BPGAN: Brain PET synthesis from MRI using generative adversarial network for multi-modal Alzheimer’s disease diagnosis

•A novel model called brain PET generative adversarial network (BPGAN) is proposed. It is effective for synthesizing realistic and diverse brain PET scans from the corresponding brain MRI scans.•A hybrid loss is introduced to supervise the training process of brain PET scans synthesis on multiple le...

Full description

Saved in:
Bibliographic Details
Published inComputer methods and programs in biomedicine Vol. 217; p. 106676
Main Authors Zhang, Jin, He, Xiaohai, Qing, Linbo, Gao, Feng, Wang, Bin
Format Journal Article
LanguageEnglish
Published Ireland Elsevier B.V 01.04.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A novel model called brain PET generative adversarial network (BPGAN) is proposed. It is effective for synthesizing realistic and diverse brain PET scans from the corresponding brain MRI scans.•A hybrid loss is introduced to supervise the training process of brain PET scans synthesis on multiple levels.•Exploring two alternative data splitting strategies to study the impact on the MRI-to-PET synthesis task and further analyze their applicability in different medical scenarios.•The proposed model shows superior performance than the state-of-the-art methods. The experimental results indicate that BPGAN can be used as an effective data completion method for multi-modal AD diagnosis. Multi-modal medical images, such as magnetic resonance imaging (MRI) and positron emission tomography (PET), have been widely used for the diagnosis of brain disorder diseases like Alzheimer’s disease (AD) since they can provide various information. PET scans can detect cellular changes in organs and tissues earlier than MRI. Unlike MRI, PET data is difficult to acquire due to cost, radiation, or other limitations. Moreover, PET data is missing for many subjects in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset. To solve this problem, a 3D end-to-end generative adversarial network (named BPGAN) is proposed to synthesize brain PET from MRI scans, which can be used as a potential data completion scheme for multi-modal medical image research. We propose BPGAN, which learns an end-to-end mapping function to transform the input MRI scans to their underlying PET scans. First, we design a 3D multiple convolution U-Net (MCU) generator architecture to improve the visual quality of synthetic results while preserving the diverse brain structures of different subjects. By further employing a 3D gradient profile (GP) loss and structural similarity index measure (SSIM) loss, the synthetic PET scans have higher-similarity to the ground truth. In this study, we explore alternative data partitioning ways to study their impact on the performance of the proposed method in different medical scenarios. We conduct experiments on a publicly available ADNI database. The proposed BPGAN is evaluated by mean absolute error (MAE), peak-signal-to-noise-ratio (PSNR) and SSIM, superior to other compared models in these quantitative evaluation metrics. Qualitative evaluations also validate the effectiveness of our approach. Additionally, combined with MRI and our synthetic PET scans, the accuracies of multi-class AD diagnosis on dataset-A and dataset-B are 85.00% and 56.47%, which have been improved by about 1% and 1%, respectively, compared to the stand-alone MRI. The experimental results of quantitative measures, qualitative displays, and classification evaluation demonstrate that the synthetic PET images by BPGAN are reasonable and high-quality, which provide complementary information to improve the performance of AD diagnosis. This work provides a valuable reference for multi-modal medical image analysis.
AbstractList •A novel model called brain PET generative adversarial network (BPGAN) is proposed. It is effective for synthesizing realistic and diverse brain PET scans from the corresponding brain MRI scans.•A hybrid loss is introduced to supervise the training process of brain PET scans synthesis on multiple levels.•Exploring two alternative data splitting strategies to study the impact on the MRI-to-PET synthesis task and further analyze their applicability in different medical scenarios.•The proposed model shows superior performance than the state-of-the-art methods. The experimental results indicate that BPGAN can be used as an effective data completion method for multi-modal AD diagnosis. Multi-modal medical images, such as magnetic resonance imaging (MRI) and positron emission tomography (PET), have been widely used for the diagnosis of brain disorder diseases like Alzheimer’s disease (AD) since they can provide various information. PET scans can detect cellular changes in organs and tissues earlier than MRI. Unlike MRI, PET data is difficult to acquire due to cost, radiation, or other limitations. Moreover, PET data is missing for many subjects in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset. To solve this problem, a 3D end-to-end generative adversarial network (named BPGAN) is proposed to synthesize brain PET from MRI scans, which can be used as a potential data completion scheme for multi-modal medical image research. We propose BPGAN, which learns an end-to-end mapping function to transform the input MRI scans to their underlying PET scans. First, we design a 3D multiple convolution U-Net (MCU) generator architecture to improve the visual quality of synthetic results while preserving the diverse brain structures of different subjects. By further employing a 3D gradient profile (GP) loss and structural similarity index measure (SSIM) loss, the synthetic PET scans have higher-similarity to the ground truth. In this study, we explore alternative data partitioning ways to study their impact on the performance of the proposed method in different medical scenarios. We conduct experiments on a publicly available ADNI database. The proposed BPGAN is evaluated by mean absolute error (MAE), peak-signal-to-noise-ratio (PSNR) and SSIM, superior to other compared models in these quantitative evaluation metrics. Qualitative evaluations also validate the effectiveness of our approach. Additionally, combined with MRI and our synthetic PET scans, the accuracies of multi-class AD diagnosis on dataset-A and dataset-B are 85.00% and 56.47%, which have been improved by about 1% and 1%, respectively, compared to the stand-alone MRI. The experimental results of quantitative measures, qualitative displays, and classification evaluation demonstrate that the synthetic PET images by BPGAN are reasonable and high-quality, which provide complementary information to improve the performance of AD diagnosis. This work provides a valuable reference for multi-modal medical image analysis.
Multi-modal medical images, such as magnetic resonance imaging (MRI) and positron emission tomography (PET), have been widely used for the diagnosis of brain disorder diseases like Alzheimer's disease (AD) since they can provide various information. PET scans can detect cellular changes in organs and tissues earlier than MRI. Unlike MRI, PET data is difficult to acquire due to cost, radiation, or other limitations. Moreover, PET data is missing for many subjects in the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. To solve this problem, a 3D end-to-end generative adversarial network (named BPGAN) is proposed to synthesize brain PET from MRI scans, which can be used as a potential data completion scheme for multi-modal medical image research.BACKGROUND AND OBJECTIVEMulti-modal medical images, such as magnetic resonance imaging (MRI) and positron emission tomography (PET), have been widely used for the diagnosis of brain disorder diseases like Alzheimer's disease (AD) since they can provide various information. PET scans can detect cellular changes in organs and tissues earlier than MRI. Unlike MRI, PET data is difficult to acquire due to cost, radiation, or other limitations. Moreover, PET data is missing for many subjects in the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. To solve this problem, a 3D end-to-end generative adversarial network (named BPGAN) is proposed to synthesize brain PET from MRI scans, which can be used as a potential data completion scheme for multi-modal medical image research.We propose BPGAN, which learns an end-to-end mapping function to transform the input MRI scans to their underlying PET scans. First, we design a 3D multiple convolution U-Net (MCU) generator architecture to improve the visual quality of synthetic results while preserving the diverse brain structures of different subjects. By further employing a 3D gradient profile (GP) loss and structural similarity index measure (SSIM) loss, the synthetic PET scans have higher-similarity to the ground truth. In this study, we explore alternative data partitioning ways to study their impact on the performance of the proposed method in different medical scenarios.METHODSWe propose BPGAN, which learns an end-to-end mapping function to transform the input MRI scans to their underlying PET scans. First, we design a 3D multiple convolution U-Net (MCU) generator architecture to improve the visual quality of synthetic results while preserving the diverse brain structures of different subjects. By further employing a 3D gradient profile (GP) loss and structural similarity index measure (SSIM) loss, the synthetic PET scans have higher-similarity to the ground truth. In this study, we explore alternative data partitioning ways to study their impact on the performance of the proposed method in different medical scenarios.We conduct experiments on a publicly available ADNI database. The proposed BPGAN is evaluated by mean absolute error (MAE), peak-signal-to-noise-ratio (PSNR) and SSIM, superior to other compared models in these quantitative evaluation metrics. Qualitative evaluations also validate the effectiveness of our approach. Additionally, combined with MRI and our synthetic PET scans, the accuracies of multi-class AD diagnosis on dataset-A and dataset-B are 85.00% and 56.47%, which have been improved by about 1% and 1%, respectively, compared to the stand-alone MRI.RESULTSWe conduct experiments on a publicly available ADNI database. The proposed BPGAN is evaluated by mean absolute error (MAE), peak-signal-to-noise-ratio (PSNR) and SSIM, superior to other compared models in these quantitative evaluation metrics. Qualitative evaluations also validate the effectiveness of our approach. Additionally, combined with MRI and our synthetic PET scans, the accuracies of multi-class AD diagnosis on dataset-A and dataset-B are 85.00% and 56.47%, which have been improved by about 1% and 1%, respectively, compared to the stand-alone MRI.The experimental results of quantitative measures, qualitative displays, and classification evaluation demonstrate that the synthetic PET images by BPGAN are reasonable and high-quality, which provide complementary information to improve the performance of AD diagnosis. This work provides a valuable reference for multi-modal medical image analysis.CONCLUSIONSThe experimental results of quantitative measures, qualitative displays, and classification evaluation demonstrate that the synthetic PET images by BPGAN are reasonable and high-quality, which provide complementary information to improve the performance of AD diagnosis. This work provides a valuable reference for multi-modal medical image analysis.
