A comparative investigation of the chemical reduction of graphene oxide for electrical engineering applications
The presence of oxygen-containing functional groups on the basal plane and at the edges endows graphene oxide (GO) with an insulating nature, which makes it rather unsuitable for electronic applications. Fortunately, the reduction process makes it possible to restore the sp 2 conjugation. Among vari...
Saved in:
Published in | Nanoscale Vol. 15; no. 44; pp. 17765 - 17775 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
16.11.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The presence of oxygen-containing functional groups on the basal plane and at the edges endows graphene oxide (GO) with an insulating nature, which makes it rather unsuitable for electronic applications. Fortunately, the reduction process makes it possible to restore the sp
2
conjugation. Among various protocols, chemical reduction is appealing because of its compatibility with large-scale production. Nevertheless, despite the vast number of reported chemical protocols, their comparative assessment has not yet been the subject of an in-depth investigation, rendering the establishment of a structure-performance relationship impossible. We report a systematic study on the chemical reduction of GO by exploring different reducing agents (hydrazine hydrate, sodium borohydride, ascorbic acid (AA), and sodium dithionite) and reaction times (2 or 12 hours) in order to boost the performance of chemically reduced GO (CrGO) in electronics and in electrochemical applications. In this work, we provide evidence that the optimal reduction conditions should vary depending on the chosen application, whether it is for electrical or electrochemical purposes. CrGO exhibiting a good electrical conductivity (>1800 S m
−1
) can be obtained by using AA (12 hours of reaction), Na
2
S
2
O
4
and N
2
H
4
(independent of the reaction time). Conversely, CrGO displaying a superior electrochemical performance (specific capacitance of 211 F g
−1
, and capacitance retention >99.5% after 2000 cycles) can be obtained by using NaBH
4
(12 hours of reaction). Finally, the compatibility of the different CrGOs with wearable and flexible electronics is also demonstrated using skin irritation tests. The strategy described represents a significant advancement towards the development of environmentally friendly CrGOs with
ad hoc
properties for advanced applications in electronics and energy storage.
Various reducing agents and reaction times are systematically investigated to enhance the performance of chemically reduced GO (CrGO) in electronics and electrochemical applications. |
---|---|
AbstractList | The presence of oxygen-containing functional groups on the basal plane and at the edges endows graphene oxide (GO) with an insulating nature, which makes it rather unsuitable for electronic applications. Fortunately, the reduction process makes it possible to restore the sp
2
conjugation. Among various protocols, chemical reduction is appealing because of its compatibility with large-scale production. Nevertheless, despite the vast number of reported chemical protocols, their comparative assessment has not yet been the subject of an in-depth investigation, rendering the establishment of a structure–performance relationship impossible. We report a systematic study on the chemical reduction of GO by exploring different reducing agents (hydrazine hydrate, sodium borohydride, ascorbic acid (AA), and sodium dithionite) and reaction times (2 or 12 hours) in order to boost the performance of chemically reduced GO (CrGO) in electronics and in electrochemical applications. In this work, we provide evidence that the optimal reduction conditions should vary depending on the chosen application, whether it is for electrical or electrochemical purposes. CrGO exhibiting a good electrical conductivity (>1800 S m
−1
) can be obtained by using AA (12 hours of reaction), Na
2
S
2
O
4
and N
2
H
4
(independent of the reaction time). Conversely, CrGO displaying a superior electrochemical performance (specific capacitance of 211 F g
−1
, and capacitance retention >99.5% after 2000 cycles) can be obtained by using NaBH
4
(12 hours of reaction). Finally, the compatibility of the different CrGOs with wearable and flexible electronics is also demonstrated using skin irritation tests. The strategy described represents a significant advancement towards the development of environmentally friendly CrGOs with
