A comparative investigation of the chemical reduction of graphene oxide for electrical engineering applications

The presence of oxygen-containing functional groups on the basal plane and at the edges endows graphene oxide (GO) with an insulating nature, which makes it rather unsuitable for electronic applications. Fortunately, the reduction process makes it possible to restore the sp 2 conjugation. Among vari...

Full description

Saved in:
Bibliographic Details
Published inNanoscale Vol. 15; no. 44; pp. 17765 - 17775
Main Authors Chudziak, Tomasz, Montes-García, Verónica, Czepa, W odzimierz, Pakulski, Dawid, Musia, Andrzej, Valentini, Cataldo, Bielejewski, Micha, Carlin, Michela, Tubaro, Aurelia, Pelin, Marco, Samorì, Paolo, Ciesielski, Artur
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 16.11.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The presence of oxygen-containing functional groups on the basal plane and at the edges endows graphene oxide (GO) with an insulating nature, which makes it rather unsuitable for electronic applications. Fortunately, the reduction process makes it possible to restore the sp 2 conjugation. Among various protocols, chemical reduction is appealing because of its compatibility with large-scale production. Nevertheless, despite the vast number of reported chemical protocols, their comparative assessment has not yet been the subject of an in-depth investigation, rendering the establishment of a structure-performance relationship impossible. We report a systematic study on the chemical reduction of GO by exploring different reducing agents (hydrazine hydrate, sodium borohydride, ascorbic acid (AA), and sodium dithionite) and reaction times (2 or 12 hours) in order to boost the performance of chemically reduced GO (CrGO) in electronics and in electrochemical applications. In this work, we provide evidence that the optimal reduction conditions should vary depending on the chosen application, whether it is for electrical or electrochemical purposes. CrGO exhibiting a good electrical conductivity (>1800 S m −1 ) can be obtained by using AA (12 hours of reaction), Na 2 S 2 O 4 and N 2 H 4 (independent of the reaction time). Conversely, CrGO displaying a superior electrochemical performance (specific capacitance of 211 F g −1 , and capacitance retention >99.5% after 2000 cycles) can be obtained by using NaBH 4 (12 hours of reaction). Finally, the compatibility of the different CrGOs with wearable and flexible electronics is also demonstrated using skin irritation tests. The strategy described represents a significant advancement towards the development of environmentally friendly CrGOs with ad hoc properties for advanced applications in electronics and energy storage. Various reducing agents and reaction times are systematically investigated to enhance the performance of chemically reduced GO (CrGO) in electronics and electrochemical applications.
AbstractList The presence of oxygen-containing functional groups on the basal plane and at the edges endows graphene oxide (GO) with an insulating nature, which makes it rather unsuitable for electronic applications. Fortunately, the reduction process makes it possible to restore the sp 2 conjugation. Among various protocols, chemical reduction is appealing because of its compatibility with large-scale production. Nevertheless, despite the vast number of reported chemical protocols, their comparative assessment has not yet been the subject of an in-depth investigation, rendering the establishment of a structure–performance relationship impossible. We report a systematic study on the chemical reduction of GO by exploring different reducing agents (hydrazine hydrate, sodium borohydride, ascorbic acid (AA), and sodium dithionite) and reaction times (2 or 12 hours) in order to boost the performance of chemically reduced GO (CrGO) in electronics and in electrochemical applications. In this work, we provide evidence that the optimal reduction conditions should vary depending on the chosen application, whether it is for electrical or electrochemical purposes. CrGO exhibiting a good electrical conductivity (>1800 S m −1 ) can be obtained by using AA (12 hours of reaction), Na 2 S 2 O 4 and N 2 H 4 (independent of the reaction time). Conversely, CrGO displaying a superior electrochemical performance (specific capacitance of 211 F g −1 , and capacitance retention >99.5% after 2000 cycles) can be obtained by using NaBH 4 (12 hours of reaction). Finally, the compatibility of the different CrGOs with wearable and flexible electronics is also demonstrated using skin irritation tests. The strategy described represents a significant advancement towards the development of environmentally friendly CrGOs with ad hoc properties for advanced applications in electronics and energy storage.
The presence of oxygen-containing functional groups on the basal plane and at the edges endows graphene oxide (GO) with an insulating nature, which makes it rather unsuitable for electronic applications. Fortunately, the reduction process makes it possible to restore the sp 2 conjugation. Among various protocols, chemical reduction is appealing because of its compatibility with large-scale production. Nevertheless, despite the vast number of reported chemical protocols, their comparative assessment has not yet been the subject of an in-depth investigation, rendering the establishment of a structure-performance relationship impossible. We report a systematic study on the chemical reduction of GO by exploring different reducing agents (hydrazine hydrate, sodium borohydride, ascorbic acid (AA), and sodium dithionite) and reaction times (2 or 12 hours) in order to boost the performance of chemically reduced GO (CrGO) in electronics and in electrochemical applications. In this work, we provide evidence that the optimal reduction conditions should vary depending on the chosen application, whether it is for electrical or electrochemical purposes. CrGO exhibiting a good electrical conductivity (>1800 S m −1 ) can be obtained by using AA (12 hours of reaction), Na 2 S 2 O 4 and N 2 H 4 (independent of the reaction time). Conversely, CrGO displaying a superior electrochemical performance (specific capacitance of 211 F g −1 , and capacitance retention >99.5% after 2000 cycles) can be obtained by using NaBH 4 (12 hours of reaction). Finally, the compatibility of the different CrGOs with wearable and flexible electronics is also demonstrated using skin irritation tests. The strategy described represents a significant advancement towards the development of environmentally friendly CrGOs with ad hoc properties for advanced applications in electronics and energy storage. Various reducing agents and reaction times are systematically investigated to enhance the performance of chemically reduced GO (CrGO) in electronics and electrochemical applications.
