Selectivity descriptors of the catalytic n -hexane cracking process over 10-membered ring zeolites
Zeolite-mediated catalytic cracking of alkanes is pivotal in the petrochemical and refining industry, breaking down heavier hydrocarbon feedstocks into fuels and chemicals. Its relevance also extends to emerging technologies such as biomass and plastic valorization. Zeolite catalysts, with shape sel...
Saved in:
Published in | Chemical science (Cambridge) Vol. 15; no. 30; pp. 11937 - 11945 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
31.07.2024
The Royal Society of Chemistry |
Subjects | |
Online Access | Get full text |
ISSN | 2041-6520 2041-6539 |
DOI | 10.1039/D4SC00603H |
Cover
Loading…
Abstract | Zeolite-mediated catalytic cracking of alkanes is pivotal in the petrochemical and refining industry, breaking down heavier hydrocarbon feedstocks into fuels and chemicals. Its relevance also extends to emerging technologies such as biomass and plastic valorization. Zeolite catalysts, with shape selectivity and selective adsorption capabilities, enhance efficiency and sustainability due to their well-defined network of pores, dimensionality, cages/cavities, and channels. This study focuses on the alkane cracking over 10-membered ring (10-MR) zeolites under industrially relevant conditions. Through a series of characterizations, including
operando
UV-vis spectroscopy and solid-state NMR spectroscopy, we intend to address mechanistic debates about the alkane cracking mechanism, aiming to understand the dependence of product selectivity on zeolite topologies. The findings highlight topology-dependent mechanisms, particularly the role of intersectional void spaces in zeolite ZSM-5, influencing aromatic-based product selectivity. This work provides a unique understanding of zeolite-catalyzed hydrocarbon conversion, linking alkane activation steps to the traditional hydrocarbon pool mechanism, contributing to the fundamental knowledge of this crucial industrial process. |
---|---|
AbstractList | Zeolite-mediated catalytic cracking of alkanes is pivotal in the petrochemical and refining industry, breaking down heavier hydrocarbon feedstocks into fuels and chemicals. Its relevance also extends to emerging technologies such as biomass and plastic valorization. Zeolite catalysts, with shape selectivity and selective adsorption capabilities, enhance efficiency and sustainability due to their well-defined network of pores, dimensionality, cages/cavities, and channels. This study focuses on the alkane cracking over 10-membered ring (10-MR) zeolites under industrially relevant conditions. Through a series of characterizations, including
UV-vis spectroscopy and solid-state NMR spectroscopy, we intend to address mechanistic debates about the alkane cracking mechanism, aiming to understand the dependence of product selectivity on zeolite topologies. The findings highlight topology-dependent mechanisms, particularly the role of intersectional void spaces in zeolite ZSM-5, influencing aromatic-based product selectivity. This work provides a unique understanding of zeolite-catalyzed hydrocarbon conversion, linking alkane activation steps to the traditional hydrocarbon pool mechanism, contributing to the fundamental knowledge of this crucial industrial process. Zeolite-mediated catalytic cracking of alkanes is pivotal in the petrochemical and refining industry, breaking down heavier hydrocarbon feedstocks into fuels and chemicals. Its relevance also extends to emerging technologies such as biomass and plastic valorization. Zeolite catalysts, with shape selectivity and selective adsorption capabilities, enhance efficiency and sustainability due to their well-defined network of pores, dimensionality, cages/cavities, and channels. This study focuses on the alkane cracking over 10-membered ring (10-MR) zeolites under industrially relevant conditions. Through a series of characterizations, including operando UV-vis spectroscopy and solid-state NMR spectroscopy, we intend to address mechanistic debates about the alkane cracking mechanism, aiming to understand the dependence of product selectivity on zeolite topologies. The findings highlight topology-dependent mechanisms, particularly the role of intersectional void spaces in zeolite ZSM-5, influencing aromatic-based product selectivity. This work provides a