ad hoc
properties for advanced applications in electronics and energy storage. The presence of oxygen-containing functional groups on the basal plane and at the edges endows graphene oxide (GO) with an insulating nature, which makes it rather unsuitable for electronic applications. Fortunately, the reduction process makes it possible to restore the sp 2 conjugation. Among various protocols, chemical reduction is appealing because of its compatibility with large-scale production. Nevertheless, despite the vast number of reported chemical protocols, their comparative assessment has not yet been the subject of an in-depth investigation, rendering the establishment of a structure-performance relationship impossible. We report a systematic study on the chemical reduction of GO by exploring different reducing agents (hydrazine hydrate, sodium borohydride, ascorbic acid (AA), and sodium dithionite) and reaction times (2 or 12 hours) in order to boost the performance of chemically reduced GO (CrGO) in electronics and in electrochemical applications. In this work, we provide evidence that the optimal reduction conditions should vary depending on the chosen application, whether it is for electrical or electrochemical purposes. CrGO exhibiting a good electrical conductivity (>1800 S m −1 ) can be obtained by using AA (12 hours of reaction), Na 2 S 2 O 4 and N 2 H 4 (independent of the reaction time). Conversely, CrGO displaying a superior electrochemical performance (specific capacitance of 211 F g −1 , and capacitance retention >99.5% after 2000 cycles) can be obtained by using NaBH 4 (12 hours of reaction). Finally, the compatibility of the different CrGOs with wearable and flexible electronics is also demonstrated using skin irritation tests. The strategy described represents a significant advancement towards the development of environmentally friendly CrGOs with ad hoc properties for advanced applications in electronics and energy storage. Various reducing agents and reaction times are systematically investigated to enhance the performance of chemically reduced GO (CrGO) in electronics and electrochemical applications. The presence of oxygen-containing functional groups on the basal plane and at the edges endows graphene oxide (GO) with an insulating nature, which makes it rather unsuitable for electronic applications. Fortunately, the reduction process makes it possible to restore the sp2 conjugation. Among various protocols, chemical reduction is appealing because of its compatibility with large-scale production. Nevertheless, despite the vast number of reported chemical protocols, their comparative assessment has not yet been the subject of an in-depth investigation, rendering the establishment of a structure–performance relationship impossible. We report a systematic study on the chemical reduction of GO by exploring different reducing agents (hydrazine hydrate, sodium borohydride, ascorbic acid (AA), and sodium dithionite) and reaction times (2 or 12 hours) in order to boost the performance of chemically reduced GO (CrGO) in electronics and in electrochemical applications. In this work, we provide evidence that the optimal reduction conditions should vary depending on the chosen application, whether it is for electrical or electrochemical purposes. CrGO exhibiting a good electrical conductivity (>1800 S m−1) can be obtained by using AA (12 hours of reaction), Na2S2O4 and N2H4 (independent of the reaction time). Conversely, CrGO displaying a superior electrochemical performance (specific capacitance of 211 F g−1, and capacitance retention >99.5% after 2000 cycles) can be obtained by using NaBH4 (12 hours of reaction). Finally, the compatibility of the different CrGOs with wearable and flexible electronics is also demonstrated using skin irritation tests. The strategy described represents a significant advancement towards the development of environmentally friendly CrGOs with ad hoc properties for advanced applications in electronics and energy storage. The presence of oxygen-containing functional groups on the basal plane and at the edges endows graphene oxide (GO) with an insulating nature, which makes it rather unsuitable for electronic applications. Fortunately, the reduction process makes it possible to restore the sp2 conjugation. Among various protocols, chemical reduction is appealing because of its compatibility with large-scale production. Nevertheless, despite the vast