Demystifying Iddq Data With Process Variation for Automatic Chip Classification
Iddq testing is an integral component of test suites for the screening of unreliable devices. As the scale of silicon technology continues shrinking, Iddq values and associated fluctuations increase. In addition, increased design complexity makes defect-induced leakage currents difficult to differen...
Saved in:
Published in | IEEE transactions on very large scale integration (VLSI) systems Vol. 23; no. 6; pp. 1175 - 1179 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
IEEE
01.06.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Iddq testing is an integral component of test suites for the screening of unreliable devices. As the scale of silicon technology continues shrinking, Iddq values and associated fluctuations increase. In addition, increased design complexity makes defect-induced leakage currents difficult to differentiate from full-chip currents. Consequently, traditional Iddq methods result in more test escapes and yield loss. This brief proposes a new test method, called σ-Iddq to provide the following: 1) Iddq analysis with process-parameter deduction and 2) the algorithm for automatic chip-classification called collective analysis without the need to manually determine threshold values. We randomly inserted a number of multiple defects into samples of ISCAS'89 and IWSL'05 benchmark circuits. Experimental results demonstrate that the proposed σ-Iddq method can achieve higher classification accuracy than single-threshold Iddq testing or AIddq in a 45-nm technology. The overall classification accuracy of the collective analysis achieve averaged 99.28% and 99.70% on σ-Iddq data from process-parameter deductions with average-case search and multilevel search, respectively, demonstrating that the influence of process variation and design scaling can be significantly reduced to enable a better identification of defective chips. |
---|---|
AbstractList | Iddq testing is an integral component of test suites for the screening of unreliable devices. As the scale of silicon technology continues shrinking, Iddq values and associated fluctuations increase. In addition, increased design complexity makes defect-induced leakage currents difficult to differentiate from full-chip currents. Consequently, traditional Iddq methods result in more test escapes and yield loss. This brief proposes a new test method, called σ-Iddq to provide the following: 1) Iddq analysis with process-parameter deduction and 2) the algorithm for automatic chip-classification called collective analysis without the need to manually determine threshold values. We randomly inserted a number of multiple defects into samples of ISCAS'89 and IWSL'05 benchmark circuits. Experimental results demonstrate that the proposed σ-Iddq method can achieve higher classification accuracy than single-threshold Iddq testing or AIddq in a 45-nm technology. The overall classification accuracy of the collective analysis achieve averaged 99.28% and 99.70% on σ-Iddq data from process-parameter deductions with average-case search and multilevel search, respectively, demonstrating that the influence of process variation and design scaling can be significantly reduced to enable a better identification of defective chips. |
Author | Wen, Charles H.-P Chia-Ling Chang |