The presence of oxygen-containing functional groups on the basal plane and at the edges endows graphene oxide (GO) with an insulating nature, which makes it rather unsuitable for electronic applications. Fortunately, the reduction process makes it possible to restore the sp2 conjugation. Among various protocols, chemical reduction is appealing because of its compatibility with large-scale production. Nevertheless, despite the vast number of reported chemical protocols, their comparative assessment has not yet been the subject of an in-depth investigation, rendering the establishment of a structure–performance relationship impossible. We report a systematic study on the chemical reduction of GO by exploring different reducing agents (hydrazine hydrate, sodium borohydride, ascorbic acid (AA), and sodium dithionite) and reaction times (2 or 12 hours) in order to boost the performance of chemically reduced GO (CrGO) in electronics and in electrochemical applications. In this work, we provide evidence that the optimal reduction conditions should vary depending on the chosen application, whether it is for electrical or electrochemical purposes. CrGO exhibiting a good electrical conductivity (>1800 S m−1) can be obtained by using AA (12 hours of reaction), Na2S2O4 and N2H4 (independent of the reaction time). Conversely, CrGO displaying a superior electrochemical performance (specific capacitance of 211 F g−1, and capacitance retention >99.5% after 2000 cycles) can be obtained by using NaBH4 (12 hours of reaction). Finally, the compatibility of the different CrGOs with wearable and flexible electronics is also demonstrated using skin irritation tests. The strategy described represents a significant advancement towards the development of environmentally friendly CrGOs with ad hoc properties for advanced applications in electronics and energy storage.
The presence of oxygen-containing functional groups on the basal plane and at the edges endows graphene oxide (GO) with an insulating nature, which makes it rather unsuitable for electronic applications. Fortunately, the reduction process makes it possible to restore the sp2 conjugation. Among various protocols, chemical reduction is appealing because of its compatibility with large-scale production. Nevertheless, despite the vast number of reported chemical protocols, their comparative assessment has not yet been the subject of an in-depth investigation, rendering the establishment of a structure-performance relationship impossible. We report a systematic study on the chemical reduction of GO by exploring different reducing agents (hydrazine hydrate, sodium borohydride, ascorbic acid (AA), and sodium dithionite) and reaction times (2 or 12 hours) in order to boost the performance of chemically reduced GO (CrGO) in electronics and in electrochemical applications. In this work, we provide evidence that the optimal reduction conditions should vary depending on the chosen application, whether it is for electrical or electrochemical purposes. CrGO exhibiting a good electrical conductivity (>1800 S m-1) can be obtained by using AA (12 hours of reaction), Na2S2O4 and N2H4 (independent of the reaction time). Conversely, CrGO displaying a superior electrochemical performance (specific capacitance of 211 F g-1, and capacitance retention >99.5% after 2000 cycles) can be obtained by using NaBH4 (12 hours of reaction). Finally, the compatibility of the different CrGOs with wearable and flexible electronics is also demonstrated using skin irritation tests. The strategy described represents a significant advancement towards the development of environmentally friendly CrGOs with ad hoc properties for advanced applications in electronics and energy storage.The presence of oxygen-containing functional groups on the basal plane and at the edges endows graphene oxide (GO) with an insulating nature, which makes it rather unsuitable for electronic applications. Fortunately, the reduction process makes it possible to restore the sp2 conjugation. Among various protocols, chemical reduction is appealing because of its compatibility with large-scale production. Nevertheless, despite the vast number of reported chemical protocols, their comparative assessment has not yet been the subject of an in-depth investigation, rendering the establishment of a structure-performance relationship impossible. We report a systematic study on the chemical reduction of GO by exploring different reducing agents (hydrazine hydrate, sodium borohydride, ascorbic acid (AA), and sodium dithionite) and reaction times (2 or 12 hours) in order to boost the performance of chemically reduced GO (CrGO) in electronics and in electrochemical applications. In this work, we provide evidence that the optimal reduction conditions should vary depending on the chosen application, whether it is for electrical or electrochemical purposes. CrGO exhibiting a good electrical conductivity (>1800 S m-1) can be obtained by using AA (12 hours of reaction), Na2S2O4 and N2H4 (independent of the reaction time). Conversely, CrGO displaying a superior electrochemical performance (specific capacitance of 211 F g-1, and capacitance retention >99.5% after 2000 cycles) can be obtained by using NaBH4 (12 hours of reaction). Finally, the compatibility of the different CrGOs with wearable and flexible electronics is also demonstrated using skin irritation tests. The strategy described represents a significant advancement towards the development of environmentally friendly CrGOs with ad hoc properties for advanced applications in electronics and energy storage.