Multi-modal medical images, such as magnetic resonance imaging (MRI) and positron emission tomography (PET), have been widely used for the diagnosis of brain disorder diseases like Alzheimer's disease (AD) since they can provide various information. PET scans can detect cellular changes in organs and tissues earlier than MRI. Unlike MRI, PET data is difficult to acquire due to cost, radiation, or other limitations. Moreover, PET data is missing for many subjects in the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. To solve this problem, a 3D end-to-end generative adversarial network (named BPGAN) is proposed to synthesize brain PET from MRI scans, which can be used as a potential data completion scheme for multi-modal medical image research. We propose BPGAN, which learns an end-to-end mapping function to transform the input MRI scans to their underlying PET scans. First, we design a 3D multiple convolution U-Net (MCU) generator architecture to improve the visual quality of synthetic results while preserving the diverse brain structures of different subjects. By further employing a 3D gradient profile (GP) loss and structural similarity index measure (SSIM) loss, the synthetic PET scans have higher-similarity to the ground truth. In this study, we explore alternative data partitioning ways to study their impact on the performance of the proposed method in different medical scenarios. We conduct experiments on a publicly available ADNI database. The proposed BPGAN is evaluated by mean absolute error (MAE), peak-signal-to-noise-ratio (PSNR) and SSIM, superior to other compared models in these quantitative evaluation metrics. Qualitative evaluations also validate the effectiveness of our approach. Additionally, combined with MRI and our synthetic PET scans, the accuracies of multi-class AD diagnosis on dataset-A and dataset-B are 85.00% and 56.47%, which have been improved by about 1% and 1%, respectively, compared to the stand-alone MRI. The experimental results of quantitative measures, qualitative displays, and classification evaluation demonstrate that the synthetic PET images by BPGAN are reasonable and high-quality, which provide complementary information to improve the performance of AD diagnosis. This work provides a valuable reference for multi-modal medical image analysis.
ArticleNumber 106676
Author He, Xiaohai
Zhang, Jin
Qing, Linbo
Gao, Feng
Wang, Bin
Author_xml – sequence: 1
  givenname: Jin
  surname: Zhang
  fullname: Zhang, Jin
  organization: College of Electronics and Information Engineering, Sichuan University, Chengdu, Sichuan, 610064, China
– sequence: 2
  givenname: Xiaohai
  surname: He
  fullname: He, Xiaohai
  email: hxh@scu.edu.cn
  organization: College of Electronics and Information Engineering, Sichuan University, Chengdu, Sichuan, 610064, China
– sequence: 3
  givenname: Linbo
  surname: Qing
  fullname: Qing, Linbo
  organization: College of Electronics and Information Engineering, Sichuan University, Chengdu, Sichuan, 610064, China
– sequence: 4
  givenname: Feng
  surname: Gao
  fullname: Gao, Feng
  organization: National Interdisciplinary Institute on Aging (NIIA), Southwest Jiaotong University, Chengdu, Sichuan, 611756, China
– sequence: 5
  givenname: Bin
  surname: Wang
  fullname: Wang, Bin
  organization: College of Electronics and Information Engineering, Sichuan University, Chengdu, Sichuan, 610064, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35167997$$D View this record in MEDLINE/PubMed
BookMark eNqFkcFu1DAURS1URKeFH2CBvGSTwXZiO6nYTKtSKhWoUFlbjvMy9TSxB9sZGFb8Br_Hl-DRtJsuyupJT-fcxb1H6MB5Bwi9pmROCRXvVnMzrts5I4zlhxBSPEMzWktWSC74AZplqCmYIPIQHcW4IoQwzsULdFhyKmTTyBn6eXp9sfh8gk-Dtg5fn9_guHXpFqKNuA9-xJ--XuIpWrfES3AQdLIbwLrbQIg6WD1gB-mHD3e49wGP05BsMfou_xfDr1uwI4S_v_9E3NkIOkK-eul8Tn-Jnvd6iPDq_h6jbx_Ob84-FldfLi7PFleFqYhMhQDZ1hok7ytTCa2bpu1b2XHNwGhBNO9rQisQUkPblRwYJcwY2nRlyyXVbXmM3u5z18F_nyAmNdpoYBi0Az9FxQRryloQXmX0zT06tSN0ah3sqMNWPbSVgXoPmOBjDNArY1NuxLuU6xsUJWo3jFqp3TBqN4zaD5NV9kh9SH9Ser-XIBe0sRBUNBacgc4GMEl13j6tnzzSzWCdNXq4g-3_5H8fZLyY
CitedBy_id crossref_primary_10_3390_make6010024
crossref_primary_10_1016_j_cmpb_2023_107826
crossref_primary_10_1016_j_eswa_2024_123413
crossref_primary_10_1364_BOE_467683
crossref_primary_10_1016_j_eswa_2024_123318
crossref_primary_10_3390_diagnostics15050612
crossref_primary_10_1002_cnm_3816
crossref_primary_10_1007_s00521_024_09890_w
crossref_primary_10_1016_j_compbiomed_2022_105944
crossref_primary_10_1016_j_cmpb_2023_107364
crossref_primary_10_1145_3625227
crossref_primary_10_1186_s12880_024_01201_y
crossref_primary_10_1016_j_imavis_2024_105017
crossref_primary_10_1111_exsy_13093
crossref_primary_10_1002_jmri_29070
crossref_primary_10_1016_j_eswa_2024_124780
crossref_primary_10_1016_j_media_2023_103046
crossref_primary_10_3389_fnagi_2022_906519
crossref_primary_10_1109_JBHI_2024_3492020
crossref_primary_10_1002_hbm_26452
crossref_primary_10_1088_1361_6560_ad14c5
crossref_primary_10_1177_08953996241300023
crossref_primary_10_1002_epi4_12820
crossref_primary_10_14283_jpad_2024_66
crossref_primary_10_1016_j_compbiomed_2024_109501
crossref_primary_10_1016_j_compbiomed_2024_108635
crossref_primary_10_1148_radiol_223016
crossref_primary_10_1007_s42979_024_03486_w
crossref_primary_10_1016_j_bspc_2023_105893
crossref_primary_10_1016_j_bspc_2025_107796
crossref_primary_10_1016_j_media_2023_103032
crossref_primary_10_1002_alz_14421
crossref_primary_10_1007_s00500_024_09700_4
crossref_primary_10_1016_j_patrec_2023_05_005
crossref_primary_10_1016_j_engappai_2024_109972
crossref_primary_10_3390_make5020031
crossref_primary_10_1016_j_media_2023_103072
crossref_primary_10_1016_j_jksuci_2023_101618
crossref_primary_10_3390_jimaging10120333
crossref_primary_10_1007_s10462_024_10992_z
crossref_primary_10_3934_aci_2024009
crossref_primary_10_1016_j_asoc_2023_110804
crossref_primary_10_1016_j_bspc_2023_105709
crossref_primary_10_1016_j_neunet_2023_10_040
Cites_doi 10.3389/fnmol.2017.00343
10.1109/TIP.2019.2958309
10.1126/science.1127647
10.1109/TMI.2020.2983085
10.1109/CVPR.2017.632
10.1016/j.cmpb.2019.105242
10.1016/j.nic.2005.09.008
10.1109/JBHI.2019.2912659
10.1016/j.cmpb.2021.106282
10.1109/CVPR.2016.90
10.1145/3388440.3412487
10.1016/j.jalz.2018.02.018
10.1109/JBHI.2017.2732287
10.3389/fnins.2021.646013
10.1016/j.neuroimage.2012.01.021
10.1109/TBME.2018.2814538
10.1016/j.jalz.2011.09.172
10.1109/TIP.2020.2972109
10.1002/jmri.21049
10.1016/j.media.2020.101694
10.1016/j.engappai.2018.11.013
10.1186/s40708-020-00104-2
10.2214/AJR.13.12363
10.1016/j.media.2016.06.010
10.1016/j.neuroimage.2007.07.007
10.3390/app10072628
10.1007/978-3-030-00889-5_18
10.2967/jnumed.118.214320
10.1016/j.bpsc.2015.12.005
10.1109/TPAMI.2016.2572683
10.3389/fnins.2020.00779
10.3389/fnins.2019.00509
10.1016/j.cmpb.2021.106371
10.1016/j.neuroimage.2018.03.045
ContentType Journal Article
Copyright 2022
Copyright © 2022. Published by Elsevier B.V.
