Long non-coding RNA H19 mediates mechanical tension-induced osteogenesis of bone marrow mesenchymal stem cells via FAK by sponging miR-138
Bone marrow mesenchymal stem cells (BMMSCs) provide the biological basis for bone reconstruction. Mechanical tension stimulation as a potent modulator is able to promote osteogenic capability of BMMSCs. Long non-coding RNAs (LncRNAs) as competing endogenous RNAs (ceRNAs) for microRNAs, are postulate...
Saved in:
Published in | Bone (New York, N.Y.) Vol. 108; pp. 62 - 70 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.03.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Bone marrow mesenchymal stem cells (BMMSCs) provide the biological basis for bone reconstruction. Mechanical tension stimulation as a potent modulator is able to promote osteogenic capability of BMMSCs. Long non-coding RNAs (LncRNAs) as competing endogenous RNAs (ceRNAs) for microRNAs, are postulated to regulate the osteogenic differentiation of stem cells. However, the mechanism how (whether) lncRNAs mediates tension-induced osteogenesis of BMSCs still remains poor understood. Here, human BMMSCs (hBMMSCs) were subjected to mechanical tension (10%, 0.5Hz). Results showed that mechanical tension could enhance osteogenic differentiation and increase H19 expression. H19 deficiency suppressed tension-induced osteogenic differentiation, demonstrating that H19 could mediate tension-induced osteogenesis in hBMMSCs. Besides, mechanical tension could suppress miR-138 expression, and down-regulated miR-138 promoted tension-induced osteogenesis in hBMMSCs. Luciferase reporter assays illustrated that H19 had binding sites with miR-138, and H19 deficiency increased miR-138 level, demonstrating that H19 may act as a ceRNA for miR-138 in hBMMSCs. Luciferase reporter assays also showed that miR-138 could target PTK2,a gene encoding focal adhesion kinase (FAK). Up-regulated miR-138 impaired increased FAK expression induced by mechanical tension. The relationship among H19, miR-138 and FAK under tension condition was further studied. H19 deficiency inhibited FAK expression, which could be partly rescued by knock-downing miR-138. In addition, suppressed tension-induced osteogenic differentiation in H19 defective cells was partly rescued by miR-138 knockdown. Taken together, this study indicated that H19 is a positive regulator in tension-induced osteogenesis of hBMMSCs through acting as a ceRNA for miR-138 and then up-regulating downstream FAK.
•Mechanical tension could enhance osteogenesis of hBMMSCs.•Long non-coding RNA H19 mediates mechanical tension-induced osteogenesis.•H19 acts as a sponge to hijack miR-138 under tension strain.•H19 as ceRNA for miR-138 regulates tension-induced osteogenesis via downstream FAK. |
---|---|
AbstractList | Bone marrow mesenchymal stem cells (BMMSCs) provide the biological basis for bone reconstruction. Mechanical tension stimulation as a potent modulator is able to promote osteogenic capability of BMMSCs. Long non-coding RNAs (LncRNAs) as competing endogenous RNAs (ceRNAs) for microRNAs, are postulated to regulate the osteogenic differentiation of stem cells. However, the mechanism how (whether) lncRNAs mediates tension-induced osteogenesis of BMSCs still remains poor understood. Here, human BMMSCs (hBMMSCs) were subjected to mechanical tension (10%, 0.5Hz). Results showed that mechanical tension could enhance osteogenic differentiation and increase H19 expression. H19 deficiency suppressed tension-induced osteogenic differentiation, demonstrating that H19 could mediate tension-induced osteogenesis in hBMMSCs. Besides, mechanical tension could suppress miR-138 expression, and down-regulated miR-138 promoted tension-induced osteogenesis in hBMMSCs. Luciferase reporter assays illustrated that H19 had binding sites with miR-138, and H19 deficiency increased miR-138 level, demonstrating that H19 may act as a ceRNA for miR-138 in hBMMSCs. Luciferase reporter assays also showed that miR-138 could target PTK2,a gene encoding focal adhesion kinase (FAK). Up-regulated miR-138 impaired increased FAK expression induced by mechanical tension. The relationship among H19, miR-138 and FAK under tension condition was further studied. H19 deficiency inhibited FAK expression, which could be partly rescued by knock-downing miR-138. In addition, suppressed tension-induced osteogenic differentiation in H19 defective cells was partly rescued by miR-138 knockdown. Taken together, this study indicated that H19 is a positive regulator in tension-induced osteogenesis of hBMMSCs through acting as a ceRNA for miR-138 and then up-regulating downstream FAK.
•Mechanical tension could enhance osteogenesis of hBMMSCs.•Long non-coding RNA H19 mediates mechanical tension-induced osteogenesis.•H19 acts as a sponge to hijack miR-138 under tension strain.