On convex cones with infinitely many critical angles
This note deals with some cardinality issues concerning the set of critical angles of a convex cone . Such set is referred to as the angular spectrum of the cone. In a recent work of ours, it has been shown that the angular spectrum of a polyhedral cone is necessarily finite and that its cardinality...
Saved in:
Published in | Optimization Vol. 56; no. 1-2; pp. 115 - 128 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Philadelphia
Taylor & Francis Group
01.02.2007
Taylor & Francis LLC Taylor & Francis |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This note deals with some cardinality issues concerning the set of critical angles of a convex cone
. Such set is referred to as the angular spectrum of the cone. In a recent work of ours, it has been shown that the angular spectrum of a polyhedral cone is necessarily finite and that its cardinality can grow at most polynomially with respect to the number of generators. In this note, we explore the case of nonpolyhedral cones. More specifically, we construct a cone whose angular spectrum is infinite (but possibly countable), and, what is harder to achieve, we construct a cone with noncountable angular spectrum. The construction procedure is highly technical in both cases, but the obtained results are useful for better understanding why some convex cones exhibit such a complicated angular structure. |
---|---|
AbstractList | This note deals with some cardinality issues concerning the set of critical angles of a convex cone . Such set is referred to as the angular spectrum of the cone. In a recent work of ours, it has been shown that the angular spectrum of a polyhedral cone is necessarily finite and that its cardinality can grow at most polynomially with respect to the number of generators. In this note, we explore the case of nonpolyhedral cones. More specifically, we construct a cone whose angular spectrum is infinite (but possibly countable), and, what is harder to achieve, we construct a cone with noncountable angular spectrum. The construction procedure is highly technical in both cases, but the obtained results are useful for better understanding why some convex cones exhibit such a complicated angular structure. [PUBLICATION ABSTRACT] This note deals with some cardinality issues concerning the set of critical angles of a convex cone . Such set is referred to as the angular spectrum of the cone. In a recent work of ours, it has been shown that the angular spectrum of a polyhedral cone is necessarily finite and that its cardinality can grow at most polynomially with respect to the number of generators. In this note, we explore the case of nonpolyhedral cones. More specifically, we construct a cone whose angular spectrum is infinite (but possibly countable), and, what is harder to achieve, we construct a cone with noncountable angular spectrum. The construction procedure is highly technical in both cases, but the obtained results are useful for better understanding why some convex cones exhibit such a complicated angular structure. |
Author | Seeger, Alberto Iusem, Alfredo |
Author_xml | – sequence: 1 givenname: Alfredo surname: Iusem fullname: Iusem, Alfredo organization: Instituto de Matemática Pura e Aplicada – sequence: 2 givenname: Alberto surname: Seeger fullname: Seeger, Alberto email: alberto.seeger@univ-avignon.fr organization: Department of Mathematics , University of Avignon |
BackLink | https://hal.science/hal-02179159$$DView record in HAL |
BookMark | eNqFkE9PAyEQxYmpibX6AbxtvHlYhV22QOKladSaNOlFz4SwYGkoVKD_vr1sWi826mmSmfebN_MuQc95pwC4QfAeQQofYFXXiNVwCCFFjNHmDPQRrFiJGW56oN_NyyzAF-AyxgWEFRpWuA_wzBXSu43adUXFYmvSvDBOG2eSsvtiKdy-kMEkI4UthPuwKl6Bcy1sVNfHOgDvz09v40k5nb28jkfTUmJIUklaRQSj2bRtBCEStrUUjEjdSCylbluqNVMIKshaivJYUVnhISFC5T90XQ_A3WHvXFi-CmYpwp57YfhkNOVdL39BGGrYBmXt7UG7Cv5zrWLiC78OLp_HK8QwxU1Ns4gcRDL4GIPSXJokkvEuBWEsR5B3afKTNDOJfpDf9_zFHN1ynD4sxdYH2_Ik9tYHHYSTJp5SPO1SJh__Jevfjb8AoFScHA |
CODEN | OPTZDQ |
CitedBy_id | crossref_primary_10_1007_s10589_015_9767_z crossref_primary_10_1007_s10957_024_02424_3 crossref_primary_10_1007_s40314_020_1115_y crossref_primary_10_1007_s10589_015_9805_x crossref_primary_10_1515_form_2011_005 crossref_primary_10_1007_s10107_009_0317_2 crossref_primary_10_1007_s10898_007_9225_2 crossref_primary_10_1137_090750391 crossref_primary_10_1016_j_jmaa_2010_08_034 crossref_primary_10_1007_s11228_023_00696_x crossref_primary_10_1016_j_laa_2009_03_031 crossref_primary_10_1007_s10589_008_9167_8 crossref_primary_10_1007_s11228_021_00575_3 crossref_primary_10_1007_s10898_011_9749_3 crossref_primary_10_1007_s11750_015_0375_y crossref_primary_10_1016_j_laa_2008_11_015 |
Cites_doi | 10.1590/S0101-82052005000200006 10.1515/9781400873173 10.1007/s10107-005-0626-z 10.1016/S0024-3795(03)00553-6 10.1016/S0024-3795(99)00004-X 10.1007/s101070050001 |
ContentType | Journal Article |
Copyright | Copyright Taylor & Francis Group, LLC 2007 Copyright Taylor & Francis Group Feb-Apr 2007 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Copyright Taylor & Francis Group, LLC 2007 – notice: Copyright Taylor & Francis Group Feb-Apr 2007 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 7SC 7TB 8FD FR3 H8D JQ2 L7M L~C L~D 1XC |
DOI | 10.1080/02331930600819985 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics |
EISSN | 1029-4945 |
EndPage | 128 |
ExternalDocumentID | oai_HAL_hal_02179159v1 1183518471 10_1080_02331930600819985 181938 |
Genre | Feature |
GroupedDBID | .7F .DC .QJ 0BK 0R~ 123 29N 30N 4.4 5VS AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AGCQS AGDLA AGMYJ AHDZW AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CAG CCCUG CE4 COF CS3 DKSSO DU5 EBS EJD E~A E~B GTTXZ H13 HZ~ H~P IPNFZ J.P KYCEM M4Z NA5 O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEJ TFL TFT TFW TTHFI TUROJ TWF UT5 UU3 ZGOLN ~S~ 07G 1TA AAGDL AAHIA AAIKQ AAKBW AAYXX ACAGQ ACGEE ADYSH AEUMN AFRVT AGLEN AGROQ AHMOU AIYEW ALCKM AMEWO AMPGV AMVHM AMXXU BCCOT BPLKW C06 CITATION CRFIH DMQIW DWIFK HF~ IVXBP LJTGL NUSFT QCRFL TAQ TFMCV TOXWX UB9 UU8 V3K V4Q 7SC 7TB 8FD ACTCW FR3 H8D JQ2 L7M L~C L~D TASJS 1XC |
ID | FETCH-LOGICAL-c407t-7de7a98934d5a77c0d3ca97cf5c4ccfdd8ff9e10e09d81c0de8c24677ae060f33 |
ISSN | 0233-1934 |
IngestDate | Fri May 09 12:08:24 EDT 2025 Wed Aug 13 07:59:12 EDT 2025 Tue Jul 01 03:52:06 EDT 2025 Thu Apr 24 23:10:17 EDT 2025 Mon May 13 12:09:11 EDT 2019 Wed Dec 25 09:05:48 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1-2 |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c407t-7de7a98934d5a77c0d3ca97cf5c4ccfdd8ff9e10e09d81c0de8c24677ae060f33 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
PQID | 219484538 |
PQPubID | 27961 |
PageCount | 14 |
ParticipantIDs | crossref_primary_10_1080_02331930600819985 crossref_citationtrail_10_1080_02331930600819985 hal_primary_oai_HAL_hal_02179159v1 informaworld_taylorfrancis_310_1080_02331930600819985 proquest_journals_219484538 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2007-02-01 |
PublicationDateYYYYMMDD | 2007-02-01 |
PublicationDate_xml | – month: 02 year: 2007 text: 2007-02-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia |
PublicationTitle | Optimization |
PublicationYear | 2007 |
Publisher | Taylor & Francis Group Taylor & Francis LLC Taylor & Francis |
Publisher_xml | – name: Taylor & Francis Group – name: Taylor & Francis LLC – name: Taylor & Francis |
References | Willard S (CIT0011) 1970 Iusem A (CIT0004) 2006 Iusem A (CIT0002) 2005; 24 Dujundji J (CIT0001) 1966 Wets RJB (CIT0010) 1980 CIT0007 Iusem A (CIT0003) 2005; 104 Quittner P (CIT0006) 1986; 27 Peña J (CIT0005) 2000; 87 CIT0009 CIT0008 |
References_xml | – volume: 24 start-page: 245 year: 2005 ident: CIT0002 publication-title: Computational and Applied Mathematics doi: 10.1590/S0101-82052005000200006 – ident: CIT0009 doi: 10.1515/9781400873173 – volume-title: General Topology year: 1970 ident: CIT0011 – volume: 104 start-page: 501 year: 2005 ident: CIT0003 publication-title: Mathematical Programming doi: 10.1007/s10107-005-0626-z – volume-title: Topology year: 1966 ident: CIT0001 – ident: CIT0008 doi: 10.1016/S0024-3795(03)00553-6 – year: 2006 ident: CIT0004 publication-title: Mathematical Programming – ident: CIT0007 doi: 10.1016/S0024-3795(99)00004-X – volume: 27 start-page: 605 year: 1986 ident: CIT0006 publication-title: Commentationes Mathematicae Universitatis Carolinae – start-page: 375 volume-title: Variational Inequalities and Complementarity Problems year: 1980 ident: CIT0010 – volume: 87 start-page: 351 year: 2000 ident: CIT0005 publication-title: Mathematical Programming doi: 10.1007/s101070050001 |
SSID | ssj0021624 |
Score | 1.8096709 |
Snippet | This note deals with some cardinality issues concerning the set of critical angles of a convex cone
. Such set is referred to as the angular spectrum of the... This note deals with some cardinality issues concerning the set of critical angles of a convex cone . Such set is referred to as the angular spectrum of the... |
SourceID | hal proquest crossref informaworld |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 115 |
SubjectTerms | Angular spectra Cantor ternary set Convex cones Critical angles Mathematical problems Mathematics Mathematics Subject Classifications 2000 Polyhedra Polynomials Studies |
Title | On convex cones with infinitely many critical angles |
URI | https://www.tandfonline.com/doi/abs/10.1080/02331930600819985 https://www.proquest.com/docview/219484538 https://hal.science/hal-02179159 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdY9wIPiE9RNpA17WkoKE6cOH6sYFOFuvUlFRUvVmI7A6kL05ahjb9-5_ij7Yoq4CWt7Hw4vl_Od8nd7xA6rLJcESZVROq6iSgsGVGRxyxSCc0LklJF-0Ta07N8PKNf5tl8Weiyzy7p6o_y9x_zSv5HqtAGcjVZsv8g2XBSaID_IF_YgoRh-1cynrY2avzW_GiXqAYn_mEMycWdCU29-yB9MYOqPV-4iEFnjU5BX1y4RMyAkZtrfWFTXxpDJhpewWh97ipfG1qs7ufa-wLmQ4ydhMuN0h2hPLHVOkmaRmDVWS9fW61oYmQot7yPXm1aPnAPj5BYYvUgsTmaG_rZBTTCNeAScd4bJNzW7Fnnwj6bipPZZCLK43m53mtdF9BEGTEr6w7aTcBDSAZodzT-_O1r8LZJ3lc0DvfjP2kbYvWH118zSna-9yGxq8S1Gwt1b32Uz9BT5zbgkcXAc_RIty_QkxUyyZeITlts0YB7NGCDBrxEAzZowB4N2KLhFZqdHJefxpGriRFJcL27iCnNKg5GJlVZxZiMVSorzmSTSSplo1TRNFyTWMdcFQS6dSHhsWOs0nC7TZq-RoMWBvEG4UTRmjEtwYfV1NRp5VSRQnGVa60ZJ0MU-0kR0hHGm7olC0E8r-zDeRyio3DIpWVL2bbzAcx02M_wnI9HE2HajKPMwdD-ZQaxKgjR9fBtLHI3zym6226Isi2HpFvGs-eFLNxDfi1gQacFBavg7dbePfR4-azto0F3daPfgbXa1e8dLu8BCPWMYw |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BGYCBN6KUR4SYkAIxceJ4rBBVgVIWKnWzEtsBRKkQDajw6zk7SVVa1KFTpORsnV_38uU7gNM4CBVhUrkkSVKXospwo9BjrrqkYUR8qqj9kfa-HTY79LYbdIuA26BIqzQ-dJoDRVhZbQ63CUaXKXEXqGdw56CxaxUaj4JFWAp4yEwFA99rjxwuEtqitobcRXpa3mr-18UfvbT4bLMix7FLp2S1VUCNdRAl63neyev5Z5acy58JVMf5x7YBa4Vt6tTzzbQJC7q_BatjiIXbQB_6jk1UH5qHHjgmjuvgCF6M7dr7dt5QuDiyqJ_gxP2nnh7sQKdx_XjVdIvCC65E_y5zmdIs5mjJUBXEjElP-TLmTKaBpFKmSkVpyjXxtMdVRPCzjiSuLWOxRr5T39-FSh-Z2APnUtGEMS3RUdLUFAPlVJFIcRVqrRknVfDKaReyQCU3xTF6gpTgpZMTUoWzUZP3HJJjFvEJruWIzoBpN-stYd4Zb4yjNfdlmBhfapHZYEmaVzaZ7lNkw6wKwYwm_gx-auU2EoW0GAjUGjSiqHr25-z1GJabj_ct0bpp39VgJY8_m5SbA6hkH5_6EA2nLDmyp-MX86YIvg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60gujBt1jrI4gnITXbbLLZY1FL1Vo9WOgtJPtQsZZiUqn-emc3Samt9NBTIJldZl_zyuw3CJ1Hni8w5cLGcaxsAirDDnyH2qJG_AC7RBBzkfah7Tc75K7rdfPcnCRPq9Q-tMqAIoys1od7IFSREXcJagY2Dti6Rp-xwFtGK74GDtc3OJz22N_Cvqlpq8ltoCfFT83_uvijlpZfTVLkJHTpjKg2-qexmRVZTQxsoU47ea8O07jKf6ZAHRce2hbayC1Tq55tpW20JPs7aH0Cr3AXkce-ZdLUR_ohE0tHcS0YwJu2XHvf1geIFovn1ROsqP_Sk8ke6jRunq-adl52webg3aU2FZJGDOwYIryIUu4Il0eMcuVxwrkSIlCKSexIh4kAw2cZcFhZSiMJfCvX3UelPjBxgKyaIDGlkoObJIkuBcqIwIFgwpdSUobLyClmPeQ5JrkujdELcQFdOj0hZXQxbjLIADnmEZ_BUo7pNJR2s94K9TvtizGw5b40E5MrHaYmVKKyuiazfYbpKC0jb04Tdw4_lWIXhbmsSELQGSQgoHgOF-z1FK0-XTfC1m37voLWsuCzzrc5QqX0cyiPwWpK4xNzNn4BnYEHYg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+convex+cones+with+infinitely+many+critical+angles&rft.jtitle=Optimization&rft.au=Iusem%2C+Alfredo&rft.au=Seeger%2C+Alberto&rft.date=2007-02-01&rft.pub=Taylor+%26+Francis+LLC&rft.issn=0233-1934&rft.eissn=1029-4945&rft.volume=56&rft.issue=1%2F2&rft.spage=115&rft_id=info:doi/10.1080%2F02331930600819985&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=1183518471 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0233-1934&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0233-1934&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0233-1934&client=summon |