Copyright_xml – notice: 2022
– notice: Copyright © 2022. Published by Elsevier B.V.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.cmpb.2022.106676
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1872-7565
ExternalDocumentID 35167997
10_1016_j_cmpb_2022_106676
S016926072200061X
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.1-
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
LG9
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SBC
SDF
SDG
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
T5K
UHS
WUQ
XPP
Z5R
ZGI
ZY4
~G-
AACTN
AAIAV
ABLVK
ABTAH
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
EFLBG
LCYCR
RIG
AAYXX
AFCTW
AGRNS
CITATION
NPM
7X8
ID FETCH-LOGICAL-c407t-6e7b8ae75f4c46aa99bfb7d5a2eca60a5f8014e67aebd35e2102cc19d3b571ab3
IEDL.DBID .~1
ISSN 0169-2607
1872-7565
IngestDate Fri Jul 11 16:08:15 EDT 2025
Wed Feb 19 02:26:24 EST 2025
Thu Apr 24 23:09:04 EDT 2025
Tue Jul 01 02:41:14 EDT 2025
Fri Feb 23 02:40:11 EST 2024
Tue Aug 26 16:33:32 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Medical imaging synthesis
Generative adversarial networks
Alzheimer’s disease
MRI
PET
Language English
License Copyright © 2022. Published by Elsevier B.V.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c407t-6e7b8ae75f4c46aa99bfb7d5a2eca60a5f8014e67aebd35e2102cc19d3b571ab3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 35167997
PQID 2629386054
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2629386054
pubmed_primary_35167997
crossref_citationtrail_10_1016_j_cmpb_2022_106676
crossref_primary_10_1016_j_cmpb_2022_106676
elsevier_sciencedirect_doi_10_1016_j_cmpb_2022_106676
elsevier_clinicalkey_doi_10_1016_j_cmpb_2022_106676
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2022
2022-04-00
2022-Apr
20220401
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: April 2022
PublicationDecade 2020
PublicationPlace Ireland
PublicationPlace_xml – name: Ireland
PublicationTitle Computer methods and programs in biomedicine
PublicationTitleAlternate Comput Methods Programs Biomed
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Jack Jr, Bennett, Blennow, Carrillo, Dunn, Haeberlein, Holtzman, Jagust, Jessen, Karlawish (bib0060) 2018; 14
Ashburner (bib0041) 2007; 38
Sikka, Virk, Bathula (bib0033) 2021
Bäckström, Nazari, Gu, Jakola (bib0063) 2018
Zha, Yuan, Wen, Zhou, Zhang, Zhu (bib0026) 2019; 29
Spuhler, Gardus, Gao, DeLorenzo, Parsey, Huang (bib0059) 2019; 60
Weiner, Veitch, Aisen, Beckett, Cairns, Green, Harvey, Jack, Jagust, Liu, Morris, Petersen, Saykin, Schmidt, Shaw, Siuciak, Soares, Toga, Trojanowski (bib0005) 2012; 8
Mueller, Weiner, Thal, Petersen, Jack, Jagust, Trojanowski, Toga, Beckett (bib0006) 2005; 15
Shelhamer, Long, Darrell (bib0057) 2017; 39
Fischl (bib0040) 2012; 62
Kingma, Welling (bib0043) 2013
Wen, Thibeau-Sutre, Samper-González, Routier, Bottani, Durrleman, Burgos, Colliot (bib0064) 2020; 63
Zhang, Wang, Liu, Zhang (bib0004) 2020; 14
Wang, Yin, Lang, Wang, Li (bib0056) 2020; 108
Jack, Bernstein, Fox, Thompson, Alexander, Harvey, Borowski, Britson, Whitwell, Ward, Dale, Felmlee, Gunter, Hill, Killiany, Schuff, Fox-Bosetti, Lin, Studholme, DeCarli, Krueger, Ward, Metzger, Scott, Mallozzi, Blezek, Levy, Debbins, Fleisher, Albert, Green, Bartzokis, Glover, Mugler, Weiner (bib0013) 2008; 27
Moya-Sáez, Peña-Nogales, de Luis-García, Alberola-López (bib0027) 2021
Donahue, Krähenbühl, Darrell (bib0044) 2017; abs/1605.09782
Zhang, Yang, Lu, Yang, Zhang (bib0007) 2017; 10
Ebrahimighahnavieh, Luo, Chiong (bib0008) 2020; 187
He, Zhang, Ren, Sun (bib0050) 2016
Kang, Park, Cho, Kang (bib0014) 2020; 10
Pan, Liu, Lian, Zhou, Xia, Shen (bib0028) 2018
Qiao, Chen, Ye, Zhu (bib0009) 2021; 208
Routier, Burgos, Guillon, Samper-González, Wen, Bottani, Marcoux, Bacci, Fontanella, Jacquemont, Wild, Gori, Guyot, Lu, Díaz, Thibeau-Sutre, Moreau, Teichmann, Habert, Durrleman, Colliot (bib0039) 2019
Liu, Gao, Yap, Shen (bib0011) 2018; 22
Pan, Liu, Lian, Xia, Shen (bib0018) 2020; 39
Pan, Liu, Lian, Xia, Shen (bib0054) 2019
Calhoun, Sui (bib0010) 2016; 1 3
Huang, Xu, Zhou, Tong, Zhuang (bib0012) 2019; 13
Emami, Liu, Dong (bib0035) 2020
Wang, Simoncelli, Bovik (bib0052) 2003; volume 2
Shin, Ihsani, Mandava, Sreenivas, Forster, Cha, Initiative (bib0017) 2020
Zhu, Zhang, Pathak, Darrell, Efros, Wang, Shechtman (bib0025) 2017
Lin, Lin, Chen, Zhang, Gao, Huang, Tong, Du (bib0032) 2021; 15
Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (bib0021) 2014; 27
Zha, Wen, Yuan, Zhou, Zhou, Zhu (bib0022) 2021
Sarfraz, Seibold, Khalid, Stiefelhagen (bib0051) 2019
Wang, Yu, Wang, Zu, Lalush, Lin, Wu, Zhou, Shen, Zhou (bib0036) 2018; 174
Isola, Zhu, Zhou, Efros (bib0023) 2017
Zhang, Metaxas (bib0002) 2016; 33
Rossetto, Zhou (bib0016) 2020
Islam, Zhang (bib0034) 2020; 7
Nie, Trullo, Lian, Petitjean, Ruan, Wang (bib0058) 2017
Li, Zhang, Suk, Wang, Li, Shen, Ji (bib0019) 2014
Hinton, Salakhutdinov (bib0046) 2006; 313
Hu, Lei, Wang, Feng, Shen, Wang (bib0015) 2020
Yuan, Ran, Liu, Yao, Yao, Wu, Liu (bib0003) 2021
Shivamurthy, Tahari, Marcus, Subramaniam (bib0061) 2015; 204
Nie, Cao, Gao, Wang, Shen (bib0037) 2016
Nie, Trullo, Lian, Wang, Petitjean, Ruan, Wang, Shen (bib0038) 2018; 65
Xiang, Li, Lin, Wang, Shen (bib0048) 2018; 11045
Kingma, Ba (bib0053) 2014
Lin, Chen, Yan (bib0049) 2013
Pan, Liu, Xia, Shen (bib0031) 2021
Hu, Yuan, Wang (bib0055) 2019
Ronneberger, Fischer, Brox (bib0047) 2015
Zha, Yuan, Wen, Zhou, Zhang, Zhu (bib0024) 2020; 29
Gao, Wu, Chu, Yoon, Xu, Patel (bib0020) 2020; 24
Larsen, Sønderby, Larochelle, Winther (bib0042) 2016; abs/1512.09300
Yaakub, McGinnity, Clough, Kerfoot, Girard, Guedj, Hammers (bib0029) 2019
Xu, Zhang, Huang, Zhang, Metaxas (bib0001) 2016
Ben-Cohen, Klang, Raskin, Soffer, Ben-Haim, Konen, Amitai, Greenspan (bib0030) 2019; 78