•H19 as ceRNA for miR-138 regulates tension-induced osteogenesis via downstream FAK. Bone marrow mesenchymal stem cells (BMMSCs) provide the biological basis for bone reconstruction. Mechanical tension stimulation as a potent modulator is able to promote osteogenic capability of BMMSCs. Long non-coding RNAs (LncRNAs) as competing endogenous RNAs (ceRNAs) for microRNAs, are postulated to regulate the osteogenic differentiation of stem cells. However, the mechanism how (whether) lncRNAs mediates tension-induced osteogenesis of BMSCs still remains poor understood. Here, human BMMSCs (hBMMSCs) were subjected to mechanical tension (10%, 0.5Hz). Results showed that mechanical tension could enhance osteogenic differentiation and increase H19 expression. H19 deficiency suppressed tension-induced osteogenic differentiation, demonstrating that H19 could mediate tension-induced osteogenesis in hBMMSCs. Besides, mechanical tension could suppress miR-138 expression, and down-regulated miR-138 promoted tension-induced osteogenesis in hBMMSCs. Luciferase reporter assays illustrated that H19 had binding sites with miR-138, and H19 deficiency increased miR-138 level, demonstrating that H19 may act as a ceRNA for miR-138 in hBMMSCs. Luciferase reporter assays also showed that miR-138 could target PTK2,a gene encoding focal adhesion kinase (FAK). Up-regulated miR-138 impaired increased FAK expression induced by mechanical tension. The relationship among H19, miR-138 and FAK under tension condition was further studied. H19 deficiency inhibited FAK expression, which could be partly rescued by knock-downing miR-138. In addition, suppressed tension-induced osteogenic differentiation in H19 defective cells was partly rescued by miR-138 knockdown. Taken together, this study indicated that H19 is a positive regulator in tension-induced osteogenesis of hBMMSCs through acting as a ceRNA for miR-138 and then up-regulating downstream FAK.Bone marrow mesenchymal stem cells (BMMSCs) provide the biological basis for bone reconstruction. Mechanical tension stimulation as a potent modulator is able to promote osteogenic capability of BMMSCs. Long non-coding RNAs (LncRNAs) as competing endogenous RNAs (ceRNAs) for microRNAs, are postulated to regulate the osteogenic differentiation of stem cells. However, the mechanism how (whether) lncRNAs mediates tension-induced osteogenesis of BMSCs still remains poor understood. Here, human BMMSCs (hBMMSCs) were subjected to mechanical tension (10%, 0.5Hz). Results showed that mechanical tension could enhance osteogenic differentiation and increase H19 expression. H19 deficiency suppressed tension-induced osteogenic differentiation, demonstrating that H19 could mediate tension-induced osteogenesis in hBMMSCs. Besides, mechanical tension could suppress miR-138 expression, and down-regulated miR-138 promoted tension-induced osteogenesis in hBMMSCs. Luciferase reporter assays illustrated that H19 had binding sites with miR-138, and H19 deficiency increased miR-138 level, demonstrating that H19 may act as a ceRNA for miR-138 in hBMMSCs. Luciferase reporter assays also showed that miR-138 could target PTK2,a gene encoding focal adhesion kinase (FAK). Up-regulated miR-138 impaired increased FAK expression induced by mechanical tension. The relationship among H19, miR-138 and FAK under tension condition was further studied. H19 deficiency inhibited FAK expression, which could be partly rescued by knock-downing miR-138. In addition, suppressed tension-induced osteogenic differentiation in H19 defective cells was partly rescued by miR-138 knockdown. Taken together, this study indicated that H19 is a positive regulator in tension-induced osteogenesis of hBMMSCs through acting as a ceRNA for miR-138 and then up-regulating downstream FAK. Bone marrow mesenchymal stem cells (BMMSCs) provide the biological basis for bone reconstruction. Mechanical tension stimulation as a potent modulator is able to promote osteogenic capability of BMMSCs. Long non-coding RNAs (LncRNAs) as competing endogenous RNAs (ceRNAs) for microRNAs, are postulated to regulate the osteogenic differentiation of stem cells. However, the mechanism how (whether) lncRNAs mediates tension-induced osteogenesis of BMSCs still remains poor understood. Here, human BMMSCs (hBMMSCs) were subjected to mechanical tension (10%, 0.5Hz). Results showed that mechanical tension could enhance osteogenic differentiation and increase H19 expression. H19 deficiency suppressed tension-induced osteogenic differentiation, demonstrating that H19 could mediate tension-induced osteogenesis in hBMMSCs. Besides, mechanical tension could suppress miR-138 expression, and down-regulated miR-138 promoted tension-induced osteogenesis in hBMMSCs. Luciferase reporter assays illustrated that H19 had binding sites with miR-138, and H19 deficiency increased miR-138 level, demonstrating that H19 may act as a ceRNA for miR-138 in hBMMSCs. Luciferase reporter assays also showed that miR-138 could target PTK2,a gene encoding focal adhesion kinase (FAK). Up-regulated miR-138 impaired increased FAK expression induced by mechanical tension. The relationship among H19, miR-138 and FAK under tension condition was further studied. H19 deficiency inhibited FAK expression, which could be partly rescued by knock-downing miR-138. In addition, suppressed tension-induced osteogenic differentiation in H19 defective cells was partly rescued by miR-138 knockdown. Taken together, this study indicated that H19 is a positive regulator in tension-induced osteogenesis of hBMMSCs through acting as a ceRNA for miR-138 and then up-regulating downstream FAK. |
Author | Sun, Lian Zhang, Wei-Bing Wu, Jiajing Pan, Yongchu Wang, Hua Zhao, Jing |
