Demystifying Iddq Data With Process Variation for Automatic Chip Classification

Iddq testing is an integral component of test suites for the screening of unreliable devices. As the scale of silicon technology continues shrinking, Iddq values and associated fluctuations increase. In addition, increased design complexity makes defect-induced leakage currents difficult to differen...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on very large scale integration (VLSI) systems Vol. 23; no. 6; pp. 1175 - 1179
Main Authors Chia-Ling Chang, Wen, Charles H.-P
Format Journal Article
LanguageEnglish
Published IEEE 01.06.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Iddq testing is an integral component of test suites for the screening of unreliable devices. As the scale of silicon technology continues shrinking, Iddq values and associated fluctuations increase. In addition, increased design complexity makes defect-induced leakage currents difficult to differentiate from full-chip currents. Consequently, traditional Iddq methods result in more test escapes and yield loss. This brief proposes a new test method, called σ-Iddq to provide the following: 1) Iddq analysis with process-parameter deduction and 2) the algorithm for automatic chip-classification called collective analysis without the need to manually determine threshold values. We randomly inserted a number of multiple defects into samples of ISCAS'89 and IWSL'05 benchmark circuits. Experimental results demonstrate that the proposed σ-Iddq method can achieve higher classification accuracy than single-threshold Iddq testing or AIddq in a 45-nm technology. The overall classification accuracy of the collective analysis achieve averaged 99.28% and 99.70% on σ-Iddq data from process-parameter deductions with average-case search and multilevel search, respectively, demonstrating that the influence of process variation and design scaling can be significantly reduced to enable a better identification of defective chips.
AbstractList Iddq testing is an integral component of test suites for the screening of unreliable devices. As the scale of silicon technology continues shrinking, Iddq values and associated fluctuations increase. In addition, increased design complexity makes defect-induced leakage currents difficult to differentiate from full-chip currents. Consequently, traditional Iddq methods result in more test escapes and yield loss. This brief proposes a new test method, called σ-Iddq to provide the following: 1) Iddq analysis with process-parameter deduction and 2) the algorithm for automatic chip-classification called collective analysis without the need to manually determine threshold values. We randomly inserted a number of multiple defects into samples of ISCAS'89 and IWSL'05 benchmark circuits. Experimental results demonstrate that the proposed σ-Iddq method can achieve higher classification accuracy than single-threshold Iddq testing or AIddq in a 45-nm technology. The overall classification accuracy of the collective analysis achieve averaged 99.28% and 99.70% on σ-Iddq data from process-parameter deductions with average-case search and multilevel search, respectively, demonstrating that the influence of process variation and design scaling can be significantly reduced to enable a better identification of defective chips.
Author Wen, Charles H.-P
Chia-Ling Chang
Author_xml – sequence: 1
  surname: Chia-Ling Chang
  fullname: Chia-Ling Chang
  email: tinger.cm98g@nctu.edu.tw
  organization: Dept. of Electr. & Comput. Eng., Nat. Chiao Tung Univ., Hsinchu, Taiwan
– sequence: 2
  givenname: Charles H.-P
  surname: Wen
  fullname: Wen, Charles H.-P
  email: opwen@g2.nctu.edu.tw
  organization: Dept. of Electr. & Comput. Eng., Nat. Chiao Tung Univ., Hsinchu, Taiwan
BookMark eNo9kM1uwjAQhK2KSgXaF2gvfoHQXW9iJ0cU-oOERKVSeoxMsIsrSKidHnj7mh91LzMjzezhG7Be0zaGsXuEESIUj4vl7H06EoDpSJCQkOMV62OWqaSI14seJCW5QLhhgxC-ITbTAvpsPjG7Q-icPbjmi0_X6x8-0Z3mn67b8Dff1iYEvtTe6c61Dbet5-Pfrt3FWPNy4_a83OoQnHX1qXHLrq3eBnN30SH7eH5alK_JbP4yLcezpE5BdYnUioyWqzq3pAoiS2RqSSsjUpWmBlFplBkAEKKUK0UimkyIKKJQStOQifPf2rcheGOrvXc77Q8VQnVEUp2QVEck1QVJHD2cR84Y8z-QOakMgf4ACktd5w
CODEN IEVSE9
CitedBy_id crossref_primary_10_1109_TCAD_2023_3253043
crossref_primary_10_1109_TETC_2016_2593628
Cites_doi 10.1109/TVLSI.2005.863183
10.1109/TVLSI.2009.2029113
10.1109/66.999598
10.1109/VTEST.1999.766656
10.1145/1391469.1391624
10.1109/TEST.2011.6139175
10.1109/ISSCC.2000.839819
10.1109/TEST.1999.805801
10.1109/TEST.2001.966621
10.1109/TEST.2004.1386966
10.1145/989995.989997
10.1109/VTEST.1996.510844
10.1109/ICVD.2003.1183162
10.1109/TVLSI.2005.863747
10.1111/1467-9868.00293
10.1109/VTEST.1996.510876
10.1109/VTEST.2000.843876
10.1109/TEST.2000.894206
10.1109/DFTVS.2002.1173535
10.1145/1230800.1230804
10.1109/TEST.1999.805803
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TVLSI.2014.2326081
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1557-9999
EndPage 1179
ExternalDocumentID 10_1109_TVLSI_2014_2326081
6837510
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AASAJ
AAYOK
ABFSI
ABQJQ
ABVLG
ACGFS
ACIWK
AENEX
AETIX
AI.
