 2022
  ident: D4SC00711E/cit156/1
  publication-title: Small
  doi: 10.1002/smll.202105978
– volume: 12
  start-page: 55476
  year: 2020
  ident: D4SC00711E/cit203/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c17023
– volume: 62
  start-page: e202311988
  year: 2023
  ident: D4SC00711E/cit14/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202311988
– volume: 58
  start-page: 204
  year: 2023
  ident: D4SC00711E/cit222/1
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2023.03.029
– volume: 6
  start-page: 1733
  year: 2022
  ident: D4SC00711E/cit6/1
  publication-title: Joule
  doi: 10.1016/j.joule.2022.06.002
– volume: 17
  start-page: 17359
  year: 2023
  ident: D4SC00711E/cit242/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.3c05369
– volume: 31
  start-page: 1903675
  year: 2019
  ident: D4SC00711E/cit137/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201903675
– volume: 36
  start-page: 2307708
  year: 2023
  ident: D4SC00711E/cit220/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202307708
– volume: 62
  start-page: e202310290
  year: 2023
  ident: D4SC00711E/cit122/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202310290
– volume: 556
  start-page: 232460
  year: 2023
  ident: D4SC00711E/cit210/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2022.232460
– volume: 1
  start-page: e9120023
  year: 2022
  ident: D4SC00711E/cit281/1
  publication-title: Nano Res. Energy
  doi: 10.26599/NRE.2022.9120023
– volume: 12
  start-page: 2102780
  year: 2022
  ident: D4SC00711E/cit78/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202102780
– volume: 13
  start-page: 38816
  year: 2021
  ident: D4SC00711E/cit173/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c07864
– volume: 7
  start-page: 1145
  year: 2023
  ident: D4SC00711E/cit27/1
  publication-title: Joule
  doi: 10.1016/j.joule.2023.05.004
– volume: 33
  start-page: 2101649
  year: 2021
  ident: D4SC00711E/cit225/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202101649
– volume: 35
  start-page: e202309601
  year: 2023
  ident: D4SC00711E/cit93/1
  publication-title: Adv. Mater.
– volume: 15
  start-page: 14196
  year: 2023
  ident: D4SC00711E/cit190/1
  publication-title: ACS Appl. Mater. Interfaces
– volume: 62
  start-page: e202218545
  year: 2023
  ident: D4SC00711E/cit30/1
  publication-title: Angew. Chem., Int. Ed.
– volume: 14
  start-page: 3609
  year: 2021
  ident: D4SC00711E/cit126/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D1EE00308A
– volume: 29
  start-page: 120
  year: 2019
  ident: D4SC00711E/cit244/1
  publication-title: J. Met., Mater. Miner.
  doi: 10.55713/jmmm.v29i4.652
– volume: 49
  start-page: 463
  year: 2022
  ident: D4SC00711E/cit63/1
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2022.04.018
– volume: 10
  start-page: 2001599
  year: 2020
  ident: D4SC00711E/cit73/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202001599
– volume: 12
  start-page: 2102982
  year: 2022
  ident: D4SC00711E/cit104/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202102982
– volume: 33
  start-page: 2007416
  year: 2021
  ident: D4SC00711E/cit125/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202007416
– volume: 9
  start-page: 9681
  year: 2017
  ident: D4SC00711E/cit61/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b16560
– volume: 5
  start-page: 205
  year: 2022
  ident: D4SC00711E/cit94/1
  publication-title: Nat. Sustain.
  doi: 10.1038/s41893-021-00800-9
– volume: 12
  start-page: 2200255
  year: 2022
  ident: D4SC00711E/cit213/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202200255
– volume: 17
  start-page: 2303590
  year: 2023
  ident: D4SC00711E/cit214/1
  publication-title: Adv. Funct. Mater.
– volume: 62
  start-page: e202218612
  year: 2023
  ident: D4SC00711E/cit170/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202218612
– volume: 11
  start-page: 44077
  year: 2019
  ident: D4SC00711E/cit153/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b13174
– volume: 11
  start-page: 24902
  year: 2023
  ident: D4SC00711E/cit19/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D3TA05650C
– volume: 62
  start-page: e202301192
  year: 2023
  ident: D4SC00711E/cit49/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202301192
– volume: 33
  start-page: 2100445
  year: 2021
  ident: D4SC00711E/cit130/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202100445
– volume: 34
  start-page: 2207344
  year: 2022
  ident: D4SC00711E/cit195/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202207344
– volume: 59
  start-page: 102767
  year: 2023
  ident: D4SC00711E/cit96/1
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2023.04.006
– volume: 34
  start-page: e2202552
  year: 2022
  ident: D4SC00711E/cit211/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202202552
– volume: 6
  start-page: 11113
  year: 2018
  ident: D4SC00711E/cit279/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA03143F
– volume: 13
  start-page: 40638
  year: 2021
  ident: D4SC00711E/cit68/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c11106
– volume: 6
  start-page: 1474
  year: 2023
  ident: D4SC00711E/cit22/1
  publication-title: Nat. Sustain.
  doi: 10.1038/s41893-023-01172-y
– volume: 37
  start-page: 371
  year: 2022
  ident: D4SC00711E/cit200/1
  publication-title: New Carbon Mater.
  doi: 10.1016/S1872-5805(22)60601-2
– volume: 32
  start-page: 202109749
  year: 2022
  ident: D4SC00711E/cit259/1
  publication-title: Adv. Funct. Mater.
