Selectivity descriptors of the catalytic n -hexane cracking process over 10-membered ring zeolites

Zeolite-mediated catalytic cracking of alkanes is pivotal in the petrochemical and refining industry, breaking down heavier hydrocarbon feedstocks into fuels and chemicals. Its relevance also extends to emerging technologies such as biomass and plastic valorization. Zeolite catalysts, with shape sel...

Full description

Saved in:
Bibliographic Details
Published inChemical science (Cambridge) Vol. 15; no. 30; pp. 11937 - 11945
Main Authors Ma, Pandong, Zhou, Hexun, Li, Yubing, Wang, Mengheng, Nastase, Stefan Adrian F., Zhu, Mengsi, Cui, Jiale, Cavallo, Luigi, Cheng, Kang, Dutta Chowdhury, Abhishek
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 31.07.2024
The Royal Society of Chemistry
Subjects
Online AccessGet full text
ISSN2041-6520
2041-6539
DOI10.1039/D4SC00603H

Cover

Loading…
Abstract Zeolite-mediated catalytic cracking of alkanes is pivotal in the petrochemical and refining industry, breaking down heavier hydrocarbon feedstocks into fuels and chemicals. Its relevance also extends to emerging technologies such as biomass and plastic valorization. Zeolite catalysts, with shape selectivity and selective adsorption capabilities, enhance efficiency and sustainability due to their well-defined network of pores, dimensionality, cages/cavities, and channels. This study focuses on the alkane cracking over 10-membered ring (10-MR) zeolites under industrially relevant conditions. Through a series of characterizations, including operando UV-vis spectroscopy and solid-state NMR spectroscopy, we intend to address mechanistic debates about the alkane cracking mechanism, aiming to understand the dependence of product selectivity on zeolite topologies. The findings highlight topology-dependent mechanisms, particularly the role of intersectional void spaces in zeolite ZSM-5, influencing aromatic-based product selectivity. This work provides a unique understanding of zeolite-catalyzed hydrocarbon conversion, linking alkane activation steps to the traditional hydrocarbon pool mechanism, contributing to the fundamental knowledge of this crucial industrial process.
AbstractList Zeolite-mediated catalytic cracking of alkanes is pivotal in the petrochemical and refining industry, breaking down heavier hydrocarbon feedstocks into fuels and chemicals. Its relevance also extends to emerging technologies such as biomass and plastic valorization. Zeolite catalysts, with shape selectivity and selective adsorption capabilities, enhance efficiency and sustainability due to their well-defined network of pores, dimensionality, cages/cavities, and channels. This study focuses on the alkane cracking over 10-membered ring (10-MR) zeolites under industrially relevant conditions. Through a series of characterizations, including UV-vis spectroscopy and solid-state NMR spectroscopy, we intend to address mechanistic debates about the alkane cracking mechanism, aiming to understand the dependence of product selectivity on zeolite topologies. The findings highlight topology-dependent mechanisms, particularly the role of intersectional void spaces in zeolite ZSM-5, influencing aromatic-based product selectivity. This work provides a unique understanding of zeolite-catalyzed hydrocarbon conversion, linking alkane activation steps to the traditional hydrocarbon pool mechanism, contributing to the fundamental knowledge of this crucial industrial process.
Zeolite-mediated catalytic cracking of alkanes is pivotal in the petrochemical and refining industry, breaking down heavier hydrocarbon feedstocks into fuels and chemicals. Its relevance also extends to emerging technologies such as biomass and plastic valorization. Zeolite catalysts, with shape selectivity and selective adsorption capabilities, enhance efficiency and sustainability due to their well-defined network of pores, dimensionality, cages/cavities, and channels. This study focuses on the alkane cracking over 10-membered ring (10-MR) zeolites under industrially relevant conditions. Through a series of characterizations, including operando UV-vis spectroscopy and solid-state NMR spectroscopy, we intend to address mechanistic debates about the alkane cracking mechanism, aiming to understand the dependence of product selectivity on zeolite topologies. The findings highlight topology-dependent mechanisms, particularly the role of intersectional void spaces in zeolite ZSM-5, influencing aromatic-based product selectivity. This work provides a unique understanding of zeolite-catalyzed hydrocarbon conversion, linking alkane activation steps to the traditional hydrocarbon pool mechanism, contributing to the fundamental knowledge of this crucial industrial process.