AIBXA
AKJIK
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
HZ~
H~9
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIC
RIE
RIG
RNS
TN5
VH1
XFK
AAYXX
CITATION
ID FETCH-LOGICAL-c407t-6a73ea6bc8f37933f33ec63be24744e117a16500031166b7323115222312977a3
IEDL.DBID RIE
ISSN 1063-8210
IngestDate Fri Aug 23 01:11:11 EDT 2024
Wed Jun 26 19:22:10 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Circuit testing
data mining
Iddq
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c407t-6a73ea6bc8f37933f33ec63be24744e117a16500031166b7323115222312977a3
PageCount 5
ParticipantIDs ieee_primary_6837510
crossref_primary_10_1109_TVLSI_2014_2326081
PublicationCentury 2000
PublicationDate 2015-06-01
PublicationDateYYYYMMDD 2015-06-01
PublicationDate_xml – month: 06
  year: 2015
  text: 2015-06-01
  day: 01
PublicationDecade 2010
PublicationTitle IEEE transactions on very large scale integration (VLSI) systems
PublicationTitleAbbrev TVLSI
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref24
ref12
chang (ref21) 2012
ref23
ref15
ref14
ref20
ref11
ref10
ref2
ref1
ref17
ref19
ref18
ref8
ref7
ref9
ref4
ref3
ref6
ref5
(ref22) 2014
(ref16) 2014
References_xml – ident: ref13
  doi: 10.1109/TVLSI.2005.863183
– start-page: 163
  year: 2012
  ident: ref21
  article-title: An intelligent analysis of Iddq data for chip classification in very deep-submicron (VDSM) CMOS technology
  publication-title: Proc 17th ASPDAC
  contributor:
    fullname: chang
– ident: ref10
  doi: 10.1109/TVLSI.2009.2029113
– ident: ref17
  doi: 10.1109/66.999598
– ident: ref20
  doi: 10.1109/VTEST.1999.766656
– ident: ref18
  doi: 10.1145/1391469.1391624
– ident: ref23
  doi: 10.1109/TEST.2011.6139175
– ident: ref19
  doi: 10.1109/ISSCC.2000.839819
– ident: ref3
  doi: 10.1109/TEST.1999.805801
– ident: ref6
  doi: 10.1109/TEST.2001.966621
– ident: ref7
  doi: 10.1109/TEST.2004.1386966
– year: 2014
  ident: ref22
  publication-title: IWLS 2005 Benchmarks
– ident: ref1
  doi: 10.1145/989995.989997
– ident: ref2
  doi: 10.1109/VTEST.1996.510844
– ident: ref9
  doi: 10.1109/ICVD.2003.1183162
– ident: ref15
  doi: 10.1109/TVLSI.2005.863747
– ident: ref24
  doi: 10.1111/1467-9868.00293
– ident: ref11
  doi: 10.1109/VTEST.1996.510876
– year: 2014
  ident: ref16
  publication-title: FreePDK45
– ident: ref4
  doi: 10.1109/VTEST.2000.843876
– ident: ref12
  doi: 10.1109/TEST.2000.894206
– ident: ref8
  doi: 10.1109/DFTVS.2002.1173535
– ident: ref14
  doi: 10.1145/1230800.1230804
– ident: ref5
  doi: 10.1109/TEST.1999.805803
SSID ssj0014490
Score 2.1636317
Snippet Iddq testing is an integral component of test suites for the screening of unreliable devices. As the scale of silicon technology continues shrinking, Iddq...
SourceID crossref
ieee
SourceType Aggregation Database
Publisher
StartPage 1175
SubjectTerms Accuracy
Circuit faults
Circuit testing
Current measurement
data mining
Iddq
Leakage currents
Semiconductor device measurement
Testing
Very large scale integration
Title Demystifying Iddq Data With Process Variation for Automatic Chip Classification
URI https://ieeexplore.ieee.org/document/6837510
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG-Qkx78QiN-pQdvOljXrt2OBCRiRA8Cclva8haIEdBsB_3rbbtB0HjwtjRt0rzXj99b3-_3ELoimlKiUunF_gQ8qyjnKVDC42ka-QyYgthyh_uP_G7I7sfhuIJu1lwYAHDJZ9Cwn-4tf7LQuf1V1uQmmgotn2pLxHHB1Vq_GDAWF8oDnHqRiWNWBBk_bg5GD889m8XFGgY_cD8iPy6hjaoq7lLp7qH-ajpFLslrI89UQ3_9Umr873z30W6JLnGrWA4HqALzQ7SzoTlYQ08dePs0-9rxm3BvMnnHHZlJ_DLLprikDeCRiaCdy7DBtLiVZwun7Irb09kSuzqaNsPI9ThCw-7toH3nlVUVPG2Ct8zjUlCQXOkopWZz0pRS0JwqCJhgDAgRknBbJoESwrkSNLCCPBZGGGgghKTHqDpfzOEE4SCVLBZa-TrwGdFCcgjNAaFURIkMVFBH1yszJ8tCPCNxQYcfJ84piXVKUjqljmrWhOuepfVO_24-Q9tmcFhkbZ2javaRw4XBB5m6dAvjG4zHtgI
link.rule.ids 315,783,787,799,27936,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZQGYCBV0GUpwc2SBvHjp2MqAW10JaB8tgi27moFaIFlAzw67GdtALEwBZZlmXd-fFdfN93CJ0STSlRmfRiPwXPKsp5CpTweJZFPgOmILbc4cGQd-_Z9VP4tITOF1wYAHDJZ9C0n-4tP53pwv4qa3ETTYWWT7VscHXES7bW4s2AsbjUHuDUi0wkM6fI-HFr9NC_69k8LtY0CIL7EflxDX2rq-KulasNNJhPqMwmeW4WuWrqz19ajf-d8SZar_AlvigXxBZaguk2WvumOlhHtx14-TA72zGccC9N33BH5hI_TvIxrogD-MHE0M5p2KBafFHkM6ftitvjySt2lTRtjpHrsYPury5H7a5X1VXwtAnfco9LQUFypaOMmu1JM0pBc6ogYIIxIERIwm2hBEoI50rQwEryWCBhwIEQku6i2nQ2hT2Eg0yyWGjl68BnRAvJITRHhFIRJTJQQQOdzc2cvJbyGYkLO_w4cU5JrFOSyikNVLcmXPSsrLf_d_MJWumOBv2k3xveHKBVM1BY5nAdolr-XsCRQQu5OnaL5AtDe7lN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Demystifying+Iddq+Data+With+Process+Variation+for+Automatic+Chip+Classification&rft.jtitle=IEEE+transactions+on+very+large+scale+integration+%28VLSI%29+systems&rft.au=Chia-Ling+Chang&rft.au=Wen%2C+Charles+H.-P&rft.date=2015-06-01&rft.pub=IEEE&rft.issn=1063-8210&rft.eissn=1557-9999&rft.volume=23&rft.issue=6&rft.spage=1175&rft.epage=1179&rft_id=info:doi/10.1109%2FTVLSI.2014.2326081&rft.externalDocID=6837510
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-8210&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-8210&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-8210&client=summon