number of reported chemical protocols, their comparative assessment has not yet been the subject of an in-depth investigation, rendering the establishment of a structure-performance relationship impossible. We report a systematic study on the chemical reduction of GO by exploring different reducing agents (hydrazine hydrate, sodium borohydride, ascorbic acid (AA), and sodium dithionite) and reaction times (2 or 12 hours) in order to boost the performance of chemically reduced GO (CrGO) in electronics and in electrochemical applications. In this work, we provide evidence that the optimal reduction conditions should vary depending on the chosen application, whether it is for electrical or electrochemical purposes. CrGO exhibiting a good electrical conductivity (>1800 S m-1) can be obtained by using AA (12 hours of reaction), Na2S2O4 and N2H4 (independent of the reaction time). Conversely, CrGO displaying a superior electrochemical performance (specific capacitance of 211 F g-1, and capacitance retention >99.5% after 2000 cycles) can be obtained by using NaBH4 (12 hours of reaction). Finally, the compatibility of the different CrGOs with wearable and flexible electronics is also demonstrated using skin irritation tests. The strategy described represents a significant advancement towards the development of environmentally friendly CrGOs with ad hoc properties for advanced applications in electronics and energy storage.The presence of oxygen-containing functional groups on the basal plane and at the edges endows graphene oxide (GO) with an insulating nature, which makes it rather unsuitable for electronic applications. Fortunately, the reduction process makes it possible to restore the sp2 conjugation. Among various protocols, chemical reduction is appealing because of its compatibility with large-scale production. Nevertheless, despite the vast number of reported chemical protocols, their comparative assessment has not yet been the subject of an in-depth investigation, rendering the establishment of a structure-performance relationship impossible. We report a systematic study on the chemical reduction of GO by exploring different reducing agents (hydrazine hydrate, sodium borohydride, ascorbic acid (AA), and sodium dithionite) and reaction times (2 or 12 hours) in order to boost the performance of chemically reduced GO (CrGO) in electronics and in electrochemical applications. In this work, we provide evidence that the optimal reduction conditions should vary depending on the chosen application, whether it is for electrical or electrochemical purposes. CrGO exhibiting a good electrical conductivity (>1800 S m-1) can be obtained by using AA (12 hours of reaction), Na2S2O4 and N2H4 (independent of the reaction time). Conversely, CrGO displaying a superior electrochemical performance (specific capacitance of 211 F g-1, and capacitance retention >99.5% after 2000 cycles) can be obtained by using NaBH4 (12 hours of reaction). Finally, the compatibility of the different CrGOs with wearable and flexible electronics is also demonstrated using skin irritation tests. The strategy described represents a significant advancement towards the development of environmentally friendly CrGOs with ad hoc properties for advanced applications in electronics and energy storage. The presence of oxygen-containing functional groups on the basal plane and at the edges endows graphene oxide (GO) with an insulating nature, which makes it rather unsuitable for electronic applications. Fortunately, the reduction process makes it possible to restore the sp conjugation. Among various protocols, chemical reduction is appealing because of its compatibility with large-scale production. Nevertheless, despite the vast number of reported chemical protocols, their comparative assessment has not yet been the subject of an in-depth investigation, rendering the establishment of a structure-performance relationship impossible. We report a systematic study on the chemical reduction of GO by exploring different reducing agents (hydrazine hydrate, sodium borohydride, ascorbic acid (AA), and sodium dithionite) and reaction times (2 or 12 hours) in order to boost the performance of chemically reduced GO (CrGO) in electronics and in electrochemical applications. In this work, we provide evidence that the optimal reduction conditions should vary depending on the chosen application, whether it is for electrical or electrochemical purposes. CrGO exhibiting