Zeolite-mediated catalytic cracking of alkanes is pivotal in the petrochemical and refining industry, breaking down heavier hydrocarbon feedstocks into fuels and chemicals. Its relevance also extends to emerging technologies such as biomass and plastic valorization. Zeolite catalysts, with shape selectivity and selective adsorption capabilities, enhance efficiency and sustainability due to their well-defined network of pores, dimensionality, cages/cavities, and channels. This study focuses on the alkane cracking over 10-membered ring (10-MR) zeolites under industrially relevant conditions. Through a series of characterizations, including operando UV-vis spectroscopy and solid-state NMR spectroscopy, we intend to address mechanistic debates about the alkane cracking mechanism, aiming to understand the dependence of product selectivity on zeolite topologies. The findings highlight topology-dependent mechanisms, particularly the role of intersectional void spaces in zeolite ZSM-5, influencing aromatic-based product selectivity. This work provides a unique understanding of zeolite-catalyzed hydrocarbon conversion, linking alkane activation steps to the traditional hydrocarbon pool mechanism, contributing to the fundamental knowledge of this crucial industrial process.Zeolite-mediated catalytic cracking of alkanes is pivotal in the petrochemical and refining industry, breaking down heavier hydrocarbon feedstocks into fuels and chemicals. Its relevance also extends to emerging technologies such as biomass and plastic valorization. Zeolite catalysts, with shape selectivity and selective adsorption capabilities, enhance efficiency and sustainability due to their well-defined network of pores, dimensionality, cages/cavities, and channels. This study focuses on the alkane cracking over 10-membered ring (10-MR) zeolites under industrially relevant conditions. Through a series of characterizations, including operando UV-vis spectroscopy and solid-state NMR spectroscopy, we intend to address mechanistic debates about the alkane cracking mechanism, aiming to understand the dependence of product selectivity on zeolite topologies. The findings highlight topology-dependent mechanisms, particularly the role of intersectional void spaces in zeolite ZSM-5, influencing aromatic-based product selectivity. This work provides a unique understanding of zeolite-catalyzed hydrocarbon conversion, linking alkane activation steps to the traditional hydrocarbon pool mechanism, contributing to the fundamental knowledge of this crucial industrial process.
Zeolite-mediated catalytic cracking of alkanes is pivotal in the petrochemical and refining industry, breaking down heavier hydrocarbon feedstocks into fuels and chemicals. Its relevance also extends to emerging technologies such as biomass and plastic valorization. Zeolite catalysts, with shape selectivity and selective adsorption capabilities, enhance efficiency and sustainability due to their well-defined network of pores, dimensionality, cages/cavities, and channels. This study focuses on the alkane cracking over 10-membered ring (10-MR) zeolites under industrially relevant conditions. Through a series of characterizations, including operando UV-vis spectroscopy and solid-state NMR spectroscopy, we intend to address mechanistic debates about the alkane cracking mechanism, aiming to understand the dependence of product selectivity on zeolite topologies. The findings highlight topology-dependent mechanisms, particularly the role of intersectional void spaces in zeolite ZSM-5, influencing aromatic-based product selectivity. This work provides a unique understanding of zeolite-catalyzed hydrocarbon conversion, linking alkane activation steps to the traditional hydrocarbon pool mechanism, contributing to the fundamental knowledge of this crucial industrial process.
Zeolite-mediated catalytic cracking of alkanes is pivotal in the petrochemical and refining industry, breaking down heavier hydrocarbon feedstocks into fuels and chemicals. Its relevance also extends to emerging technologies such as biomass and plastic valorization. Zeolite catalysts, with shape selectivity and selective adsorption capabilities, enhance efficiency and sustainability due to their well-defined network of pores, dimensionality, cages/cavities, and channels. This study focuses on the alkane cracking over 10-membered ring (10-MR) zeolites under industrially relevant conditions. Through a series of characterizations, including operando UV-vis spectroscopy and solid-state NMR spectroscopy, we intend to address mechanistic debates about the alkane cracking mechanism, aiming to understand the dependence of product selectivity on zeolite topologies. The findings highlight topology-dependent mechanisms, particularly the role of intersectional void spaces in zeolite ZSM-5, influencing aromatic-based product selectivity. This work provides a unique understanding of zeolite-catalyzed hydrocarbon conversion, linking alkane activation steps to the traditional hydrocarbon pool mechanism, contributing to the fundamental knowledge of this crucial industrial process. Zeolite-mediated catalytic cracking of alkanes is pivotal in the petrochemical and refining industry, breaking down heavier hydrocarbon feedstocks into fuels and chemicals.
Author Wang, Mengheng
Cavallo, Luigi
Cheng, Kang
Zhu, Mengsi
Ma, Pandong
Li, Yubing
Dutta Chowdhury, Abhishek
Zhou, Hexun
Nastase, Stefan Adrian F.
Cui, Jiale
Author_xml – sequence: 1
  givenname: Pandong
  surname: Ma
  fullname: Ma, Pandong
  organization: College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 Hubei, PR China
– sequence: 2
  givenname: Hexun
  surname: Zhou
  fullname: Zhou, Hexun
  organization: College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 Hubei, PR China
– sequence: 3
  givenname: Yubing
  surname: Li
  fullname: Li, Yubing
  organization: State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
– sequence: 4
  givenname: Mengheng
  surname: Wang
  fullname: Wang, Mengheng
  organization: State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
– sequence: 5
  givenname: Stefan Adrian F.
  orcidid: 0000-0002-5112-3137
  surname: Nastase
  fullname: Nastase, Stefan Adrian F.