The presence of oxygen-containing functional groups on the basal plane and at the edges endows graphene oxide (GO) with an insulating nature, which makes it rather unsuitable for electronic applications. Fortunately, the reduction process makes it possible to restore the sp conjugation. Among various protocols, chemical reduction is appealing because of its compatibility with large-scale production. Nevertheless, despite the vast number of reported chemical protocols, their comparative assessment has not yet been the subject of an in-depth investigation, rendering the establishment of a structure-performance relationship impossible. We report a systematic study on the chemical reduction of GO by exploring different reducing agents (hydrazine hydrate, sodium borohydride, ascorbic acid (AA), and sodium dithionite) and reaction times (2 or 12 hours) in order to boost the performance of chemically reduced GO (CrGO) in electronics and in electrochemical applications. In this work, we provide evidence that the optimal reduction conditions should vary depending on the chosen application, whether it is for electrical or electrochemical purposes. CrGO exhibiting a good electrical conductivity (>1800 S m ) can be obtained by using AA (12 hours of reaction), Na S O and N H (independent of the reaction time). Conversely, CrGO displaying a superior electrochemical performance (specific capacitance of 211 F g , and capacitance retention >99.5% after 2000 cycles) can be obtained by using NaBH (12 hours of reaction). Finally, the compatibility of the different CrGOs with wearable and flexible electronics is also demonstrated using skin irritation tests. The strategy described represents a significant advancement towards the development of environmentally friendly CrGOs with properties for advanced applications in electronics and energy storage.
Author Musia, Andrzej
Tubaro, Aurelia
Ciesielski, Artur
Chudziak, Tomasz
Pakulski, Dawid
Samorì, Paolo
Montes-García, Verónica
Valentini, Cataldo
Bielejewski, Micha
Czepa, W odzimierz
Carlin, Michela
Pelin, Marco
AuthorAffiliation Department of Life Sciences
Faculty of Chemistry
Center for Advanced Technologies
Institute of Molecular Physics
Adam Mickiewicz University
University of Strasbourg CNRS ISIS UMR 7006
University of Trieste
Polish Academy of Sciences
AuthorAffiliation_xml – sequence: 0
  name: Faculty of Chemistry
– sequence: 0
  name: University of Strasbourg CNRS ISIS UMR 7006
– sequence: 0
  name: Institute of Molecular Physics
– sequence: 0
  name: Polish Academy of Sciences
– sequence: 0
  name: Adam Mickiewicz University
– sequence: 0
  name: University of Trieste
– sequence: 0
  name: Center for Advanced Technologies
– sequence: 0
  name: Department of Life Sciences
Author_xml – sequence: 1
  givenname: Tomasz
  surname: Chudziak
  fullname: Chudziak, Tomasz
– sequence: 2
  givenname: Verónica
  surname: Montes-García
  fullname: Montes-García, Verónica
– sequence: 3
  givenname: W odzimierz
  surname: Czepa
  fullname: Czepa, W odzimierz
– sequence: 4
  givenname: Dawid
  surname: Pakulski
  fullname: Pakulski, Dawid
– sequence: 5
  givenname: Andrzej
  surname: Musia
  fullname: Musia, Andrzej
– sequence: 6
  givenname: Cataldo
  surname: Valentini
  fullname: Valentini, Cataldo
– sequence: 7
  givenname: Micha
  surname: Bielejewski
  fullname: Bielejewski, Micha
– sequence: 8
  givenname: Michela
  surname: Carlin
  fullname: Carlin, Michela
– sequence: 9
  givenname: Aurelia
  surname: Tubaro
  fullname: Tubaro, Aurelia
– sequence: 10
  givenname: Marco
  surname: Pelin
  fullname: Pelin, Marco
– sequence: 11
  givenname: Paolo
  surname: Samorì
  fullname: Samorì, Paolo
– sequence: 12
  givenname: Artur
  surname: Ciesielski
  fullname: Ciesielski, Artur
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37882733$$D View this record in MEDLINE/PubMed
https://hal.science/hal-04292970$$DView record in HAL