– volume: 17
  start-page: 23861
  year: 2023
  ident: D4SC00711E/cit64/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.3c08095
– volume: 60
  start-page: 7366
  year: 2021
  ident: D4SC00711E/cit79/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202016531
– volume: 8
  start-page: eabp8960
  year: 2022
  ident: D4SC00711E/cit177/1
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abp8960
– volume: 391
  start-page: 138877
  year: 2021
  ident: D4SC00711E/cit198/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2021.138877
– volume: 60
  start-page: 13035
  year: 2021
  ident: D4SC00711E/cit119/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202103390
– volume: 13
  start-page: 7822
  year: 2022
  ident: D4SC00711E/cit191/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-35486-w
– volume: 17
  start-page: 22722
  year: 2023
  ident: D4SC00711E/cit268/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.3c07257
– volume: 15
  start-page: 517
  year: 2022
  ident: D4SC00711E/cit59/1
  publication-title: Energy Environ. Sci.
– volume: 34
  start-page: 22007118
  year: 2022
  ident: D4SC00711E/cit230/1
  publication-title: Adv. Mater.
– volume: 11
  start-page: 2003927
  year: 2021
  ident: D4SC00711E/cit9/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202003927
– volume: 14
  start-page: 6526
  year: 2023
  ident: D4SC00711E/cit237/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-42333-z
– volume: 57
  start-page: 628
  year: 2023
  ident: D4SC00711E/cit166/1
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2023.03.002
– volume: 18
  start-page: 2205462
  year: 2022
  ident: D4SC00711E/cit110/1
  publication-title: Small
  doi: 10.1002/smll.202205462
– volume: 28
  start-page: 2721
  year: 2023
  ident: D4SC00711E/cit132/1
  publication-title: Molecules
  doi: 10.3390/molecules28062721
– volume: 9
  start-page: 93
  year: 2023
  ident: D4SC00711E/cit216/1
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-023-01039-y
– volume: 54
  start-page: 6046
  year: 2009
  ident: D4SC00711E/cit269/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2009.03.062
– volume: 17
  start-page: 642
  year: 2024
  ident: D4SC00711E/cit72/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D3EE02522E
– volume: 15
  start-page: 26718
  year: 2023
  ident: D4SC00711E/cit21/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.3c03376
– volume: 19
  start-page: 2206634
  year: 2023
  ident: D4SC00711E/cit136/1
  publication-title: Small
  doi: 10.1002/smll.202206634
– volume: 9
  start-page: 2105980
  year: 2022
  ident: D4SC00711E/cit221/1
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202105980
– volume: 42
  start-page: 2504
  year: 2023
  ident: D4SC00711E/cit60/1
  publication-title: Chem. Ind. Eng. Prog.
– volume: 3
  start-page: 1900119
  year: 2019
  ident: D4SC00711E/cit240/1
  publication-title: Small Methods
  doi: 10.1002/smtd.201900119
– volume: 10
  start-page: 5374
  year: 2019
  ident: D4SC00711E/cit37/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13436-3
– volume: 11
  start-page: 2102010
  year: 2021
  ident: D4SC00711E/cit103/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202102010
– volume: 32
  start-page: 2207732
  year: 2022
  ident: D4SC00711E/cit65/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202207732
– volume: 13
  start-page: 2203254
  year: 2023
  ident: D4SC00711E/cit62/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202203254
– volume: 9
  start-page: e202101537
  year: 2022
  ident: D4SC00711E/cit215/1
  publication-title: ChemElectroChem
  doi: 10.1002/celc.202101537
– volume: 62
  start-page: e202310970
  year: 2023
  ident: D4SC00711E/cit179/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202310970
– volume: 62
  start-page: e202218452
  year: 2023
  ident: D4SC00711E/cit32/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202218452
– volume: 32
  start-page: 2206695
  year: 2022
  ident: D4SC00711E/cit128/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202206695
– volume: 81
  start-page: 472
  year: 2023
  ident: D4SC00711E/cit235/1
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2023.02.036
– volume: 8
  start-page: 1613
  year: 2023
  ident: D4SC00711E/cit182/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.3c00154
– volume: 14
  start-page: 39