Author_xml | – sequence: 1 surname: Chia-Ling Chang fullname: Chia-Ling Chang email: tinger.cm98g@nctu.edu.tw organization: Dept. of Electr. & Comput. Eng., Nat. Chiao Tung Univ., Hsinchu, Taiwan – sequence: 2 givenname: Charles H.-P surname: Wen fullname: Wen, Charles H.-P email: opwen@g2.nctu.edu.tw organization: Dept. of Electr. & Comput. Eng., Nat. Chiao Tung Univ., Hsinchu, Taiwan |
BookMark | eNo9kM1uwjAQhK2KSgXaF2gvfoHQXW9iJ0cU-oOERKVSeoxMsIsrSKidHnj7mh91LzMjzezhG7Be0zaGsXuEESIUj4vl7H06EoDpSJCQkOMV62OWqaSI14seJCW5QLhhgxC-ITbTAvpsPjG7Q-icPbjmi0_X6x8-0Z3mn67b8Dff1iYEvtTe6c61Dbet5-Pfrt3FWPNy4_a83OoQnHX1qXHLrq3eBnN30SH7eH5alK_JbP4yLcezpE5BdYnUioyWqzq3pAoiS2RqSSsjUpWmBlFplBkAEKKUK0UimkyIKKJQStOQifPf2rcheGOrvXc77Q8VQnVEUp2QVEck1QVJHD2cR84Y8z-QOakMgf4ACktd5w |
CODEN | IEVSE9 |
CitedBy_id | crossref_primary_10_1109_TCAD_2023_3253043 crossref_primary_10_1109_TETC_2016_2593628 |
Cites_doi | 10.1109/TVLSI.2005.863183 10.1109/TVLSI.2009.2029113 10.1109/66.999598 10.1109/VTEST.1999.766656 10.1145/1391469.1391624 10.1109/TEST.2011.6139175 10.1109/ISSCC.2000.839819 10.1109/TEST.1999.805801 10.1109/TEST.2001.966621 10.1109/TEST.2004.1386966 10.1145/989995.989997 10.1109/VTEST.1996.510844 10.1109/ICVD.2003.1183162 10.1109/TVLSI.2005.863747 10.1111/1467-9868.00293 10.1109/VTEST.1996.510876 10.1109/VTEST.2000.843876 10.1109/TEST.2000.894206 10.1109/DFTVS.2002.1173535 10.1145/1230800.1230804 10.1109/TEST.1999.805803 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION |
DOI | 10.1109/TVLSI.2014.2326081 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1557-9999 |
EndPage | 1179 |
ExternalDocumentID | 10_1109_TVLSI_2014_2326081 6837510 |
Genre | orig-research |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AASAJ AAYOK ABFSI ABQJQ ABVLG ACGFS ACIWK AENEX AETIX AI. AIBXA AKJIK ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD HZ~ H~9 ICLAB IEDLZ IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIC RIE RIG RNS TN5 VH1 XFK AAYXX CITATION |
ID | FETCH-LOGICAL-c407t-6a73ea6bc8f37933f33ec63be24744e117a16500031166b7323115222312977a3 |
IEDL.DBID | RIE |
ISSN | 1063-8210 |
IngestDate | Fri Aug 23 01:11:11 EDT 2024 Wed Jun 26 19:22:10 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Circuit testing data mining Iddq |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c407t-6a73ea6bc8f37933f33ec63be24744e117a16500031166b7323115222312977a3 |
PageCount | 5 |
ParticipantIDs | ieee_primary_6837510 crossref_primary_10_1109_TVLSI_2014_2326081 |
PublicationCentury | 2000 |
PublicationDate | 2015-06-01 |
PublicationDateYYYYMMDD | 2015-06-01 |
PublicationDate_xml | – month: 06 year: 2015 text: 2015-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | IEEE transactions on very large scale integration (VLSI) systems |
PublicationTitleAbbrev | TVLSI |
PublicationYear | 2015 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref13 ref24 ref12 chang (ref21) 2012 ref23 ref15 ref14 ref20 ref11 ref10 ref2 ref1 ref17 ref19 ref18 ref8 ref7 ref9 ref4 ref3 ref6 ref5 (ref22) 2014 (ref16) 2014 |