Dumoulin, Belghazi, Poole, Lamb, Arjovsky, Mastropietro, Courville (bib0045) 2017; abs/1606.00704
Fung, Guan, Kumar, Wu, Fiterau (bib0062) 2019
Pan (10.1016/j.cmpb.2022.106676_bib0054) 2019
Pan (10.1016/j.cmpb.2022.106676_bib0031) 2021
Sikka (10.1016/j.cmpb.2022.106676_bib0033) 2021
Weiner (10.1016/j.cmpb.2022.106676_bib0005) 2012; 8
Ben-Cohen (10.1016/j.cmpb.2022.106676_bib0030) 2019; 78
Islam (10.1016/j.cmpb.2022.106676_bib0034) 2020; 7
Shin (10.1016/j.cmpb.2022.106676_bib0017) 2020
Xiang (10.1016/j.cmpb.2022.106676_bib0048) 2018; 11045
Hinton (10.1016/j.cmpb.2022.106676_bib0046) 2006; 313
Wang (10.1016/j.cmpb.2022.106676_bib0036) 2018; 174
Yuan (10.1016/j.cmpb.2022.106676_bib0003) 2021
Goodfellow (10.1016/j.cmpb.2022.106676_bib0021) 2014; 27
Sarfraz (10.1016/j.cmpb.2022.106676_bib0051) 2019
Larsen (10.1016/j.cmpb.2022.106676_bib0042) 2016; abs/1512.09300
Wen (10.1016/j.cmpb.2022.106676_bib0064) 2020; 63
Wang (10.1016/j.cmpb.2022.106676_bib0056) 2020; 108
Shelhamer (10.1016/j.cmpb.2022.106676_bib0057) 2017; 39
Liu (10.1016/j.cmpb.2022.106676_bib0011) 2018; 22
Emami (10.1016/j.cmpb.2022.106676_bib0035) 2020
Bäckström (10.1016/j.cmpb.2022.106676_bib0063) 2018
Gao (10.1016/j.cmpb.2022.106676_bib0020) 2020; 24
Nie (10.1016/j.cmpb.2022.106676_bib0037) 2016
Zhang (10.1016/j.cmpb.2022.106676_bib0004) 2020; 14
Shivamurthy (10.1016/j.cmpb.2022.106676_bib0061) 2015; 204
Donahue (10.1016/j.cmpb.2022.106676_bib0044) 2017; abs/1605.09782
Moya-Sáez (10.1016/j.cmpb.2022.106676_bib0027) 2021
Spuhler (10.1016/j.cmpb.2022.106676_bib0059) 2019; 60
Lin (10.1016/j.cmpb.2022.106676_bib0032) 2021; 15
Fischl (10.1016/j.cmpb.2022.106676_bib0040) 2012; 62
Ashburner (10.1016/j.cmpb.2022.106676_bib0041) 2007; 38
Kang (10.1016/j.cmpb.2022.106676_bib0014) 2020; 10
Wang (10.1016/j.cmpb.2022.106676_bib0052) 2003; volume 2
Nie (10.1016/j.cmpb.2022.106676_bib0058) 2017
Rossetto (10.1016/j.cmpb.2022.106676_bib0016) 2020
Zhu (10.1016/j.cmpb.2022.106676_bib0025) 2017
Zha (10.1016/j.cmpb.2022.106676_bib0026) 2019; 29
Mueller (10.1016/j.cmpb.2022.106676_bib0006) 2005; 15
Ronneberger (10.1016/j.cmpb.2022.106676_bib0047) 2015
Zhang (10.1016/j.cmpb.2022.106676_bib0007) 2017; 10
Dumoulin (10.1016/j.cmpb.2022.106676_bib0045) 2017; abs/1606.00704
Routier (10.1016/j.cmpb.2022.106676_bib0039) 2019
Hu (10.1016/j.cmpb.2022.106676_bib0015) 2020
Li (10.1016/j.cmpb.2022.106676_bib0019) 2014
He (10.1016/j.cmpb.2022.106676_bib0050) 2016
Jack (10.1016/j.cmpb.2022.106676_bib0013) 2008; 27
Xu (10.1016/j.cmpb.2022.106676_bib0001) 2016
Pan (10.1016/j.cmpb.2022.106676_bib0018) 2020; 39
Zhang (10.1016/j.cmpb.2022.106676_bib0002) 2016; 33
Calhoun (10.1016/j.cmpb.2022.106676_bib0010) 2016; 1 3
Kingma (10.1016/j.cmpb.2022.106676_bib0053) 2014
Nie (10.1016/j.cmpb.2022.106676_bib0038) 2018; 65
Kingma (10.1016/j.cmpb.2022.106676_bib0043) 2013
Zha (10.1016/j.cmpb.2022.106676_bib0024) 2020; 29
Jack Jr (10.1016/j.cmpb.2022.106676_bib0060) 2018; 14
Qiao (10.1016/j.cmpb.2022.106676_bib0009) 2021; 208
Pan (10.1016/j.cmpb.2022.106676_bib0028) 2018
Zha (10.1016/j.cmpb.2022.106676_bib0022) 2021
Hu (10.1016/j.cmpb.2022.106676_bib0055) 2019
Fung (10.1016/j.cmpb.2022.106676_bib0062) 2019
Lin (10.1016/j.cmpb.2022.106676_bib0049) 2013
Yaakub (10.1016/j.cmpb.2022.106676_bib0029) 2019
Huang (10.1016/j.cmpb.2022.106676_bib0012) 2019; 13
Ebrahimighahnavieh (10.1016/j.cmpb.2022.106676_bib0008) 2020; 187
Isola (10.1016/j.cmpb.2022.106676_bib0023) 2017
References_xml – year: 2019
  ident: bib0039
  article-title: Clinica: an open source software platform for reproducible clinical neuroscience studies
– start-page: 149
  year: 2018
  end-page: 153
  ident: bib0063
  article-title: An efficient 3D deep convolutional network for Alzheimer’s disease diagnosis using MR images
  publication-title: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018)
– start-page: 417
  year: 2017
  end-page: 425
  ident: bib0058
  article-title: Medical image synthesis with context-aware generative adversarial networks
  publication-title: International Conference on Medical Image Computing and Computer-assisted Intervention
– year: 2019
  ident: bib0062
  article-title: Alzheimer’s disease brain MRI classification: challenges and insights
  publication-title: arXiv preprint arXiv:1906.04231
– year: 2021
  ident: bib0033
  article-title: Mri to pet cross-modality translation using globally and locally aware gan (GAL-GAN) for multi-modal diagnosis of Alzheimer’s disease
  publication-title: arXiv preprint arXiv:2108.02160
– volume: 13
  start-page: 509
  year: 2019
  ident: bib0012
  article-title: Diagnosis of Alzheimer’s disease via multi-modality 3D convolutional neural network
  publication-title: Front Neurosci
– volume: 65
  start-page: 2720
  year: 2018
  end-page: 2730
  ident: bib0038
  article-title: Medical image synthesis with deep convolutional adversarial networks
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 78
  start-page: 186
  year: 2019
  end-page: 194
  ident: bib0030
  article-title: Cross-modality synthesis from ct to pet using fcn and gan networks for improved automated lesion detection
  publication-title: Eng Appl Artif Intell
– year: 2020
  ident: bib0016
  article-title: Gandalf: peptide generation for drug design using sequential and structural generative adversarial networks
  publication-title: Proceedings of the 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics
– volume: 27
  year: 2014
  ident: bib0021
  article-title: Generative adversarial nets
  publication-title: Adv Neural Inf Process Syst
– year: 2013
  ident: bib0049
  article-title: Network in network
  publication-title: arXiv preprint arXiv:1312.4400
– volume: 15
  start-page: 869
  year: 2005
  ident: bib0006
  article-title: The alzheimer’s disease neuroimaging initiative
  publication-title: Neuroimaging Clin. N. Am.