a good electrical conductivity (>1800 S m ) can be obtained by using AA (12 hours of reaction), Na S O and N H (independent of the reaction time). Conversely, CrGO displaying a superior electrochemical performance (specific capacitance of 211 F g , and capacitance retention >99.5% after 2000 cycles) can be obtained by using NaBH (12 hours of reaction). Finally, the compatibility of the different CrGOs with wearable and flexible electronics is also demonstrated using skin irritation tests. The strategy described represents a significant advancement towards the development of environmentally friendly CrGOs with properties for advanced applications in electronics and energy storage. |
Author | Musia, Andrzej Tubaro, Aurelia Ciesielski, Artur Chudziak, Tomasz Pakulski, Dawid Samorì, Paolo Montes-García, Verónica Valentini, Cataldo Bielejewski, Micha Czepa, W odzimierz Carlin, Michela Pelin, Marco |
AuthorAffiliation | Department of Life Sciences Faculty of Chemistry Center for Advanced Technologies Institute of Molecular Physics Adam Mickiewicz University University of Strasbourg CNRS ISIS UMR 7006 University of Trieste Polish Academy of Sciences |
AuthorAffiliation_xml | – sequence: 0 name: Faculty of Chemistry – sequence: 0 name: University of Strasbourg CNRS ISIS UMR 7006 – sequence: 0 name: Institute of Molecular Physics – sequence: 0 name: Polish Academy of Sciences – sequence: 0 name: Adam Mickiewicz University – sequence: 0 name: University of Trieste – sequence: 0 name: Center for Advanced Technologies – sequence: 0 name: Department of Life Sciences |
Author_xml | – sequence: 1 givenname: Tomasz surname: Chudziak fullname: Chudziak, Tomasz – sequence: 2 givenname: Verónica surname: Montes-García fullname: Montes-García, Verónica – sequence: 3 givenname: W odzimierz surname: Czepa fullname: Czepa, W odzimierz – sequence: 4 givenname: Dawid surname: Pakulski fullname: Pakulski, Dawid – sequence: 5 givenname: Andrzej surname: Musia fullname: Musia, Andrzej – sequence: 6 givenname: Cataldo surname: Valentini fullname: Valentini, Cataldo – sequence: 7 givenname: Micha surname: Bielejewski fullname: Bielejewski, Micha – sequence: 8 givenname: Michela surname: Carlin fullname: Carlin, Michela – sequence: 9 givenname: Aurelia surname: Tubaro fullname: Tubaro, Aurelia – sequence: 10 givenname: Marco surname: Pelin fullname: Pelin, Marco – sequence: 11 givenname: Paolo surname: Samorì fullname: Samorì, Paolo – sequence: 12 givenname: Artur surname: Ciesielski fullname: Ciesielski, Artur |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37882733$$D View this record in MEDLINE/PubMed https://hal.science/hal-04292970$$DView record in HAL |
BookMark | eNptkk2P0zAQhi20iN0tXLiDLHEBpMLEdmL7WC0fRapAQnCOHGfSeJXawU4q-Pe47W6RVpw8Hj_vWPPOXJMLHzwS8ryAdwVw_b7lPoIoWdE_IlcMBCw5l-ziHFfiklyndAtQaV7xJ-SSS6WY5PyKhBW1YTeaaCa3R-r8HtPktvkWPA0dnXqktseds2agEdvZ3r9soxl79EjDb9ci7UKkOKCd4hFFv3UeMTq_pWYch5w8CNNT8rgzQ8Jnd-eC_Pz08cfNern59vnLzWqztALktNSWa4MdB0DZFCAaZaRtykI0rays6ZTQoFXZKN1AodAqXVbMCM2FkkyXHV-QN6e6vRnqMbqdiX_qYFy9Xm3qQw4E00xL2BeZfX1ixxh-zbn_eueSxWEwHsOcapbN4kxU2b0FefUAvQ1z9LmTTGnIVktVZurlHTU3O2zP_9_bnoG3J8DGkFLE7owUUB9mWn_gX78fZ7rOMDyArZuObk7RuOH_khcnSUz2XPrfmvC_oTuscw |
CitedBy_id | crossref_primary_10_1142_S0218625X24300120 crossref_primary_10_17341_gazimmfd_1391047 crossref_primary_10_1002_advs_202309041 crossref_primary_10_1016_j_apsusc_2024_161553 crossref_primary_10_1007_s13201_024_02287_z crossref_primary_10_1038_s41598_023_51040_0 crossref_primary_10_1039_D4RA03387F crossref_primary_10_1088_2053_1583_adabf3 crossref_primary_10_21926_rpm_2501004 |
Cites_doi | 10.1016/j.apsusc.2020.147990 10.1002/adma.201301928 10.1088/2053-1583/ab1e0a 10.1021/ja402552h 10.1126/science.1200770 10.1039/C8NR00897C 10.1002/aenm.201300986 10.1016/j.ensm.2018.12.006 10.1007/s13233-013-1139-x 10.1103/PhysRevLett.97.187401 10.5487/TR.2016.32.4.311 10.1016/j.carbon.2022.05.036 10.1039/c3cc43612h 10.1016/j.electacta.2022.140046 10.1039/C8NR02933D 10.1039/C9NR06815E 10.1039/D2NR06091D 10.1002/anie.201402780 10.1021/acs.jpcc.5b01590 10.1126/science.1246501 10.1016/j.diamond.2021.108305 10.1038/srep40163 10.1016/j.est.2022.105666 10.1016/j.carbon.2011.06.006 10.1016/j.chemosphere.2021.130739 10.1016/j.compscitech.2011.04.016 10.1021/acsnano.8b04758 10.1039/c1nr10270b 10.1016/j.cej.2020.127018 10.1002/adma.201705489 10.1016/j.carbon.2022.08.024 10.1039/C7NR02943H 10.3390/molecules27227840 10.1039/B917705A 10.1371/journal.pone.0144842 