BookMark eNptkk2P0zAQhi20iN0tXLiDLHEBpMLEdmL7WC0fRapAQnCOHGfSeJXawU4q-Pe47W6RVpw8Hj_vWPPOXJMLHzwS8ryAdwVw_b7lPoIoWdE_IlcMBCw5l-ziHFfiklyndAtQaV7xJ-SSS6WY5PyKhBW1YTeaaCa3R-r8HtPktvkWPA0dnXqktseds2agEdvZ3r9soxl79EjDb9ci7UKkOKCd4hFFv3UeMTq_pWYch5w8CNNT8rgzQ8Jnd-eC_Pz08cfNern59vnLzWqztALktNSWa4MdB0DZFCAaZaRtykI0rays6ZTQoFXZKN1AodAqXVbMCM2FkkyXHV-QN6e6vRnqMbqdiX_qYFy9Xm3qQw4E00xL2BeZfX1ixxh-zbn_eueSxWEwHsOcapbN4kxU2b0FefUAvQ1z9LmTTGnIVktVZurlHTU3O2zP_9_bnoG3J8DGkFLE7owUUB9mWn_gX78fZ7rOMDyArZuObk7RuOH_khcnSUz2XPrfmvC_oTuscw
CitedBy_id crossref_primary_10_1142_S0218625X24300120
crossref_primary_10_17341_gazimmfd_1391047
crossref_primary_10_1002_advs_202309041
crossref_primary_10_1016_j_apsusc_2024_161553
crossref_primary_10_1007_s13201_024_02287_z
crossref_primary_10_1038_s41598_023_51040_0
crossref_primary_10_1039_D4RA03387F
crossref_primary_10_1088_2053_1583_adabf3
crossref_primary_10_21926_rpm_2501004
Cites_doi 10.1016/j.apsusc.2020.147990
10.1002/adma.201301928
10.1088/2053-1583/ab1e0a
10.1021/ja402552h
10.1126/science.1200770
10.1039/C8NR00897C
10.1002/aenm.201300986
10.1016/j.ensm.2018.12.006
10.1007/s13233-013-1139-x
10.1103/PhysRevLett.97.187401
10.5487/TR.2016.32.4.311
10.1016/j.carbon.2022.05.036
10.1039/c3cc43612h
10.1016/j.electacta.2022.140046
10.1039/C8NR02933D
10.1039/C9NR06815E
10.1039/D2NR06091D
10.1002/anie.201402780
10.1021/acs.jpcc.5b01590
10.1126/science.1246501
10.1016/j.diamond.2021.108305
10.1038/srep40163
10.1016/j.est.2022.105666
10.1016/j.carbon.2011.06.006
10.1016/j.chemosphere.2021.130739
10.1016/j.compscitech.2011.04.016
10.1021/acsnano.8b04758
10.1039/c1nr10270b
10.1016/j.cej.2020.127018
10.1002/adma.201705489
10.1016/j.carbon.2022.08.024
10.1039/C7NR02943H
10.3390/molecules27227840
10.1039/B917705A
10.1371/journal.pone.0144842
10.1016/j.flatc.2018.10.001
10.1016/S0378-4274(98)00323-3
10.1002/adma.201804600
10.1021/nl300901a
10.1088/0957-4484/22/4/045704
10.1016/j.apsusc.2018.03.243
10.1016/j.impact.2022.100448
10.1021/cm902635j
10.1021/acs.jpcc.7b06236
10.1007/s10853-020-05461-1
10.1016/j.carbon.2019.12.064
10.1021/jp100603h
10.1021/jp202575j
10.1016/j.carbon.2017.04.025
10.1002/admi.202201221
10.1038/nphoton.2010.186
10.1038/ncomms1643
10.1002/adma.200903469
10.1039/c3ee23870a
10.1016/j.apsusc.2013.04.020
10.1039/C7RA10013B
10.1016/j.desal.2020.114852
10.1039/C7CS00363C
10.1016/j.actbio.2013.08.016
10.1002/adfm.200900167
10.1126/science.aah3398
10.1016/j.carbon.2011.08.019
10.1016/j.jpowsour.2013.01.122
10.1038/ncomms3487
10.1016/j.carbon.2011.11.010
10.1021/nl201432g
10.1021/nl072838r
10.1039/C8CS00417J
10.1021/acs.jpcc.2c01455
10.1038/s41598-020-75448-0
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2023
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright Royal Society of Chemistry 2023
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
1XC
VOOES
DOI 10.1039/d3nr04521h
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef


MEDLINE - Academic
PubMed
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2040-3372
EndPage 17775
ExternalDocumentID oai_HAL_hal_04292970v1
37882733
10_1039_D3NR04521H
d3nr04521h
Genre Journal Article
GroupedDBID ---
-JG
0-7
0R~
29M
4.4
53G
705
7~J
AAEMU
AAIWI
AAJAE
AANOJ
AARTK
AAWGC
AAXHV
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
DU5
EBS
ECGLT
EE0
EF-
F5P
GGIMP
H13
HZ~
H~N
J3I
O-G
O9-
OK1
P2P
RAOCF
RCNCU
RNS
RPMJG
RRC
RSCEA
RVUXY
AAYXX
AFRZK
AKMSF
ALUYA
CITATION
NPM
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
1XC
VOOES
ID FETCH-LOGICAL-c407t-9c39aef300e7b104b8a7cb514bd76caf8490985b89b018ec89562a493487295f3
ISSN 2040-3364
2040-3372
IngestDate Thu Jul 10 07:18:06 EDT 2025
Fri Jul 11 06:23:35 EDT 2025
Sun Jun 29 15:23:11 EDT 2025
Wed Feb 19 02:10:01 EST 2025
Tue Jul 01 00:42:11 EDT 2025
Thu Apr 24 23:09:06 EDT 2025
Tue Dec 17 20:58:38 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 44
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c407t-9c39aef300e7b104b8a7cb514bd76caf8490985b89b018ec89562a493487295f3
Notes https://doi.org/10.1039/d3nr04521h
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3438-2196