  year: 2021
  ident: D4SC00711E/cit139/1
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-021-00783-4
– volume: 57
  start-page: 625
  year: 2019
  ident: D4SC00711E/cit252/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.12.086
– volume: 36
  start-page: 2305988
  year: 2023
  ident: D4SC00711E/cit71/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202305988
– volume: 168
  start-page: 120540
  year: 2021
  ident: D4SC00711E/cit217/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1945-7111/ac4188
– volume: 14
  start-page: 3872
  year: 2021
  ident: D4SC00711E/cit185/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D1EE00110H
– volume: 47
  start-page: 98
  year: 2022
  ident: D4SC00711E/cit247/1
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2022.01.059
– volume: 13
  start-page: 10131
  year: 2021
  ident: D4SC00711E/cit271/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c00565
– volume: 62
  start-page: e202218386
  year: 2023
  ident: D4SC00711E/cit57/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202218386
– volume: 16
  start-page: 111
  year: 2024
  ident: D4SC00711E/cit133/1
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-024-01337-0
– volume: 18
  start-page: 2202363
  year: 2022
  ident: D4SC00711E/cit162/1
  publication-title: Small
  doi: 10.1002/smll.202202363
– volume: 15
  start-page: 753
  year: 2024
  ident: D4SC00711E/cit276/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-024-44893-0
– volume: 33
  start-page: 2302293
  year: 2023
  ident: D4SC00711E/cit249/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202302293
– volume: 7
  start-page: 366
  year: 2023
  ident: D4SC00711E/cit212/1
  publication-title: Joule
  doi: 10.1016/j.joule.2023.01.010
– volume: 62
  start-page: e202218872
  year: 2023
  ident: D4SC00711E/cit90/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202218872
SSID ssj0000331527
Score 2.4843264
SecondaryResourceType review_article
Snippet The research interest in aqueous zinc-ion batteries (AZIBs) has been surging due to the advantages of safety, abundance, and high electrochemical performance....
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 7010
SubjectTerms Chemistry
Electrochemical analysis
Electrolytes
Energy storage
Hydrogen evolution reactions
Performance degradation
Rechargeable batteries
Simulation
Smart grid
Solid electrolytes
Zinc
Zinc plating
Title Rescuing zinc anode–electrolyte interface: mechanisms, theoretical simulations and in situ characterizations
URI https://www.ncbi.nlm.nih.gov/pubmed/38756795
https://www.proquest.com/docview/3054837202
https://www.proquest.com/docview/3056667207
https://pubmed.ncbi.nlm.nih.gov/PMC11095385
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELZK9wAXxD-FZRUEFyQCSWznhxtaulqtyiItLeqeoja2tUG7KdomB3riHXgHHownYSaxXZeuEHCJWsd1I8_neGY88w0hzxmYGCrlzI-loD4TkvqZVMJP8cxIUBpxgf6O98fx4YQdTfm01_vhRC019fxVsboyr-R_pAptIFfMkv0HydpBoQE-g3zhChKG61_J-EQuiwZt_VVZIe3qQkgTvEB1fZvzr7VsOSEuFfrLwf6_kJjsWy47H4ubyLgsLxoTGteRMkFT3WBysCZ1Xjn-PUNvYBgHTIIQHgubRDDHzzAqm_Yg5ExWn0uLJuuvnpazhZJ6G3W7Y9Ux23pU6u6njXT9FRHDo_YuY1MHOqFXxISktiEnurDd-s0XBSz0Yx51BzbSbeuYj-yrm7sQzZwXcRLoaFmpv3Z0G1sbRkCRb1WwZYHKVijX26IJBTj-kB9MRqN8PJyOr5GdCMyRoE92Tj5NpqfWmwfD6_rA9tkNFy7NXq-H39R-tkya3yNzHVVnfIvc1DaK97YD3G3Sk9Udct3O4F1SGeB5CDyvBd7Pb98dyHkWcm-8NeBeeg7cPAduMISAn3gIN28LbvfI5GA43j_0deEOv4AlXvuZoqC2guYeSJmqmM4iJZJIBqESIo2LkCtOE8UTgUWSwlTKhEaZEJGExcHYnNL7pF8tKvmQeCFNshlYLTTjigWRms_DAtV2NUM-LR4OyAszoXmhWe2xuMp53kZX0Cx_xz7ut5M_HJBntu-Xjsvlyl67Ri65XuvLHHZFLL0AeB6Qp_Y2zDoer80quWjaPnEcQ59kQB50YrR_Q9OEx0nGByTdELDtgCzvm3eq8qxle0dKYNBK-KM_P9djcmO92nZJv75s5BPQl-v5Xutn2tOQ_QW6OshZ
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rescuing+zinc+anode%E2%80%93electrolyte+interface%3A+mechanisms%2C+theoretical+simulations+and+in+situ+characterizations&rft.jtitle=Chemical+science+%28Cambridge%29&rft.au=Liu%2C+Zhenjie&rft.au=Zhang%2C+Xiaofeng&rft.au=Liu%2C+Zhiming&rft.au=Jiang%2C+Yue&rft.date=2024-05-15&rft.pub=Royal+Society+of+Chemistry&rft.issn=2041-6520&rft.eissn=2041-6539&rft.volume=15&rft.issue=19&rft.spage=7010&rft.epage=7033&rft_id=info:doi/10.1039%2Fd4sc00711e&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-6520&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-6520&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-6520&client=summon