unique understanding of zeolite-catalyzed hydrocarbon conversion, linking alkane activation steps to the traditional hydrocarbon pool mechanism, contributing to the fundamental knowledge of this crucial industrial process. Zeolite-mediated catalytic cracking of alkanes is pivotal in the petrochemical and refining industry, breaking down heavier hydrocarbon feedstocks into fuels and chemicals. Its relevance also extends to emerging technologies such as biomass and plastic valorization. Zeolite catalysts, with shape selectivity and selective adsorption capabilities, enhance efficiency and sustainability due to their well-defined network of pores, dimensionality, cages/cavities, and channels. This study focuses on the alkane cracking over 10-membered ring (10-MR) zeolites under industrially relevant conditions. Through a series of characterizations, including operando UV-vis spectroscopy and solid-state NMR spectroscopy, we intend to address mechanistic debates about the alkane cracking mechanism, aiming to understand the dependence of product selectivity on zeolite topologies. The findings highlight topology-dependent mechanisms, particularly the role of intersectional void spaces in zeolite ZSM-5, influencing aromatic-based product selectivity. This work provides a unique understanding of zeolite-catalyzed hydrocarbon conversion, linking alkane activation steps to the traditional hydrocarbon pool mechanism, contributing to the fundamental knowledge of this crucial industrial process.Zeolite-mediated catalytic cracking of alkanes is pivotal in the petrochemical and refining industry, breaking down heavier hydrocarbon feedstocks into fuels and chemicals. Its relevance also extends to emerging technologies such as biomass and plastic valorization. Zeolite catalysts, with shape selectivity and selective adsorption capabilities, enhance efficiency and sustainability due to their well-defined network of pores, dimensionality, cages/cavities, and channels. This study focuses on the alkane cracking over 10-membered ring (10-MR) zeolites under industrially relevant conditions. Through a series of characterizations, including operando UV-vis spectroscopy and solid-state NMR spectroscopy, we intend to address mechanistic debates about the alkane cracking mechanism, aiming to understand the dependence of product selectivity on zeolite topologies. The findings highlight topology-dependent mechanisms, particularly the role of intersectional void spaces in zeolite ZSM-5, influencing aromatic-based product selectivity. This work provides a unique understanding of zeolite-catalyzed hydrocarbon conversion, linking alkane activation steps to the traditional hydrocarbon pool mechanism, contributing to the fundamental knowledge of this crucial industrial process. Zeolite-mediated catalytic cracking of alkanes is pivotal in the petrochemical and refining industry, breaking down heavier hydrocarbon feedstocks into fuels and chemicals. Its relevance also extends to emerging technologies such as biomass and plastic valorization. Zeolite catalysts, with shape selectivity and selective adsorption capabilities, enhance efficiency and sustainability due to their well-defined network of pores, dimensionality, cages/cavities, and channels. This study focuses on the alkane cracking over 10-membered ring (10-MR) zeolites under industrially relevant conditions. Through a series of characterizations, including operando UV-vis spectroscopy and solid-state NMR spectroscopy, we intend to address mechanistic debates about the alkane cracking mechanism, aiming to understand the dependence of product selectivity on zeolite topologies. The findings highlight topology-dependent mechanisms, particularly the role of intersectional void spaces in zeolite ZSM-5, influencing aromatic-based product selectivity. This work provides a unique understanding of zeolite-catalyzed hydrocarbon conversion, linking alkane activation steps to the traditional hydrocarbon pool mechanism, contributing to the fundamental knowledge of this crucial industrial process. Zeolite-mediated catalytic cracking of alkanes is pivotal in the petrochemical and refining industry, breaking down heavier hydrocarbon feedstocks into fuels and chemicals. Its relevance also extends to emerging technologies such as biomass and plastic valorization. Zeolite catalysts, with