References_xml | – ident: ref13 doi: 10.1109/TVLSI.2005.863183 – start-page: 163 year: 2012 ident: ref21 article-title: An intelligent analysis of Iddq data for chip classification in very deep-submicron (VDSM) CMOS technology publication-title: Proc 17th ASPDAC contributor: fullname: chang – ident: ref10 doi: 10.1109/TVLSI.2009.2029113 – ident: ref17 doi: 10.1109/66.999598 – ident: ref20 doi: 10.1109/VTEST.1999.766656 – ident: ref18 doi: 10.1145/1391469.1391624 – ident: ref23 doi: 10.1109/TEST.2011.6139175 – ident: ref19 doi: 10.1109/ISSCC.2000.839819 – ident: ref3 doi: 10.1109/TEST.1999.805801 – ident: ref6 doi: 10.1109/TEST.2001.966621 – ident: ref7 doi: 10.1109/TEST.2004.1386966 – year: 2014 ident: ref22 publication-title: IWLS 2005 Benchmarks – ident: ref1 doi: 10.1145/989995.989997 – ident: ref2 doi: 10.1109/VTEST.1996.510844 – ident: ref9 doi: 10.1109/ICVD.2003.1183162 – ident: ref15 doi: 10.1109/TVLSI.2005.863747 – ident: ref24 doi: 10.1111/1467-9868.00293 – ident: ref11 doi: 10.1109/VTEST.1996.510876 – year: 2014 ident: ref16 publication-title: FreePDK45 – ident: ref4 doi: 10.1109/VTEST.2000.843876 – ident: ref12 doi: 10.1109/TEST.2000.894206 – ident: ref8 doi: 10.1109/DFTVS.2002.1173535 – ident: ref14 doi: 10.1145/1230800.1230804 – ident: ref5 doi: 10.1109/TEST.1999.805803 |
SSID | ssj0014490 |
Score | 2.1636317 |
Snippet | Iddq testing is an integral component of test suites for the screening of unreliable devices. As the scale of silicon technology continues shrinking, Iddq... |
SourceID | crossref ieee |
SourceType | Aggregation Database Publisher |
StartPage | 1175 |
SubjectTerms | Accuracy Circuit faults Circuit testing Current measurement data mining Iddq Leakage currents Semiconductor device measurement Testing Very large scale integration |
Title | Demystifying Iddq Data With Process Variation for Automatic Chip Classification |
URI | https://ieeexplore.ieee.org/document/6837510 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG-Qkx78QiN-pQdvOljXrt2OBCRiRA8Cclva8haIEdBsB_3rbbtB0HjwtjRt0rzXj99b3-_3ELoimlKiUunF_gQ8qyjnKVDC42ka-QyYgthyh_uP_G7I7sfhuIJu1lwYAHDJZ9Cwn-4tf7LQuf1V1uQmmgotn2pLxHHB1Vq_GDAWF8oDnHqRiWNWBBk_bg5GD889m8XFGgY_cD8iPy6hjaoq7lLp7qH-ajpFLslrI89UQ3_9Umr873z30W6JLnGrWA4HqALzQ7SzoTlYQ08dePs0-9rxm3BvMnnHHZlJ_DLLprikDeCRiaCdy7DBtLiVZwun7Irb09kSuzqaNsPI9ThCw-7toH3nlVUVPG2Ct8zjUlCQXOkopWZz0pRS0JwqCJhgDAgRknBbJoESwrkSNLCCPBZGGGgghKTHqDpfzOEE4SCVLBZa-TrwGdFCcgjNAaFURIkMVFBH1yszJ8tCPCNxQYcfJ84piXVKUjqljmrWhOuepfVO_24-Q9tmcFhkbZ2javaRw4XBB5m6dAvjG4zHtgI |
link.rule.ids | 315,783,787,799,27936,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZQGYCBV0GUpwc2SBvHjp2MqAW10JaB8tgi27moFaIFlAzw67GdtALEwBZZlmXd-fFdfN93CJ0STSlRmfRiPwXPKsp5CpTweJZFPgOmILbc4cGQd-_Z9VP4tITOF1wYAHDJZ9C0n-4tP53pwv4qa3ETTYWWT7VscHXES7bW4s2AsbjUHuDUi0wkM6fI-HFr9NC_69k8LtY0CIL7EflxDX2rq-KulasNNJhPqMwmeW4WuWrqz19ajf-d8SZar_AlvigXxBZaguk2WvumOlhHtx14-TA72zGccC9N33BH5hI_TvIxrogD-MHE0M5p2KBafFHkM6ftitvjySt2lTRtjpHrsYPury5H7a5X1VXwtAnfco9LQUFypaOMmu1JM0pBc6ogYIIxIERIwm2hBEoI50rQwEryWCBhwIEQku6i2nQ2hT2Eg0yyWGjl68BnRAvJITRHhFIRJTJQQQOdzc2cvJbyGYkLO_w4cU5JrFOSyikNVLcmXPSsrLf_d_MJWumOBv2k3xveHKBVM1BY5nAdolr-XsCRQQu5OnaL5AtDe7lN |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Demystifying+Iddq+Data+With+Process+Variation+for+Automatic+Chip+Classification&rft.jtitle=IEEE+transactions+on+very+large+scale+integration+%28VLSI%29+systems&rft.au=Chia-Ling+Chang&rft.au=Wen%2C+Charles+H.-P&rft.date=2015-06-01&rft.pub=IEEE&rft.issn=1063-8210&rft.eissn=1557-9999&rft.volume=23&rft.issue=6&rft.spage=1175&rft.epage=1179&rft_id=info:doi/10.1109%2FTVLSI.2014.2326081&rft.externalDocID=6837510 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-8210&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-8210&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-8210&client=summon |