  organization: KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
– sequence: 6
  givenname: Mengsi
  surname: Zhu
  fullname: Zhu, Mengsi
  organization: Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, PR China
– sequence: 7
  givenname: Jiale
  surname: Cui
  fullname: Cui, Jiale
  organization: State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
– sequence: 8
  givenname: Luigi
  orcidid: 0000-0002-1398-338X
  surname: Cavallo
  fullname: Cavallo, Luigi
  organization: KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
– sequence: 9
  givenname: Kang
  orcidid: 0000-0002-7112-4700
  surname: Cheng
  fullname: Cheng, Kang
  organization: State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
– sequence: 10
  givenname: Abhishek
  orcidid: 0000-0002-4121-7375
  surname: Dutta Chowdhury
  fullname: Dutta Chowdhury, Abhishek
  organization: College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 Hubei, PR China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39092105$$D View this record in MEDLINE/PubMed
BookMark eNptkU1PHDEMhiNEVSjlwg9AkbhUlaY4H_ORU4UWWpCQeoCeo0zGywZmJtsku-ry68mIj1KEL7Hsx69ex5_I9uhHJOSAwTcGQh2fyqsZQAXifIvscpCsqEqhtl9yDjtkP8ZbyCEEK3n9kewIBYozKHdJe4U92uTWLm1oh9EGt0w-ROrnNC2QWpNMv0nO0pEWC_xrxlwLxt658YYug7cYM7vGQBkUAw4tBuxomLr36HuXMH4mH-amj7j_9O6R3z_OrmfnxeWvnxezk8vCSqhToZoOmkYxxaWsbSfK0oKSrK0qKRprTKlqsLLtatZ22T8Ii4C8URUz88pYLvbI90fd5aodsLM4pmB6vQxuMGGjvXH6_87oFvrGrzVjXIHkKit8eVII_s8KY9KDixb7Pm_tV1ELaGpRVtluRo_eoLd-Fca830RVvBGSTYKHry29eHn-_wzAI2CDjzHgXFuXTHJ-cuh6zUBPV9b_rpxHvr4ZeVZ9B34AQ2WmSQ
CitedBy_id crossref_primary_10_1002_anie_202414724
crossref_primary_10_1002_ange_202414724
crossref_primary_10_1016_j_checat_2024_101168
Cites_doi 10.1038/s41467-021-26090-5
10.1021/j100886a006
10.1016/j.cattod.2009.01.015
10.1134/S096554411805002X
10.1006/jcat.1996.0027
10.1039/C4CP04438J
10.1016/j.jcat.2014.06.017
10.1038/s41929-018-0078-5
10.1126/science.ade7485
10.1016/S0167-2991(09)60670-4
10.1021/cr00035a006
10.1039/FT9918700663
10.1016/j.cej.2007.01.020
10.1039/C0CP01982H
10.1016/0021-9517(82)90222-6
10.1021/jp403504n
10.1016/j.micromeso.2021.111575
10.1038/nature06552
10.1021/jp5050095
10.1002/anie.200604504
10.1016/j.jcat.2014.03.013
10.1021/acscatal.6b01771
10.1016/j.micromeso.2021.111605
10.1039/D1CS00966D
10.1002/anie.201510920
10.1016/0021-9517(68)90116-4
10.1016/j.checat.2023.100525
10.1007/s11051-014-2755-x
10.1021/jp101262y
10.1016/j.cattod.2013.10.032
10.1016/0021-9517(92)90273-K
10.1021/acscatal.7b02011
10.1039/B203966B
10.1021/acscatal.8b04493
10.1016/0021-9517(83)90055-6
10.1021/ja065810a
10.1016/j.fuel.2016.01.047
10.1023/A:1019184004885
10.1002/anie.200801476
10.1016/j.checat.2022.07.026
10.1039/D0CS01459A
10.1016/j.micromeso.2005.04.028
10.1021/ef00045a025
10.1002/adma.201701139
10.1016/j.apcata.2005.04.047
10.1016/0021-9517(85)90148-4
10.1016/j.jcat.2007.04.006
10.1016/0920-5861(93)80065-9
10.1021/acscatal.6b02128
10.1016/j.apcata.2005.09.009
10.1021/acscatal.9b00151
10.1002/anie.200705453
10.1002/anie.201915651
10.1021/ja4081937
10.1021/cs200517u
10.1016/j.checat.2023.100540
10.1021/ja3089372
10.1016/S1872-2067(20)63732-9
10.1016/S0926-860X(98)00301-9
10.1038/s41929-017-0002-4
10.1016/S1387-1811(99)00205-X
10.1016/0021-9517(84)90071-X
10.1016/j.jcat.2021.08.048
10.1002/anie.201803279
10.1039/C5CS00376H
10.1021/acs.chemrev.2c00076
10.1016/0926-860X(95)00081-X
10.1021/cm301629a
10.1080/01614940.2012.632662
10.1021/i260017a018
10.1021/ie9705416
10.1016/S1387-1811(99)00204-8
10.1016/0144-2449(84)90024-1
10.1039/dc9817200317
10.1016/j.jcat.2016.11.010
10.1016/j.jcat.2005.04.017
10.1039/C7CY02460F
10.1016/j.micromeso.2013.04.010
10.1002/cphc.201701084
10.1021/acscatal.8b01054
10.1021/jacs.8b08041
10.1021/jacs.5b11355
10.1016/j.checat.2022.100503
10.1021/acs.chemrev.2c00896
10.1039/b925408k
10.1016/j.apcata.2008.09.012
10.1002/anie.202303124
ContentType Journal Article
Copyright This journal is © The Royal Society of Chemistry.