– volume: volume 2
  start-page: 1398
  year: 2003
  end-page: 1402
  ident: bib0052
  article-title: Multiscale structural similarity for image quality assessment
  publication-title: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003
– start-page: 115
  year: 2016
  end-page: 123
  ident: bib0001
  article-title: Multimodal deep learning for cervical dysplasia diagnosis
  publication-title: International Conference on Medical Image Computing and Computer-assisted Intervention
– year: 2020
  ident: bib0015
  article-title: Bidirectional mapping generative adversarial networks for brain mr to pet synthesis
  publication-title: arXiv preprint arXiv:2008.03483
– volume: 204
  start-page: W76
  year: 2015
  end-page: W85
  ident: bib0061
  article-title: Brain fdg pet and the diagnosis of dementia
  publication-title: American Journal of Roentgenology
– volume: 39
  start-page: 2965
  year: 2020
  end-page: 2975
  ident: bib0018
  article-title: Spatially-constrained fisher representation for brain disease identification with incomplete multi-modal neuroimages
  publication-title: IEEE Trans Med Imaging
– start-page: 106371
  year: 2021
  ident: bib0027
  article-title: A deep learning approach for synthetic MRI based on two routine sequences and training with synthetic data
  publication-title: Comput Methods Programs Biomed
– volume: 24
  start-page: 39
  year: 2020
  end-page: 49
  ident: bib0020
  article-title: Deep residual inception encoder-decoder network for medical imaging synthesis
  publication-title: IEEE J Biomed Health Inform
– volume: abs/1606.00704
  year: 2017
  ident: bib0045
  article-title: Adversarially learned inference
  publication-title: ArXiv
– start-page: 42
  year: 2019
  end-page: 51
  ident: bib0029
  article-title: Pseudo-normal pet synthesis with generative adversarial networks for localising hypometabolism in epilepsies
  publication-title: International Workshop on Simulation and Synthesis in Medical Imaging
– start-page: 465
  year: 2017
  end-page: 476
  ident: bib0025
  article-title: Toward multimodal image-to-image translation
  publication-title: Advances in Neural Information Processing Systems
– year: 2021
  ident: bib0031
  article-title: Disease-image-specific learning for diagnosis-oriented neuroimage synthesis with incomplete multi-modality data
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 7
  year: 2020
  ident: bib0034
  article-title: Gan-based synthetic brain pet image generation
  publication-title: Brain Informatics
– volume: 108
  year: 2020
  ident: bib0056
  article-title: U-net and gans-based pet synthesis from MRI for soft-tissue sarcomas
  publication-title: Int. J. Radiat. Oncol. Biol. Phys.
– volume: 14
  year: 2020
  ident: bib0004
  article-title: A survey on deep learning for neuroimaging-based brain disorder analysis
  publication-title: Front Neurosci
– volume: 62
  start-page: 774
  year: 2012
  end-page: 781
  ident: bib0040
  article-title: Freesurfer
  publication-title: Neuroimage
– volume: 11045
  start-page: 155
  year: 2018
  end-page: 164
  ident: bib0048
  article-title: Unpaired deep cross-modality synthesis with fast training
  publication-title: Deep learning in medical image analysis and multimodal learning for clinical decision support : 4th International Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, held in conjunction with MICCAI 2018, Granada, Spain, S...
– year: 2020
  ident: bib0035
  article-title: Frea-unet: frequency-aware u-net for modality transfer
  publication-title: arXiv preprint arXiv:2012.15397
– volume: 10
  year: 2017
  ident: bib0007
  article-title: Pet/mr imaging: new frontier in Alzheimer’s disease and other dementias
  publication-title: Front Mol Neurosci
– volume: 10
  start-page: 2628
  year: 2020
  ident: bib0014
  article-title: Visual and quantitative evaluation of amyloid brain pet image synthesis with generative adversarial network
  publication-title: Applied Sciences
– start-page: 170
  year: 2016
  end-page: 178
  ident: bib0037
  article-title: Estimating CT image from MRI data using 3D fully convolutional networks
  publication-title: Deep Learning and Data Labeling for Medical Applications
– start-page: 770
  year: 2016
  end-page: 778
  ident: bib0050
  article-title: Deep residual learning for image recognition
  publication-title: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– year: 2014
  ident: bib0053
  article-title: Adam: a method for stochastic optimization
  publication-title: arXiv preprint arXiv:1412.6980
– start-page: 455
  year: 2018
  end-page: 463
  ident: bib0028
  article-title: Synthesizing missing pet from MRI with cycle-consistent generative adversarial networks for alzheimer’s disease diagnosis
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– start-page: 137
  year: 2019
  end-page: 145
  ident: bib0054
  article-title: Disease-image specific generative adversarial network for brain disease diagnosis with incomplete multi-modal neuroimages
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 1 3
  start-page: 230
  year: 2016
  end-page: 244
  ident: bib0010
  article-title: Multimodal fusion of brain imaging data: a key to finding the missing link(s) in complex mental illness
  publication-title: Biological psychiatry. Cognitive neuroscience and neuroimaging
– volume: 33
  start-page: 98
  year: 2016
  end-page: 101
  ident: bib0002
  article-title: Large-scale medical image analytics: recent methodologies, applications and future directions
  publication-title: Med Image Anal
– volume: abs/1605.09782
  year: 2017
  ident: bib0044
  article-title: Adversarial feature learning
  publication-title: ArXiv
– year: 2021
  ident: bib0022
  article-title: Triply complementary priors for image restoration
  publication-title: IEEE Trans. Image Process.
