Quantum theory of optomechanical cooling

We review the quantum theory of cooling of a mechanical oscillator subject to the radiation pressure force due to light circulating inside a driven optical cavity. Such optomechanical setups have been used recently in a series of experiments by various groups to cool mechanical oscillators (such as...

Full description

Saved in:
Bibliographic Details
Published inJournal of modern optics Vol. 55; no. 19-20; pp. 3329 - 3338
Main Authors Marquardt, Florian, Clerk, A.A., Girvin, S.M.
Format Journal Article Conference Proceeding
LanguageEnglish
Published Abingdon Taylor & Francis Group 10.11.2008
Taylor & Francis
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We review the quantum theory of cooling of a mechanical oscillator subject to the radiation pressure force due to light circulating inside a driven optical cavity. Such optomechanical setups have been used recently in a series of experiments by various groups to cool mechanical oscillators (such as cantilevers) by factors reaching 10 5 , and they may soon go to the ground state of mechanical motion. We emphasize the importance of the sideband-resolved regime for ground state cooling, where the cavity ring-down rate is smaller than the mechanical frequency. Moreover, we illustrate the strong coupling regime, where the cooling rate exceeds the cavity ring-down rate and where the driven cavity resonance and the mechanical oscillation hybridize.
AbstractList We review the quantum theory of cooling of a mechanical oscillator subject to the radiation pressure force due to light circulating inside a driven optical cavity. Such optomechanical setups have been used recently in a series of experiments by various groups to cool mechanical oscillators (such as cantilevers) by factors reaching 10 5 , and they may soon go to the ground state of mechanical motion. We emphasize the importance of the sideband-resolved regime for ground state cooling, where the cavity ring-down rate is smaller than the mechanical frequency. Moreover, we illustrate the strong coupling regime, where the cooling rate exceeds the cavity ring-down rate and where the driven cavity resonance and the mechanical oscillation hybridize.
We review the quantum theory of cooling of a mechanical oscillator subject to the radiation pressure force due to light circulating inside a driven optical cavity. Such optomechanical setups have been used recently in a series of experiments by various groups to cool mechanical oscillators (such as cantilevers) by factors reaching 105, and they may soon go to the ground state of mechanical motion. We emphasize the importance of the sideband-resolved regime for ground state cooling, where the cavity ring-down rate is smaller than the mechanical frequency. Moreover, we illustrate the strong coupling regime, where the cooling rate exceeds the cavity ring-down rate and where the driven cavity resonance and the mechanical oscillation hybridize.
Author Marquardt, Florian
Girvin, S.M.
Clerk, A.A.
Author_xml – sequence: 1
  givenname: Florian
  surname: Marquardt
  fullname: Marquardt, Florian
  email: florian.marquardt@physik.lmu.de
  organization: Department of Physics, Center for NanoScience and Arnold-Sommerfeld Center for Theoretical Physics , Ludwig-Maximilians-Universität München
– sequence: 2
  givenname: A.A.
  surname: Clerk
  fullname: Clerk, A.A.
  organization: Department of Physics , McGill University
– sequence: 3
  givenname: S.M.
  surname: Girvin
  fullname: Girvin, S.M.
  organization: Department of Physics , Yale University
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21133712$$DView record in Pascal Francis
BookMark eNqFkE1LAzEQhoNUsK3-AG-9KF5W87VJFrxI8QsKIug5pEnWRnaTmmTR_nu3tL1Y1NMMzPPMvMwIDHzwFoBTBC8RFPAKViWEhPYtpiWtODoAQ0QYLgikdACG63mxBo7AKKV3CCGDBA_BxXOnfO7aSV7YEFeTUE_CMofW6oXyTqtmokNonH87Boe1apI92dYxeL27fZk-FLOn-8fpzazQFPJccEOMsYyJqhasMlhYRBmqKDOk5JUWFYW2JgxZOje6Z4kpLaelMJzNOcY1GYPzzd5lDB-dTVm2LmnbNMrb0CVJsGCQctGDZ1tQpT5nHZXXLslldK2KK4kRIoQj3HN8w-kYUoq2ltpllV3wOSrXSATl-oNy74O9iX6Yu-V_OdtrztchtuozxMbIrFZNiLuIe5bMX7k3r_81ye-HvwFt0pdh
CODEN JMOPEW
CitedBy_id crossref_primary_10_1364_OE_23_024497
crossref_primary_10_1364_JOSAB_31_001525
crossref_primary_10_1088_1054_660X_26_11_115204
crossref_primary_10_1103_PhysRevApplied_23_014082
crossref_primary_10_1103_PhysRevB_84_094502
crossref_primary_10_1002_andp_201400105
crossref_primary_10_1038_s41598_023_50775_0
crossref_primary_10_1103_PhysRevA_93_063809
crossref_primary_10_1103_PhysRevA_86_043816
crossref_primary_10_1103_PhysRevB_79_134511
crossref_primary_10_1103_PhysRevA_104_023509
crossref_primary_10_1088_1402_4896_ad1238
crossref_primary_10_1088_1751_8121_aafffe
crossref_primary_10_1103_PhysRevA_88_013848
crossref_primary_10_1103_PhysRevA_99_023829
crossref_primary_10_3389_fphy_2023_1218010
crossref_primary_10_34133_2020_1964015
crossref_primary_10_1038_lsa_2013_10
crossref_primary_10_1038_s41467_017_00247_7
crossref_primary_10_1088_1361_6455_abf6b3
crossref_primary_10_1103_PhysRevA_89_053838
crossref_primary_10_1103_PhysRevA_87_053841
crossref_primary_10_1088_1674_1056_22_11_114213
crossref_primary_10_1103_RevModPhys_86_1391
crossref_primary_10_1140_epjd_e2010_10353_2
crossref_primary_10_1038_s42254_022_00494_8
crossref_primary_10_1088_1367_2630_ad32e4
crossref_primary_10_1364_JOSAB_516660
crossref_primary_10_1140_epjp_s13360_024_05542_z
crossref_primary_10_1002_andp_201200226
crossref_primary_10_1103_PhysRevA_91_023813
crossref_primary_10_1103_PhysRevA_102_013512
crossref_primary_10_1364_JOSAB_384108
crossref_primary_10_1103_PhysRevResearch_4_033177
crossref_primary_10_3390_photonics9060400
crossref_primary_10_1364_OE_26_033830
crossref_primary_10_1140_epjp_s13360_023_04437_9
crossref_primary_10_1088_0953_4075_49_15_153001
crossref_primary_10_1140_epjd_e2018_90080_4
crossref_primary_10_1103_PhysRevLett_130_033601
crossref_primary_10_1088_1367_2630_ab09b0
crossref_primary_10_1103_PhysRevLett_107_273601
crossref_primary_10_1103_PhysRevA_105_013521
crossref_primary_10_3367_UFNr_0182_201204c_0407
crossref_primary_10_1088_1751_8113_46_48_485305
crossref_primary_10_1103_PhysRevA_97_033850
crossref_primary_10_1103_PhysRevD_89_062005
crossref_primary_10_1016_j_aop_2017_08_024
crossref_primary_10_1103_Physics_2_40
crossref_primary_10_1080_09500340_2016_1249977
crossref_primary_10_1088_1742_6596_1540_1_012013
crossref_primary_10_52547_ijop_16_2_161
crossref_primary_10_1080_01932691_2025_2452598
crossref_primary_10_1038_s41598_019_40492_y
Cites_doi 10.1103/PhysRevLett.96.103901
10.1209/0295-5075/81/54003
10.1103/PhysRevB.74.201301
10.1038/nature05231
10.1103/PhysRevLett.51.1550
10.1103/PhysRevA.59.3204
10.1038/nphys1006
10.1038/nature06715
10.1103/PhysRevLett.99.093901
10.1038/nature03118
10.1364/OE.15.017172
10.1063/1.1600513
10.1038/nature05027
10.1088/1367-2630/10/9/095002
10.1103/PhysRevLett.98.150802
10.1103/PhysRevLett.101.133903
10.1038/nature05273
10.1103/PhysRevLett.97.243905
10.1088/1367-2630/7/1/236
10.1038/nphys965
10.1209/epl/i2005-10317-6
10.1103/PhysRevLett.95.033901
10.1038/nature05244
10.1038/nphys974
10.1103/PhysRevA.73.033417
10.1088/1367-2630/10/9/095006
10.1088/1367-2630/9/4/084
10.1103/PhysRevLett.100.240801
10.1103/PhysRevLett.83.3174
10.1088/1367-2630/7/1/238
10.1038/nphys939
10.1103/PhysRevLett.94.223902
ContentType Journal Article
Conference Proceeding
Copyright Copyright Taylor & Francis Group, LLC 2008
2009 INIST-CNRS
Copyright_xml – notice: Copyright Taylor & Francis Group, LLC 2008
– notice: 2009 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SP
7U5
8FD
L7M
DOI 10.1080/09500340802454971
DatabaseName CrossRef
Pascal-Francis
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1362-3044
EndPage 3338
ExternalDocumentID 21133712
10_1080_09500340802454971
345665
GroupedDBID -~X
.7F
.QJ
0BK
0R~
29L
30N
4.4
53G
5GY
5VS
6TJ
8VB
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACGOD
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFDUV
AFFNX
AFKVX
AGDLA
AGMYJ
AHDZW
AIJEM
AIPZZ
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
C5L
CAG
CCCUG
CE4
COF
CS3
DGEBU
DKSSO
DU5
EBS
EJD
EXXQB
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
M4Z
MS~
NA5
O9-
P2P
PQQKQ
QWB
RIG
RNANH
RNS
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TCJPB
TDBHL
TEX
TFL
TFT
TFW
TTHFI
TUROJ
TWF
UT5
UU3
UU9
ZGOLN
ZL0
~S~
AAGDL
AAHIA
AAYXX
ADYSH
AFRVT
AIYEW
AMPGV
CITATION
07S
1TA
AANMX
AATVF
ABCES
ABDPE
ABGQB
ABZIJ
ACKDS
ACLZH
ADMLS
AFGMD
AHWVO
AI.
ASQZU
BVUPT
C09
DGEYW
DWNMW
EBKLY
ECKKI
IQODW
JHRKR
LJTGL
NUSFT
QSQFL
TAZ
TFMCV
UC4
V3L
VH1
VOH
7SP
7U5
8FD
L7M
TASJS
ID FETCH-LOGICAL-c407t-7d3dde6689f869d28e1461946d3579c8940ef361e4bdcd3d3d5e7458d76b722f3
ISSN 0950-0340
IngestDate Thu Aug 07 15:05:41 EDT 2025
Wed Apr 02 07:47:29 EDT 2025
Tue Jul 01 04:10:17 EDT 2025
Thu Apr 24 23:01:49 EDT 2025
Mon May 13 12:09:43 EDT 2019
Wed Dec 25 09:03:37 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 19-20
Keywords Micromechanics
Cooling
Ground states
Quantum electrodynamics
Optical resonators
Cavity electrodynamics
Quantum optics
Quantum noise
Optical forces
Radiation pressure
Quantum theory
Language English
License CC BY 4.0
LinkModel OpenURL
MeetingName Physics of Quantum Electronics. Selected Papers from the 38th Winter Colloquium on the Physics of Quantum Electronics, 6-10 January 2008
MergedId FETCHMERGED-LOGICAL-c407t-7d3dde6689f869d28e1461946d3579c8940ef361e4bdcd3d3d5e7458d76b722f3
Notes SourceType-Scholarly Journals-2
ObjectType-Feature-2
ObjectType-Conference Paper-1
content type line 23
SourceType-Conference Papers & Proceedings-1
ObjectType-Article-3
PQID 32860478
PQPubID 23500
PageCount 10
ParticipantIDs crossref_citationtrail_10_1080_09500340802454971
pascalfrancis_primary_21133712
informaworld_taylorfrancis_310_1080_09500340802454971
crossref_primary_10_1080_09500340802454971
proquest_miscellaneous_32860478
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 11/10/2008
PublicationDateYYYYMMDD 2008-11-10
PublicationDate_xml – month: 11
  year: 2008
  text: 11/10/2008
  day: 10
PublicationDecade 2000
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Journal of modern optics
PublicationYear 2008
Publisher Taylor & Francis Group
Taylor & Francis
Publisher_xml – name: Taylor & Francis Group
– name: Taylor & Francis
References Brown KR (CIT0019) 2007; 99
CIT0010
CIT0031
CIT0012
CIT0034
CIT0011
Marshall W (CIT0030) 2003; 91
Ludwig M (CIT0032) 2008; 10
Braginsky VB (CIT0002) 1970; 31
CIT0014
CIT0036
CIT0013
CIT0016
CIT0038
CIT0015
CIT0037
CIT0018
CIT0017
CIT0039
Rodrigues DA (CIT0024) 2007; 98
Marquardt F (CIT0033) 2007; 99
CIT0041
CIT0040
CIT0021
CIT0020
CIT0023
CIT0022
Braginsky V (CIT0001) 1967; 25
Gardiner CW (CIT0035) 2004
CIT0003
CIT0025
CIT0005
CIT0027
CIT0004
CIT0026
CIT0007
CIT0029
CIT0006
CIT0028
CIT0009
CIT0008
References_xml – ident: CIT0013
  doi: 10.1103/PhysRevLett.96.103901
– ident: CIT0041
  doi: 10.1209/0295-5075/81/54003
– ident: CIT0023
  doi: 10.1103/PhysRevB.74.201301
– volume: 10
  start-page: 095013-1
  year: 2008
  ident: CIT0032
  publication-title: New J. Phys.
– ident: CIT0005
  doi: 10.1038/nature05231
– volume: 99
  start-page: 137205-1
  year: 2007
  ident: CIT0019
  publication-title: Phys. Rev. Lett.
– ident: CIT0003
  doi: 10.1103/PhysRevLett.51.1550
– ident: CIT0029
  doi: 10.1103/PhysRevA.59.3204
– ident: CIT0039
  doi: 10.1038/nphys1006
– ident: CIT0012
  doi: 10.1038/nature06715
– ident: CIT0034
  doi: 10.1103/PhysRevLett.99.093901
– ident: CIT0007
  doi: 10.1038/nature03118
– ident: CIT0018
  doi: 10.1364/OE.15.017172
– ident: CIT0006
  doi: 10.1063/1.1600513
– ident: CIT0022
  doi: 10.1038/nature05027
– ident: CIT0038
  doi: 10.1088/1367-2630/10/9/095002
– ident: CIT0011
  doi: 10.1103/PhysRevLett.98.150802
– volume: 31
  start-page: 829
  year: 1970
  ident: CIT0002
  publication-title: Sov. Phy. JETP.
– ident: CIT0017
  doi: 10.1103/PhysRevLett.101.133903
– volume: 98
  start-page: 067204-1
  year: 2007
  ident: CIT0024
  publication-title: Phys. Rev. Lett.
– ident: CIT0009
  doi: 10.1038/nature05273
– ident: CIT0010
  doi: 10.1103/PhysRevLett.97.243905
– ident: CIT0021
  doi: 10.1088/1367-2630/7/1/236
– ident: CIT0028
  doi: 10.1038/nphys965
– ident: CIT0016
– ident: CIT0031
  doi: 10.1209/epl/i2005-10317-6
– ident: CIT0015
  doi: 10.1103/PhysRevLett.95.033901
– ident: CIT0008
  doi: 10.1038/nature05244
– volume: 91
  start-page: 130401-1
  year: 2003
  ident: CIT0030
  publication-title: Phys. Rev. Lett.
– ident: CIT0026
  doi: 10.1038/nphys974
– ident: CIT0027
  doi: 10.1103/PhysRevA.73.033417
– ident: CIT0036
  doi: 10.1088/1367-2630/10/9/095006
– ident: CIT0025
  doi: 10.1088/1367-2630/9/4/084
– volume: 25
  start-page: 653
  year: 1967
  ident: CIT0001
  publication-title: Sov. Phys. JETP.
– ident: CIT0037
  doi: 10.1103/PhysRevLett.100.240801
– ident: CIT0004
  doi: 10.1103/PhysRevLett.83.3174
– volume: 99
  start-page: 093902-1
  year: 2007
  ident: CIT0033
  publication-title: Phys. Rev. Lett.
– ident: CIT0020
  doi: 10.1088/1367-2630/7/1/238
– ident: CIT0040
  doi: 10.1038/nphys939
– ident: CIT0014
  doi: 10.1103/PhysRevLett.94.223902
– volume-title: Quantum Noise
  year: 2004
  ident: CIT0035
SSID ssj0006032
Score 2.1275308
Snippet We review the quantum theory of cooling of a mechanical oscillator subject to the radiation pressure force due to light circulating inside a driven optical...
SourceID proquest
pascalfrancis
crossref
informaworld
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3329
SubjectTerms cavity QED
Cavity quantum electrodynamics ; micromasers
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Instruments, apparatus, components and techniques common to several branches of physics and astronomy
Mechanical instruments, equipment and techniques
Micromechanical devices and systems
micromechanics
Optics
optomechanics
Physics
Quantum optics
radiation pressure
sideband cooling
Title Quantum theory of optomechanical cooling
URI https://www.tandfonline.com/doi/abs/10.1080/09500340802454971
https://www.proquest.com/docview/32860478
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELeqTki8MRiifIw88ICQXDmx49hvTNug40uodDDxEiW2wwttpi2TEH89Z8dxm2YqgpeojRynvd_Fdznf_Q6hF4VJUhPzAjMVa8wyznAhubZxq5hoZRR3vQg-fuKzc_buIr0YjV5vVpc05VT9vrWu5H9QhXOAq62S_Qdkw6RwAj4DvnAEhOE4xPhWU7PhTy7brmb1ZRMS2ANNBhiWZVuz6DbUYUy9NLbm1_OD2M49P4Lsj-bWzz1ZOMfWZuitNej4w-n8vVtPpuso6Nuz-dczly7wZeqjq10cQWCXyxaQXwxaevRihQQT2vIqdctmy67bqYfECdlYByn1cQzjv7YULoP12ic4wvx2emH3gZlse7L0ubG3bFbIJIT3V0oz22Z6L6GZYGO0dzQ7-f4tWGNOXJO68Be6nW3Lr759255v0mOutSmzxTVAUrWyGVhu544s7qGDdaFm9DnoxT4amdV9dMdl9arrB-ilhz5qoY_qKupDH3noD9D5m9PF8Qz71hhYwRt4gzNNwS5xLmQluNSJMLY_u2Rc0zSTSkhGTEV5bFipFYylOjUZS4XOeJklSUUfovGqXplHKGIFyypORAmPLTNCFUqX4KLIoiq4SRSZINIJJVeeN962L_mZxx297LYcJ-hVuOSyJU3ZNZhsSjpvnCJ6OQ-H582vZoLSHZfQHbc67KEYflynRRP0vIM1h2XW7p0VK1PfwKSJ4JbI6vHfpniC7q6frqdo3FzdmGfgtzbloVfNP8euj1Q
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED9EEX3xW5wfWx98EKHaNmnSPoooU-dAcLC3kiapD-oqrgX1rzeXtsOp7GHvl6bJXS655O73AzgWOgi1z4RLpa9cyhl1RcwU3lv5npJaMstFcN9n3QG9HYbD-sJtXKdVYgydVUAR1lfj4sbL6CYl7twcCxBXBctEqYlvsIR8KYwZRwYD4vUnnph5lqAMxV2Ub141__vE1L40hVqK6ZJibGYsq6gu_nhtuxVdr0PSDKLKQHk-K4v0TH79wnecf5QbsFafUp2Lyqw2YUGPtmDZZovK8TacPJRGIeWrY8sgP508c_K3In_VWEaMWndkjmRATzswuL56vOy6NeWCK01kV7hcEePvGIviLGKxCiKNvN8xZYqEPJZRTD2dEeZrmippZIkKNadhpDhLeRBkZBcWR_lI74FDBeUZ86LUmAPVkRRSpWbri0UmmA6k1wKvmfBE1njkSIvxkvgNbOnvCWjB6aTJWwXGMUvY-6nFpLA3ILUO_4onxUfRgnBGEzKjq_aUhUx-zkTXhHA_aEGnMZnELF98kxEjnZfmo0HEECBpf86uO7DSfbzvJb2b_t0BrNpsFpukeAiLxXupj8yRqUjbdl18A_mjB_Y
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVQEYgLOyIsbQ4cEFJKFsdJjgioylaBRKXeIscLB2hTkUQCvh6Pk1S0RT30PrYTz3jssd-8QeiMCtcXDqEWZg63cECwRSPC4d7KsTkTjOhaBE890u3j-4E_qLA5WQWrhBhalkQR2lfD4h5zWSPiLtWpAGhVIEsUq_AGMshXCRCHQwaH3Zs4YmLr-mQgboF8_aj5XxdT29IUaSmgJWmmJkyWlS7mnLbeiTpbZbnVTBMYAgDlvV3kSZv9zNA7Lv2T22izOqOaV6VR7aAVMdpFaxoryrI9dP5SKHUUQ1MnQX6bqTTTcZ4OBSQRg85NlkIpoLd91O_cvl53rarggsVUXJdbAfeUtyMkjGRIIu6GAqp-R5hwzw8iFkbYFtIjjsAJZ0rW474IsB_ygCSB60rvADVG6UgcIhNTHEhih4kyBixCRhlP1MYXUUmJcJltILue75hVbORQFOMjdmrS0tkJMNDFpMm4pOJYJGz_VWKc6_uPSoXz4nH-lRvIX9DEWzBUc8pAJh-nYmvPCxzXQK3aYmK1eOFFho5EWqhO3ZAAPdLRkkO30PrzTSd-vOs9HKMNDWXRCMUT1Mg_C3Gqzkt50tSr4hep2Aaa
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Journal+of+modern+optics&rft.atitle=Quantum+theory+of+optomechanical+cooling&rft.au=MARQUARDT%2C+Florian&rft.au=CLERK%2C+A.+A&rft.au=GIRVIN%2C+S.+M&rft.date=2008-11-10&rft.pub=Taylor+%26+Francis&rft.issn=0950-0340&rft.volume=55&rft.issue=19-20&rft.spage=3329&rft.epage=3338&rft_id=info:doi/10.1080%2F09500340802454971&rft.externalDBID=n%2Fa&rft.externalDocID=21133712
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-0340&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-0340&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-0340&client=summon