shape selectivity and selective adsorption capabilities, enhance efficiency and sustainability due to their well-defined network of pores, dimensionality, cages/cavities, and channels. This study focuses on the alkane cracking over 10-membered ring (10-MR) zeolites under industrially relevant conditions. Through a series of characterizations, including operando UV-vis spectroscopy and solid-state NMR spectroscopy, we intend to address mechanistic debates about the alkane cracking mechanism, aiming to understand the dependence of product selectivity on zeolite topologies. The findings highlight topology-dependent mechanisms, particularly the role of intersectional void spaces in zeolite ZSM-5, influencing aromatic-based product selectivity. This work provides a unique understanding of zeolite-catalyzed hydrocarbon conversion, linking alkane activation steps to the traditional hydrocarbon pool mechanism, contributing to the fundamental knowledge of this crucial industrial process. Zeolite-mediated catalytic cracking of alkanes is pivotal in the petrochemical and refining industry, breaking down heavier hydrocarbon feedstocks into fuels and chemicals. |
Author | Wang, Mengheng Cavallo, Luigi Cheng, Kang Zhu, Mengsi Ma, Pandong Li, Yubing Dutta Chowdhury, Abhishek Zhou, Hexun Nastase, Stefan Adrian F. Cui, Jiale |
Author_xml | – sequence: 1 givenname: Pandong surname: Ma fullname: Ma, Pandong organization: College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 Hubei, PR China – sequence: 2 givenname: Hexun surname: Zhou fullname: Zhou, Hexun organization: College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 Hubei, PR China – sequence: 3 givenname: Yubing surname: Li fullname: Li, Yubing organization: State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China – sequence: 4 givenname: Mengheng surname: Wang fullname: Wang, Mengheng organization: State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China – sequence: 5 givenname: Stefan Adrian F. orcidid: 0000-0002-5112-3137 surname: Nastase fullname: Nastase, Stefan Adrian F. organization: KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia – sequence: 6 givenname: Mengsi surname: Zhu fullname: Zhu, Mengsi organization: Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, PR China – sequence: 7 givenname: Jiale surname: Cui fullname: Cui, Jiale organization: State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China – sequence: 8 givenname: Luigi orcidid: 0000-0002-1398-338X surname: Cavallo fullname: Cavallo, Luigi organization: KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia – sequence: 9 givenname: Kang orcidid: 0000-0002-7112-4700 surname: Cheng fullname: Cheng, Kang organization: State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China – sequence: 10 givenname: Abhishek orcidid: 0000-0002-4121-7375 surname: Dutta Chowdhury fullname: Dutta Chowdhury, Abhishek organization: College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 Hubei, PR China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39092105$$D View this record in MEDLINE/PubMed |
BookMark | eNptkU1PHDEMhiNEVSjlwg9AkbhUlaY4H_ORU4UWWpCQeoCeo0zGywZmJtsku-ry68mIj1KEL7Hsx69ex5_I9uhHJOSAwTcGQh2fyqsZQAXifIvscpCsqEqhtl9yDjtkP8ZbyCEEK3n9kewIBYozKHdJe4U92uTWLm1oh9EGt0w-ROrnNC2QWpNMv0nO0pEWC_xrxlwLxt658YYug7cYM7vGQBkUAw4tBuxomLr36HuXMH4mH-amj7j_9O6R3z_OrmfnxeWvnxezk8vCSqhToZoOmkYxxaWsbSfK0oKSrK0qKRprTKlqsLLtatZ22T8Ii4C8URUz88pYLvbI90fd5aodsLM4pmB6vQxuMGGjvXH6_87oFvrGrzVjXIHkKit8eVII_s8KY9KDixb7Pm_tV1ELaGpRVtluRo_eoLd-Fca830RVvBGSTYKHry29eHn-_wzAI2CDjzHgXFuXTHJ-cuh6zUBPV9b_rpxHvr4ZeVZ9B34AQ2WmSQ |
CitedBy_id | crossref_primary_10_1002_anie_202414724 crossref_primary_10_1002_ange_202414724 crossref_primary_10_1016_j_checat_2024_101168 |