Author_xml | – sequence: 1 givenname: Jiajing surname: Wu fullname: Wu, Jiajing organization: Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China – sequence: 2 givenname: Jing surname: Zhao fullname: Zhao, Jing organization: Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China – sequence: 3 givenname: Lian surname: Sun fullname: Sun, Lian organization: Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China – sequence: 4 givenname: Yongchu surname: Pan fullname: Pan, Yongchu organization: Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China – sequence: 5 givenname: Hua surname: Wang fullname: Wang, Hua email: huawang@njmu.edu.cn organization: Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China – sequence: 6 givenname: Wei-Bing surname: Zhang fullname: Zhang, Wei-Bing email: zhangweibing@njmu.edu.cn organization: Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29253550$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc9u1DAQxi1URLeFF-CAfOSS4D_r2EZcVhWliBVIFZwt25ltvSTxEmeL9hV4aiZs4dBDOXlkf7-Z8fedkZMhD0DIS85qznjzZlsHvKgF47rmomZcPiELbrSshG7kCVkYrZpKCiNOyVkpW8aYtJo_I6fCCiWVYgvya52HG4qNq5jbhOX15xW94pb20CY_QcEi3vohRd_RCYaSUJqGdh-hpblMkG9ggJIKzRs6r0N7P475J2IFhnh76JFDWU8jdF2hd8nTy9UnGg607HD0PLJP1xWX5jl5uvFdgRf35zn5dvn-68VVtf7y4ePFal3FJdNT1RildIDgZbBms_S-8bJpmQ6tFTxKLqMAYzm-q6CEgqUPVhrupVUARoI8J6-PfXdj_rGHMrk-lXk7P0DeF8etNpqrZilQ-upeug9oiNuNCb93cH_9Q4E4CuKYSxlh80_CmZtDcls3u-LmkBwXDkNCyDyAYpr8hM5Oo0_d4-i7Iwpo0F2C0ZWY0GcMa4Q4uTanx_G3D_DYpT_ZfofD_-DfszrApQ |
CitedBy_id | crossref_primary_10_1186_s13287_023_03250_6 crossref_primary_10_3892_etm_2021_10993 crossref_primary_10_1631_jzus_B2300497 crossref_primary_10_1016_j_omtn_2019_11_034 crossref_primary_10_1016_j_ncrna_2025_01_003 crossref_primary_10_1016_j_omtn_2021_04_017 crossref_primary_10_1002_jcp_28060 crossref_primary_10_1042_BSR20180448 crossref_primary_10_1186_s12938_021_00949_6 crossref_primary_10_1186_s13287_021_02597_y crossref_primary_10_1007_s12195_020_00617_0 crossref_primary_10_1002_dmrr_3740 crossref_primary_10_1302_2046_3758_82_BJR_2018_0074_R1 crossref_primary_10_1186_s13287_019_1309_7 crossref_primary_10_1007_s11010_020_03753_3 crossref_primary_10_1016_j_mrrev_2019_108285 crossref_primary_10_1007_s13577_023_00888_5 crossref_primary_10_1080_21655979_2022_2044274 crossref_primary_10_3389_fcell_2024_1355312 crossref_primary_10_2174_1574888X14666181127145809 crossref_primary_10_1038_s41419_019_1337_3 crossref_primary_10_3892_mmr_2021_12200 crossref_primary_10_4252_wjsc_v14_i1_92 crossref_primary_10_3389_fcell_2020_601224 crossref_primary_10_1002_jcp_27815 crossref_primary_10_2319_061118_438_1 crossref_primary_10_1007_s12038_020_0024_y crossref_primary_10_1016_j_gendis_2023_02_008 crossref_primary_10_1002_term_3277 crossref_primary_10_1016_j_biopha_2019_108912 crossref_primary_10_1016_j_bone_2019_02_013 crossref_primary_10_1111_cpr_13604 crossref_primary_10_1186_s12957_022_02706_y crossref_primary_10_2147_CMAR_S222878 crossref_primary_10_2174_1381612826666200707130246 crossref_primary_10_15212_bioi_2021_0025 crossref_primary_10_3389_fgene_2020_584118 crossref_primary_10_1038_s41419_023_06214_z crossref_primary_10_1111_php_13801 crossref_primary_10_3389_fcell_2021_711005 crossref_primary_10_3390_cancers10060196 crossref_primary_10_3390_ijms21165816 crossref_primary_10_1016_j_bone_2024_117340 crossref_primary_10_1016_j_gene_2021_145803 crossref_primary_10_1007_s11033_021_07013_5 crossref_primary_10_1007_s11596_020_2306_x crossref_primary_10_1002_cbf_3650 crossref_primary_10_1016_j_biochi_2018_12_006 crossref_primary_10_3390_ijms25042013 crossref_primary_10_1002_jcp_28697 crossref_primary_10_1186_s13287_018_0773_9 crossref_primary_10_1186_s10020_021_00386_0 crossref_primary_10_1016_j_actaastro_2021_01_052 crossref_primary_10_1016_j_isci_2022_103949 crossref_primary_10_1038_s41413_019_0048_9 crossref_primary_10_1186_s13287_021_02149_4 crossref_primary_10_1111_jcmm_16273 crossref_primary_10_3389_fcell_2022_903278 crossref_primary_10_1016_j_apmt_2022_101465 crossref_primary_10_1186_s12967_023_03951_9 crossref_primary_10_1007_s00109_021_02164_1 crossref_primary_10_3389_fcell_2021_790050 crossref_primary_10_1186_s40510_022_00450_3 crossref_primary_10_1152_ajpcell_00382_2023 crossref_primary_10_5312_wjo_v15_i4_363 crossref_primary_10_1093_ejo_cjad011 crossref_primary_10_3389_fendo_2023_1219433 crossref_primary_10_3389_fphys_2022_917510 crossref_primary_10_1002_jbm_b_34620 crossref_primary_10_1002_jcp_29522 crossref_primary_10_1080_0886022X_2020_1758722 crossref_primary_10_1152_ajpcell_00364_2021 crossref_primary_10_3389_fcell_2022_903612 crossref_primary_10_1111_jcmm_15040 crossref_primary_10_3389_fcell_2021_807419 crossref_primary_10_1016_j_omtn_2020_07_017 crossref_primary_10_2174_1381612827666211210123959 crossref_primary_10_1002_art_43028 crossref_primary_10_1155_2024_5388064 crossref_primary_10_1016_j_bbrc_2019_02_145 crossref_primary_10_34133_research_0340 crossref_primary_10_1016_j_jot_2020_11_008 crossref_primary_10_1186_s10020_021_00350_y crossref_primary_10_1002_jcb_27797 crossref_primary_10_3389_fbioe_2022_780211 crossref_primary_10_3389_fcell_2021_646032 crossref_primary_10_2174_1871530319666190904161707 crossref_primary_10_1186_s12964_022_01027_7 crossref_primary_10_1111_bph_14836 crossref_primary_10_1186_s12860_019_0230_3 crossref_primary_10_3390_cells12212559 crossref_primary_10_1038_s41598_025_94012_2 crossref_primary_10_1039_C9RA06563F crossref_primary_10_1093_ejo_cjy057 crossref_primary_10_1016_j_jot_2020_03_005 crossref_primary_10_3389_fcell_2024_1303688 crossref_primary_10_1002_jcp_26589 crossref_primary_10_1089_dna_2020_5391 crossref_primary_10_2174_1574888X15666191227113742 |
Cites_doi | 10.1016/j.cell.2011.09.028 10.1016/j.cell.2014.03.008 10.1002/1097-4652(200008)184:2<207::AID-JCP8>3.0.CO;2-U 10.1038/boneres.2015.3 10.1359/jbmr.081102 10.3892/ijmm.2015.2354 10.1016/j.archoralbio.2014.10.007 10.1016/j.bbrc.2014.04.091 10.1016/j.bone.2007.12.224 10.1016/j.cell.2013.04.003 10.1038/srep06088 10.1016/j.bone.2010.03.014 10.1002/jbm.a.31685 10.1002/stem.2225 10.1196/annals.1402.081 10.1038/cddis.2016.112 10.3389/fgene.2014.00008 10.1016/j.semcdb.2014.05.015 10.1016/j.molcel.2011.08.018 10.1016/j.cell.2013.08.028 10.3109/03008207.2011.619284 10.1002/jbmr.561 10.1155/2015/632305 10.1073/pnas.1016758108 10.3892/mmr.2013.1540 10.1038/nature12785 10.18632/oncotarget.4154 10.1016/j.jbiomech.2014.12.032 10.1016/S0092-8674(04)00045-5 10.12659/MSM.897044 10.4252/wjsc.v5.i4.136 10.1038/nature12986 10.1073/pnas.0500775102 10.1002/stem.1989 10.1016/j.diff.2012.05.001 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Inc. Copyright © 2018 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2018 Elsevier Inc. – notice: Copyright © 2018 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.bone.2017.12.013 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1873-2763 |