– volume: 15
  year: 2021
  ident: bib0032
  article-title: Bidirectional mapping of brain MRI and pet with 3D reversible GAN for the diagnosis of Alzheimer’s disease
  publication-title: Front Neurosci
– start-page: 234
  year: 2015
  end-page: 241
  ident: bib0047
  article-title: U-net: Convolutional networks for biomedical image segmentation
  publication-title: International Conference on Medical image computing and computer-assisted intervention
– volume: 38
  start-page: 95
  year: 2007
  end-page: 113
  ident: bib0041
  article-title: A fast diffeomorphic image registration algorithm
  publication-title: Neuroimage
– volume: 174
  start-page: 550
  year: 2018
  end-page: 562
  ident: bib0036
  article-title: 3D conditional generative adversarial networks for high-quality pet image estimation at low dose
  publication-title: Neuroimage
– volume: 29
  start-page: 3254
  year: 2019
  end-page: 3269
  ident: bib0026
  article-title: From rank estimation to rank approximation: rank residual constraint for image restoration
  publication-title: IEEE Trans. Image Process.
– volume: 63
  start-page: 101694
  year: 2020
  ident: bib0064
  article-title: Convolutional neural networks for classification of alzheimer’s disease: overview and reproducible evaluation
  publication-title: Med Image Anal
– volume: 29
  start-page: 5094
  year: 2020
  end-page: 5109
  ident: bib0024
  article-title: A benchmark for sparse coding: when group sparsity meets rank minimization
  publication-title: IEEE Trans. Image Process.
– year: 2013
  ident: bib0043
  article-title: Auto-encoding variational bayes
  publication-title: arXiv preprint arXiv:1312.6114
– volume: 39
  start-page: 640
  year: 2017
  end-page: 651
  ident: bib0057
  article-title: Fully convolutional networks for semantic segmentation
  publication-title: IEEE Trans Pattern Anal Mach Intell
– start-page: 305
  year: 2014
  end-page: 312
  ident: bib0019
  article-title: Deep learning based imaging data completion for improved brain disease diagnosis
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– year: 2021
  ident: bib0003
  article-title: Machine learning applications on neuroimaging for diagnosis and prognosis of epilepsy: a review
  publication-title: arXiv preprint arXiv:2102.03336
– volume: 208
  start-page: 106282
  year: 2021
  ident: bib0009
  article-title: Early Alzheimer’s disease diagnosis with the contrastive loss using paired structural MRIs
  publication-title: Comput Methods Programs Biomed
– volume: 27
  year: 2008
  ident: bib0013
  article-title: The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods
  publication-title: J. Magn. Reson. Imaging
– volume: 8
  start-page: S1
  year: 2012
  end-page: S68
  ident: bib0005
  article-title: The alzheimer’s disease neuroimaging initiative: areview of papers published since its inception
  publication-title: Alzheimer’s & Dementia
– volume: 14
  start-page: 535
  year: 2018
  end-page: 562
  ident: bib0060
  article-title: Nia-aa research framework: toward a biological definition of alzheimer’s disease
  publication-title: Alzheimer’s & Dementia
– volume: 187
  start-page: 105242
  year: 2020
  ident: bib0008
  article-title: Deep learning to detect Alzheimer’s disease from neuroimaging: a systematic literature review
  publication-title: Comput Methods Programs Biomed
– start-page: 5967
  year: 2017
  end-page: 5976
  ident: bib0023
  article-title: Image-to-image translation with conditional adversarial networks
  publication-title: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 313
  start-page: 504
  year: 2006
  end-page: 507
  ident: bib0046
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
– volume: 60
  start-page: 555
  year: 2019
  end-page: 560
  ident: bib0059
  article-title: Synthesis of patient-specific transmission data for pet attenuation correction for PET/MRI neuroimaging using a convolutional neural network
  publication-title: The Journal of Nuclear Medicine
– volume: abs/1512.09300
  year: 2016
  ident: bib0042
  article-title: Autoencoding beyond pixels using a learned similarity metric
  publication-title: ArXiv
– volume: 22
  start-page: 1197
  year: 2018
  end-page: 1208
  ident: bib0011
  article-title: Multi-hypergraph learning for incomplete multimodality data
  publication-title: IEEE J Biomed Health Inform
– year: 2020
  ident: bib0017
  article-title: Ganbert: generative adversarial networks with bidirectional encoder representations from transformers for mri to pet synthesis
  publication-title: arXiv preprint arXiv:2008.04393
– start-page: 1
  year: 2019
  end-page: 5
  ident: bib0055
  article-title: Cross-modality synthesis from MRI to pet using adversarial u-net with different normalization
  publication-title: 2019 International Conference on Medical Imaging Physics and Engineering (ICMIPE)
– year: 2019
  ident: bib0051
  article-title: Content and colour distillation for learning image translations with the spatial profile loss
  publication-title: arXiv preprint arXiv:1908.00274
– volume: 10
  year: 2017
  ident: 10.1016/j.cmpb.2022.106676_bib0007
  article-title: Pet/mr imaging: new frontier in Alzheimer’s disease and other dementias
  publication-title: Front Mol Neurosci
  doi: 10.3389/fnmol.2017.00343
– volume: 29
  start-page: 3254
  year: 2019
  ident: 10.1016/j.cmpb.2022.106676_bib0026
  article-title: From rank estimation to rank approximation: rank residual constraint for image restoration
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2019.2958309
– volume: 313
  start-page: 504
  issue: 5786
  year: 2006
  ident: 10.1016/j.cmpb.2022.106676_bib0046
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– year: 2019
  ident: 10.1016/j.cmpb.2022.106676_bib0062
  article-title: Alzheimer’s disease brain MRI classification: challenges and insights
  publication-title: arXiv preprint arXiv:1906.04231
– start-page: 455
  year: 2018
  ident: 10.1016/j.cmpb.2022.106676_bib0028
  article-title: Synthesizing missing pet from MRI with cycle-consistent generative adversarial networks for alzheimer’s disease diagnosis
– year: 2020
  ident: 10.1016/j.cmpb.2022.106676_bib0015
  article-title: Bidirectional mapping generative adversarial networks for brain mr to pet synthesis
  publication-title: arXiv preprint arXiv:2008.03483
– volume: 39
  start-page: 2965
  issue: 9
  year: 2020
  ident: 10.1016/j.cmpb.2022.106676_bib0018
  article-title: Spatially-constrained fisher representation for brain disease identification with incomplete multi-modal neuroimages
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2020.2983085
– start-page: 5967
  year: 2017
  ident: 10.1016/j.cmpb.2022.106676_bib0023
  article-title: Image-to-image translation with conditional adversarial networks
  publication-title: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
  doi: 10.1109/CVPR.2017.632
– year: 2021
  ident: 10.1016/j.cmpb.2022.106676_bib0003
  article-title: Machine learning applications on neuroimaging for diagnosis and prognosis of epilepsy: a review
  publication-title: arXiv preprint arXiv:2102.03336
– volume: 187
  start-page: 105242
  year: 2020
  ident: 10.1016/j.cmpb.2022.106676_bib0008
  article-title: Deep learning to detect Alzheimer’s disease from neuroimaging: a systematic literature review
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2019.105242
– year: 2013
  ident: 10.1016/j.cmpb.2022.106676_bib0049
  article-title: Network in network
  publication-title: arXiv preprint arXiv:1312.4400
– volume: 15
  start-page: 869
  issue: 4
  year: 2005
  ident: 10.1016/j.cmpb.2022.106676_bib0006
  article-title: The alzheimer’s disease neuroimaging initiative
  publication-title: Neuroimaging Clin. N. Am.
  doi: 10.1016/j.nic.2005.09.008
– volume: 24
  start-page: 39
  year: 2020
  ident: 10.1016/j.cmpb.2022.106676_bib0020
  article-title: Deep residual inception encoder-decoder network for medical imaging synthesis
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2019.2912659
– year: 2021
  ident: 10.1016/j.cmpb.2022.106676_bib0022
  article-title: Triply complementary priors for image restoration
  publication-title: IEEE Trans. Image Process.