0000-0001-5209-9338
0000-0002-3235-0545
0000-0002-9950-1221
0000-0002-4306-7411
0000-0001-6256-8281
0000-0003-3542-4092
0000-0003-2773-2589
0000-0002-3118-4143
0000-0002-0136-6667
OpenAccessLink https://hal.science/hal-04292970
PMID 37882733
PQID 2890364785
PQPubID 2047485
PageCount 11
ParticipantIDs crossref_citationtrail_10_1039_D3NR04521H
hal_primary_oai_HAL_hal_04292970v1
proquest_journals_2890364785
pubmed_primary_37882733
crossref_primary_10_1039_D3NR04521H
rsc_primary_d3nr04521h
proquest_miscellaneous_2882324669
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-16
PublicationDateYYYYMMDD 2023-11-16
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-16
  day: 16
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Nanoscale
PublicationTitleAlternate Nanoscale
PublicationYear 2023
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Zhao (D3NR04521H/cit64/1) 2022; 126
Reina (D3NR04521H/cit10/1) 2017; 46
Li (D3NR04521H/cit39/1) 2019; 17
Valentini (D3NR04521H/cit4/1) 2023; 15
Lesiak (D3NR04521H/cit56/1) 2021; 56
Sarr (D3NR04521H/cit40/1) 2022; 55
Cançado (D3NR04521H/cit51/1) 2011; 11
Eckmann (D3NR04521H/cit53/1) 2012; 12
De Silva (D3NR04521H/cit34/1) 2017; 119
Zhu (D3NR04521H/cit60/1) 2011; 332
Claramunt (D3NR04521H/cit48/1) 2015; 119
Gao (D3NR04521H/cit36/1) 2010; 22
Frontinan-Rubio (D3NR04521H/cit69/1) 2018; 10
Zhang (D3NR04521H/cit26/1) 2010; 46
Xu (D3NR04521H/cit63/1) 2013; 6
Pelin (D3NR04521H/cit68/1) 2018; 10
Frontinan-Rubio (D3NR04521H/cit71/1) 2020; 10
Rani (D3NR04521H/cit33/1) 2019; 6
Fusco (D3NR04521H/cit65/1) 2020; 12
Johnson (D3NR04521H/cit5/1) 2021; 500
Gao (D3NR04521H/cit7/1) 2022; 9
Molina (D3NR04521H/cit43/1) 2013; 279
Anichini (D3NR04521H/cit3/1) 2018; 47
Zhang (D3NR04521H/cit59/1) 2013; 135
Shin (D3NR04521H/cit25/1) 2009; 19
Bharathidasan (D3NR04521H/cit41/1) 2018; 11
Mei (D3NR04521H/cit16/1) 2011; 49
Sui (D3NR04521H/cit35/1) 2011; 49
Eigler (D3NR04521H/cit19/1) 2014; 53
Lee (D3NR04521H/cit47/1) 2021; 536
Guex (D3NR04521H/cit29/1) 2017; 9
Bertóti (D3NR04521H/cit45/1) 2022; 199
Park (D3NR04521H/cit46/1) 2012; 3
Mao (D3NR04521H/cit23/1) 2011; 3
Fernández-Merino (D3NR04521H/cit28/1) 2010; 114
Pulingam (D3NR04521H/cit70/1) 2021; 281
Zhuang (D3NR04521H/cit8/1) 2010; 22
Lv (D3NR04521H/cit57/1) 2018; 30
Sim (D3NR04521H/cit22/1) 2022; 27
De Silva (D3NR04521H/cit31/1) 2018; 447
Karacic (D3NR04521H/cit15/1) 2022; 410
López-Díaz (D3NR04521H/cit54/1) 2017; 121
De Silva (D3NR04521H/cit27/1) 2018; 447
Zhou (D3NR04521H/cit55/1) 2010; 22
Wang (D3NR04521H/cit21/1) 2008; 8
Yang (D3NR04521H/cit62/1) 2017; 7
Zhou (D3NR04521H/cit24/1) 2011; 115
Bing (D3NR04521H/cit32/1) 2021; 114
Agarwal (D3NR04521H/cit30/1) 2021; 405
Wu (D3NR04521H/cit37/1) 2013; 4
Eigler (D3NR04521H/cit20/1) 2013; 49
Huang (D3NR04521H/cit9/1) 2019; 31
Ferrari (D3NR04521H/cit50/1) 2006; 97
Fusco (D3NR04521H/cit72/1) 2020; 159
Backes (D3NR04521H/cit1/1) 2020; 7
Pei (D3NR04521H/cit14/1) 2012; 50
Fadeel (D3NR04521H/cit11/1) 2018; 12
Bonaccorso (D3NR04521H/cit38/1) 2015; 347
Bonaccorso (D3NR04521H/cit12/1) 2010; 4
Lee (D3NR04521H/cit52/1) 2021; 536
Iskandar (D3NR04521H/cit17/1) 2017; 7
Li (D3NR04521H/cit18/1) 2013; 21
Xu (D3NR04521H/cit44/1) 2015; 10
Sosa (D3NR04521H/cit73/1) 2023; 29
Zhou (D3NR04521H/cit42/1) 2011; 71
Xu (D3NR04521H/cit61/1) 2013; 25
Liu (D3NR04521H/cit6/1) 2013; 9
Corsini (D3NR04521H/cit66/1) 1998; 102–103
Dalla Colletta (D3NR04521H/cit67/1) 2022; 196
Kim (D3NR04521H/cit74/1) 2016; 32
Yamaguchi (D3NR04521H/cit13/1) 2014; 4
Voiry (D3NR04521H/cit2/1) 2016; 353
Tuinstra (D3NR04521H/cit49/1) 1970; 53
Bai (D3NR04521H/cit58/1) 2013; 233
References_xml – volume: 536
  start-page: 147990
  year: 2021
  ident: D3NR04521H/cit47/1
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2020.147990
– volume: 25
  start-page: 5779
  year: 2013
  ident: D3NR04521H/cit61/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201301928
– volume: 7
  start-page: 022001
  year: 2020
  ident: D3NR04521H/cit1/1
  publication-title: 2D Mater.