EndPage | 70 |
ExternalDocumentID | 29253550 10_1016_j_bone_2017_12_013 S8756328217304696 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .1- .55 .FO .GJ .~1 0R~ 1B1 1P~ 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABGSF ABJNI ABLJU ABMAC ABMZM ABUDA ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADUVX AEBSH AEHWI AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEB HMK HMO HVGLF HZ~ IHE J1W J5H K-O KOM L7B M29 M41 MO0 N9A O-L O9- OAUVE OF0 OR. OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SEL SES SEW SPCBC SSH SSU SSZ T5K WUQ X7M Z5R ZGI ZMT ~02 ~G- 1RT AACTN AAIAV ABLVK ABYKQ AFCTW AFKWA AHPSJ AJBFU AJOXV AMFUW DOVZS EFLBG LCYCR RIG ZA5 AAYXX AGRNS CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c407t-68557beba3b98f4aa6a36d07bd921c313c2e891ba35b525e4ab9381a395ee83e3 |
IEDL.DBID | .~1 |
ISSN | 8756-3282 1873-2763 |
IngestDate | Fri Jul 11 00:36:09 EDT 2025 Mon Jul 21 05:53:08 EDT 2025 Thu Apr 24 23:06:28 EDT 2025 Tue Jul 01 03:41:35 EDT 2025 Fri Feb 23 02:45:16 EST 2024 Tue Aug 26 16:32:50 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Bone marrow mesenchymal stem cells (BMMSCs) LncRNA H19 miR-138 Osteogenesis Mechanical tension |
Language | English |
License | Copyright © 2018 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c407t-68557beba3b98f4aa6a36d07bd921c313c2e891ba35b525e4ab9381a395ee83e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 29253550 |
PQID | 1978715642 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1978715642 pubmed_primary_29253550 crossref_primary_10_1016_j_bone_2017_12_013 crossref_citationtrail_10_1016_j_bone_2017_12_013 elsevier_sciencedirect_doi_10_1016_j_bone_2017_12_013 elsevier_clinicalkey_doi_10_1016_j_bone_2017_12_013 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2018 2018-03-00 20180301 |
PublicationDateYYYYMMDD | 2018-03-01 |
PublicationDate_xml | – month: 03 year: 2018 text: March 2018 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Bone (New York, N.Y.) |
PublicationTitleAlternate | Bone |
PublicationYear | 2018 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Felekkis, Touvana, Stefanou, Deltas (bb0100) 2010; 14 Xia, Liao, Jiang, Shao, Xiao, Xi, Guo (bb0115) 2014; 4 Orom, Shiekhattar (bb0060) 2013; 154 Kumar, Armenteros-Monterroso, East, Chakravorty, Matthews, Winslow, Downward (bb0140) 2014; 505 Zhang, Zhong, Wang (bb0105) 2013 Kang, Yoon, Seo, Park (bb0025) 2012; 53 Zhang, Wu, Jiang, Jiang, Fang (bb0195) 2012; 29 Dai, Dong, Fang, Uemura (bb0015) 2008; 86 Wang, Chang (bb0065) 2011; 43 Tian, Ji, Xiao, Wang, Wang (bb0020) 2015; 2015 Cech, Steitz (bb0055) 2014; 157 Wang, Sun, Ma, Pan, Wang, Zhang (bb0120) 2014; 9 Yates, Norbury, Gilbert (bb0085) 2013; 153 Mizuno, Fujisawa, Kuboki (bb0210) 2000; 184 Fakhry, Hamade, Badran, Buchet, Magne (bb0005) 2013; 5 Jia, Jiang, Ni (bb0075) 2015; 60 Huang, Zheng, Jin, Li, Jia, Li (bb0180) 2016; 6 Li, Liang, Dou, Huang, Mo, Wang, Yu (bb0205) 2015; 2015 Yoon, Abdelmohsen, Gorospe (bb0110) 2014; 34 Mathews, Bhonde, Gupta, Totey (bb0215) 2012; 84 Bonewald, Johnson (bb0035) 2008; 42 Tan, Xu, Tong, Lin, Yu, Lin, Kuang (bb0040) 2015; 3 Hu, Liao, Ma, Chen, Huang, Zhang, Yu, Chen, Focal Adhesion (bb0200) 2016; 6 Bartel (bb0095) 2004; 116 Kartha, Subramanian (bb0090) 2014; 5 Tay, Rinn, Pandolfi (bb0170) 2014; 505 Cesana, Cacchiarelli, Legnini, Santini, Sthandier, Chinappi, Tramontano, Bozzoni (bb0135) 2011; 147 Huang, Zheng, Jia, Li (bb0175) 2015; 33 Ge, Yang, Zhao, Yu, Kirkwood, Franceschi (bb0190) 2012; 27 Franceschi, Ge, Xiao, Roca, Jiang (bb0185) 2007; 1116 Zuo, Wang, Lu, Dai, Liu, Cui (bb0070) 2013; 8 Eskildsen, Taipaleenmaki, Stenvang, Abdallah, Ditzel, Nossent, Bak, Kauppinen, Kassem (bb0155) 2011; 108 Zeng, Yin, Zhang, Jing, Feng (bb0030) 2015; 36 Zhuang, Ge, Yang, Huang, Zhuang, Chen, Zhang, Fu, Qu, Li (bb0080) 2015; 33 Robins, Li, Padgett (bb0145) 2005; 102 Qu, Xia, HH, CQ, Pan (bb0130) 2014; 448 Wang, Wang, Zhang, Tong, Zhang, Shan, Zhang, Li (bb0045) 2016; 7 Young, Gerard-O'Riley, Kim, Pavalko (bb0160) 2009; 24 Wang, Meng, Wang, Zhao, Peng, Wang (bb0010) 2016; 22 Liang, WM, Wong, Wang, Wang, GX, Zhang, Xiao, Wan, Zhang, Waye (bb0150) 2015; 6 Liang, WM, Wang, Sun, LL, Wong, Chan, Li, Waye, Zhang (bb0050) 2016; 6 Young, Gerard-O'Riley, Harrington, Pavalko (bb0165) 2010; 47 Wang, Sun, Ma, Pan, Wang, Zhang (bb0125) 2015; 48 Wang (10.1016/j.bone.2017.12.013_bb0120) 2014; 9 Liang (10.1016/j.bone.2017.12.013_bb0050) 2016; 6 Zhang (10.1016/j.bone.2017.12.013_bb0105) 2013 Huang (10.1016/j.bone.2017.12.013_bb0175) 2015; 33 Yates (10.1016/j.bone.2017.12.013_bb0085) 2013; 153 Zhuang (10.1016/j.bone.2017.12.013_bb0080) 2015; 33 Zuo (10.1016/j.bone.2017.12.013_bb0070) 2013; 8 Wang (10.1016/j.bone.2017.12.013_bb0125) 2015; 48 Tan (10.1016/j.bone.2017.12.013_bb0040) 2015; 3 Ge (10.1016/j.bone.2017.12.013_bb0190) 2012; 27 Kartha (10.1016/j.bone.2017.12.013_bb0090) 2014; 5 Mizuno (10.1016/j.bone.2017.12.013_bb0210) 2000; 184 Yoon (10.1016/j.bone.2017.12.013_bb0110) 2014; 34 Wang (10.1016/j.bone.2017.12.013_bb0010) 2016; 22 Bartel (10.1016/j.bone.2017.12.013_bb0095) 2004; 116 Young (10.1016/j.bone.2017.12.013_bb0165) 2010; 47 Cesana (10.1016/j.bone.2017.12.013_bb0135) 2011; 