– start-page: 234
  year: 2015
  ident: 10.1016/j.cmpb.2022.106676_bib0047
  article-title: U-net: Convolutional networks for biomedical image segmentation
– start-page: 149
  year: 2018
  ident: 10.1016/j.cmpb.2022.106676_bib0063
  article-title: An efficient 3D deep convolutional network for Alzheimer’s disease diagnosis using MR images
– volume: abs/1606.00704
  year: 2017
  ident: 10.1016/j.cmpb.2022.106676_bib0045
  article-title: Adversarially learned inference
  publication-title: ArXiv
– start-page: 137
  year: 2019
  ident: 10.1016/j.cmpb.2022.106676_bib0054
  article-title: Disease-image specific generative adversarial network for brain disease diagnosis with incomplete multi-modal neuroimages
– volume: 208
  start-page: 106282
  year: 2021
  ident: 10.1016/j.cmpb.2022.106676_bib0009
  article-title: Early Alzheimer’s disease diagnosis with the contrastive loss using paired structural MRIs
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2021.106282
– year: 2021
  ident: 10.1016/j.cmpb.2022.106676_bib0033
  article-title: Mri to pet cross-modality translation using globally and locally aware gan (GAL-GAN) for multi-modal diagnosis of Alzheimer’s disease
  publication-title: arXiv preprint arXiv:2108.02160
– start-page: 770
  year: 2016
  ident: 10.1016/j.cmpb.2022.106676_bib0050
  article-title: Deep residual learning for image recognition
  publication-title: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
  doi: 10.1109/CVPR.2016.90
– year: 2020
  ident: 10.1016/j.cmpb.2022.106676_bib0016
  article-title: Gandalf: peptide generation for drug design using sequential and structural generative adversarial networks
  publication-title: Proceedings of the 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics
  doi: 10.1145/3388440.3412487
– volume: 27
  year: 2014
  ident: 10.1016/j.cmpb.2022.106676_bib0021
  article-title: Generative adversarial nets
  publication-title: Adv Neural Inf Process Syst
– year: 2014
  ident: 10.1016/j.cmpb.2022.106676_bib0053
  article-title: Adam: a method for stochastic optimization
  publication-title: arXiv preprint arXiv:1412.6980
– volume: 14
  start-page: 535
  issue: 4
  year: 2018
  ident: 10.1016/j.cmpb.2022.106676_bib0060
  article-title: Nia-aa research framework: toward a biological definition of alzheimer’s disease
  publication-title: Alzheimer’s & Dementia
  doi: 10.1016/j.jalz.2018.02.018
– volume: 22
  start-page: 1197
  year: 2018
  ident: 10.1016/j.cmpb.2022.106676_bib0011
  article-title: Multi-hypergraph learning for incomplete multimodality data
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2017.2732287
– start-page: 465
  year: 2017
  ident: 10.1016/j.cmpb.2022.106676_bib0025
  article-title: Toward multimodal image-to-image translation
– volume: 15
  year: 2021
  ident: 10.1016/j.cmpb.2022.106676_bib0032
  article-title: Bidirectional mapping of brain MRI and pet with 3D reversible GAN for the diagnosis of Alzheimer’s disease
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2021.646013
– year: 2020
  ident: 10.1016/j.cmpb.2022.106676_bib0035
  article-title: Frea-unet: frequency-aware u-net for modality transfer
  publication-title: arXiv preprint arXiv:2012.15397
– volume: volume 2
  start-page: 1398
  year: 2003
  ident: 10.1016/j.cmpb.2022.106676_bib0052
  article-title: Multiscale structural similarity for image quality assessment
– year: 2019
  ident: 10.1016/j.cmpb.2022.106676_bib0039
– volume: 62
  start-page: 774
  year: 2012
  ident: 10.1016/j.cmpb.2022.106676_bib0040
  article-title: Freesurfer
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.01.021
– start-page: 1
  year: 2019
  ident: 10.1016/j.cmpb.2022.106676_bib0055
  article-title: Cross-modality synthesis from MRI to pet using adversarial u-net with different normalization
– start-page: 417
  year: 2017
  ident: 10.1016/j.cmpb.2022.106676_bib0058
  article-title: Medical image synthesis with context-aware generative adversarial networks
– volume: 108
  year: 2020
  ident: 10.1016/j.cmpb.2022.106676_bib0056
  article-title: U-net and gans-based pet synthesis from MRI for soft-tissue sarcomas
  publication-title: Int. J. Radiat. Oncol. Biol. Phys.
– volume: 65
  start-page: 2720
  year: 2018
  ident: 10.1016/j.cmpb.2022.106676_bib0038
  article-title: Medical image synthesis with deep convolutional adversarial networks
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2018.2814538
– volume: 8
  start-page: S1
  year: 2012
  ident: 10.1016/j.cmpb.2022.106676_bib0005
  article-title: The alzheimer’s disease neuroimaging initiative: areview of papers published since its inception
  publication-title: Alzheimer’s & Dementia
  doi: 10.1016/j.jalz.2011.09.172
– volume: 29
  start-page: 5094
  year: 2020
  ident: 10.1016/j.cmpb.2022.106676_bib0024
  article-title: A benchmark for sparse coding: when group sparsity meets rank minimization
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2020.2972109
– volume: abs/1512.09300
  year: 2016
  ident: 10.1016/j.cmpb.2022.106676_bib0042
  article-title: Autoencoding beyond pixels using a learned similarity metric
  publication-title: ArXiv
– volume: 27
  year: 2008
  ident: 10.1016/j.cmpb.2022.106676_bib0013
  article-title: The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.21049
– volume: 63
  start-page: 101694
  year: 2020
  ident: 10.1016/j.cmpb.2022.106676_bib0064
  article-title: Convolutional neural networks for classification of alzheimer’s disease: overview and reproducible evaluation
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2020.101694
– volume: 78
  start-page: 186
  year: 2019
  ident: 10.1016/j.cmpb.2022.106676_bib0030
  article-title: Cross-modality synthesis from ct to pet using fcn and gan networks for improved automated lesion detection
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2018.11.013
– year: 2020
  ident: 10.1016/j.cmpb.2022.106676_bib0017
  article-title: Ganbert: generative adversarial networks with bidirectional encoder representations from transformers for mri to pet synthesis
  publication-title: arXiv preprint arXiv:2008.04393
– volume: 7
  year: 2020
  ident: 10.1016/j.cmpb.2022.106676_bib0034
  article-title: Gan-based synthetic brain pet image generation
  publication-title: Brain Informatics
  doi: 10.1186/s40708-020-00104-2
– start-page: 42
  year: 2019
  ident: 10.1016/j.cmpb.2022.106676_bib0029
  article-title: Pseudo-normal pet synthesis with generative adversarial networks for localising hypometabolism in epilepsies
– volume: 204
  start-page: W76
  issue: 1
  year: 2015
  ident: 10.1016/j.cmpb.2022.106676_bib0061
  article-title: Brain fdg pet and the diagnosis of dementia
  publication-title: American Journal of Roentgenology
  doi: 10.2214/AJR.13.12363
– volume: 33
  start-page: 98
  year: 2016
  ident: 10.1016/j.cmpb.2022.106676_bib0002
  article-title: Large-scale medical image analytics: recent methodologies, applications and future directions
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2016.06.010
– year: 2019
  ident: 10.1016/j.cmpb.2022.106676_bib0051
  article-title: Content and colour distillation for learning image translations with the spatial profile loss
  publication-title: arXiv preprint arXiv:1908.00274
– volume: abs/1605.09782
  year: 2017
  ident: 10.1016/j.cmpb.2022.106676_bib0044
  article-title: Adversarial feature learning
  publication-title: ArXiv
– volume: 38
  start-page: 95
  year: 2007
  ident: 10.1016/j.cmpb.2022.106676_bib0041
  article-title: A fast diffeomorphic image registration algorithm
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.07.007
– start-page: 115
  year: 2016
  ident: 10.1016/j.cmpb.2022.106676_bib0001
  article-title: Multimodal deep learning for cervical dysplasia diagnosis
– start-page: 170
  year: 2016
  ident: 10.1016/j.cmpb.2022.106676_bib0037
  article-title: Estimating CT image from MRI data using 3D fully convolutional networks
– year: 2013
  ident: 10.1016/j.cmpb.2022.106676_bib0043
  article-title: Auto-encoding variational bayes
  publication-title: arXiv preprint arXiv:1312.6114
– volume: 10
  start-page: 2628
  year: 2020
  ident: 10.1016/j.cmpb.2022.106676_bib0014
  article-title: Visual and quantitative evaluation of amyloid brain pet image synthesis with generative adversarial network
  publication-title: Applied Sciences
  doi: 10.3390/app10072628
– volume: 11045
  start-page: 155
  year: 2018
  ident: 10.1016/j.cmpb.2022.106676_bib0048
  article-title: Unpaired deep cross-modality synthesis with fast training
  publication-title: Deep learning in medical image analysis and multimodal learning for clinical decision support : 4th International Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, held in conjunction with MICCAI 2018, Granada, Spain, S...