  doi: 10.1088/2053-1583/ab1e0a
– volume: 135
  start-page: 5921
  year: 2013
  ident: D3NR04521H/cit59/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja402552h
– volume: 332
  start-page: 1537
  year: 2011
  ident: D3NR04521H/cit60/1
  publication-title: Science
  doi: 10.1126/science.1200770
– volume: 10
  start-page: 11604
  year: 2018
  ident: D3NR04521H/cit69/1
  publication-title: Nanoscale
  doi: 10.1039/C8NR00897C
– volume: 4
  start-page: 1300986
  year: 2014
  ident: D3NR04521H/cit13/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201300986
– volume: 17
  start-page: 12
  year: 2019
  ident: D3NR04521H/cit39/1
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2018.12.006
– volume: 21
  start-page: 290
  year: 2013
  ident: D3NR04521H/cit18/1
  publication-title: Macromol. Res.
  doi: 10.1007/s13233-013-1139-x
– volume: 97
  start-page: 187401
  year: 2006
  ident: D3NR04521H/cit50/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.97.187401
– volume: 32
  start-page: 311
  year: 2016
  ident: D3NR04521H/cit74/1
  publication-title: Toxicol. Res.
  doi: 10.5487/TR.2016.32.4.311
– volume: 196
  start-page: 683
  year: 2022
  ident: D3NR04521H/cit67/1
  publication-title: Carbon
  doi: 10.1016/j.carbon.2022.05.036
– volume: 49
  start-page: 7391
  year: 2013
  ident: D3NR04521H/cit20/1
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc43612h
– volume: 410
  start-page: 11
  year: 2022
  ident: D3NR04521H/cit15/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2022.140046
– volume: 10
  start-page: 11820
  year: 2018
  ident: D3NR04521H/cit68/1
  publication-title: Nanoscale
  doi: 10.1039/C8NR02933D
– volume: 12
  start-page: 610
  year: 2020
  ident: D3NR04521H/cit65/1
  publication-title: Nanoscale
  doi: 10.1039/C9NR06815E
– volume: 15
  start-page: 5743
  year: 2023
  ident: D3NR04521H/cit4/1
  publication-title: Nanoscale
  doi: 10.1039/D2NR06091D
– volume: 53
  start-page: 7720
  year: 2014
  ident: D3NR04521H/cit19/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201402780
– volume: 53
  start-page: 1126
  year: 1970
  ident: D3NR04521H/cit49/1
  publication-title: Chem. Phys.
– volume: 119
  start-page: 10123
  year: 2015
  ident: D3NR04521H/cit48/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b01590
– volume: 347
  start-page: 1246501
  year: 2015
  ident: D3NR04521H/cit38/1
  publication-title: Science
  doi: 10.1126/science.1246501
– volume: 114
  start-page: 108305
  year: 2021
  ident: D3NR04521H/cit32/1
  publication-title: Diamond Relat. Mater.
  doi: 10.1016/j.diamond.2021.108305
– volume: 7
  start-page: 40163
  year: 2017
  ident: D3NR04521H/cit62/1
  publication-title: Sci. Rep.