Copyright Royal Society of Chemistry 2024
This journal is © The Royal Society of Chemistry 2024 The Royal Society of Chemistry
Copyright_xml – notice: This journal is © The Royal Society of Chemistry.
– notice: Copyright Royal Society of Chemistry 2024
– notice: This journal is © The Royal Society of Chemistry 2024 The Royal Society of Chemistry
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
5PM
DOI 10.1039/D4SC00603H
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed
Materials Research Database
MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2041-6539
EndPage 11945
ExternalDocumentID PMC11290429
39092105
10_1039_D4SC00603H
Genre Journal Article
GrantInformation_xml – fundername: ;
  grantid: 2022YFA1504500
– fundername: ;
  grantid: 2042023kf0126
– fundername: ;
  grantid: 22350610243
GroupedDBID 0-7
0R~
53G
705
7~J
AAEMU
AAFWJ
AAIWI
AAJAE
AARTK
AAXHV
AAYXX
ABEMK
ABIQK
ABPDG
ABXOH
ACGFS
ACIWK
ADBBV
ADMRA
AEFDR
AENEX
AESAV
AFLYV
AFPKN
AGEGJ
AGRSR
AHGCF
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANUXI
AOIJS
APEMP
AUDPV
AZFZN
BCNDV
BLAPV
BSQNT
C6K
CITATION
D0L
EE0
EF-
F5P
GROUPED_DOAJ
H13
HYE
HZ~
H~N
O-G
O9-
OK1
PGMZT
R7C
R7D
RAOCF
RCNCU
RNS
RPM
RRC
RSCEA
RVUXY
SKA
SKF
SKH
SKJ
SKM
SKR
SKZ
SLC
SLF
SLH
NPM
7SR
8BQ
8FD
JG9
7X8
5PM
ID FETCH-LOGICAL-c407t-98d0889192447cd355c0941b66438caa5970c4bd71bd39003ce0e28961af6ac23
ISSN 2041-6520
IngestDate Thu Aug 21 18:33:41 EDT 2025
Fri Jul 11 04:11:57 EDT 2025
Sat Jul 26 03:04:27 EDT 2025
Thu Apr 03 07:00:20 EDT 2025
Tue Jul 01 01:31:05 EDT 2025
Thu Apr 24 23:02:28 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 30
Language English
License This journal is © The Royal Society of Chemistry.
This article is licensed under a Creative Commons Attribution-Non Commercial 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c407t-98d0889192447cd355c0941b66438caa5970c4bd71bd39003ce0e28961af6ac23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4121-7375
0000-0002-1398-338X
0000-0002-7112-4700
0000-0002-5112-3137
OpenAccessLink http://dx.doi.org/10.1039/d4sc00603h
PMID 39092105
PQID 3086283419
PQPubID 2047492
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11290429
proquest_miscellaneous_3087356407
proquest_journals_3086283419
pubmed_primary_39092105
crossref_citationtrail_10_1039_D4SC00603H
crossref_primary_10_1039_D4SC00603H
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-07-31
PublicationDateYYYYMMDD 2024-07-31
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-31
  day: 31
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Chemical science (Cambridge)
PublicationTitleAlternate Chem Sci
PublicationYear 2024
Publisher Royal Society of Chemistry
The Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
– name: The Royal Society of Chemistry
References Stöcker (D4SC00603H/cit9/1) 2008; 47
Ramachandran (D4SC00603H/cit49/1) 2005; 233
Jacoby (D4SC00603H/cit12/1) 2018; 96
Vogt (D4SC00603H/cit7/1) 2015; 44
Chowdhury (D4SC00603H/cit79/1) 2018; 1
Verkleij (D4SC00603H/cit77/1) 2018; 8
Bleken (D4SC00603H/cit30/1) 2011; 13
Corma (D4SC00603H/cit16/1) 1985; 93
Wang (D4SC00603H/cit83/1) 2018; 8
Wang (D4SC00603H/cit87/1) 2021; 42
Gong (D4SC00603H/cit55/1) 2022; 2
Weitkamp (D4SC00603H/cit60/1) 1988; 38
Brenner (D4SC00603H/cit61/1) 1982; 75
Gong (D4SC00603H/cit34/1) 2022; 122
Sun (D4SC00603H/cit69/1) 2014; 314
Chowdhury (D4SC00603H/cit33/1) 2023; 3
Etemadi (D4SC00603H/cit56/1) 2014
Janda (D4SC00603H/cit27/1) 2016; 138
Greensfelder (D4SC00603H/cit40/1) 1949; 41
Janda (D4SC00603H/cit43/1) 2013; 135
Ramirez (D4SC00603H/cit54/1) 2021; 12
Dupain (D4SC00603H/cit32/1) 2006; 297
Smit (D4SC00603H/cit57/1) 2008; 451
Sun (D4SC00603H/cit74/1) 2014; 317
Ristanović (D4SC00603H/cit75/1) 2018; 140
Jones (D4SC00603H/cit58/1) 2014; 118