147 Mathews (10.1016/j.bone.2017.12.013_bb0215) 2012; 84 Zeng (10.1016/j.bone.2017.12.013_bb0030) 2015; 36 Young (10.1016/j.bone.2017.12.013_bb0160) 2009; 24 Wang (10.1016/j.bone.2017.12.013_bb0045) 2016; 7 Fakhry (10.1016/j.bone.2017.12.013_bb0005) 2013; 5 Kumar (10.1016/j.bone.2017.12.013_bb0140) 2014; 505 Jia (10.1016/j.bone.2017.12.013_bb0075) 2015; 60 Wang (10.1016/j.bone.2017.12.013_bb0065) 2011; 43 Xia (10.1016/j.bone.2017.12.013_bb0115) 2014; 4 Huang (10.1016/j.bone.2017.12.013_bb0180) 2016; 6 Kang (10.1016/j.bone.2017.12.013_bb0025) 2012; 53 Franceschi (10.1016/j.bone.2017.12.013_bb0185) 2007; 1116 Robins (10.1016/j.bone.2017.12.013_bb0145) 2005; 102 Hu (10.1016/j.bone.2017.12.013_bb0200) 2016; 6 Qu (10.1016/j.bone.2017.12.013_bb0130) 2014; 448 Li (10.1016/j.bone.2017.12.013_bb0205) 2015; 2015 Tian (10.1016/j.bone.2017.12.013_bb0020) 2015; 2015 Orom (10.1016/j.bone.2017.12.013_bb0060) 2013; 154 Liang (10.1016/j.bone.2017.12.013_bb0150) 2015; 6 Zhang (10.1016/j.bone.2017.12.013_bb0195) 2012; 29 Cech (10.1016/j.bone.2017.12.013_bb0055) 2014; 157 Dai (10.1016/j.bone.2017.12.013_bb0015) 2008; 86 Felekkis (10.1016/j.bone.2017.12.013_bb0100) 2010; 14 Bonewald (10.1016/j.bone.2017.12.013_bb0035) 2008; 42 Tay (10.1016/j.bone.2017.12.013_bb0170) 2014; 505 Eskildsen (10.1016/j.bone.2017.12.013_bb0155) 2011; 108 |
References_xml | – volume: 6 year: 2016 ident: bb0180 article-title: Long non-coding RNA H19 inhibits adipocyte differentiation of bone marrow mesenchymal stem cells through epigenetic modulation of histone deacetylases publication-title: Sci. Rep. – volume: 505 start-page: 212 year: 2014 end-page: 217 ident: bb0140 article-title: HMGA2 functions as a competing endogenous RNA to promote lung cancer progression publication-title: Nature – volume: 448 start-page: 241 year: 2014 end-page: 247 ident: bb0130 article-title: PDGF-regulated miRNA-138 inhibits the osteogenic differentiation of mesenchymal stem cells publication-title: Biochem. Biophys. Res. Commun. – volume: 36 start-page: 1273 year: 2015 end-page: 1281 ident: bb0030 article-title: Cyclic stretch enhances bone morphogenetic protein-2-induced osteoblastic differentiation through the inhibition of Hey1 publication-title: Int. J. Mol. Med. – volume: 147 start-page: 358 year: 2011 end-page: 369 ident: bb0135 article-title: A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA publication-title: Cell – volume: 42 start-page: 606 year: 2008 end-page: 615 ident: bb0035 article-title: Osteocytes, mechanosensing and Wnt signaling publication-title: Bone – volume: 8 start-page: 463 year: 2013 end-page: 467 ident: bb0070 article-title: Expression profiling of lncRNAs in C3H10T1/2 mesenchymal stem cells undergoing early osteoblast differentiation publication-title: Mol. Med. Rep. – volume: 108 start-page: 6139 year: 2011 end-page: 6144 ident: bb0155 article-title: MicroRNA-138 regulates osteogenic differentiation of human stromal (mesenchymal) stem cells in vivo publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 29 start-page: 1083 year: 2012 end-page: 1089 ident: bb0195 article-title: Osteogenic response of mesenchymal stem cells to continuous mechanical strain is dependent on ERK1/2-Runx2 signaling publication-title: Int. J. Mol. Med. – volume: 102 start-page: 4006 year: 2005 end-page: 4009 ident: bb0145 article-title: Incorporating structure to predict microRNA targets publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 4 start-page: 6088 year: 2014 ident: bb0115 article-title: Long noncoding RNA associated-competing endogenous RNAs in gastric cancer publication-title: Sci. Rep. – volume: 6 start-page: 22513 year: 2015 end-page: 22525 ident: bb0150 article-title: The lncRNA H19 promotes epithelial to mesenchymal transition by functioning as miRNA sponges in colorectal cancer publication-title: Oncotarget – volume: 2015 year: 2015 ident: bb0020 article-title: CXCL13 promotes osteogenic differentiation of mesenchymal stem cells by inhibiting miR-23a expression publication-title: Stem Cells Int. – volume: 3 year: 2015 ident: bb0040 article-title: Decreased osteogenesis of adult mesenchymal stem cells by reactive oxygen species under cyclic stretch: a possible mechanism of age related osteoporosis publication-title: Bone Res. – volume: 157 start-page: 77 year: 2014 end-page: 94 ident: bb0055 article-title: The noncoding RNA revolution-trashing old rules to forge new ones publication-title: Cell – volume: 9 year: 2014 ident: bb0120 article-title: Polycystin-1 mediates mechanical strain-induced osteoblastic Mechanoresponses via potentiation of intracellular calcium and Akt/beta-catenin pathway publication-title: PLoS One – volume: 33 start-page: 3481 year: 2015 end-page: 3492 ident: bb0175 article-title: Long noncoding RNA H19 promotes osteoblast differentiation via TGF-beta1/Smad3/HDAC signaling pathway by deriving miR-675 publication-title: Stem Cells – volume: 14 start-page: 236 year: 2010 end-page: 240 ident: bb0100 article-title: microRNAs: a newly described class of encoded molecules that play a role in health and disease publication-title: Hippokratia – volume: 153 start-page: 516 year: 2013 end-page: 519 ident: bb0085 article-title: The long and short of microRNA publication-title: Cell – volume: 34 start-page: 9 year: 2014 end-page: 14 ident: bb0110 article-title: Functional interactions among microRNAs and long noncoding RNAs publication-title: Semin. Cell Dev. Biol. – volume: 48 start-page: 432 year: 2015 end-page: 440 ident: bb0125 article-title: Biglycan mediates suture expansion osteogenesis via potentiation of Wnt/beta-catenin signaling publication-title: J. Biomech. – volume: 