  doi: 10.1007/978-3-030-00889-5_18
– year: 2021
  ident: 10.1016/j.cmpb.2022.106676_bib0031
  article-title: Disease-image-specific learning for diagnosis-oriented neuroimage synthesis with incomplete multi-modality data
  publication-title: IEEE Trans Pattern Anal Mach Intell
– start-page: 305
  year: 2014
  ident: 10.1016/j.cmpb.2022.106676_bib0019
  article-title: Deep learning based imaging data completion for improved brain disease diagnosis
– volume: 60
  start-page: 555
  year: 2019
  ident: 10.1016/j.cmpb.2022.106676_bib0059
  article-title: Synthesis of patient-specific transmission data for pet attenuation correction for PET/MRI neuroimaging using a convolutional neural network
  publication-title: The Journal of Nuclear Medicine
  doi: 10.2967/jnumed.118.214320
– volume: 1 3
  start-page: 230
  year: 2016
  ident: 10.1016/j.cmpb.2022.106676_bib0010
  article-title: Multimodal fusion of brain imaging data: a key to finding the missing link(s) in complex mental illness
  publication-title: Biological psychiatry. Cognitive neuroscience and neuroimaging
  doi: 10.1016/j.bpsc.2015.12.005
– volume: 39
  start-page: 640
  year: 2017
  ident: 10.1016/j.cmpb.2022.106676_bib0057
  article-title: Fully convolutional networks for semantic segmentation
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2016.2572683
– volume: 14
  year: 2020
  ident: 10.1016/j.cmpb.2022.106676_bib0004
  article-title: A survey on deep learning for neuroimaging-based brain disorder analysis
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2020.00779
– volume: 13
  start-page: 509
  year: 2019
  ident: 10.1016/j.cmpb.2022.106676_bib0012
  article-title: Diagnosis of Alzheimer’s disease via multi-modality 3D convolutional neural network
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2019.00509
– start-page: 106371
  year: 2021
  ident: 10.1016/j.cmpb.2022.106676_bib0027
  article-title: A deep learning approach for synthetic MRI based on two routine sequences and training with synthetic data
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2021.106371
– volume: 174
  start-page: 550
  year: 2018
  ident: 10.1016/j.cmpb.2022.106676_bib0036
  article-title: 3D conditional generative adversarial networks for high-quality pet image estimation at low dose
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.03.045
SSID ssj0002556
Score 2.5743132
Snippet •A novel model called brain PET generative adversarial network (BPGAN) is proposed. It is effective for synthesizing realistic and diverse brain PET scans from...
Multi-modal medical images, such as magnetic resonance imaging (MRI) and positron emission tomography (PET), have been widely used for the diagnosis of brain...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 106676
SubjectTerms Alzheimer’s disease
Generative adversarial networks
Medical imaging synthesis
MRI
PET
Title BPGAN: Brain PET synthesis from MRI using generative adversarial network for multi-modal Alzheimer’s disease diagnosis
URI https://www.clinicalkey.com/#!/content/1-s2.0-S016926072200061X
https://dx.doi.org/10.1016/j.cmpb.2022.106676
https://www.ncbi.nlm.nih.gov/pubmed/35167997
https://www.proquest.com/docview/2629386054
Volume 217
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NatwwEBYhhdJLSdq03SQNKvQW1F3b-rFy24Skm5ZdQn5gb0KStalL1rvEG0h6CHmNvl6fpBpL3tJDUujJ2GiQ0IxHI-abbxD6KHmqi540JKVFTijPOTGip4mkuUtyI6WxkNEdjvjggn4Zs_EKOmhrYQBWGX1_8OmNt45funE3u_Oy7J4Bj4iPxkXaVJskY6hgpwKs_NP9H5gHUGwFfm9JYHQsnAkYLzudG39HTFP_AcCejx1OjwWfzSF0tIZexugR98MC19GKq16h58OYH3-NbvdPPvdHe3gfGj_gk8NzXN9VPsSryxpDIQkenh5jgLpf4suGbxqcHdbQlLnWYIq4CrBw7GNZ3IANyXRWwJRXP765cuqufz38rHFM6_hnA9Qr6w10cXR4fjAgsbcCsf4KtyDcCZNrJ9iEWsq19kqZGFEwnTqreU-zCdDKOC60M0XGHNwMrU1kkRkmEm2yN2i1mlXuHVR9A2MQ1dJ5CUu1obKwkgnB0kmSsbyDknZTlY3E49D_4kq1CLPvChShQBEqKKKDdpcy80C78eTorNWVagtKvQtU_lR4Uootpf4yuX_KfWjNQfl_ERIsunKzm1ql3AdPub8g0g56G-xkufqMQcJLis3_nHULvYC3ABraRquL6xv33sdDC7PTGPwOetY__joY_Qam1wm8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEBapA20vpc_UTR8q9FaEvbt6rHpzQlK7iU1oHfBNSFo53RKvTdaBtqf8jfy9_JJqVlpDD0mhpwXtDhKa2dGI-eYbhD5InuqiLw1JaZETynNOjOhrImnuktxIaSxkdMcTPjylX2ZstoX221oYgFVG3x98euOt40gv7mZvVZa9b8Aj4qNxkTbVJsnsHtoGdirWQduD0dFwsnHIwLIVKL4lAYFYOxNgXnaxMv6amKZ-APCet51Pt8WfzTl0-Bg9igEkHoQ1PkFbrnqK7o9jivwZ-rl38nkw-YT3oPcDPjmY4vpX5aO8uqwx1JLg8dcRBrT7GT5rKKfB32ENfZlrDdaIq4AMxz6cxQ3ekCyWBUx5_vu7Kxfu4ubqusYxs-OfDVavrJ-j08OD6f6QxPYKxPpb3JpwJ0yunWBzainX2utlbkTBdOqs5n3N5sAs47jQzhQZc3A5tDaRRWaYSLTJXqBOtazcSyj8BtIgqqXzEpZqQ2VhJROCpfMkY3kXJe2mKhu5x6EFxrlqQWY_FChCgSJUUEQXfdzIrALzxp1fZ62uVFtT6r2g8gfDnVJsI_WX1f1T7n1rDsr_jpBj0ZVbXtYq5T5-yv0dkXbRTrCTzeozBjkvKV7956zv0IPhdHysjkeTo130EN4EDNFr1FlfXLo3Pjxam7fR_P8AuJEMbQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BPGAN%3A+Brain+PET+synthesis+from+MRI+using+generative+adversarial+network+for+multi-modal+Alzheimer%E2%80%99s+disease+diagnosis&rft.jtitle=Computer+methods+and+programs+in+biomedicine&rft.au=Zhang%2C+Jin&rft.au=He%2C+Xiaohai&rft.au=Qing%2C+Linbo&rft.au=Gao%2C+Feng&rft.date=2022-04-01&rft.issn=0169-2607&rft.volume=217&rft.spage=106676&rft_id=info:doi/10.1016%2Fj.cmpb.2022.106676&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cmpb_2022_106676
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-2607&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-2607&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-2607&client=summon