Sadrameli (D4SC00603H/cit26/1) 2016; 173
Buchanan (D4SC00603H/cit39/1) 1996; 158
Babitz (D4SC00603H/cit42/1) 1999; 179
Whiting (D4SC00603H/cit66/1) 2019; 9
Kim (D4SC00603H/cit85/1) 2019; 9
Teketel (D4SC00603H/cit53/1) 2012; 2
Liang (D4SC00603H/cit80/1) 2016; 6
Hopkins (D4SC00603H/cit15/1) 1968; 12
Wang (D4SC00603H/cit68/1) 2016; 55
Matias (D4SC00603H/cit44/1) 2008; 351
Dwyer (D4SC00603H/cit18/1) 1993; 18
Corma (D4SC00603H/cit6/1) 1995; 95
Inagaki (D4SC00603H/cit45/1) 2010; 46
Nakasaka (D4SC00603H/cit25/1) 2013; 182
Del Campo (D4SC00603H/cit4/1) 2021; 50
Kotrel (D4SC00603H/cit31/1) 2000; 35–36
McCann (D4SC00603H/cit67/1) 2008; 47
Huber (D4SC00603H/cit8/1) 2007; 46
Kubota (D4SC00603H/cit46/1) 2014; 226
Chizallet (D4SC00603H/cit1/1) 2023; 123
Nixon (D4SC00603H/cit13/1) 1966; 5
Bjørgen (D4SC00603H/cit70/1) 2007; 249
Dedecek (D4SC00603H/cit82/1) 2012; 24
Corma (D4SC00603H/cit2/1) 2000; 35
Zimmerman (D4SC00603H/cit24/1) 2012; 134
Sarazen (D4SC00603H/cit88/1) 2016; 6
Chen (D4SC00603H/cit29/1) 2022; 330
Chen (D4SC00603H/cit89/1) 2023; 3
Svelle (D4SC00603H/cit72/1) 2006; 128
Van der Mynsbrugge (D4SC00603H/cit3/1) 2018; 19
Corma (D4SC00603H/cit19/1) 1995; 129
Bizreh (D4SC00603H/cit65/1) 1984; 88
Cnudde (D4SC00603H/cit38/1) 2017; 345
Haag (D4SC00603H/cit64/1) 1981; 72
Csicsery (D4SC00603H/cit59/1) 1984; 4
McVicker (D4SC00603H/cit62/1) 1983; 83
Miyaji (D4SC00603H/cit48/1) 2015; 17
Sang (D4SC00603H/cit51/1) 2014; 16
Swisher (D4SC00603H/cit23/1) 2010; 114
Chowdhury (D4SC00603H/cit76/1) 2018; 57
Afroukhteh-Langaroudi (D4SC00603H/cit47/1) 2018; 58
Dědeček (D4SC00603H/cit84/1) 2002; 4
Jung (D4SC00603H/cit20/1) 2005; 288
Yarulina (D4SC00603H/cit71/1) 2018; 1
Townsend (D4SC00603H/cit52/1) 1994; 8
Guan (D4SC00603H/cit50/1) 2022; 330
Mazar (D4SC00603H/cit90/1) 2013; 117
Ono (D4SC00603H/cit17/1) 1991; 87
Liang (D4SC00603H/cit14/1) 2017; 29
Jentoft (D4SC00603H/cit36/1) 1997; 4
Li (D4SC00603H/cit81/1) 2023; 3
Altwasser (D4SC00603H/cit21/1) 2005; 83
Vollmer (D4SC00603H/cit10/1) 2020; 59
Ávila (D4SC00603H/cit22/1) 2007; 132
Van der Mynsbrugge (D4SC00603H/cit28/1) 2021; 404
Brait (D4SC00603H/cit37/1) 1998; 37
Zhang (D4SC00603H/cit11/1) 2023; 379
Pansing (D4SC00603H/cit41/1) 1965; 69
Ye (D4SC00603H/cit78/1) 2023; 62
Dědeček (D4SC00603H/cit86/1) 2012; 54
Chen (D4SC00603H/cit35/1) 2022; 51
Krannila (D4SC00603H/cit63/1) 1992; 135
Blay (D4SC00603H/cit5/1) 2017; 7
Bjørgen (D4SC00603H/cit73/1) 2009; 142
References_xml – volume: 12
  start-page: 5914
  year: 2021
  ident: D4SC00603H/cit54/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-26090-5
– volume: 69
  start-page: 392
  year: 1965
  ident: D4SC00603H/cit41/1
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100886a006
– volume: 142
  start-page: 90
  year: 2009
  ident: D4SC00603H/cit73/1
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2009.01.015
– volume: 58
  start-page: 457
  year: 2018
  ident: D4SC00603H/cit47/1
  publication-title: Pet. Chem.
  doi: 10.1134/S096554411805002X
– volume: 158
  start-page: 279
  year: 1996
  ident: D4SC00603H/cit39/1
  publication-title: J. Catal.
  doi: 10.1006/jcat.1996.0027
– volume: 17
  start-page: 5014
  year: 2015
  ident: D4SC00603H/cit48/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP04438J
– volume: 317
  start-page: 185
  year: 2014
  ident: D4SC00603H/cit74/1
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2014.06.017
– volume: 1
  start-page: 398
  year: 2018
  ident: D4SC00603H/cit71/1
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0078-5
– volume: 379
  start-page: 807
  year: 2023
  ident: D4SC00603H/cit11/1
  publication-title: Science
  doi: 10.1126/science.ade7485
– volume: 38
  start-page: 367
  year: 1988
  ident: D4SC00603H/cit60/1
  publication-title: Stud. Surf. Sci. Catal.