60 start-page: 234 year: 2015 end-page: 241 ident: bb0075 article-title: Down-regulated non-coding RNA (lncRNA-ANCR) promotes osteogenic differentiation of periodontal ligament stem cells publication-title: Arch. Oral Biol. – volume: 84 start-page: 185 year: 2012 end-page: 192 ident: bb0215 article-title: Extracellular matrix protein mediated regulation of the osteoblast differentiation of bone marrow derived human mesenchymal stem cells publication-title: Differentiation – year: 2013 ident: bb0105 article-title: A signal-amplification circuit between miR-218 and Wnt/beta-catenin signal promotes human adipose tissue-derived stem cells osteogenic differentiation publication-title: Bone – volume: 47 start-page: 74 year: 2010 end-page: 82 ident: bb0165 article-title: Activation of NF-kappaB by fluid shear stress, but not TNF-alpha, requires focal adhesion kinase in osteoblasts publication-title: Bone – volume: 27 start-page: 538 year: 2012 end-page: 551 ident: bb0190 article-title: Interactions between extracellular signal-regulated kinase 1/2 and p38 MAP kinase pathways in the control of RUNX2 phosphorylation and transcriptional activity publication-title: J. Bone Miner. Res. – volume: 6 year: 2016 ident: bb0050 article-title: H19 activates Wnt signaling and promotes osteoblast differentiation by functioning as a competing endogenous RNA publication-title: Sci. Rep. – volume: 154 start-page: 1190 year: 2013 end-page: 1193 ident: bb0060 article-title: Long noncoding RNAs usher in a new era in the biology of enhancers publication-title: Cell – volume: 505 start-page: 344 year: 2014 end-page: 352 ident: bb0170 article-title: The multilayered complexity of ceRNA crosstalk and competition publication-title: Nature – volume: 116 start-page: 281 year: 2004 end-page: 297 ident: bb0095 article-title: MicroRNAs: genomics, biogenesis, mechanism, and function publication-title: Cell – volume: 6 year: 2016 ident: bb0200 article-title: Kinase signaling mediated the enhancement of osteogenesis of human mesenchymal stem cells induced by extracorporeal shockwave publication-title: Sci. Rep. – volume: 86 start-page: 235 year: 2008 end-page: 243 ident: bb0015 article-title: Stimulation of osteogenic activity in mesenchymal stem cells by FK506 publication-title: J. Biomed. Mater. Res. A – volume: 43 start-page: 904 year: 2011 end-page: 914 ident: bb0065 article-title: Molecular mechanisms of long noncoding RNAs publication-title: Mol. Cell – volume: 5 start-page: 8 year: 2014 ident: bb0090 article-title: Competing endogenous RNAs (ceRNAs): new entrants to the intricacies of gene regulation publication-title: Front. Genet. – volume: 33 start-page: 1985 year: 2015 end-page: 1997 ident: bb0080 article-title: Upregulation of lncRNA MEG3 promotes osteogenic differentiation of mesenchymal stem cells from multiple myeloma patients by targeting BMP4 transcription publication-title: Stem Cells – volume: 2015 year: 2015 ident: bb0205 article-title: Mechanical strain regulates osteogenic and adipogenic differentiation of bone marrow mesenchymal stem cells publication-title: Biomed. Res. Int. – volume: 5 start-page: 136 year: 2013 end-page: 148 ident: bb0005 article-title: Molecular mechanisms of mesenchymal stem cell differentiation towards osteoblasts publication-title: World J. Stem Cells – volume: 7 year: 2016 ident: bb0045 article-title: Mechanical stimulation orchestrates the osteogenic differentiation of human bone marrow stromal cells by regulating HDAC1 publication-title: Cell Death Dis. – volume: 24 start-page: 411 year: 2009 end-page: 424 ident: bb0160 article-title: Focal adhesion kinase is important for fluid shear stress-induced mechanotransduction in osteoblasts publication-title: J. Bone Miner. Res. – volume: 22 start-page: 226 year: 2016 end-page: 233 ident: bb0010 article-title: Differentiation of bone marrow mesenchymal stem cells in osteoblasts and adipocytes and its role in treatment of osteoporosis publication-title: Med. Sci. Monit. – volume: 1116 start-page: 196 year: 2007 end-page: 207 ident: bb0185 article-title: Transcriptional regulation of osteoblasts publication-title: Ann. N. Y. Acad. Sci. – volume: 53 start-page: 149 year: 2012 end-page: 159 ident: bb0025 article-title: Effect of mechanical stimulation on the differentiation of cord stem cells publication-title: Connect. Tissue Res. – volume: 184 start-page: 207 year: 2000 end-page: 213 ident: bb0210 article-title: Type I collagen-induced osteoblastic differentiation of bone-marrow cells mediated by collagen-alpha2beta1 integrin interaction publication-title: J. Cell. Physiol. – volume: 6 year: 2016 ident: 10.1016/j.bone.2017.12.013_bb0200 article-title: Kinase signaling mediated the enhancement of osteogenesis of human mesenchymal stem cells induced by extracorporeal shockwave publication-title: Sci. Rep. – volume: 147 start-page: 358 year: 2011 ident: 10.1016/j.bone.2017.12.013_bb0135 article-title: A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA publication-title: Cell doi: 10.1016/j.cell.2011.09.028 – volume: 6 year: 2016 ident: 10.1016/j.bone.2017.12.013_bb0180 article-title: Long non-coding RNA H19 inhibits adipocyte differentiation of bone marrow mesenchymal stem cells through epigenetic modulation of histone deacetylases publication-title: Sci. Rep. – volume: 157 start-page: 77 year: 2014 ident: 10.1016/j.bone.2017.12.013_bb0055 article-title: The noncoding RNA revolution-trashing old rules to forge new ones publication-title: Cell doi: 10.1016/j.cell.2014.03.008 – volume: 9 year: 2014 ident: 10.1016/j.bone.2017.12.013_bb0120 article-title: Polycystin-1 mediates mechanical strain-induced