Understanding and diagnosing the potential for bias when using machine learning methods with doubly robust causal estimators
Data-adaptive methods have been proposed to estimate nuisance parameters when using doubly robust semiparametric methods for estimating marginal causal effects. However, in the presence of near practical positivity violations, these methods can produce a separation of the two exposure groups in term...
Saved in:
Published in | Statistical methods in medical research Vol. 28; no. 6; p. 1637 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
01.06.2019
|
Subjects | |
Online Access | Get more information |
ISSN | 1477-0334 |
DOI | 10.1177/0962280218772065 |
Cover
Loading…
Abstract | Data-adaptive methods have been proposed to estimate nuisance parameters when using doubly robust semiparametric methods for estimating marginal causal effects. However, in the presence of near practical positivity violations, these methods can produce a separation of the two exposure groups in terms of propensity score densities which can lead to biased estimates of the treatment effect. To motivate the problem, we evaluated the Targeted Minimum Loss-based Estimation procedure using a simulation scenario to estimate the average treatment effect. We highlight the divergence in estimates obtained when using parametric and data-adaptive methods to estimate the propensity score. We then adapted an existing diagnostic tool based on a bootstrap resampling of the subjects and simulation of the outcome data in order to show that the estimation using data-adaptive methods for the propensity score in this study may lead to large bias and poor coverage. The adapted bootstrap procedure is able to identify this instability and can be used as a diagnostic tool. |
---|---|
AbstractList | Data-adaptive methods have been proposed to estimate nuisance parameters when using doubly robust semiparametric methods for estimating marginal causal effects. However, in the presence of near practical positivity violations, these methods can produce a separation of the two exposure groups in terms of propensity score densities which can lead to biased estimates of the treatment effect. To motivate the problem, we evaluated the Targeted Minimum Loss-based Estimation procedure using a simulation scenario to estimate the average treatment effect. We highlight the divergence in estimates obtained when using parametric and data-adaptive methods to estimate the propensity score. We then adapted an existing diagnostic tool based on a bootstrap resampling of the subjects and simulation of the outcome data in order to show that the estimation using data-adaptive methods for the propensity score in this study may lead to large bias and poor coverage. The adapted bootstrap procedure is able to identify this instability and can be used as a diagnostic tool. |
Author | Bahamyirou, Asma Schnitzer, Mireille E Blais, Lucie Forget, Amélie |
Author_xml | – sequence: 1 givenname: Asma orcidid: 0000-0001-5334-2715 surname: Bahamyirou fullname: Bahamyirou, Asma organization: 1 Faculté de pharmacie, Université de Montréal, Montréal, Canada – sequence: 2 givenname: Lucie surname: Blais fullname: Blais, Lucie organization: 1 Faculté de pharmacie, Université de Montréal, Montréal, Canada – sequence: 3 givenname: Amélie surname: Forget fullname: Forget, Amélie organization: 2 Research Center, Hôpital du sacré-coeur de, Montréal, Canada – sequence: 4 givenname: Mireille E surname: Schnitzer fullname: Schnitzer, Mireille E organization: 1 Faculté de pharmacie, Université de Montréal, Montréal, Canada |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29717941$$D View this record in MEDLINE/PubMed |
BookMark | eNo1UEtLAzEYDKLYh949Sf7Aal67SY5SfEHBiz2XL5ukG9kmZZNFCv5416qnYYZhmJkFOo8pOoRuKLmjVMp7ohvGFGFUSclIU5-hORVSVoRzMUOLnD8IIZIIfYlmTEsqtaBz9LWJ1g25QLQh7vAE2AbYxZR_aOkcPqTiYgnQY58GbAJk_Nm5iMeTYw9tF6LDvYMhngRXumQnTygdtmk0_REPyYy54BbGPMW4XMIeShryFbrw0Gd3_YdLtHl6fF-9VOu359fVw7pqBZGlkpIqJn2tOTSkJaYRoLlS2rc150AbQbk1SvgGvDegBZkmq6YFZmrlFHVsiW5_cw-j2Tu7PQxTgeG4_b-BfQMQ-GG_ |
CitedBy_id | crossref_primary_10_1111_biom_13135 crossref_primary_10_2147_CLEP_S354733 crossref_primary_10_1515_ijb_2020_0073 crossref_primary_10_1002_pds_5500 crossref_primary_10_1214_20_STS770 crossref_primary_10_1002_sim_9348 crossref_primary_10_1097_EDE_0000000000001482 crossref_primary_10_1186_s12889_021_11705_9 crossref_primary_10_1097_EDE_0000000000001332 crossref_primary_10_1002_hec_4891 crossref_primary_10_1093_aje_kwz189 |
ContentType | Journal Article |
DBID | NPM |
DOI | 10.1177/0962280218772065 |
DatabaseName | PubMed |
DatabaseTitle | PubMed |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Medicine Statistics Mathematics |
EISSN | 1477-0334 |
ExternalDocumentID | 29717941 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: CIHR |
GroupedDBID | --- -TM .2G .2J .2N 0-V 01A 0R~ 123 1~K 29Q 31S 31U 31X 31Y 31Z 36B 3V. 4.4 53G 54M 5RE 5VS 6PF 7X7 88E 88I 8C1 8FE 8FG 8FI 8FJ 8R4 8R5 AABMB AABOD AACKU AACMV AACTG AADTT AADUE AAEWN AAGGD AAJIQ AAJOX AAJPV AAMGE AANSI AAPEO AAQDB AAQXH AAQXI AARDL AARIX AATAA AATBZ AAWTL AAYTG ABAWP ABCCA ABCJG ABDLQ ABDWY ABEIX ABFWQ ABHKI ABHQH ABJCF ABJIS ABKRH ABLUO ABPGX ABPNF ABQKF ABQXT ABRHV ABTDE ABUJY ABUWG ABVFX ABVVC ABYTW ACARO ACDSZ ACDXX ACFEJ ACFMA ACGBL ACGFS ACGOD ACGZU ACIWK ACJER ACLHI ACLZU ACOFE ACOXC ACROE ACRPL ACSBE ACSIQ ACTQU ACUAV ACUIR ACXKE ACXMB ADBBV ADEIA ADNMO ADNON ADRRZ ADTBJ ADUKL ADVBO ADYCS AECGH AECVZ AEDTQ AENEX AEPTA AEQLS AERKM AESZF AEUHG AEUIJ AEWDL AEWHI AEXNY AFEET AFKBI AFKRA AFKRG AFMOU AFQAA AFUIA AFWMB AGKLV AGNHF AGWFA AGWNL AHDMH AHHFK AHMBA AIOMO AJEFB AJMMQ AJUZI AJXAJ ALIPV ALKWR ALMA_UNASSIGNED_HOLDINGS ALSLI AMCVQ ANDLU ARALO ARTOV ASOEW ASPBG AUTPY AUVAJ AVWKF AYAKG AZFZN AZQEC B8O B8R B8Z B93 B94 BBRGL BDDNI BENPR BGLVJ BKIIM BPACV BPHCQ BSEHC BVXVI BYIEH C45 CAG CBRKF CCPQU CFDXU COF CORYS CQQTX CS3 DC- DD- DD0 DE- DF0 DO- DOPDO DU5 DV7 DWQXO D~Y EAD EAP EBS EJD EMB EMK EMOBN ESX F5P FEDTE FHBDP FYUFA GNUQQ GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION H13 HCIFZ HEHIP HF~ HMCUK HVGLF HZ~ J8X K.F K.J L6V M1P M2P M2S M4V M7S N9A NPM O9- OVD P.B P2P PQQKQ PROAC PSQYO PTHSS Q1R Q2X Q7K Q7L Q7X Q82 Q83 RIG ROL S01 SAUOL SCNPE SDB SFB SFC SFK SFN SFT SGA SGP SGR SGV SGX SGZ SHG SNB SPJ SPV SQCSI STM SV3 TEORI TN5 UKHRP YHZ ZONMY ZPPRI ZRKOI |
ID | FETCH-LOGICAL-c407t-771827f593a60c0b64a93889fc533a16413db84f6affba94003386ca2b58e81e2 |
IngestDate | Wed Feb 19 02:31:29 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Causal inference IPTW doubly robust TMLE positivity super learner |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c407t-771827f593a60c0b64a93889fc533a16413db84f6affba94003386ca2b58e81e2 |
ORCID | 0000-0001-5334-2715 |
OpenAccessLink | https://umontreal.scholaris.ca/bitstreams/9a9717f6-da8a-435c-b4e7-4d8e9823b62a/download |
PMID | 29717941 |
ParticipantIDs | pubmed_primary_29717941 |
PublicationCentury | 2000 |
PublicationDate | 2019-06-00 |
PublicationDateYYYYMMDD | 2019-06-01 |
PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-00 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Statistical methods in medical research |
PublicationTitleAlternate | Stat Methods Med Res |
PublicationYear | 2019 |
SSID | ssj0007049 |
Score | 2.3092082 |
Snippet | Data-adaptive methods have been proposed to estimate nuisance parameters when using doubly robust semiparametric methods for estimating marginal causal... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 1637 |
Title | Understanding and diagnosing the potential for bias when using machine learning methods with doubly robust causal estimators |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29717941 |
Volume | 28 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBabFkp6KO32_UKH3hanfmgt69iWhlC6vTQLuQVJlpuFtR1im5LQv9b_1hlJfmRJ6ePiNZY9LJ6P8cxovhlC3ujcyMyEItA81gEzaRwIJuJAJtg_LFpKniN3ePUlPVqzTyfLk9ns56RqqWvVgb66kVfyP1qFa6BXZMn-g2YHoXABzkG_cAQNw_GvdLy-xkzBFHjuKucGDlTdYjWQIyku1EY2i-9nplp09o7SFlKafnLENz9O2hPe8rpT28vFRa26pl1o2TUgBntylBinN1OvFj1W2_DZUlGcjE3l9u3t4IBJysxmTc9kebm5qDtrmZrx0_B-K13Pg8-d3gyQO7Rpe3tv6Tb2t-PiV-xB21455K3AgCO50fMrfDYDCVR91dWBcRaYcR6Eic9wehMdZxMoTu0teJP85g-B3YqG-Azb_YAbA0FE6IZSTHBxXlpgxIKjWYr-vLrTmrtf2iN7IB-nrmKqyLsBHGKvcV_87e5fwS7U_vGdiMZ6Nsf3yT0fktB3Dl8PyMxUc3J3NfTzbebkzsqXYMzJ_qDs5iH5cQ2BFH7oiEAKAuiAQAoIpIhAigikFoHUI5D2CKQePRQRSB0CqUMgdQikIwIfkfXhx-MPR4Gf5xFoFvIWAjkIZnmxFIlMQx2qlEmRZJkoNMQcEuL2KMlVxopUFoWSguGcwSzVMlbLzGSRiR-TW1VdmaeEigIi4biIVVRkyB1XKhIqDxn4vzxRkj0jT9wrPT13TVtO-5f9_LcrL8j-iMiX5HYBVsK8ApezVa-tan8BCPGF3g |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Understanding+and+diagnosing+the+potential+for+bias+when+using+machine+learning+methods+with+doubly+robust+causal+estimators&rft.jtitle=Statistical+methods+in+medical+research&rft.au=Bahamyirou%2C+Asma&rft.au=Blais%2C+Lucie&rft.au=Forget%2C+Am%C3%A9lie&rft.au=Schnitzer%2C+Mireille+E&rft.date=2019-06-01&rft.eissn=1477-0334&rft.volume=28&rft.issue=6&rft.spage=1637&rft_id=info:doi/10.1177%2F0962280218772065&rft_id=info%3Apmid%2F29717941&rft_id=info%3Apmid%2F29717941&rft.externalDocID=29717941 |