10.1016/j.flatc.2018.10.001 10.1016/S0378-4274(98)00323-3 10.1002/adma.201804600 10.1021/nl300901a 10.1088/0957-4484/22/4/045704 10.1016/j.apsusc.2018.03.243 10.1016/j.impact.2022.100448 10.1021/cm902635j 10.1021/acs.jpcc.7b06236 10.1007/s10853-020-05461-1 10.1016/j.carbon.2019.12.064 10.1021/jp100603h 10.1021/jp202575j 10.1016/j.carbon.2017.04.025 10.1002/admi.202201221 10.1038/nphoton.2010.186 10.1038/ncomms1643 10.1002/adma.200903469 10.1039/c3ee23870a 10.1016/j.apsusc.2013.04.020 10.1039/C7RA10013B 10.1016/j.desal.2020.114852 10.1039/C7CS00363C 10.1016/j.actbio.2013.08.016 10.1002/adfm.200900167 10.1126/science.aah3398 10.1016/j.carbon.2011.08.019 10.1016/j.jpowsour.2013.01.122 10.1038/ncomms3487 10.1016/j.carbon.2011.11.010 10.1021/nl201432g 10.1021/nl072838r 10.1039/C8CS00417J 10.1021/acs.jpcc.2c01455 10.1038/s41598-020-75448-0 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2023 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2023 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8 1XC VOOES |
DOI | 10.1039/d3nr04521h |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic PubMed Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2040-3372 |
EndPage | 17775 |
ExternalDocumentID | oai_HAL_hal_04292970v1 37882733 10_1039_D3NR04521H d3nr04521h |
Genre | Journal Article |
GroupedDBID | --- -JG 0-7 0R~ 29M 4.4 53G 705 7~J AAEMU AAIWI AAJAE AANOJ AARTK AAWGC AAXHV ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFVBQ AGEGJ AGRSR AGSTE AHGCF AKBGW ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K DU5 EBS ECGLT EE0 EF- F5P GGIMP H13 HZ~ H~N J3I O-G O9- OK1 P2P RAOCF RCNCU RNS RPMJG RRC RSCEA RVUXY AAYXX AFRZK AKMSF ALUYA CITATION NPM 7SR 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8 1XC VOOES |
ID | FETCH-LOGICAL-c407t-9c39aef300e7b104b8a7cb514bd76caf8490985b89b018ec89562a493487295f3 |
ISSN | 2040-3364 2040-3372 |
IngestDate | Thu Jul 10 07:18:06 EDT 2025 Fri Jul 11 06:23:35 EDT 2025 Sun Jun 29 15:23:11 EDT 2025 Wed Feb 19 02:10:01 EST 2025 Tue Jul 01 00:42:11 EDT 2025 Thu Apr 24 23:09:06 EDT 2025 Tue Dec 17 20:58:38 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 44 |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c407t-9c39aef300e7b104b8a7cb514bd76caf8490985b89b018ec89562a493487295f3 |
Notes | https://doi.org/10.1039/d3nr04521h Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3438-2196 0000-0001-5209-9338 0000-0002-3235-0545 0000-0002-9950-1221 0000-0002-4306-7411 0000-0001-6256-8281 0000-0003-3542-4092 0000-0003-2773-2589 0000-0002-3118-4143 0000-0002-0136-6667 |
OpenAccessLink | https://hal.science/hal-04292970 |
PMID | 37882733 |
PQID | 2890364785 |
PQPubID | 2047485 |
PageCount | 11 |
ParticipantIDs | crossref_citationtrail_10_1039_D3NR04521H hal_primary_oai_HAL_hal_04292970v1 proquest_journals_2890364785 pubmed_primary_37882733 crossref_primary_10_1039_D3NR04521H rsc_primary_d3nr04521h proquest_miscellaneous_2882324669 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-11-16 |
PublicationDateYYYYMMDD | 2023-11-16 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-16 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Nanoscale |
PublicationTitleAlternate | Nanoscale |
PublicationYear | 2023 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Zhao (D3NR04521H/cit64/1) 2022; 126 Reina (D3NR04521H/cit10/1) 2017; 46 Li (D3NR04521H/cit39/1) 2019; 17 Valentini (D3NR04521H/cit4/1) 2023; 15 Lesiak (D3NR04521H/cit56/1) 2021; 56 Sarr (D3NR04521H/cit40/1) 2022; 55 Cançado (D3NR04521H/cit51/1) 2011; 11 Eckmann (D3NR04521H/cit53/1) 2012; 12 De Silva (D3NR04521H/cit34/1) 2017; 119 Zhu (D3NR04521H/cit60/1) 2011; 332 Claramunt (D3NR04521H/cit48/1) 2015; 119 Gao (D3NR04521H/cit36/1) 2010; 22 Frontinan-Rubio (D3NR04521H/cit69/1) 2018; 10 Zhang (D3NR04521H/cit26/1) 2010; 46 Xu (D3NR04521H/cit63/1) 2013; 6 Pelin (D3NR04521H/cit68/1) 2018; 10 Frontinan-Rubio (D3NR04521H/cit71/1) 2020; 10 Rani (D3NR04521H/cit33/1) 2019; 6 Fusco (D3NR04521H/cit65/1) 2020; 12 Johnson (D3NR04521H/cit5/1) 2021; 500 Gao (D3NR04521H/cit7/1) 2022; 9 Molina (D3NR04521H/cit43/1) 2013; 279 Anichini (D3NR04521H/cit3/1) 2018; 47 Zhang (D3NR04521H/cit59/1) 2013; 135 Shin (D3NR04521H/cit25/1) 2009; 19 Bharathidasan (D3NR04521H/cit41/1) 2018; 11 Mei (D3NR04521H/cit16/1) 2011; 49 Sui (D3NR04521H/cit35/1) 2011; 49 Eigler (D3NR04521H/cit19/1) 2014; 53 Lee (D3NR04521H/cit47/1) 2021; 536 Guex (D3NR04521H/cit29/1) 2017; 9 Bertóti (D3NR04521H/cit45/1) 2022; 199 Park (D3NR04521H/cit46/1) 2012; 3 Mao (D3NR04521H/cit23/1) 2011; 3 Fernández-Merino (D3NR04521H/cit28/1) 2010; 114 Pulingam (D3NR04521H/cit70/1) 2021; 281 Zhuang (D3NR04521H/cit8/1) 2010; 22 Lv (D3NR04521H/cit57/1) 2018; 30 Sim (D3NR04521H/cit22/1) 2022; 27 De Silva (D3NR04521H/cit31/1) 2018; 447 Karacic (D3NR04521H/cit15/1) 2022; 410 López-Díaz (D3NR04521H/cit54/1) 2017; 121 De Silva (D3NR04521H/cit27/1) 2018; 447 Zhou (D3NR04521H/cit55/1) 2010; 22 Wang (D3NR04521H/cit21/1) 2008; 8 Yang (D3NR04521H/cit62/1) 2017; 7 Zhou (D3NR04521H/cit24/1) 2011; 115 Bing (D3NR04521H/cit32/1) 2021; 114 Agarwal (D3NR04521H/cit30/1) 2021; 405 Wu (D3NR04521H/cit37/1) 2013; 4 Eigler (D3NR04521H/cit20/1) 2013; 49 Huang (D3NR04521H/cit9/1) 2019; 31 Ferrari (D3NR04521H/cit50/1) 2006; 97 Fusco (D3NR04521H/cit72/1) 2020; 159 Backes (D3NR04521H/cit1/1) 2020; 7 Pei (D3NR04521H/cit14/1) 2012; 50 Fadeel (D3NR04521H/cit11/1) 2018; 12 Bonaccorso (D3NR04521H/cit38/1) 2015; 347 Bonaccorso (D3NR04521H/cit12/1) 2010; 4 Lee (D3NR04521H/cit52/1) 2021; 536 Iskandar (D3NR04521H/cit17/1) 2017; 7 Li (D3NR04521H/cit18/1) 2013; 21 Xu (D3NR04521H/cit44/1) 2015; 10 Sosa (D3NR04521H/cit73/1) 2023; 29 Zhou (D3NR04521H/cit42/1) 2011; 71 Xu (D3NR04521H/cit61/1) 2013; 25 Liu (D3NR04521H/cit6/1) 2013; 9 Corsini (D3NR04521H/cit66/1) 1998; 102–103 Dalla Colletta (D3NR04521H/cit67/1) 2022; 196 Kim (D3NR04521H/cit74/1) 2016; 32 Yamaguchi (D3NR04521H/cit13/1) 2014; 4 Voiry (D3NR04521H/cit2/1) 2016; 353 Tuinstra (D3NR04521H/cit49/1) 1970; 53 Bai (D3NR04521H/cit58/1) 2013; 233 |
References_xml | – volume: 536 start-page: 147990 year: 2021 ident: D3NR04521H/cit47/1 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.147990 – volume: 25 start-page: 5779 year: 2013 ident: D3NR04521H/cit61/1 publication-title: Adv. Mater. doi: 10.1002/adma.201301928 – volume: 7 start-page: 022001 year: 2020 ident: D3NR04521H/cit1/1 publication-title: 2D Mater. doi: 10.1088/2053-1583/ab1e0a – volume: 135 start-page: 5921 year: 2013 ident: D3NR04521H/cit59/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja402552h – volume: 332 start-page: 1537 year: 2011 ident: D3NR04521H/cit60/1 publication-title: Science doi: 10.1126/science.1200770 – volume: 10 start-page: 11604 year: 2018 ident: D3NR04521H/cit69/1 publication-title: Nanoscale doi: 10.1039/C8NR00897C – volume: 4 start-page: 1300986 year: 2014 ident: D3NR04521H/cit13/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201300986 – volume: 17 start-page: 12 year: 2019 ident: D3NR04521H/cit39/1 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2018.12.006 – volume: 21 start-page: 290 year: 2013 ident: D3NR04521H/cit18/1 publication-title: Macromol. Res. doi: 10.1007/s13233-013-1139-x – volume: 97 start-page: 187401 year: 2006 ident: D3NR04521H/cit50/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.97.187401 – volume: 32 start-page: 311 year: 2016 ident: D3NR04521H/cit74/1 publication-title: Toxicol. Res. doi: 10.5487/TR.2016.32.4.311 – volume: 196 start-page: 683 year: 2022 ident: D3NR04521H/cit67/1 publication-title: Carbon doi: 10.1016/j.carbon.2022.05.036 – volume: 49 start-page: 7391 year: 2013 ident: D3NR04521H/cit20/1 publication-title: Chem. Commun. doi: 10.1039/c3cc43612h – volume: 410 start-page: 11 year: 2022 ident: D3NR04521H/cit15/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2022.140046 – volume: 10 start-page: 11820 year: 2018 ident: D3NR04521H/cit68/1 publication-title: Nanoscale doi: 10.1039/C8NR02933D – volume: 12 start-page: 610 year: 2020 ident: D3NR04521H/cit65/1 publication-title: Nanoscale doi: 10.1039/C9NR06815E – volume: 15 start-page: 5743 year: 2023 ident: D3NR04521H/cit4/1 publication-title: Nanoscale doi: 10.1039/D2NR06091D – volume: 53 start-page: 7720 year: 2014 ident: D3NR04521H/cit19/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201402780 – volume: 53 start-page: 1126 year: 1970 ident: D3NR04521H/cit49/1 publication-title: Chem. Phys. – volume: 119 start-page: 10123 year: 2015 ident: D3NR04521H/cit48/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b01590 – volume: 347 start-page: 1246501 year: 2015 ident: D3NR04521H/cit38/1 publication-title: Science doi: 10.1126/science.1246501 – volume: 114 start-page: 108305 year: 2021 ident: D3NR04521H/cit32/1 publication-title: Diamond Relat. Mater. doi: 10.1016/j.diamond.2021.108305 – volume: 7 start-page: 40163 year: 2017 ident: D3NR04521H/cit62/1 publication-title: Sci. Rep. doi: 10.1038/srep40163 – volume: 55 start-page: 105666 year: 2022 ident: D3NR04521H/cit40/1 