Cites_doi | 10.1038/s41467-021-26090-5 10.1021/j100886a006 10.1016/j.cattod.2009.01.015 10.1134/S096554411805002X 10.1006/jcat.1996.0027 10.1039/C4CP04438J 10.1016/j.jcat.2014.06.017 10.1038/s41929-018-0078-5 10.1126/science.ade7485 10.1016/S0167-2991(09)60670-4 10.1021/cr00035a006 10.1039/FT9918700663 10.1016/j.cej.2007.01.020 10.1039/C0CP01982H 10.1016/0021-9517(82)90222-6 10.1021/jp403504n 10.1016/j.micromeso.2021.111575 10.1038/nature06552 10.1021/jp5050095 10.1002/anie.200604504 10.1016/j.jcat.2014.03.013 10.1021/acscatal.6b01771 10.1016/j.micromeso.2021.111605 10.1039/D1CS00966D 10.1002/anie.201510920 10.1016/0021-9517(68)90116-4 10.1016/j.checat.2023.100525 10.1007/s11051-014-2755-x 10.1021/jp101262y 10.1016/j.cattod.2013.10.032 10.1016/0021-9517(92)90273-K 10.1021/acscatal.7b02011 10.1039/B203966B 10.1021/acscatal.8b04493 10.1016/0021-9517(83)90055-6 10.1021/ja065810a 10.1016/j.fuel.2016.01.047 10.1023/A:1019184004885 10.1002/anie.200801476 10.1016/j.checat.2022.07.026 10.1039/D0CS01459A 10.1016/j.micromeso.2005.04.028 10.1021/ef00045a025 10.1002/adma.201701139 10.1016/j.apcata.2005.04.047 10.1016/0021-9517(85)90148-4 10.1016/j.jcat.2007.04.006 10.1016/0920-5861(93)80065-9 10.1021/acscatal.6b02128 10.1016/j.apcata.2005.09.009 10.1021/acscatal.9b00151 10.1002/anie.200705453 10.1002/anie.201915651 10.1021/ja4081937 10.1021/cs200517u 10.1016/j.checat.2023.100540 10.1021/ja3089372 10.1016/S1872-2067(20)63732-9 10.1016/S0926-860X(98)00301-9 10.1038/s41929-017-0002-4 10.1016/S1387-1811(99)00205-X 10.1016/0021-9517(84)90071-X 10.1016/j.jcat.2021.08.048 10.1002/anie.201803279 10.1039/C5CS00376H 10.1021/acs.chemrev.2c00076 10.1016/0926-860X(95)00081-X 10.1021/cm301629a 10.1080/01614940.2012.632662 10.1021/i260017a018 10.1021/ie9705416 10.1016/S1387-1811(99)00204-8 10.1016/0144-2449(84)90024-1 10.1039/dc9817200317 10.1016/j.jcat.2016.11.010 10.1016/j.jcat.2005.04.017 10.1039/C7CY02460F 10.1016/j.micromeso.2013.04.010 10.1002/cphc.201701084 10.1021/acscatal.8b01054 10.1021/jacs.8b08041 10.1021/jacs.5b11355 10.1016/j.checat.2022.100503 10.1021/acs.chemrev.2c00896 10.1039/b925408k 10.1016/j.apcata.2008.09.012 10.1002/anie.202303124 |
ContentType | Journal Article |
Copyright | This journal is © The Royal Society of Chemistry. Copyright Royal Society of Chemistry 2024 This journal is © The Royal Society of Chemistry 2024 The Royal Society of Chemistry |
Copyright_xml | – notice: This journal is © The Royal Society of Chemistry. – notice: Copyright Royal Society of Chemistry 2024 – notice: This journal is © The Royal Society of Chemistry 2024 The Royal Society of Chemistry |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 5PM |
DOI | 10.1039/D4SC00603H |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed Materials Research Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2041-6539 |
EndPage | 11945 |
ExternalDocumentID | PMC11290429 39092105 10_1039_D4SC00603H |
Genre | Journal Article |
GrantInformation_xml | – fundername: ; grantid: 2022YFA1504500 – fundername: ; grantid: 2042023kf0126 – fundername: ; grantid: 22350610243 |
GroupedDBID | 0-7 0R~ 53G 705 7~J AAEMU AAFWJ AAIWI AAJAE AARTK AAXHV AAYXX ABEMK ABIQK ABPDG ABXOH ACGFS ACIWK ADBBV ADMRA AEFDR AENEX AESAV AFLYV AFPKN AGEGJ AGRSR AHGCF AKBGW ALMA_UNASSIGNED_HOLDINGS ANUXI AOIJS APEMP AUDPV AZFZN BCNDV BLAPV BSQNT C6K CITATION D0L EE0 EF- F5P GROUPED_DOAJ H13 HYE HZ~ H~N O-G O9- OK1 PGMZT R7C R7D RAOCF RCNCU RNS RPM RRC RSCEA RVUXY SKA SKF SKH SKJ SKM SKR SKZ SLC SLF SLH NPM 7SR 8BQ 8FD JG9 7X8 5PM |
ID | FETCH-LOGICAL-c407t-98d0889192447cd355c0941b66438caa5970c4bd71bd39003ce0e28961af6ac23 |
ISSN | 2041-6520 |
IngestDate | Thu Aug 21 18:33:41 EDT 2025 Fri Jul 11 04:11:57 EDT 2025 Sat Jul 26 03:04:27 EDT 2025 Thu Apr 03 07:00:20 EDT 2025 Tue Jul 01 01:31:05 EDT 2025 Thu Apr 24 23:02:28 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 30 |
Language | English |
License | This journal is © The Royal Society of Chemistry. This article is licensed under a Creative Commons Attribution-Non Commercial 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c407t-98d0889192447cd355c0941b66438caa5970c4bd71bd39003ce0e28961af6ac23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4121-7375 0000-0002-1398-338X 0000-0002-7112-4700 0000-0002-5112-3137 |
OpenAccessLink | http://dx.doi.org/10.1039/d4sc00603h |
PMID | 39092105 |
PQID | 3086283419 |
PQPubID | 2047492 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11290429 proquest_miscellaneous_3087356407 proquest_journals_3086283419 pubmed_primary_39092105 crossref_citationtrail_10_1039_D4SC00603H crossref_primary_10_1039_D4SC00603H |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-07-31 |
PublicationDateYYYYMMDD | 2024-07-31 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-31 day: 31 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Chemical science (Cambridge) |
PublicationTitleAlternate | Chem Sci |
PublicationYear | 2024 |
Publisher | Royal Society of Chemistry The Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry – name: The Royal Society of Chemistry |
References | Stöcker (D4SC00603H/cit9/1) 2008; 47 Ramachandran (D4SC00603H/cit49/1) 2005; 233 Jacoby (D4SC00603H/cit12/1) 2018; 96 Vogt (D4SC00603H/cit7/1) 2015; 44 Chowdhury (D4SC00603H/cit79/1) 2018; 1 Verkleij (D4SC00603H/cit77/1) 2018; 8 Bleken (D4SC00603H/cit30/1) 2011; 13 Corma (D4SC00603H/cit16/1) 1985; 93 Wang (D4SC00603H/cit83/1) 2018; 8 Wang (D4SC00603H/cit87/1) 2021; 42 Gong (D4SC00603H/cit55/1) 2022; 2 Weitkamp (D4SC00603H/cit60/1) 1988; 38 Brenner (D4SC00603H/cit61/1) 1982; 75 Gong (D4SC00603H/cit34/1) 2022; 122 Sun (D4SC00603H/cit69/1) 2014; 314 Chowdhury (D4SC00603H/cit33/1) 2023; 3 Etemadi (D4SC00603H/cit56/1) 2014 Janda (D4SC00603H/cit27/1) 2016; 138 Greensfelder (D4SC00603H/cit40/1) 1949; 41 Janda (D4SC00603H/cit43/1) 2013; 135 Ramirez (D4SC00603H/cit54/1) 2021; 12 Dupain (D4SC00603H/cit32/1) 2006; 297 Smit (D4SC00603H/cit57/1) 2008; 451 Sun (D4SC00603H/cit74/1) 2014; 317 Ristanović (D4SC00603H/cit75/1) 2018; 140 Jones (D4SC00603H/cit58/1) 2014; 118 Sadrameli (D4SC00603H/cit26/1) 2016; 173 Buchanan (D4SC00603H/cit39/1) 1996; 158 Babitz (D4SC00603H/cit42/1) 1999; 179 Whiting (D4SC00603H/cit66/1) 2019; 9 Kim (D4SC00603H/cit85/1) 2019; 9 Teketel (D4SC00603H/cit53/1) 2012; 2 Liang (D4SC00603H/cit80/1) 2016; 6 Hopkins (D4SC00603H/cit15/1) 1968; 12 Wang (D4SC00603H/cit68/1) 2016; 55 Matias (D4SC00603H/cit44/1) 2008; 351 Dwyer (D4SC00603H/cit18/1) 1993; 18 Corma (D4SC00603H/cit6/1) 1995; 95 Inagaki (D4SC00603H/cit45/1) 2010; 46 Nakasaka (D4SC00603H/cit25/1) 2013; 182 Del Campo (D4SC00603H/cit4/1) 2021; 50 Kotrel (D4SC00603H/cit31/1) 2000; 35–36 McCann (D4SC00603H/cit67/1) 2008; 47 Huber (D4SC00603H/cit8/1) 2007; 46 Kubota (D4SC00603H/cit46/1) 2014; 226 Chizallet (D4SC00603H/cit1/1) 2023; 123 Nixon (D4SC00603H/cit13/1) 1966; 5 Bjørgen (D4SC00603H/cit70/1) 2007; 249 Dedecek (D4SC00603H/cit82/1) 2012; 24 Corma (D4SC00603H/cit2/1) 2000; 35 Zimmerman (D4SC00603H/cit24/1) 2012; 134 Sarazen (D4SC00603H/cit88/1) 2016; 6 Chen (D4SC00603H/cit29/1) 2022; 330 Chen (D4SC00603H/cit89/1) 2023; 3 Svelle (D4SC00603H/cit72/1) 2006; 128 Van der Mynsbrugge (D4SC00603H/cit3/1) 2018; 19 Corma (D4SC00603H/cit19/1) 1995; 129 Bizreh (D4SC00603H/cit65/1) 1984; 88 Cnudde (D4SC00603H/cit38/1) 2017; 345 Haag (D4SC00603H/cit64/1) 1981; 72 Csicsery (D4SC00603H/cit59/1) 1984; 4 McVicker (D4SC00603H/cit62/1) 1983; 83 Miyaji (D4SC00603H/cit48/1) 2015; 17 Sang (D4SC00603H/cit51/1) 2014; 16 Swisher (D4SC00603H/cit23/1) 2010; 114 Chowdhury (D4SC00603H/cit76/1) 2018; 57 Afroukhteh-Langaroudi (D4SC00603H/cit47/1) 2018; 58 Dědeček (D4SC00603H/cit84/1) 2002; 4 Jung (D4SC00603H/cit20/1) 2005; 288 Yarulina (D4SC00603H/cit71/1) 2018; 1 Townsend (D4SC00603H/cit52/1) 1994; 8 Guan (D4SC00603H/cit50/1) 2022; 330 Mazar (D4SC00603H/cit90/1) 2013; 117 Ono (D4SC00603H/cit17/1) 1991; 87 Liang (D4SC00603H/cit14/1) 2017; 29 Jentoft (D4SC00603H/cit36/1) 1997; 4 Li (D4SC00603H/cit81/1) 2023; 3 Altwasser (D4SC00603H/cit21/1) 2005; 83 Vollmer (D4SC00603H/cit10/1) 2020; 59 Ávila (D4SC00603H/cit22/1) 2007; 132 Van der Mynsbrugge (D4SC00603H/cit28/1) 2021; 404 Brait (D4SC00603H/cit37/1) 1998; 37 Zhang (D4SC00603H/cit11/1) 2023; 379 Pansing (D4SC00603H/cit41/1) 1965; 69 Ye (D4SC00603H/cit78/1) 2023; 62 Dědeček (D4SC00603H/cit86/1) 2012; 54 Chen (D4SC00603H/cit35/1) 2022; 51 Krannila (D4SC00603H/cit63/1) 1992; 135 Blay (D4SC00603H/cit5/1) 2017; 7 Bjørgen (D4SC00603H/cit73/1) 2009; 142 |
References_xml | – volume: 12 start-page: 5914 year: 2021 ident: D4SC00603H/cit54/1 publication-title: Nat. Commun. doi: 10.1038/s41467-021-26090-5 – volume: 69 start-page: 392 year: 1965 ident: D4SC00603H/cit41/1 publication-title: J. Phys. Chem. doi: 10.1021/j100886a006 – volume: 142 start-page: 90 year: 2009 ident: D4SC00603H/cit73/1 publication-title: Catal. Today doi: 10.1016/j.cattod.2009.01.015 – volume: 58 start-page: 457 year: 2018 ident: D4SC00603H/cit47/1 publication-title: Pet. Chem. doi: 10.1134/S096554411805002X – volume: 158 start-page: 279 year: 1996 ident: D4SC00603H/cit39/1 publication-title: J. Catal. doi: 10.1006/jcat.1996.0027 – volume: 17 start-page: 5014 year: 2015 ident: D4SC00603H/cit48/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP04438J – volume: 317 start-page: 185 year: 2014 ident: D4SC00603H/cit74/1 publication-title: J. Catal. doi: 10.1016/j.jcat.2014.06.017 – volume: 1 start-page: 398 year: 2018 ident: D4SC00603H/cit71/1 publication-title: Nat. Catal. doi: 10.1038/s41929-018-0078-5 – volume: 379 start-page: 807 year: 2023 ident: D4SC00603H/cit11/1 publication-title: Science doi: 10.1126/science.ade7485 – volume: 38 start-page: 367 year: 1988 ident: D4SC00603H/cit60/1 publication-title: Stud. Surf. Sci. Catal. doi: 10.1016/S0167-2991(09)60670-4 – volume: 95 start-page: 559 year: 1995 ident: D4SC00603H/cit6/1 publication-title: Chem. Rev. doi: 10.1021/cr00035a006 – volume: 87 start-page: 663 year: 1991 ident: D4SC00603H/cit17/1 publication-title: J. Chem. Soc., Faraday Trans. doi: 10.1039/FT9918700663 – volume: 132 start-page: 67 year: 2007 ident: D4SC00603H/cit22/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2007.01.020 – volume: 13 start-page: 2539 year: 2011 ident: D4SC00603H/cit30/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C0CP01982H – volume: 75 start-page: 410 year: 1982 ident: D4SC00603H/cit61/1 publication-title: J. Catal. doi: 10.1016/0021-9517(82)90222-6 – volume: 117 start-page: 23609 issue: 45 year: 2013 ident: D4SC00603H/cit90/1 publication-title: J. Phys. Chem. C doi: 10.1021/jp403504n – volume: 330 start-page: 111575 year: 2022 ident: D4SC00603H/cit29/1 publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2021.111575 – volume: 451 start-page: 671 year: 2008 ident: D4SC00603H/cit57/1 publication-title: Nature doi: 10.1038/nature06552 – volume: 118 start-page: 17787 year: 2014 ident: D4SC00603H/cit58/1 publication-title: J. Phys. Chem. C doi: 10.1021/jp5050095 – volume: 46 start-page: 7184 year: 2007 ident: D4SC00603H/cit8/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200604504 – volume: 314 start-page: 21 year: 2014 ident: D4SC00603H/cit69/1 publication-title: J. Catal. doi: 10.1016/j.jcat.2014.03.013 – volume: 6 start-page: 7311 year: 2016 ident: D4SC00603H/cit80/1 publication-title: ACS Catal. doi: 10.1021/acscatal.6b01771 – volume: 330 start-page: 111605 year: 2022 ident: D4SC00603H/cit50/1 publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2021.111605 – volume: 51 start-page: 4337 year: 2022 ident: D4SC00603H/cit35/1 publication-title: Chem. Soc. Rev. doi: 10.1039/D1CS00966D – volume: 55 start-page: 2507 year: 2016 ident: D4SC00603H/cit68/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201510920 – volume: 12 start-page: 325 year: 1968 ident: D4SC00603H/cit15/1 publication-title: J. Catal. doi: 10.1016/0021-9517(68)90116-4 – volume: 3 start-page: 100525 year: 2023 ident: D4SC00603H/cit33/1 publication-title: Chem Catal. doi: 10.1016/j.checat.2023.100525 – volume: 16 start-page: 2755 year: 2014 ident: D4SC00603H/cit51/1 publication-title: J. Nanopart. Res. doi: 10.1007/s11051-014-2755-x – volume: 114 start-page: 10229 year: 2010 ident: D4SC00603H/cit23/1 publication-title: J. Phys. Chem. C doi: 10.1021/jp101262y – volume: 226 start-page: 109 year: 2014 ident: D4SC00603H/cit46/1 publication-title: Catal. Today doi: 10.1016/j.cattod.2013.10.032 – volume: 135 start-page: 115 year: 1992 ident: D4SC00603H/cit63/1 publication-title: J. Catal. doi: 10.1016/0021-9517(92)90273-K – volume: 7 start-page: 6542 year: 2017 ident: D4SC00603H/cit5/1 publication-title: ACS Catal. doi: 10.1021/acscatal.7b02011 – volume: 4 start-page: 5406 year: 2002 ident: D4SC00603H/cit84/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/B203966B – volume: 9 start-page: 2880 year: 2019 ident: D4SC00603H/cit85/1 publication-title: ACS Catal. doi: 10.1021/acscatal.8b04493 – volume: 83 start-page: 286 year: 1983 ident: D4SC00603H/cit62/1 publication-title: J. Catal. doi: 10.1016/0021-9517(83)90055-6 – volume: 128 start-page: 14770 year: 2006 ident: D4SC00603H/cit72/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja065810a – volume: 173 start-page: 285 year: 2016 ident: D4SC00603H/cit26/1 publication-title: Fuel doi: 10.1016/j.fuel.2016.01.047 – volume: 4 start-page: 1 year: 1997 ident: D4SC00603H/cit36/1 publication-title: Top. Catal. doi: 10.1023/A:1019184004885 – volume: 47 start-page: 9200 year: 2008 ident: D4SC00603H/cit9/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200801476 – volume: 2 start-page: 2328 year: 2022 ident: D4SC00603H/cit55/1 publication-title: Chem Catal. doi: 10.1016/j.checat.2022.07.026 – volume: 50 start-page: 8511 year: 2021 ident: D4SC00603H/cit4/1 publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS01459A – volume: 83 start-page: 345 year: 2005 ident: D4SC00603H/cit21/1 publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2005.04.028 – volume: 8 start-page: 690 year: 1994 ident: D4SC00603H/cit52/1 publication-title: Energy Fuels doi: 10.1021/ef00045a025 – volume: 29 start-page: 1701139 year: 2017 ident: D4SC00603H/cit14/1 publication-title: Adv. Mater. doi: 10.1002/adma.201701139 – volume: 288 start-page: 149 year: 2005 ident: D4SC00603H/cit20/1 publication-title: Appl. Catal., A doi: 10.1016/j.apcata.2005.04.047 – volume: 41 start-page: 2572 year: 1949 ident: D4SC00603H/cit40/1 publication-title: Ind. Eng. Chem. – volume: 93 start-page: 30 year: 1985 ident: D4SC00603H/cit16/1 publication-title: J. Catal. doi: 10.1016/0021-9517(85)90148-4 – volume: 249 start-page: 195 year: 2007 ident: D4SC00603H/cit70/1 publication-title: J. Catal. doi: 10.1016/j.jcat.2007.04.006 – volume: 18 start-page: 487 year: 1993 ident: D4SC00603H/cit18/1 publication-title: Catal. Today doi: 10.1016/0920-5861(93)80065-9 – volume: 6 start-page: 7059 year: 2016 ident: D4SC00603H/cit88/1 publication-title: ACS Catal. doi: 10.1021/acscatal.6b02128 – volume: 297 start-page: 198 year: 2006 ident: D4SC00603H/cit32/1 publication-title: Appl. Catal., A doi: 10.1016/j.apcata.2005.09.009 – volume: 9 start-page: 4792 year: 2019 ident: D4SC00603H/cit66/1 publication-title: ACS Catal. doi: 10.1021/acscatal.9b00151 – volume: 47 start-page: 5179 year: 2008 ident: D4SC00603H/cit67/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200705453 – volume: 59 start-page: 15402 year: 2020 ident: D4SC00603H/cit10/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201915651 – volume: 135 start-page: 19193 year: 2013 ident: D4SC00603H/cit43/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja4081937 – volume: 2 start-page: 26 year: 2012 ident: D4SC00603H/cit53/1 publication-title: ACS Catal. doi: 10.1021/cs200517u – volume: 3 start-page: 100540 year: 2023 ident: D4SC00603H/cit81/1 publication-title: Chem Catal. doi: 10.1016/j.checat.2023.100540 – volume: 134 start-page: 19468 year: 2012 ident: D4SC00603H/cit24/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja3089372 – volume: 42 start-page: 1126 year: 2021 ident: D4SC00603H/cit87/1 publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(20)63732-9 – volume: 179 start-page: 71 year: 1999 ident: D4SC00603H/cit42/1 publication-title: Appl. Catal., A doi: 10.1016/S0926-860X(98)00301-9 – volume: 1 start-page: 23 year: 2018 ident: D4SC00603H/cit79/1 publication-title: Nat. Catal. doi: 10.1038/s41929-017-0002-4 – volume: 35 start-page: 21 year: 2000 ident: D4SC00603H/cit2/1 publication-title: Microporous Mesoporous Mater. doi: 10.1016/S1387-1811(99)00205-X – volume: 88 start-page: 240 year: 1984 ident: D4SC00603H/cit65/1 publication-title: J. Catal. doi: 10.1016/0021-9517(84)90071-X – volume: 404 start-page: 832 year: 2021 ident: D4SC00603H/cit28/1 publication-title: J. Catal. doi: 10.1016/j.jcat.2021.08.048 – volume: 57 start-page: 8095 year: 2018 ident: D4SC00603H/cit76/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201803279 – volume: 44 start-page: 7342 year: 2015 ident: D4SC00603H/cit7/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00376H – volume: 122 start-page: 14275 year: 2022 ident: D4SC00603H/cit34/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.2c00076 – volume: 129 start-page: 203 year: 1995 ident: D4SC00603H/cit19/1 publication-title: Appl. Catal., A doi: 10.1016/0926-860X(95)00081-X – volume: 24 start-page: 3231 year: 2012 ident: D4SC00603H/cit82/1 publication-title: Chem. Mater. doi: 10.1021/cm301629a – volume: 54 start-page: 135 year: 2012 ident: D4SC00603H/cit86/1 publication-title: Catal. Rev.: Sci. Eng. doi: 10.1080/01614940.2012.632662 – volume: 5 start-page: 87 year: 1966 ident: D4SC00603H/cit13/1 publication-title: Ind. Eng. Chem. Prod. Res. Dev. doi: 10.1021/i260017a018 – volume: 37 start-page: 873 year: 1998 ident: D4SC00603H/cit37/1 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie9705416 – volume: 35–36 start-page: 11 year: 2000 ident: D4SC00603H/cit31/1 publication-title: Microporous Mesoporous Mater. doi: 10.1016/S1387-1811(99)00204-8 – volume: 4 start-page: 202 year: 1984 ident: D4SC00603H/cit59/1 publication-title: Zeolites doi: 10.1016/0144-2449(84)90024-1 – volume-title: Thesis for the Master's degree in chemistry year: 2014 ident: D4SC00603H/cit56/1 – volume: 72 start-page: 317 year: 1981 ident: D4SC00603H/cit64/1 publication-title: Faraday Discuss. Chem. Soc. doi: 10.1039/dc9817200317 – volume: 345 start-page: 53 year: 2017 ident: D4SC00603H/cit38/1 publication-title: J. Catal. doi: 10.1016/j.jcat.2016.11.010 – volume: 233 start-page: 100 year: 2005 ident: D4SC00603H/cit49/1 publication-title: J. Catal. doi: 10.1016/j.jcat.2005.04.017 – volume: 8 start-page: 2175 year: 2018 ident: D4SC00603H/cit77/1 publication-title: Catal. Sci. Technol. doi: 10.1039/C7CY02460F – volume: 182 start-page: 244 year: 2013 ident: D4SC00603H/cit25/1 publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2013.04.010 – volume: 19 start-page: 341 year: 2018 ident: D4SC00603H/cit3/1 publication-title: ChemPhysChem doi: 10.1002/cphc.201701084 – volume: 8 start-page: 5485 year: 2018 ident: D4SC00603H/cit83/1 publication-title: ACS Catal. doi: 10.1021/acscatal.8b01054 – volume: 140 start-page: 14195 year: 2018 ident: D4SC00603H/cit75/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b08041 – volume: 138 start-page: 4739 year: 2016 ident: D4SC00603H/cit27/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b11355 – volume: 3 start-page: 100503 year: 2023 ident: D4SC00603H/cit89/1 publication-title: Chem Catal. doi: 10.1016/j.checat.2022.100503 – volume: 123 start-page: 6107 year: 2023 ident: D4SC00603H/cit1/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.2c00896 – volume: 96 volume-title: Cool fuel for hypersonic aircraft year: 2018 ident: D4SC00603H/cit12/1 – volume: 46 start-page: 2662 year: 2010 ident: D4SC00603H/cit45/1 publication-title: Chem. Commun. doi: 10.1039/b925408k – volume: 351 start-page: 174 year: 2008 ident: D4SC00603H/cit44/1 publication-title: Appl. Catal., A doi: 10.1016/j.apcata.2008.09.012 – volume: 62 start-page: e202303124 year: 2023 ident: D4SC00603H/cit78/1 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202303124 |
SSID | ssj0000331527 |
Score | 2.4577827 |
Snippet | Zeolite-mediated catalytic cracking of alkanes is pivotal in the petrochemical and refining industry, breaking down heavier hydrocarbon feedstocks into fuels... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 11937 |
SubjectTerms | Alkanes Catalytic cracking Chemistry Hexanes Hydrocarbons NMR spectroscopy Selective adsorption Selectivity Spectrum analysis Topology Zeolites |
Title | Selectivity descriptors of the catalytic n -hexane cracking process over 10-membered ring zeolites |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39092105 https://www.proquest.com/docview/3086283419 https://www.proquest.com/docview/3087356407 https://pubmed.ncbi.nlm.nih.gov/PMC11290429 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfK9gAviG8CYzKCFzQFktj5ekQFVCENIbZC9xTZjrNOQIq2RoL9GfzF3MUfSdkeYC9Ra7tp6_vFvjv_7o6Q56iCp4LHYcEKFfIanrmSN2nYCMxMmMGOb9gWH7LZnL9fpIvJ5PeItdSt5Ut1fmlcyVWkCm0gV4yS_Q_J-ptCA7wG-cIVJAzXf5LxQV_ExpR_qLVZALB4jj33710zvzAjaxsuMY4Fmk6F-moC0PsAgT1kcO7BIvldY2UQjVxz6D3XSIuz9EKXx8ClFnCRQHj-6yK-Rg6FfWE0UywTcjz4pVed2eV-dgMJqGcSHHXyZBj4xfqvkW271LbdeiUS7tydFkeIceP_cOTTnlxiS9gNa1wSAUwAEeZoRo_bTI4jv0inIzDakxyz5Magguaj_RvemwSVFzaHiGFu1ZqfKcxCw5bDFuiJiR_3p6iA4i59jWwnYHrAYr_96fN8ceQ9dxFjthaw__Uu7y0rXw2339R0Lpgvf7NwR2rN4S1y09oj9LUB120y0e0dct3P4V0iRiCjI5DRVUMBZNSDjDqQUQcyakFGEWR0BDKKIKMOZPfI_N3bw-kstHU5QgXm_zosixrJcWi681zVoLGqqOSxzEC7LZQQYKNGiss6j2XN0FOudKTBsM9i0WRCJew-2WpXrX5IaBLXouFKSSUbLuNGKjDHi1ypVCRSCB6QF24OK2WT1mPtlG9VT55gZfWGH0z7-Z4F5Jkf-8Okarl01I4TRWUf5bOKoWFfYGrDgDz13TDReHoGE7fq-jE5S_HcOyAPjOT818C_LBOwVAJSbMjUD8Ak7ps97cmyT-bu4Pbo6h99TG4Mj-AO2VqfdvoJqMprudu7mHYtgv8Ai1LF4g |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Selectivity+descriptors+of+the+catalytic+n-hexane+cracking+process+over+10-membered+ring+zeolites&rft.jtitle=Chemical+science+%28Cambridge%29&rft.au=Ma%2C+Pandong&rft.au=Zhou%2C+Hexun&rft.au=Li%2C+Yubing&rft.au=Wang%2C+Mengheng&rft.date=2024-07-31&rft.pub=The+Royal+Society+of+Chemistry&rft.issn=2041-6520&rft.eissn=2041-6539&rft.volume=15&rft.issue=30&rft.spage=11937&rft.epage=11945&rft_id=info:doi/10.1039%2Fd4sc00603h&rft.externalDocID=PMC11290429 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-6520&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-6520&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-6520&client=summon |