  doi: 10.1038/srep40163
– volume: 55
  start-page: 105666
  year: 2022
  ident: D3NR04521H/cit40/1
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2022.105666
– volume: 49
  start-page: 4314
  year: 2011
  ident: D3NR04521H/cit35/1
  publication-title: Carbon
  doi: 10.1016/j.carbon.2011.06.006
– volume: 281
  start-page: 11
  year: 2021
  ident: D3NR04521H/cit70/1
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.130739
– volume: 71
  start-page: 1266
  year: 2011
  ident: D3NR04521H/cit42/1
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2011.04.016
– volume: 12
  start-page: 10582
  year: 2018
  ident: D3NR04521H/cit11/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b04758
– volume: 3
  start-page: 2849
  year: 2011
  ident: D3NR04521H/cit23/1
  publication-title: Nanoscale
  doi: 10.1039/c1nr10270b
– volume: 405
  start-page: 127018
  year: 2021
  ident: D3NR04521H/cit30/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.127018
– volume: 30
  start-page: 1705489
  year: 2018
  ident: D3NR04521H/cit57/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705489
– volume: 199
  start-page: 415
  year: 2022
  ident: D3NR04521H/cit45/1
  publication-title: Carbon
  doi: 10.1016/j.carbon.2022.08.024
– volume: 9
  start-page: 9562
  year: 2017
  ident: D3NR04521H/cit29/1
  publication-title: Nanoscale
  doi: 10.1039/C7NR02943H
– volume: 27
  start-page: 7840
  year: 2022
  ident: D3NR04521H/cit22/1
  publication-title: Molecules
  doi: 10.3390/molecules27227840
– volume: 46
  start-page: 1112
  year: 2010
  ident: D3NR04521H/cit26/1
  publication-title: Chem. Commun.
  doi: 10.1039/B917705A
– volume: 10
  start-page: e0144842
  year: 2015
  ident: D3NR04521H/cit44/1
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0144842
– volume: 11
  start-page: 24
  year: 2018
  ident: D3NR04521H/cit41/1
  publication-title: FlatChem
  doi: 10.1016/j.flatc.2018.10.001
– volume: 102–103
  start-page: 277
  year: 1998
  ident: D3NR04521H/cit66/1
  publication-title: Toxicol. Lett.
  doi: 10.1016/S0378-4274(98)00323-3
– volume: 31
  start-page: 1804600
  year: 2019
  ident: D3NR04521H/cit9/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201804600
– volume: 12
  start-page: 3925
  year: 2012
  ident: D3NR04521H/cit53/1
  publication-title: Nano Lett.
  doi: 10.1021/nl300901a
– volume: 22
  start-page: 045704
  year: 2010
  ident: D3NR04521H/cit55/1
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/22/4/045704
– volume: 447
  start-page: 338
  year: 2018
  ident: D3NR04521H/cit27/1
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.03.243
– volume: 29
  start-page: 9
  year: 2023
  ident: D3NR04521H/cit73/1
  publication-title: NanoImpact
  doi: 10.1016/j.impact.2022.100448
– volume: 6
  start-page: 8
  year: 2019
  ident: D3NR04521H/cit33/1
  publication-title: Mater. Res. Express
– volume: 22
  start-page: 2213
  year: 2010
  ident: D3NR04521H/cit36/1
  publication-title: Chem. Mater.
  doi: 10.1021/cm902635j
– volume: 121
  start-page: 20489
  year: 2017
  ident: D3NR04521H/cit54/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.7b06236
– volume: 56
  start-page: 3738
  year: 2021
  ident: D3NR04521H/cit56/1
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-020-05461-1
– volume: 159
  start-page: 598
  year: 2020
  ident: D3NR04521H/cit72/1
  publication-title: Carbon
  doi: 10.1016/j.carbon.2019.12.064
– volume: 114
  start-page: 6426
  year: 2010
  ident: D3NR04521H/cit28/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp100603h
– volume: 115
  start-page: 11957
  year: 2011
  ident: D3NR04521H/cit24/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp202575j
– volume: 119
  start-page: 190
  year: 2017
  ident: D3NR04521H/cit34/1
  publication-title: Carbon
  doi: 10.1016/j.carbon.2017.04.025
– volume: 447
  start-page: 338
  year: 2018
  ident: D3NR04521H/cit31/1
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.03.243
– volume: 9
  start-page: 2201221
  year: 2022
  ident: D3NR04521H/cit7/1
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.202201221
– volume: 4
  start-page: 611
  year: 2010
  ident: D3NR04521H/cit12/1
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2010.186
– volume: 3
  start-page: 638
  year: 2012
  ident: D3NR04521H/cit46/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1643
– volume: 22
  start-page: 1731
  year: 2010
  ident: D3NR04521H/cit8/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200903469
– volume: 6
  start-page: 1388
  year: 2013
  ident: D3NR04521H/cit63/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee23870a
– volume: 279
  start-page: 46
  year: 2013
  ident: D3NR04521H/cit43/1
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2013.04.020
– volume: 7
  start-page: 52391
  year: 2017
  ident: D3NR04521H/cit17/1
  publication-title: RSC Adv.
  doi: 10.1039/C7RA10013B
– volume: 500
  start-page: 114852
  year: 2021
  ident: D3NR04521H/cit5/1
  publication-title: Desalination
  doi: 10.1016/j.desal.2020.114852
– volume: 46
  start-page: 4400
  year: 2017
  ident: D3NR04521H/cit10/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00363C
– volume: 9
  start-page: 9243
  year: 2013
  ident: D3NR04521H/cit6/1
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2013.08.016
– volume: 19
  start-page: 1987
  year: 2009
  ident: D3NR04521H/cit25/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200900167
– volume: 353
  start-page: 1413
  year: 2016
  ident: D3NR04521H/cit2/1
  publication-title: Science
  doi: 10.1126/science.aah3398
– volume: 49
  start-page: 5389
  year: 2011
  ident: D3NR04521H/cit16/1
  publication-title: Carbon
  doi: 10.1016/j.carbon.2011.08.019
– volume: 233
  start-page: 313
  year: 2013
  ident: D3NR04521H/cit58/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.01.122
– volume: 4
  start-page: 2487
  year: 2013
  ident: D3NR04521H/cit37/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3487
– volume: 50
  start-page: 3210
  year: 2012
  ident: D3NR04521H/cit14/1
  publication-title: Carbon
  doi: 10.1016/j.carbon.2011.11.010
– volume: 536
  start-page: 147990
  year: 2021
  ident: D3NR04521H/cit52/1
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2020.147990
– volume: 11
  start-page: 3190
  year: 2011
  ident: D3NR04521H/cit51/1
  publication-title: Nano Lett.