publication-title: J. Energy Storage doi: 10.1016/j.est.2022.105666 – volume: 49 start-page: 4314 year: 2011 ident: D3NR04521H/cit35/1 publication-title: Carbon doi: 10.1016/j.carbon.2011.06.006 – volume: 281 start-page: 11 year: 2021 ident: D3NR04521H/cit70/1 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.130739 – volume: 71 start-page: 1266 year: 2011 ident: D3NR04521H/cit42/1 publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2011.04.016 – volume: 12 start-page: 10582 year: 2018 ident: D3NR04521H/cit11/1 publication-title: ACS Nano doi: 10.1021/acsnano.8b04758 – volume: 3 start-page: 2849 year: 2011 ident: D3NR04521H/cit23/1 publication-title: Nanoscale doi: 10.1039/c1nr10270b – volume: 405 start-page: 127018 year: 2021 ident: D3NR04521H/cit30/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.127018 – volume: 30 start-page: 1705489 year: 2018 ident: D3NR04521H/cit57/1 publication-title: Adv. Mater. doi: 10.1002/adma.201705489 – volume: 199 start-page: 415 year: 2022 ident: D3NR04521H/cit45/1 publication-title: Carbon doi: 10.1016/j.carbon.2022.08.024 – volume: 9 start-page: 9562 year: 2017 ident: D3NR04521H/cit29/1 publication-title: Nanoscale doi: 10.1039/C7NR02943H – volume: 27 start-page: 7840 year: 2022 ident: D3NR04521H/cit22/1 publication-title: Molecules doi: 10.3390/molecules27227840 – volume: 46 start-page: 1112 year: 2010 ident: D3NR04521H/cit26/1 publication-title: Chem. Commun. doi: 10.1039/B917705A – volume: 10 start-page: e0144842 year: 2015 ident: D3NR04521H/cit44/1 publication-title: PLoS One doi: 10.1371/journal.pone.0144842 – volume: 11 start-page: 24 year: 2018 ident: D3NR04521H/cit41/1 publication-title: FlatChem doi: 10.1016/j.flatc.2018.10.001 – volume: 102–103 start-page: 277 year: 1998 ident: D3NR04521H/cit66/1 publication-title: Toxicol. Lett. doi: 10.1016/S0378-4274(98)00323-3 – volume: 31 start-page: 1804600 year: 2019 ident: D3NR04521H/cit9/1 publication-title: Adv. Mater. doi: 10.1002/adma.201804600 – volume: 12 start-page: 3925 year: 2012 ident: D3NR04521H/cit53/1 publication-title: Nano Lett. doi: 10.1021/nl300901a – volume: 22 start-page: 045704 year: 2010 ident: D3NR04521H/cit55/1 publication-title: Nanotechnology doi: 10.1088/0957-4484/22/4/045704 – volume: 447 start-page: 338 year: 2018 ident: D3NR04521H/cit27/1 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.03.243 – volume: 29 start-page: 9 year: 2023 ident: D3NR04521H/cit73/1 publication-title: NanoImpact doi: 10.1016/j.impact.2022.100448 – volume: 6 start-page: 8 year: 2019 ident: D3NR04521H/cit33/1 publication-title: Mater. Res. Express – volume: 22 start-page: 2213 year: 2010 ident: D3NR04521H/cit36/1 publication-title: Chem. Mater. doi: 10.1021/cm902635j – volume: 121 start-page: 20489 year: 2017 ident: D3NR04521H/cit54/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.7b06236 – volume: 56 start-page: 3738 year: 2021 ident: D3NR04521H/cit56/1 publication-title: J. Mater. Sci. doi: 10.1007/s10853-020-05461-1 – volume: 159 start-page: 598 year: 2020 ident: D3NR04521H/cit72/1 publication-title: Carbon doi: 10.1016/j.carbon.2019.12.064 – volume: 114 start-page: 6426 year: 2010 ident: D3NR04521H/cit28/1 publication-title: J. Phys. Chem. C doi: 10.1021/jp100603h – volume: 115 start-page: 11957 year: 2011 ident: D3NR04521H/cit24/1 publication-title: J. Phys. Chem. C doi: 10.1021/jp202575j – volume: 119 start-page: 190 year: 2017 ident: D3NR04521H/cit34/1 publication-title: Carbon doi: 10.1016/j.carbon.2017.04.025 – volume: 447 start-page: 338 year: 2018 ident: D3NR04521H/cit31/1 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.03.243 – volume: 9 start-page: 2201221 year: 2022 ident: D3NR04521H/cit7/1 publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.202201221 – volume: 4 start-page: 611 year: 2010 ident: D3NR04521H/cit12/1 publication-title: Nat. Photonics doi: 10.1038/nphoton.2010.186 – volume: 3 start-page: 638 year: 2012 ident: D3NR04521H/cit46/1 publication-title: Nat. Commun. doi: 10.1038/ncomms1643 – volume: 22 start-page: 1731 year: 2010 ident: D3NR04521H/cit8/1 publication-title: Adv. Mater. doi: 10.1002/adma.200903469 – volume: 6 start-page: 1388 year: 2013 ident: D3NR04521H/cit63/1 publication-title: Energy Environ. Sci. doi: 10.1039/c3ee23870a – volume: 279 start-page: 46 year: 2013 ident: D3NR04521H/cit43/1 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2013.04.020 – volume: 7 start-page: 52391 year: 2017 ident: D3NR04521H/cit17/1 publication-title: RSC Adv. doi: 10.1039/C7RA10013B – volume: 500 start-page: 114852 year: 2021 ident: D3NR04521H/cit5/1 publication-title: Desalination doi: 10.1016/j.desal.2020.114852 – volume: 46 start-page: 4400 year: 2017 ident: D3NR04521H/cit10/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00363C – volume: 9 start-page: 9243 year: 2013 ident: D3NR04521H/cit6/1 publication-title: Acta Biomater. doi: 10.1016/j.actbio.2013.08.016 – volume: 19 start-page: 1987 year: 2009 ident: D3NR04521H/cit25/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200900167 – volume: 353 start-page: 1413 year: 2016 ident: D3NR04521H/cit2/1 publication-title: Science doi: 10.1126/science.aah3398 – volume: 49 start-page: 5389 year: 2011 ident: D3NR04521H/cit16/1 publication-title: Carbon doi: 10.1016/j.carbon.2011.08.019 – volume: 233 start-page: 313 year: 2013 ident: D3NR04521H/cit58/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.01.122 – volume: 4 start-page: 2487 year: 2013 ident: D3NR04521H/cit37/1 publication-title: Nat. Commun. doi: 10.1038/ncomms3487 – volume: 50 start-page: 3210 year: 2012 ident: D3NR04521H/cit14/1 publication-title: Carbon doi: 10.1016/j.carbon.2011.11.010 – volume: 536 start-page: 147990 year: 2021 ident: D3NR04521H/cit52/1 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.147990 – volume: 11 start-page: 3190 year: 2011 ident: D3NR04521H/cit51/1 publication-title: Nano Lett. doi: 10.1021/nl201432g – volume: 8 start-page: 323 year: 2008 ident: D3NR04521H/cit21/1 publication-title: Nano Lett. doi: 10.1021/nl072838r – volume: 47 start-page: 4860 year: 2018 ident: D3NR04521H/cit3/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00417J – volume: 126 start-page: 9248 year: 2022 ident: D3NR04521H/cit64/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.2c01455 – volume: 10 start-page: 17 year: 2020 ident: D3NR04521H/cit71/1 publication-title: Sci. Rep. doi: 10.1038/s41598-020-75448-0 |
SSID | ssj0069363 |
Score | 2.4716868 |
Snippet | The presence of oxygen-containing functional groups on the basal plane and at the edges endows graphene oxide (GO) with an insulating nature, which makes it... |
SourceID | hal proquest pubmed crossref rsc |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 17765 |
SubjectTerms | Ascorbic acid Basal plane Capacitance Chemical reduction Chemical Sciences Compatibility Conjugation Electrical engineering Electrical resistivity Electrochemical analysis Electronics Energy storage Flexible components Functional groups Graphene Hydrazines Irritation Material chemistry Reaction time Reducing agents Sodium dithionite |
Title | A comparative investigation of the chemical reduction of graphene oxide for electrical engineering applications |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37882733 https://www.proquest.com/docview/2890364785 https://www.proquest.com/docview/2882324669 https://hal.science/hal-04292970 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbK9gIPiNsgMJC57AFNGUmcxPZj1rIVNioEG9tb5DipWmkkqBdA_Zn8Io4dO0m1Pgxeota20jTni8858efvIPSG-WMSgd91CQ9jN4QvbiaEdFWqAclPKHIt1_RpFA_Pw4-X0WWv96fDWlousgO52riv5H-sCm1gV7VL9h8s25wUGuAz2BeOYGE43sjGiaGQ1-Ld01Yyow4CVUwprSDATGm02h4tUw2z3H71e5ob2W9dD0cPLVqNwv3uAnc3kIVZuZrD4AYX_ckyX01FTbxWpKNVY0slgDXfP1ZVi3So-q1enz8kZZcotALHqBl_e_1ojwUVnO07-OzmNBDrLq9Mle2B-GWY-OaFRUDUzr16P6VhOqnXIpaTqjknprJdO_UFiudISK1vflB02-j63B11MBqGnZnYp7QuQmHcOnyvS7Rc8xkeUZKrAzL6ouTl_WHrGS0bYJh8TT8PjtLTD6OT9d5GoXuYnKYTAJDy7wGn3k_IyLcDSF1g7t1OTg6PL2x8EHOi6_s1_9GK5hL-rr2ItTDp1kSRdK9nQNAzs3VqdDx0dg_dNYkMTmpU3ke9onyA7nTkLR-iKsEdfOI1fOJqjAGf2OITN_hUPRafWOMTAz5xi0_cwSfu4vMROj96f9YfuqbAhytDjy5cLgkXxZh4XkEz3wszJqjMIITPchpLMWYh9ziLMsYzz2eFZJDMByLkBLLsgEdjsoO2yqosniAccgG5hheJmMpQ-JIRSpkneR5lYz-mmYPe2vuZSqN-r4qwXKWahUF42t57B71uxv6oNV82jnqlDG4HbAaBg3at1VIzccxTtbavyjawyEEvm254BtRanSiLaqnGMJXrxDF30OPa2s1PqRIQkHUQB-2A-ZvmnJQzfWmTpze5tGfodvt07qKtxWxZPIcAe5G9MIj9C3Ty0eU |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comparative+investigation+of+the+chemical+reduction+of+graphene+oxide+for+electrical+engineering+applications&rft.jtitle=Nanoscale&rft.au=Chudziak%2C+Tomasz&rft.au=Montes+Garcia%2C+Ver%C3%B3nica&rft.au=Czepa%2C+W%C5%82odzimierz&rft.au=Pakulski%2C+Dawid&rft.date=2023-11-16&rft.pub=Royal+Society+of+Chemistry&rft.issn=2040-3364&rft.eissn=2040-3372&rft.volume=15&rft.issue=44&rft.spage=17765&rft.epage=17775&rft_id=info:doi/10.1039%2FD3NR04521H&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_04292970v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon |