Understanding and diagnosing the potential for bias when using machine learning methods with doubly robust causal estimators

Data-adaptive methods have been proposed to estimate nuisance parameters when using doubly robust semiparametric methods for estimating marginal causal effects. However, in the presence of near practical positivity violations, these methods can produce a separation of the two exposure groups in term...

Full description

Saved in:
Bibliographic Details
Published inStatistical methods in medical research Vol. 28; no. 6; p. 1637
Main Authors Bahamyirou, Asma, Blais, Lucie, Forget, Amélie, Schnitzer, Mireille E
Format Journal Article
LanguageEnglish
Published England 01.06.2019
Subjects
Online AccessGet more information
ISSN1477-0334
DOI10.1177/0962280218772065

Cover

Loading…
Abstract Data-adaptive methods have been proposed to estimate nuisance parameters when using doubly robust semiparametric methods for estimating marginal causal effects. However, in the presence of near practical positivity violations, these methods can produce a separation of the two exposure groups in terms of propensity score densities which can lead to biased estimates of the treatment effect. To motivate the problem, we evaluated the Targeted Minimum Loss-based Estimation procedure using a simulation scenario to estimate the average treatment effect. We highlight the divergence in estimates obtained when using parametric and data-adaptive methods to estimate the propensity score. We then adapted an existing diagnostic tool based on a bootstrap resampling of the subjects and simulation of the outcome data in order to show that the estimation using data-adaptive methods for the propensity score in this study may lead to large bias and poor coverage. The adapted bootstrap procedure is able to identify this instability and can be used as a diagnostic tool.
AbstractList Data-adaptive methods have been proposed to estimate nuisance parameters when using doubly robust semiparametric methods for estimating marginal causal effects. However, in the presence of near practical positivity violations, these methods can produce a separation of the two exposure groups in terms of propensity score densities which can lead to biased estimates of the treatment effect. To motivate the problem, we evaluated the Targeted Minimum Loss-based Estimation procedure using a simulation scenario to estimate the average treatment effect. We highlight the divergence in estimates obtained when using parametric and data-adaptive methods to estimate the propensity score. We then adapted an existing diagnostic tool based on a bootstrap resampling of the subjects and simulation of the outcome data in order to show that the estimation using data-adaptive methods for the propensity score in this study may lead to large bias and poor coverage. The adapted bootstrap procedure is able to identify this instability and can be used as a diagnostic tool.
Author Bahamyirou, Asma
Schnitzer, Mireille E
Blais, Lucie
Forget, Amélie
Author_xml – sequence: 1
  givenname: Asma
  orcidid: 0000-0001-5334-2715
  surname: Bahamyirou
  fullname: Bahamyirou, Asma
  organization: 1 Faculté de pharmacie, Université de Montréal, Montréal, Canada
– sequence: 2
  givenname: Lucie
  surname: Blais
  fullname: Blais, Lucie
  organization: 1 Faculté de pharmacie, Université de Montréal, Montréal, Canada
– sequence: 3
  givenname: Amélie
  surname: Forget
  fullname: Forget, Amélie
  organization: 2 Research Center, Hôpital du sacré-coeur de, Montréal, Canada
– sequence: 4
  givenname: Mireille E
  surname: Schnitzer
  fullname: Schnitzer, Mireille E
  organization: 1 Faculté de pharmacie, Université de Montréal, Montréal, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29717941$$D View this record in MEDLINE/PubMed
BookMark eNo1UEtLAzEYDKLYh949Sf7Aal67SY5SfEHBiz2XL5ukG9kmZZNFCv5416qnYYZhmJkFOo8pOoRuKLmjVMp7ohvGFGFUSclIU5-hORVSVoRzMUOLnD8IIZIIfYlmTEsqtaBz9LWJ1g25QLQh7vAE2AbYxZR_aOkcPqTiYgnQY58GbAJk_Nm5iMeTYw9tF6LDvYMhngRXumQnTygdtmk0_REPyYy54BbGPMW4XMIeShryFbrw0Gd3_YdLtHl6fF-9VOu359fVw7pqBZGlkpIqJn2tOTSkJaYRoLlS2rc150AbQbk1SvgGvDegBZkmq6YFZmrlFHVsiW5_cw-j2Tu7PQxTgeG4_b-BfQMQ-GG_
CitedBy_id crossref_primary_10_1111_biom_13135
crossref_primary_10_2147_CLEP_S354733
crossref_primary_10_1515_ijb_2020_0073
crossref_primary_10_1002_pds_5500
crossref_primary_10_1214_20_STS770
crossref_primary_10_1002_sim_9348
crossref_primary_10_1097_EDE_0000000000001482
crossref_primary_10_1186_s12889_021_11705_9
crossref_primary_10_1097_EDE_0000000000001332
crossref_primary_10_1002_hec_4891
crossref_primary_10_1093_aje_kwz189
ContentType Journal Article
DBID NPM
DOI 10.1177/0962280218772065
DatabaseName PubMed
DatabaseTitle PubMed
DatabaseTitleList PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
Statistics
Mathematics
EISSN 1477-0334
ExternalDocumentID 29717941
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: CIHR
GroupedDBID ---
-TM
.2G
.2J
.2N
0-V
01A
0R~
123
1~K
29Q
31S
31U
31X
31Y
31Z
36B
3V.
4.4
53G
54M
5RE
5VS
6PF
7X7
88E
88I
8C1
8FE
8FG
8FI
8FJ
8R4
8R5
AABMB
AABOD
AACKU
AACMV
AACTG
AADTT
AADUE
AAEWN
AAGGD
AAJIQ
AAJOX
AAJPV
AAMGE
AANSI
AAPEO
AAQDB
AAQXH
AAQXI
AARDL
AARIX
AATAA
AATBZ
AAWTL
AAYTG
ABAWP
ABCCA
ABCJG
ABDLQ
ABDWY
ABEIX
ABFWQ
ABHKI
ABHQH
ABJCF
ABJIS
ABKRH
ABLUO
ABPGX
ABPNF
ABQKF
ABQXT
ABRHV
ABTDE
ABUJY
ABUWG
ABVFX
ABVVC
ABYTW
ACARO
ACDSZ
ACDXX
ACFEJ
ACFMA
ACGBL
ACGFS
ACGOD
ACGZU
ACIWK
ACJER
ACLHI
ACLZU
ACOFE
ACOXC
ACROE
ACRPL
ACSBE
ACSIQ
ACTQU
ACUAV
ACUIR
ACXKE
ACXMB
ADBBV
ADEIA
ADNMO
ADNON
ADRRZ
ADTBJ
ADUKL
ADVBO
ADYCS
AECGH
AECVZ
AEDTQ
AENEX
AEPTA
AEQLS
AERKM
AESZF
AEUHG
AEUIJ
AEWDL
AEWHI
AEXNY
AFEET
AFKBI
AFKRA
AFKRG
AFMOU
AFQAA
AFUIA
AFWMB
AGKLV
AGNHF
AGWFA
AGWNL
AHDMH
AHHFK
AHMBA
AIOMO
AJEFB
AJMMQ
AJUZI
AJXAJ
ALIPV
ALKWR
ALMA_UNASSIGNED_HOLDINGS
ALSLI
AMCVQ
ANDLU
ARALO
ARTOV
ASOEW
ASPBG
AUTPY
AUVAJ
AVWKF
AYAKG
AZFZN
AZQEC
B8O
B8R
B8Z
B93
B94
BBRGL
BDDNI
BENPR
BGLVJ
BKIIM
BPACV
BPHCQ
BSEHC
BVXVI
BYIEH
C45
CAG
CBRKF
CCPQU
CFDXU
COF
CORYS
CQQTX
CS3
DC-
DD-
DD0
DE-
DF0
DO-
DOPDO
DU5
DV7
DWQXO
D~Y
EAD
EAP
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FEDTE
FHBDP
FYUFA
GNUQQ
GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION
H13
HCIFZ
HEHIP
HF~
HMCUK
HVGLF
HZ~
J8X
K.F
K.J
L6V
M1P
M2P
M2S
M4V
M7S
N9A
NPM
O9-
OVD
P.B
P2P
PQQKQ
PROAC
PSQYO
PTHSS
Q1R
Q2X
Q7K
Q7L
Q7X
Q82
Q83
RIG
ROL
S01
SAUOL
SCNPE
SDB
SFB
SFC
SFK
SFN
SFT
SGA
SGP
SGR
SGV
SGX
SGZ
SHG
SNB
SPJ
SPV
SQCSI
STM
SV3
TEORI
TN5
UKHRP
YHZ
ZONMY
ZPPRI
ZRKOI
ID FETCH-LOGICAL-c407t-771827f593a60c0b64a93889fc533a16413db84f6affba94003386ca2b58e81e2
IngestDate Wed Feb 19 02:31:29 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Causal inference
IPTW
doubly robust
TMLE
positivity
super learner
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c407t-771827f593a60c0b64a93889fc533a16413db84f6affba94003386ca2b58e81e2
ORCID 0000-0001-5334-2715
OpenAccessLink https://umontreal.scholaris.ca/bitstreams/9a9717f6-da8a-435c-b4e7-4d8e9823b62a/download
PMID 29717941
ParticipantIDs pubmed_primary_29717941
PublicationCentury 2000
PublicationDate 2019-06-00
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-00
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Statistical methods in medical research
PublicationTitleAlternate Stat Methods Med Res
PublicationYear 2019
SSID ssj0007049
Score 2.3092082
Snippet Data-adaptive methods have been proposed to estimate nuisance parameters when using doubly robust semiparametric methods for estimating marginal causal...
SourceID pubmed
SourceType Index Database
StartPage 1637
Title Understanding and diagnosing the potential for bias when using machine learning methods with doubly robust causal estimators
URI https://www.ncbi.nlm.nih.gov/pubmed/29717941
Volume 28
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBabFkp6KO32_UKH3hanfmgt69iWhlC6vTQLuQVJlpuFtR1im5LQv9b_1hlJfmRJ6ePiNZY9LJ6P8cxovhlC3ujcyMyEItA81gEzaRwIJuJAJtg_LFpKniN3ePUlPVqzTyfLk9ns56RqqWvVgb66kVfyP1qFa6BXZMn-g2YHoXABzkG_cAQNw_GvdLy-xkzBFHjuKucGDlTdYjWQIyku1EY2i-9nplp09o7SFlKafnLENz9O2hPe8rpT28vFRa26pl1o2TUgBntylBinN1OvFj1W2_DZUlGcjE3l9u3t4IBJysxmTc9kebm5qDtrmZrx0_B-K13Pg8-d3gyQO7Rpe3tv6Tb2t-PiV-xB21455K3AgCO50fMrfDYDCVR91dWBcRaYcR6Eic9wehMdZxMoTu0teJP85g-B3YqG-Azb_YAbA0FE6IZSTHBxXlpgxIKjWYr-vLrTmrtf2iN7IB-nrmKqyLsBHGKvcV_87e5fwS7U_vGdiMZ6Nsf3yT0fktB3Dl8PyMxUc3J3NfTzbebkzsqXYMzJ_qDs5iH5cQ2BFH7oiEAKAuiAQAoIpIhAigikFoHUI5D2CKQePRQRSB0CqUMgdQikIwIfkfXhx-MPR4Gf5xFoFvIWAjkIZnmxFIlMQx2qlEmRZJkoNMQcEuL2KMlVxopUFoWSguGcwSzVMlbLzGSRiR-TW1VdmaeEigIi4biIVVRkyB1XKhIqDxn4vzxRkj0jT9wrPT13TVtO-5f9_LcrL8j-iMiX5HYBVsK8ApezVa-tan8BCPGF3g
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Understanding+and+diagnosing+the+potential+for+bias+when+using+machine+learning+methods+with+doubly+robust+causal+estimators&rft.jtitle=Statistical+methods+in+medical+research&rft.au=Bahamyirou%2C+Asma&rft.au=Blais%2C+Lucie&rft.au=Forget%2C+Am%C3%A9lie&rft.au=Schnitzer%2C+Mireille+E&rft.date=2019-06-01&rft.eissn=1477-0334&rft.volume=28&rft.issue=6&rft.spage=1637&rft_id=info:doi/10.1177%2F0962280218772065&rft_id=info%3Apmid%2F29717941&rft_id=info%3Apmid%2F29717941&rft.externalDocID=29717941