  doi: 10.1016/S0167-2991(09)60670-4
– volume: 95
  start-page: 559
  year: 1995
  ident: D4SC00603H/cit6/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr00035a006
– volume: 87
  start-page: 663
  year: 1991
  ident: D4SC00603H/cit17/1
  publication-title: J. Chem. Soc., Faraday Trans.
  doi: 10.1039/FT9918700663
– volume: 132
  start-page: 67
  year: 2007
  ident: D4SC00603H/cit22/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2007.01.020
– volume: 13
  start-page: 2539
  year: 2011
  ident: D4SC00603H/cit30/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C0CP01982H
– volume: 75
  start-page: 410
  year: 1982
  ident: D4SC00603H/cit61/1
  publication-title: J. Catal.
  doi: 10.1016/0021-9517(82)90222-6
– volume: 117
  start-page: 23609
  issue: 45
  year: 2013
  ident: D4SC00603H/cit90/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp403504n
– volume: 330
  start-page: 111575
  year: 2022
  ident: D4SC00603H/cit29/1
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2021.111575
– volume: 451
  start-page: 671
  year: 2008
  ident: D4SC00603H/cit57/1
  publication-title: Nature
  doi: 10.1038/nature06552
– volume: 118
  start-page: 17787
  year: 2014
  ident: D4SC00603H/cit58/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp5050095
– volume: 46
  start-page: 7184
  year: 2007
  ident: D4SC00603H/cit8/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200604504
– volume: 314
  start-page: 21
  year: 2014
  ident: D4SC00603H/cit69/1
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2014.03.013
– volume: 6
  start-page: 7311
  year: 2016
  ident: D4SC00603H/cit80/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b01771
– volume: 330
  start-page: 111605
  year: 2022
  ident: D4SC00603H/cit50/1
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2021.111605
– volume: 51
  start-page: 4337
  year: 2022
  ident: D4SC00603H/cit35/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D1CS00966D
– volume: 55
  start-page: 2507
  year: 2016
  ident: D4SC00603H/cit68/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201510920
– volume: 12
  start-page: 325
  year: 1968
  ident: D4SC00603H/cit15/1
  publication-title: J. Catal.
  doi: 10.1016/0021-9517(68)90116-4
– volume: 3
  start-page: 100525
  year: 2023
  ident: D4SC00603H/cit33/1
  publication-title: Chem Catal.
  doi: 10.1016/j.checat.2023.100525
– volume: 16
  start-page: 2755
  year: 2014
  ident: D4SC00603H/cit51/1
  publication-title: J. Nanopart. Res.
  doi: 10.1007/s11051-014-2755-x
– volume: 114
  start-page: 10229
  year: 2010
  ident: D4SC00603H/cit23/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp101262y
– volume: 226
  start-page: 109
  year: 2014
  ident: D4SC00603H/cit46/1
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2013.10.032
– volume: 135
  start-page: 115
  year: 1992
  ident: D4SC00603H/cit63/1
  publication-title: J. Catal.
  doi: 10.1016/0021-9517(92)90273-K
– volume: 7
  start-page: 6542
  year: 2017
  ident: D4SC00603H/cit5/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b02011
– volume: 4
  start-page: 5406
  year: 2002
  ident: D4SC00603H/cit84/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/B203966B
– volume: 9
  start-page: 2880
  year: 2019
  ident: D4SC00603H/cit85/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b04493
– volume: 83
  start-page: 286
  year: 1983
  ident: D4SC00603H/cit62/1
  publication-title: J. Catal.
  doi: 10.1016/0021-9517(83)90055-6
– volume: 128
  start-page: 14770
  year: 2006
  ident: D4SC00603H/cit72/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja065810a
– volume: 173
  start-page: 285
  year: 2016
  ident: D4SC00603H/cit26/1
  publication-title: Fuel
  doi: 10.1016/j.fuel.2016.01.047
– volume: 4
  start-page: 1
  year: 1997
  ident: D4SC00603H/cit36/1
  publication-title: Top. Catal.
  doi: 10.1023/A:1019184004885
– volume: 47
  start-page: 9200
  year: 2008
  ident: D4SC00603H/cit9/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200801476
– volume: 2
  start-page: 2328
  year: 2022
  ident: D4SC00603H/cit55/1
  publication-title: Chem Catal.
  doi: 10.1016/j.checat.2022.07.026
– volume: 50
  start-page: 8511
  year: 2021
  ident: D4SC00603H/cit4/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D0CS01459A
– volume: 83
  start-page: 345
  year: 2005
  ident: D4SC00603H/cit21/1
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2005.04.028
– volume: 8
  start-page: 690
  year: 1994
  ident: D4SC00603H/cit52/1
  publication-title: Energy Fuels
  doi: 10.1021/ef00045a025
– volume: 29
  start-page: 1701139
  year: 2017
  ident: D4SC00603H/cit14/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201701139
– volume: 288
  start-page: 149
  year: 2005
  ident: D4SC00603H/cit20/1
  publication-title: Appl. Catal., A
  doi: 10.1016/j.apcata.2005.04.047
– volume: 41
  start-page: 2572
  year: 1949
  ident: D4SC00603H/cit40/1
  publication-title: Ind. Eng. Chem.
– volume: 93
  start-page: 30
  year: 1985
  ident: D4SC00603H/cit16/1
  publication-title: J. Catal.
  doi: 10.1016/0021-9517(85)90148-4
– volume: 249
  start-page: 195
  year: 2007
  ident: D4SC00603H/cit70/1
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2007.04.006
– volume: 18
  start-page: 487
  year: 1993
  ident: D4SC00603H/cit18/1
  publication-title: Catal. Today
  doi: 10.1016/0920-5861(93)80065-9
– volume: 6
  start-page: 7059
  year: 2016
  ident: D4SC00603H/cit88/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b02128
– volume: 297
  start-page: 198
  year: 2006
  ident: D4SC00603H/cit32/1
  publication-title: Appl. Catal., A
  doi: 10.1016/j.apcata.2005.09.009
– volume: 9
  start-page: 4792
  year: 2019
  ident: D4SC00603H/cit66/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b00151
– volume: 47
  start-page: 5179
  year: 2008
  ident: D4SC00603H/cit67/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200705453
– volume: 59
  start-page: 15402
  year: 2020
  ident: D4SC00603H/cit10/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201915651
– volume: 135
  start-page: 19193
  year: 2013
  ident: D4SC00603H/cit43/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja4081937
– volume: 2
  start-page: 26
  year: 2012
  ident: D4SC00603H/cit53/1
  publication-title: ACS Catal.
  doi: 10.1021/cs200517u
– volume: 3
  start-page: 100540
  year: 2023
  ident: D4SC00603H/cit81/1
  publication-title: Chem Catal.
  doi: 10.1016/j.checat.2023.100540
– volume: 134
  start-page: 19468
  year: 2012
  ident: D4SC00603H/cit24/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja3089372
– volume: 42
  start-page: 1126
  year: 2021
  ident: D4SC00603H/cit87/1
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(20)63732-9
– volume: 179
  start-page: 71
  year: 1999
  ident: D4SC00603H/cit42/1
  publication-title: Appl. Catal., A
  doi: 10.1016/S0926-860X(98)00301-9
– volume: 1
  start-page: 23
  year: 2018
  ident: D4SC00603H/cit79/1
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-017-0002-4
– volume: 35
  start-page: 21
  year: 2000
  ident: D4SC00603H/cit2/1
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/S1387-1811(99)00205-X
– volume: 88
  start-page: 240
  year: 1984
  ident: D4SC00603H/cit65/1
  publication-title: J. Catal.
  doi: 10.1016/0021-9517(84)90071-X
– volume: 404
  start-page: 832
  year: 2021
  ident: D4SC00603H/cit28/1
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2021.08.048
– volume: 57
  start-page: 8095
  year: 2018
  ident: D4SC00603H/cit76/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201803279
– volume: 44
  start-page: 7342
  year: 2015
  ident: D4SC00603H/cit7/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00376H
– volume: 122
  start-page: 14275
  year: 2022
  ident: D4SC00603H/cit34/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.2c00076
– volume: 129
  start-page: 203
  year: 1995
  ident: D4SC00603H/cit19/1
  publication-title: Appl. Catal., A
  doi: 10.1016/0926-860X(95)00081-X
– volume: 24
  start-page: 3231
  year: 2012
  ident: D4SC00603H/cit82/1
  publication-title: Chem. Mater.
  doi: 10.1021/cm301629a
– volume: 54
  start-page: 135
  year: 2012
  ident: D4SC00603H/cit86/1
  publication-title: Catal. Rev.: Sci. Eng.
  doi: 10.1080/01614940.2012.632662
– volume: 5
  start-page: 87
  year: 1966
  ident: D4SC00603H/cit13/1
  publication-title: Ind. Eng. Chem. Prod. Res. Dev.
  doi: 10.1021/i260017a018
– volume: 37
  start-page: 873
  year: 1998
  ident: D4SC00603H/cit37/1
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie9705416
– volume: 35–36
  start-page: 11
  year: 2000
  ident: D4SC00603H/cit31/1
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/S1387-1811(99)00204-8
– volume: 4
  start-page: 202
  year: 1984
  ident: D4SC00603H/cit59/1
  publication-title: Zeolites
  doi: 10.1016/0144-2449(84)90024-1
– volume-title: Thesis for the Master's degree in chemistry
  year: 2014
  ident: D4SC00603H/cit56/1
– volume: 72
  start-page: 317
  year: 1981
  ident: D4SC00603H/cit64/1
  publication-title: Faraday Discuss. Chem. Soc.
  doi: 10.1039/dc9817200317
– volume: 345
  start-page: 53
  year: 2017
  ident: D4SC00603H/cit38/1
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2016.11.010
– volume: 233
  start-page: 100
  year: 2005
  ident: D4SC00603H/cit49/1
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2005.04.017
– volume: 8
  start-page: 2175
  year: 2018
  ident: D4SC00603H/cit77/1
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C7CY02460F
– volume: 182
  start-page: 244
  year: 2013
  ident: D4SC00603H/cit25/1
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2013.04.010
– volume: 19
  start-page: 341
  year: 2018
  ident: D4SC00603H/cit3/1
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.201701084
– volume: 8
  start-page: 5485
  year: 2018
  ident: D4SC00603H/cit83/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b01054
– volume: 140
  start-page: 14195
  year: 2018
  ident: D4SC00603H/cit75/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b08041
– volume: 138
  start-page: 4739
  year: 2016
  ident: D4SC00603H/cit27/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b11355
– volume: 3
  start-page: 100503
  year: 2023
  ident: D4SC00603H/cit89/1
  publication-title: Chem Catal.
  doi: 10.1016/j.checat.2022.100503
– volume: 123
  start-page: 6107
  year: 2023
  ident: D4SC00603H/cit1/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.2c00896
– volume: 96
  volume-title: Cool fuel for hypersonic aircraft
  year: 2018
  ident: D4SC00603H/cit12/1
– volume: 46
  start-page: 2662
  year: 2010
  ident: D4SC00603H/cit45/1
  publication-title: Chem. Commun.
  doi: 10.1039/b925408k
– volume: 351
  start-page: 174
  year: 2008
  ident: D4SC00603H/cit44/1
  publication-title: Appl. Catal., A
  doi: 10.1016/j.apcata.2008.09.012
– volume: 62
  start-page: e202303124
  year: 2023
  ident: D4SC00603H/cit78/1
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202303124
SSID ssj0000331527
Score 2.4577827
Snippet Zeolite-mediated catalytic cracking of alkanes is pivotal in the petrochemical and refining industry, breaking down heavier hydrocarbon feedstocks into fuels...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 11937
SubjectTerms Alkanes
Catalytic cracking
Chemistry
Hexanes
Hydrocarbons
NMR spectroscopy
Selective adsorption
Selectivity
Spectrum analysis
Topology
Zeolites
Title Selectivity descriptors of the catalytic n -hexane cracking process over 10-membered ring zeolites
URI https://www.ncbi.nlm.nih.gov/pubmed/39092105
https://www.proquest.com/docview/3086283419
https://www.proquest.com/docview/3087356407
https://pubmed.ncbi.nlm.nih.gov/PMC11290429
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfK9gAviG8CYzKCFzQFktj5ekQFVCENIbZC9xTZjrNOQIq2RoL9GfzF3MUfSdkeYC9Ra7tp6_vFvjv_7o6Q56iCp4LHYcEKFfIanrmSN2nYCMxMmMGOb9gWH7LZnL9fpIvJ5PeItdSt5Ut1fmlcyVWkCm0gV4yS_Q_J-ptCA7wG-cIVJAzXf5LxQV_ExpR_qLVZALB4jj33710zvzAjaxsuMY4Fmk6F-moC0PsAgT1kcO7BIvldY2UQjVxz6D3XSIuz9EKXx8ClFnCRQHj-6yK-Rg6FfWE0UywTcjz4pVed2eV-dgMJqGcSHHXyZBj4xfqvkW271LbdeiUS7tydFkeIceP_cOTTnlxiS9gNa1wSAUwAEeZoRo_bTI4jv0inIzDakxyz5Magguaj_RvemwSVFzaHiGFu1ZqfKcxCw5bDFuiJiR_3p6iA4i59jWwnYHrAYr_96fN8ceQ9dxFjthaw__Uu7y0rXw2339R0Lpgvf7NwR2rN4S1y09oj9LUB120y0e0dct3P4V0iRiCjI5DRVUMBZNSDjDqQUQcyakFGEWR0BDKKIKMOZPfI_N3bw-kstHU5QgXm_zosixrJcWi681zVoLGqqOSxzEC7LZQQYKNGiss6j2XN0FOudKTBsM9i0WRCJew-2WpXrX5IaBLXouFKSSUbLuNGKjDHi1ypVCRSCB6QF24OK2WT1mPtlG9VT55gZfWGH0z7-Z4F5Jkf-8Okarl01I4TRWUf5bOKoWFfYGrDgDz13TDReHoGE7fq-jE5S_HcOyAPjOT818C_LBOwVAJSbMjUD8Ak7ps97cmyT-bu4Pbo6h99TG4Mj-AO2VqfdvoJqMprudu7mHYtgv8Ai1LF4g
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Selectivity+descriptors+of+the+catalytic+n-hexane+cracking+process+over+10-membered+ring+zeolites&rft.jtitle=Chemical+science+%28Cambridge%29&rft.au=Ma%2C+Pandong&rft.au=Zhou%2C+Hexun&rft.au=Li%2C+Yubing&rft.au=Wang%2C+Mengheng&rft.date=2024-07-31&rft.pub=The+Royal+Society+of+Chemistry&rft.issn=2041-6520&rft.eissn=2041-6539&rft.volume=15&rft.issue=30&rft.spage=11937&rft.epage=11945&rft_id=info:doi/10.1039%2Fd4sc00603h&rft.externalDocID=PMC11290429
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-6520&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-6520&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-6520&client=summon