  doi: 10.1021/nl201432g
– volume: 8
  start-page: 323
  year: 2008
  ident: D3NR04521H/cit21/1
  publication-title: Nano Lett.
  doi: 10.1021/nl072838r
– volume: 47
  start-page: 4860
  year: 2018
  ident: D3NR04521H/cit3/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00417J
– volume: 126
  start-page: 9248
  year: 2022
  ident: D3NR04521H/cit64/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.2c01455
– volume: 10
  start-page: 17
  year: 2020
  ident: D3NR04521H/cit71/1
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-75448-0
SSID ssj0069363
Score 2.4716868
Snippet The presence of oxygen-containing functional groups on the basal plane and at the edges endows graphene oxide (GO) with an insulating nature, which makes it...
SourceID hal
proquest
pubmed
crossref
rsc
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 17765
SubjectTerms Ascorbic acid
Basal plane
Capacitance
Chemical reduction
Chemical Sciences
Compatibility
Conjugation
Electrical engineering
Electrical resistivity
Electrochemical analysis
Electronics
Energy storage
Flexible components
Functional groups
Graphene
Hydrazines
Irritation
Material chemistry
Reaction time
Reducing agents
Sodium dithionite
Title A comparative investigation of the chemical reduction of graphene oxide for electrical engineering applications
URI https://www.ncbi.nlm.nih.gov/pubmed/37882733
https://www.proquest.com/docview/2890364785
https://www.proquest.com/docview/2882324669
https://hal.science/hal-04292970
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbK9gIPiNsgMJC57AFNGUmcxPZj1rIVNioEG9tb5DipWmkkqBdA_Zn8Io4dO0m1Pgxeota20jTni8858efvIPSG-WMSgd91CQ9jN4QvbiaEdFWqAclPKHIt1_RpFA_Pw4-X0WWv96fDWlousgO52riv5H-sCm1gV7VL9h8s25wUGuAz2BeOYGE43sjGiaGQ1-Ld01Yyow4CVUwprSDATGm02h4tUw2z3H71e5ob2W9dD0cPLVqNwv3uAnc3kIVZuZrD4AYX_ckyX01FTbxWpKNVY0slgDXfP1ZVi3So-q1enz8kZZcotALHqBl_e_1ojwUVnO07-OzmNBDrLq9Mle2B-GWY-OaFRUDUzr16P6VhOqnXIpaTqjknprJdO_UFiudISK1vflB02-j63B11MBqGnZnYp7QuQmHcOnyvS7Rc8xkeUZKrAzL6ouTl_WHrGS0bYJh8TT8PjtLTD6OT9d5GoXuYnKYTAJDy7wGn3k_IyLcDSF1g7t1OTg6PL2x8EHOi6_s1_9GK5hL-rr2ItTDp1kSRdK9nQNAzs3VqdDx0dg_dNYkMTmpU3ke9onyA7nTkLR-iKsEdfOI1fOJqjAGf2OITN_hUPRafWOMTAz5xi0_cwSfu4vMROj96f9YfuqbAhytDjy5cLgkXxZh4XkEz3wszJqjMIITPchpLMWYh9ziLMsYzz2eFZJDMByLkBLLsgEdjsoO2yqosniAccgG5hheJmMpQ-JIRSpkneR5lYz-mmYPe2vuZSqN-r4qwXKWahUF42t57B71uxv6oNV82jnqlDG4HbAaBg3at1VIzccxTtbavyjawyEEvm254BtRanSiLaqnGMJXrxDF30OPa2s1PqRIQkHUQB-2A-ZvmnJQzfWmTpze5tGfodvt07qKtxWxZPIcAe5G9MIj9C3Ty0eU
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comparative+investigation+of+the+chemical+reduction+of+graphene+oxide+for+electrical+engineering+applications&rft.jtitle=Nanoscale&rft.au=Chudziak%2C+Tomasz&rft.au=Montes+Garcia%2C+Ver%C3%B3nica&rft.au=Czepa%2C+W%C5%82odzimierz&rft.au=Pakulski%2C+Dawid&rft.date=2023-11-16&rft.pub=Royal+Society+of+Chemistry&rft.issn=2040-3364&rft.eissn=2040-3372&rft.volume=15&rft.issue=44&rft.spage=17765&rft.epage=17775&rft_id=info:doi/10.1039%2FD3NR04521H&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_04292970v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon