Quantum theory of optomechanical cooling
We review the quantum theory of cooling of a mechanical oscillator subject to the radiation pressure force due to light circulating inside a driven optical cavity. Such optomechanical setups have been used recently in a series of experiments by various groups to cool mechanical oscillators (such as...
Saved in:
Published in | Journal of modern optics Vol. 55; no. 19-20; pp. 3329 - 3338 |
---|---|
Main Authors | , , |
Format | Journal Article Conference Proceeding |
Language | English |
Published |
Abingdon
Taylor & Francis Group
10.11.2008
Taylor & Francis |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We review the quantum theory of cooling of a mechanical oscillator subject to the radiation pressure force due to light circulating inside a driven optical cavity. Such optomechanical setups have been used recently in a series of experiments by various groups to cool mechanical oscillators (such as cantilevers) by factors reaching 10
5
, and they may soon go to the ground state of mechanical motion. We emphasize the importance of the sideband-resolved regime for ground state cooling, where the cavity ring-down rate is smaller than the mechanical frequency. Moreover, we illustrate the strong coupling regime, where the cooling rate exceeds the cavity ring-down rate and where the driven cavity resonance and the mechanical oscillation hybridize. |
---|---|
AbstractList | We review the quantum theory of cooling of a mechanical oscillator subject to the radiation pressure force due to light circulating inside a driven optical cavity. Such optomechanical setups have been used recently in a series of experiments by various groups to cool mechanical oscillators (such as cantilevers) by factors reaching 10
5
, and they may soon go to the ground state of mechanical motion. We emphasize the importance of the sideband-resolved regime for ground state cooling, where the cavity ring-down rate is smaller than the mechanical frequency. Moreover, we illustrate the strong coupling regime, where the cooling rate exceeds the cavity ring-down rate and where the driven cavity resonance and the mechanical oscillation hybridize. We review the quantum theory of cooling of a mechanical oscillator subject to the radiation pressure force due to light circulating inside a driven optical cavity. Such optomechanical setups have been used recently in a series of experiments by various groups to cool mechanical oscillators (such as cantilevers) by factors reaching 105, and they may soon go to the ground state of mechanical motion. We emphasize the importance of the sideband-resolved regime for ground state cooling, where the cavity ring-down rate is smaller than the mechanical frequency. Moreover, we illustrate the strong coupling regime, where the cooling rate exceeds the cavity ring-down rate and where the driven cavity resonance and the mechanical oscillation hybridize. |
Author | Marquardt, Florian Girvin, S.M. Clerk, A.A. |
Author_xml | – sequence: 1 givenname: Florian surname: Marquardt fullname: Marquardt, Florian email: florian.marquardt@physik.lmu.de organization: Department of Physics, Center for NanoScience and Arnold-Sommerfeld Center for Theoretical Physics , Ludwig-Maximilians-Universität München – sequence: 2 givenname: A.A. surname: Clerk fullname: Clerk, A.A. organization: Department of Physics , McGill University – sequence: 3 givenname: S.M. surname: Girvin fullname: Girvin, S.M. organization: Department of Physics , Yale University |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21133712$$DView record in Pascal Francis |
BookMark | eNqFkE1LAzEQhoNUsK3-AG-9KF5W87VJFrxI8QsKIug5pEnWRnaTmmTR_nu3tL1Y1NMMzPPMvMwIDHzwFoBTBC8RFPAKViWEhPYtpiWtODoAQ0QYLgikdACG63mxBo7AKKV3CCGDBA_BxXOnfO7aSV7YEFeTUE_CMofW6oXyTqtmokNonH87Boe1apI92dYxeL27fZk-FLOn-8fpzazQFPJccEOMsYyJqhasMlhYRBmqKDOk5JUWFYW2JgxZOje6Z4kpLaelMJzNOcY1GYPzzd5lDB-dTVm2LmnbNMrb0CVJsGCQctGDZ1tQpT5nHZXXLslldK2KK4kRIoQj3HN8w-kYUoq2ltpllV3wOSrXSATl-oNy74O9iX6Yu-V_OdtrztchtuozxMbIrFZNiLuIe5bMX7k3r_81ye-HvwFt0pdh |
CODEN | JMOPEW |
CitedBy_id | crossref_primary_10_1364_OE_23_024497 crossref_primary_10_1364_JOSAB_31_001525 crossref_primary_10_1088_1054_660X_26_11_115204 crossref_primary_10_1103_PhysRevApplied_23_014082 crossref_primary_10_1103_PhysRevB_84_094502 crossref_primary_10_1002_andp_201400105 crossref_primary_10_1038_s41598_023_50775_0 crossref_primary_10_1103_PhysRevA_93_063809 crossref_primary_10_1103_PhysRevA_86_043816 crossref_primary_10_1103_PhysRevB_79_134511 crossref_primary_10_1103_PhysRevA_104_023509 crossref_primary_10_1088_1402_4896_ad1238 crossref_primary_10_1088_1751_8121_aafffe crossref_primary_10_1103_PhysRevA_88_013848 crossref_primary_10_1103_PhysRevA_99_023829 crossref_primary_10_3389_fphy_2023_1218010 crossref_primary_10_34133_2020_1964015 crossref_primary_10_1038_lsa_2013_10 crossref_primary_10_1038_s41467_017_00247_7 crossref_primary_10_1088_1361_6455_abf6b3 crossref_primary_10_1103_PhysRevA_89_053838 crossref_primary_10_1103_PhysRevA_87_053841 crossref_primary_10_1088_1674_1056_22_11_114213 crossref_primary_10_1103_RevModPhys_86_1391 crossref_primary_10_1140_epjd_e2010_10353_2 crossref_primary_10_1038_s42254_022_00494_8 crossref_primary_10_1088_1367_2630_ad32e4 crossref_primary_10_1364_JOSAB_516660 crossref_primary_10_1140_epjp_s13360_024_05542_z crossref_primary_10_1002_andp_201200226 crossref_primary_10_1103_PhysRevA_91_023813 crossref_primary_10_1103_PhysRevA_102_013512 crossref_primary_10_1364_JOSAB_384108 crossref_primary_10_1103_PhysRevResearch_4_033177 crossref_primary_10_3390_photonics9060400 crossref_primary_10_1364_OE_26_033830 crossref_primary_10_1140_epjp_s13360_023_04437_9 crossref_primary_10_1088_0953_4075_49_15_153001 crossref_primary_10_1140_epjd_e2018_90080_4 crossref_primary_10_1103_PhysRevLett_130_033601 crossref_primary_10_1088_1367_2630_ab09b0 crossref_primary_10_1103_PhysRevLett_107_273601 crossref_primary_10_1103_PhysRevA_105_013521 crossref_primary_10_3367_UFNr_0182_201204c_0407 crossref_primary_10_1088_1751_8113_46_48_485305 crossref_primary_10_1103_PhysRevA_97_033850 crossref_primary_10_1103_PhysRevD_89_062005 crossref_primary_10_1016_j_aop_2017_08_024 crossref_primary_10_1103_Physics_2_40 crossref_primary_10_1080_09500340_2016_1249977 crossref_primary_10_1088_1742_6596_1540_1_012013 crossref_primary_10_52547_ijop_16_2_161 crossref_primary_10_1080_01932691_2025_2452598 crossref_primary_10_1038_s41598_019_40492_y |
Cites_doi | 10.1103/PhysRevLett.96.103901 10.1209/0295-5075/81/54003 10.1103/PhysRevB.74.201301 10.1038/nature05231 10.1103/PhysRevLett.51.1550 10.1103/PhysRevA.59.3204 10.1038/nphys1006 10.1038/nature06715 10.1103/PhysRevLett.99.093901 10.1038/nature03118 10.1364/OE.15.017172 10.1063/1.1600513 10.1038/nature05027 10.1088/1367-2630/10/9/095002 10.1103/PhysRevLett.98.150802 10.1103/PhysRevLett.101.133903 10.1038/nature05273 10.1103/PhysRevLett.97.243905 10.1088/1367-2630/7/1/236 10.1038/nphys965 10.1209/epl/i2005-10317-6 10.1103/PhysRevLett.95.033901 10.1038/nature05244 10.1038/nphys974 10.1103/PhysRevA.73.033417 10.1088/1367-2630/10/9/095006 10.1088/1367-2630/9/4/084 10.1103/PhysRevLett.100.240801 10.1103/PhysRevLett.83.3174 10.1088/1367-2630/7/1/238 10.1038/nphys939 10.1103/PhysRevLett.94.223902 |
ContentType | Journal Article Conference Proceeding |
Copyright | Copyright Taylor & Francis Group, LLC 2008 2009 INIST-CNRS |
Copyright_xml | – notice: Copyright Taylor & Francis Group, LLC 2008 – notice: 2009 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7SP 7U5 8FD L7M |
DOI | 10.1080/09500340802454971 |
DatabaseName | CrossRef Pascal-Francis Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1362-3044 |
EndPage | 3338 |
ExternalDocumentID | 21133712 10_1080_09500340802454971 345665 |
GroupedDBID | -~X .7F .QJ 0BK 0R~ 29L 30N 4.4 53G 5GY 5VS 6TJ 8VB AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACGOD ACTIO ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFDUV AFFNX AFKVX AGDLA AGMYJ AHDZW AIJEM AIPZZ AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA C5L CAG CCCUG CE4 COF CS3 DGEBU DKSSO DU5 EBS EJD EXXQB E~A E~B F5P GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM M4Z MS~ NA5 O9- P2P PQQKQ QWB RIG RNANH RNS ROSJB RTWRZ S-T SNACF TBQAZ TCJPB TDBHL TEX TFL TFT TFW TTHFI TUROJ TWF UT5 UU3 UU9 ZGOLN ZL0 ~S~ AAGDL AAHIA AAYXX ADYSH AFRVT AIYEW AMPGV CITATION 07S 1TA AANMX AATVF ABCES ABDPE ABGQB ABZIJ ACKDS ACLZH ADMLS AFGMD AHWVO AI. ASQZU BVUPT C09 DGEYW DWNMW EBKLY ECKKI IQODW JHRKR LJTGL NUSFT QSQFL TAZ TFMCV UC4 V3L VH1 VOH 7SP 7U5 8FD L7M TASJS |
ID | FETCH-LOGICAL-c407t-7d3dde6689f869d28e1461946d3579c8940ef361e4bdcd3d3d5e7458d76b722f3 |
ISSN | 0950-0340 |
IngestDate | Thu Aug 07 15:05:41 EDT 2025 Wed Apr 02 07:47:29 EDT 2025 Tue Jul 01 04:10:17 EDT 2025 Thu Apr 24 23:01:49 EDT 2025 Mon May 13 12:09:43 EDT 2019 Wed Dec 25 09:03:37 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19-20 |
Keywords | Micromechanics Cooling Ground states Quantum electrodynamics Optical resonators Cavity electrodynamics Quantum optics Quantum noise Optical forces Radiation pressure Quantum theory |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MeetingName | Physics of Quantum Electronics. Selected Papers from the 38th Winter Colloquium on the Physics of Quantum Electronics, 6-10 January 2008 |
MergedId | FETCHMERGED-LOGICAL-c407t-7d3dde6689f869d28e1461946d3579c8940ef361e4bdcd3d3d5e7458d76b722f3 |
Notes | SourceType-Scholarly Journals-2 ObjectType-Feature-2 ObjectType-Conference Paper-1 content type line 23 SourceType-Conference Papers & Proceedings-1 ObjectType-Article-3 |
PQID | 32860478 |
PQPubID | 23500 |
PageCount | 10 |
ParticipantIDs | crossref_citationtrail_10_1080_09500340802454971 pascalfrancis_primary_21133712 informaworld_taylorfrancis_310_1080_09500340802454971 crossref_primary_10_1080_09500340802454971 proquest_miscellaneous_32860478 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 11/10/2008 |
PublicationDateYYYYMMDD | 2008-11-10 |
PublicationDate_xml | – month: 11 year: 2008 text: 11/10/2008 day: 10 |
PublicationDecade | 2000 |
PublicationPlace | Abingdon |
PublicationPlace_xml | – name: Abingdon |
PublicationTitle | Journal of modern optics |
PublicationYear | 2008 |
Publisher | Taylor & Francis Group Taylor & Francis |
Publisher_xml | – name: Taylor & Francis Group – name: Taylor & Francis |
References | Brown KR (CIT0019) 2007; 99 CIT0010 CIT0031 CIT0012 CIT0034 CIT0011 Marshall W (CIT0030) 2003; 91 Ludwig M (CIT0032) 2008; 10 Braginsky VB (CIT0002) 1970; 31 CIT0014 CIT0036 CIT0013 CIT0016 CIT0038 CIT0015 CIT0037 CIT0018 CIT0017 CIT0039 Rodrigues DA (CIT0024) 2007; 98 Marquardt F (CIT0033) 2007; 99 CIT0041 CIT0040 CIT0021 CIT0020 CIT0023 CIT0022 Braginsky V (CIT0001) 1967; 25 Gardiner CW (CIT0035) 2004 CIT0003 CIT0025 CIT0005 CIT0027 CIT0004 CIT0026 CIT0007 CIT0029 CIT0006 CIT0028 CIT0009 CIT0008 |
References_xml | – ident: CIT0013 doi: 10.1103/PhysRevLett.96.103901 – ident: CIT0041 doi: 10.1209/0295-5075/81/54003 – ident: CIT0023 doi: 10.1103/PhysRevB.74.201301 – volume: 10 start-page: 095013-1 year: 2008 ident: CIT0032 publication-title: New J. Phys. – ident: CIT0005 doi: 10.1038/nature05231 – volume: 99 start-page: 137205-1 year: 2007 ident: CIT0019 publication-title: Phys. Rev. Lett. – ident: CIT0003 doi: 10.1103/PhysRevLett.51.1550 – ident: CIT0029 doi: 10.1103/PhysRevA.59.3204 – ident: CIT0039 doi: 10.1038/nphys1006 – ident: CIT0012 doi: 10.1038/nature06715 – ident: CIT0034 doi: 10.1103/PhysRevLett.99.093901 – ident: CIT0007 doi: 10.1038/nature03118 – ident: CIT0018 doi: 10.1364/OE.15.017172 – ident: CIT0006 doi: 10.1063/1.1600513 – ident: CIT0022 doi: 10.1038/nature05027 – ident: CIT0038 doi: 10.1088/1367-2630/10/9/095002 – ident: CIT0011 doi: 10.1103/PhysRevLett.98.150802 – volume: 31 start-page: 829 year: 1970 ident: CIT0002 publication-title: Sov. Phy. JETP. – ident: CIT0017 doi: 10.1103/PhysRevLett.101.133903 – volume: 98 start-page: 067204-1 year: 2007 ident: CIT0024 publication-title: Phys. Rev. Lett. – ident: CIT0009 doi: 10.1038/nature05273 – ident: CIT0010 doi: 10.1103/PhysRevLett.97.243905 – ident: CIT0021 doi: 10.1088/1367-2630/7/1/236 – ident: CIT0028 doi: 10.1038/nphys965 – ident: CIT0016 – ident: CIT0031 doi: 10.1209/epl/i2005-10317-6 – ident: CIT0015 doi: 10.1103/PhysRevLett.95.033901 – ident: CIT0008 doi: 10.1038/nature05244 – volume: 91 start-page: 130401-1 year: 2003 ident: CIT0030 publication-title: Phys. Rev. Lett. – ident: CIT0026 doi: 10.1038/nphys974 – ident: CIT0027 doi: 10.1103/PhysRevA.73.033417 – ident: CIT0036 doi: 10.1088/1367-2630/10/9/095006 – ident: CIT0025 doi: 10.1088/1367-2630/9/4/084 – volume: 25 start-page: 653 year: 1967 ident: CIT0001 publication-title: Sov. Phys. JETP. – ident: CIT0037 doi: 10.1103/PhysRevLett.100.240801 – ident: CIT0004 doi: 10.1103/PhysRevLett.83.3174 – volume: 99 start-page: 093902-1 year: 2007 ident: CIT0033 publication-title: Phys. Rev. Lett. – ident: CIT0020 doi: 10.1088/1367-2630/7/1/238 – ident: CIT0040 doi: 10.1038/nphys939 – ident: CIT0014 doi: 10.1103/PhysRevLett.94.223902 – volume-title: Quantum Noise year: 2004 ident: CIT0035 |
SSID | ssj0006032 |
Score | 2.1275308 |
Snippet | We review the quantum theory of cooling of a mechanical oscillator subject to the radiation pressure force due to light circulating inside a driven optical... |
SourceID | proquest pascalfrancis crossref informaworld |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3329 |
SubjectTerms | cavity QED Cavity quantum electrodynamics ; micromasers Exact sciences and technology Fundamental areas of phenomenology (including applications) Instruments, apparatus, components and techniques common to several branches of physics and astronomy Mechanical instruments, equipment and techniques Micromechanical devices and systems micromechanics Optics optomechanics Physics Quantum optics radiation pressure sideband cooling |
Title | Quantum theory of optomechanical cooling |
URI | https://www.tandfonline.com/doi/abs/10.1080/09500340802454971 https://www.proquest.com/docview/32860478 |
Volume | 55 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELeqTki8MRiifIw88ICQXDmx49hvTNug40uodDDxEiW2wwttpi2TEH89Z8dxm2YqgpeojRynvd_Fdznf_Q6hF4VJUhPzAjMVa8wyznAhubZxq5hoZRR3vQg-fuKzc_buIr0YjV5vVpc05VT9vrWu5H9QhXOAq62S_Qdkw6RwAj4DvnAEhOE4xPhWU7PhTy7brmb1ZRMS2ANNBhiWZVuz6DbUYUy9NLbm1_OD2M49P4Lsj-bWzz1ZOMfWZuitNej4w-n8vVtPpuso6Nuz-dczly7wZeqjq10cQWCXyxaQXwxaevRihQQT2vIqdctmy67bqYfECdlYByn1cQzjv7YULoP12ic4wvx2emH3gZlse7L0ubG3bFbIJIT3V0oz22Z6L6GZYGO0dzQ7-f4tWGNOXJO68Be6nW3Lr759255v0mOutSmzxTVAUrWyGVhu544s7qGDdaFm9DnoxT4amdV9dMdl9arrB-ilhz5qoY_qKupDH3noD9D5m9PF8Qz71hhYwRt4gzNNwS5xLmQluNSJMLY_u2Rc0zSTSkhGTEV5bFipFYylOjUZS4XOeJklSUUfovGqXplHKGIFyypORAmPLTNCFUqX4KLIoiq4SRSZINIJJVeeN962L_mZxx297LYcJ-hVuOSyJU3ZNZhsSjpvnCJ6OQ-H582vZoLSHZfQHbc67KEYflynRRP0vIM1h2XW7p0VK1PfwKSJ4JbI6vHfpniC7q6frqdo3FzdmGfgtzbloVfNP8euj1Q |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED9EEX3xW5wfWx98EKHaNmnSPoooU-dAcLC3kiapD-oqrgX1rzeXtsOp7GHvl6bJXS655O73AzgWOgi1z4RLpa9cyhl1RcwU3lv5npJaMstFcN9n3QG9HYbD-sJtXKdVYgydVUAR1lfj4sbL6CYl7twcCxBXBctEqYlvsIR8KYwZRwYD4vUnnph5lqAMxV2Ub141__vE1L40hVqK6ZJibGYsq6gu_nhtuxVdr0PSDKLKQHk-K4v0TH79wnecf5QbsFafUp2Lyqw2YUGPtmDZZovK8TacPJRGIeWrY8sgP508c_K3In_VWEaMWndkjmRATzswuL56vOy6NeWCK01kV7hcEePvGIviLGKxCiKNvN8xZYqEPJZRTD2dEeZrmippZIkKNadhpDhLeRBkZBcWR_lI74FDBeUZ86LUmAPVkRRSpWbri0UmmA6k1wKvmfBE1njkSIvxkvgNbOnvCWjB6aTJWwXGMUvY-6nFpLA3ILUO_4onxUfRgnBGEzKjq_aUhUx-zkTXhHA_aEGnMZnELF98kxEjnZfmo0HEECBpf86uO7DSfbzvJb2b_t0BrNpsFpukeAiLxXupj8yRqUjbdl18A_mjB_Y |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVQEYgLOyIsbQ4cEFJKFsdJjgioylaBRKXeIscLB2hTkUQCvh6Pk1S0RT30PrYTz3jssd-8QeiMCtcXDqEWZg63cECwRSPC4d7KsTkTjOhaBE890u3j-4E_qLA5WQWrhBhalkQR2lfD4h5zWSPiLtWpAGhVIEsUq_AGMshXCRCHQwaH3Zs4YmLr-mQgboF8_aj5XxdT29IUaSmgJWmmJkyWlS7mnLbeiTpbZbnVTBMYAgDlvV3kSZv9zNA7Lv2T22izOqOaV6VR7aAVMdpFaxoryrI9dP5SKHUUQ1MnQX6bqTTTcZ4OBSQRg85NlkIpoLd91O_cvl53rarggsVUXJdbAfeUtyMkjGRIIu6GAqp-R5hwzw8iFkbYFtIjjsAJZ0rW474IsB_ygCSB60rvADVG6UgcIhNTHEhih4kyBixCRhlP1MYXUUmJcJltILue75hVbORQFOMjdmrS0tkJMNDFpMm4pOJYJGz_VWKc6_uPSoXz4nH-lRvIX9DEWzBUc8pAJh-nYmvPCxzXQK3aYmK1eOFFho5EWqhO3ZAAPdLRkkO30PrzTSd-vOs9HKMNDWXRCMUT1Mg_C3Gqzkt50tSr4hep2Aaa |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Journal+of+modern+optics&rft.atitle=Quantum+theory+of+optomechanical+cooling&rft.au=MARQUARDT%2C+Florian&rft.au=CLERK%2C+A.+A&rft.au=GIRVIN%2C+S.+M&rft.date=2008-11-10&rft.pub=Taylor+%26+Francis&rft.issn=0950-0340&rft.volume=55&rft.issue=19-20&rft.spage=3329&rft.epage=3338&rft_id=info:doi/10.1080%2F09500340802454971&rft.externalDBID=n%2Fa&rft.externalDocID=21133712 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-0340&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-0340&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-0340&client=summon |