osteoblastic Mechanoresponses via potentiation of intracellular calcium and Akt/beta-catenin pathway publication-title: PLoS One – volume: 184 start-page: 207 year: 2000 ident: 10.1016/j.bone.2017.12.013_bb0210 article-title: Type I collagen-induced osteoblastic differentiation of bone-marrow cells mediated by collagen-alpha2beta1 integrin interaction publication-title: J. Cell. Physiol. doi: 10.1002/1097-4652(200008)184:2<207::AID-JCP8>3.0.CO;2-U – volume: 3 year: 2015 ident: 10.1016/j.bone.2017.12.013_bb0040 article-title: Decreased osteogenesis of adult mesenchymal stem cells by reactive oxygen species under cyclic stretch: a possible mechanism of age related osteoporosis publication-title: Bone Res. doi: 10.1038/boneres.2015.3 – volume: 24 start-page: 411 year: 2009 ident: 10.1016/j.bone.2017.12.013_bb0160 article-title: Focal adhesion kinase is important for fluid shear stress-induced mechanotransduction in osteoblasts publication-title: J. Bone Miner. Res. doi: 10.1359/jbmr.081102 – volume: 36 start-page: 1273 year: 2015 ident: 10.1016/j.bone.2017.12.013_bb0030 article-title: Cyclic stretch enhances bone morphogenetic protein-2-induced osteoblastic differentiation through the inhibition of Hey1 publication-title: Int. J. Mol. Med. doi: 10.3892/ijmm.2015.2354 – volume: 60 start-page: 234 year: 2015 ident: 10.1016/j.bone.2017.12.013_bb0075 article-title: Down-regulated non-coding RNA (lncRNA-ANCR) promotes osteogenic differentiation of periodontal ligament stem cells publication-title: Arch. Oral Biol. doi: 10.1016/j.archoralbio.2014.10.007 – volume: 448 start-page: 241 year: 2014 ident: 10.1016/j.bone.2017.12.013_bb0130 article-title: PDGF-regulated miRNA-138 inhibits the osteogenic differentiation of mesenchymal stem cells publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2014.04.091 – volume: 42 start-page: 606 year: 2008 ident: 10.1016/j.bone.2017.12.013_bb0035 article-title: Osteocytes, mechanosensing and Wnt signaling publication-title: Bone doi: 10.1016/j.bone.2007.12.224 – volume: 153 start-page: 516 year: 2013 ident: 10.1016/j.bone.2017.12.013_bb0085 article-title: The long and short of microRNA publication-title: Cell doi: 10.1016/j.cell.2013.04.003 – volume: 4 start-page: 6088 year: 2014 ident: 10.1016/j.bone.2017.12.013_bb0115 article-title: Long noncoding RNA associated-competing endogenous RNAs in gastric cancer publication-title: Sci. Rep. doi: 10.1038/srep06088 – volume: 47 start-page: 74 year: 2010 ident: 10.1016/j.bone.2017.12.013_bb0165 article-title: Activation of NF-kappaB by fluid shear stress, but not TNF-alpha, requires focal adhesion kinase in osteoblasts publication-title: Bone doi: 10.1016/j.bone.2010.03.014 – volume: 86 start-page: 235 year: 2008 ident: 10.1016/j.bone.2017.12.013_bb0015 article-title: Stimulation of osteogenic activity in mesenchymal stem cells by FK506 publication-title: J. Biomed. Mater. Res. A doi: 10.1002/jbm.a.31685 – volume: 33 start-page: 3481 year: 2015 ident: 10.1016/j.bone.2017.12.013_bb0175 article-title: Long noncoding RNA H19 promotes osteoblast differentiation via TGF-beta1/Smad3/HDAC signaling pathway by deriving miR-675 publication-title: Stem Cells doi: 10.1002/stem.2225 – volume: 1116 start-page: 196 year: 2007 ident: 10.1016/j.bone.2017.12.013_bb0185 article-title: Transcriptional regulation of osteoblasts publication-title: Ann. N. Y. Acad. Sci. doi: 10.1196/annals.1402.081 – volume: 7 year: 2016 ident: 10.1016/j.bone.2017.12.013_bb0045 article-title: Mechanical stimulation orchestrates the osteogenic differentiation of human bone marrow stromal cells by regulating HDAC1 publication-title: Cell Death Dis. doi: 10.1038/cddis.2016.112 – volume: 5 start-page: 8 year: 2014 ident: 10.1016/j.bone.2017.12.013_bb0090 article-title: Competing endogenous RNAs (ceRNAs): new entrants to the intricacies of gene regulation publication-title: Front. Genet. doi: 10.3389/fgene.2014.00008 – volume: 34 start-page: 9 year: 2014 ident: 10.1016/j.bone.2017.12.013_bb0110 article-title: Functional interactions among microRNAs and long noncoding RNAs publication-title: Semin. Cell Dev. Biol. doi: 10.1016/j.semcdb.2014.05.015 – volume: 43 start-page: 904 year: 2011 ident: 10.1016/j.bone.2017.12.013_bb0065 article-title: Molecular mechanisms of long noncoding RNAs publication-title: Mol. Cell doi: 10.1016/j.molcel.2011.08.018 – volume: 2015 year: 2015 ident: 10.1016/j.bone.2017.12.013_bb0205 article-title: Mechanical strain regulates osteogenic and adipogenic differentiation of bone marrow mesenchymal stem cells publication-title: Biomed. Res. Int. – volume: 154 start-page: 1190 year: 2013 ident: 10.1016/j.bone.2017.12.013_bb0060 article-title: Long noncoding RNAs usher in a new era in the biology of enhancers publication-title: Cell doi: 10.1016/j.cell.2013.08.028 – volume: 53 start-page: 149 year: 2012 ident: 10.1016/j.bone.2017.12.013_bb0025 article-title: Effect of mechanical stimulation on the differentiation of cord stem cells publication-title: Connect. Tissue Res. doi: 10.3109/03008207.2011.619284 – volume: 27 start-page: 538 year: 2012 ident: 10.1016/j.bone.2017.12.013_bb0190 article-title: Interactions between extracellular signal-regulated kinase 1/2 and p38 MAP kinase pathways in the control of RUNX2 phosphorylation and transcriptional activity publication-title: J. Bone Miner. Res. doi: 10.1002/jbmr.561 – volume: 6 year: 2016 ident: 10.1016/j.bone.2017.12.013_bb0050 article-title: H19 activates Wnt signaling and promotes osteoblast differentiation by functioning as a competing endogenous RNA publication-title: Sci. Rep. – volume: 2015 year: 2015 ident: 10.1016/j.bone.2017.12.013_bb0020 article-title: CXCL13 promotes osteogenic differentiation of mesenchymal stem cells by inhibiting miR-23a expression publication-title: Stem Cells Int. doi: 10.1155/2015/632305 – volume: 108 start-page: 6139 year: 2011 ident: 10.1016/j.bone.2017.12.013_bb0155 article-title: MicroRNA-138 regulates osteogenic differentiation of human stromal (mesenchymal) stem cells in vivo publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1016758108 – volume: 8 start-page: 463 year: 2013 ident: 10.1016/j.bone.2017.12.013_bb0070 article-title: Expression profiling of lncRNAs in C3H10T1/2 mesenchymal stem cells undergoing early osteoblast differentiation publication-title: Mol. Med. Rep. doi: 10.3892/mmr.2013.1540 – volume: 505 start-page: 212 year: 2014 ident: 10.1016/j.bone.2017.12.013_bb0140 article-title: HMGA2 functions as a competing endogenous RNA to promote lung cancer progression publication-title: Nature doi: 10.1038/nature12785 – volume: 6 start-page: 22513 year: 2015 ident: 10.1016/j.bone.2017.12.013_bb0150 article-title: The lncRNA H19 promotes epithelial to mesenchymal transition by functioning as miRNA sponges in colorectal cancer publication-title: Oncotarget doi: 10.18632/oncotarget.4154 – volume: 48 start-page: 432 year: 2015 ident: 10.1016/j.bone.2017.12.013_bb0125 article-title: Biglycan mediates suture expansion osteogenesis via potentiation of Wnt/beta-catenin signaling publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2014.12.032 – volume: 116 start-page: 281 year: 2004 ident: 10.1016/j.bone.2017.12.013_bb0095 article-title: MicroRNAs: genomics, biogenesis, mechanism, and function publication-title: Cell doi: 10.1016/S0092-8674(04)00045-5 – volume: 22 start-page: 226 year: 2016 ident: 10.1016/j.bone.2017.12.013_bb0010 article-title: Differentiation of bone marrow mesenchymal stem cells in osteoblasts and adipocytes and its role in treatment of osteoporosis publication-title: Med. Sci. Monit. doi: 10.12659/MSM.897044 – volume: 29 start-page: 1083 year: 2012 ident: 10.1016/j.bone.2017.12.013_bb0195 article-title: Osteogenic response of mesenchymal stem cells to continuous mechanical strain is dependent on ERK1/2-Runx2 signaling publication-title: Int. J. Mol. Med. – year: 2013 ident: 10.1016/j.bone.2017.12.013_bb0105 article-title: A signal-amplification circuit between miR-218 and Wnt/beta-catenin signal promotes human adipose tissue-derived stem cells osteogenic differentiation publication-title: Bone – volume: 5 start-page: 136 year: 2013 ident: 10.1016/j.bone.2017.12.013_bb0005 article-title: Molecular mechanisms of mesenchymal stem cell differentiation towards osteoblasts publication-title: World J. Stem Cells doi: 10.4252/wjsc.v5.i4.136 – volume: 505 start-page: 344 year: 2014 ident: 10.1016/j.bone.2017.12.013_bb0170 article-title: The multilayered complexity of ceRNA crosstalk and competition publication-title: Nature doi: 10.1038/nature12986 – volume: 102 start-page: 4006 year: 2005 ident: 10.1016/j.bone.2017.12.013_bb0145 article-title: Incorporating structure to predict microRNA targets publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0500775102 – volume: 33 start-page: 1985 year: 2015 ident: 10.1016/j.bone.2017.12.013_bb0080 article-title: Upregulation of lncRNA MEG3 promotes osteogenic differentiation of mesenchymal stem cells from multiple myeloma patients by targeting BMP4 transcription publication-title: Stem Cells doi: 10.1002/stem.1989 – volume: 14 start-page: 236 year: 2010 ident: 10.1016/j.bone.2017.12.013_bb0100 article-title: microRNAs: a newly described class of encoded molecules that play a role in health and disease publication-title: Hippokratia – volume: 84 start-page: 185 year: 2012 ident: 10.1016/j.bone.2017.12.013_bb0215 article-title: Extracellular matrix protein mediated regulation of the osteoblast differentiation of bone marrow derived human mesenchymal stem cells publication-title: Differentiation doi: 10.1016/j.diff.2012.05.001 |
SSID | ssj0003971 |
Score | 2.5634148 |
Snippet | Bone marrow mesenchymal stem cells (BMMSCs) provide the biological basis for bone reconstruction. Mechanical tension stimulation as a potent modulator is able... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 62 |
SubjectTerms | Base Sequence Bone marrow mesenchymal stem cells (BMMSCs) Cell Differentiation - genetics Cell Line Focal Adhesion Protein-Tyrosine Kinases - metabolism Humans LncRNA H19 Mechanical tension Mesenchymal Stem Cells - metabolism MicroRNAs - genetics MicroRNAs - metabolism miR-138 Osteogenesis Osteogenesis - genetics RNA, Long Noncoding - genetics RNA, Long Noncoding - metabolism RNA, Messenger - genetics RNA, Messenger - metabolism Stress, Mechanical |
Title | Long non-coding RNA H19 mediates mechanical tension-induced osteogenesis of bone marrow mesenchymal stem cells via FAK by sponging miR-138 |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S8756328217304696 https://dx.doi.org/10.1016/j.bone.2017.12.013 https://www.ncbi.nlm.nih.gov/pubmed/29253550 https://www.proquest.com/docview/1978715642 |
Volume | 108 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbtQw0KqKhLggaHksfWiQEBcUNrbjJD5GFauF0j0UKvVm2Ym3DWKTqrtF2gsf0K_ujJMs4tAiccvDk9ie8Tw8DzP2DmWeix2u73nlVZQ4l0cuOHklOfmkkKWlfOeTWTo9S76cq_MtdjTkwlBYZc_7O54euHX_ZNzP5viqrsffUNPGj-WoU5N3T1PZ7STJiMo__v4T5oHylnd7fGlErfvEmS7Gy7UNlcrkWdgS5PI-4XSf8hmE0OQZe9prj1B0HXzOtnyzw3aLBi3nxRreQ4jnDBvlO-zxSe8232W3X9vmAtDQj8qWZBWczgqYcg0hbwSVTbygDGBCGISQdmyKxjqivQLKAmkviCXWS2jnQKOBRajdiGBLnLHL9QLhqCI0kB9gCb9qC5PiGNwaKAKXzkGCRX1KlQhfsLPJp-9H06g_hCEq0dZbRWmuVOa8s9LpfJ5Ym1qZVnHmKi14Kbkshc81x_fKKaF8Yp1GLcBKrbzPpZcv2TaOz79mkNmsRGEotE1kUqFdqBI79zyLbZaXlscjxofZN2VfoZwOyvhphlC0H4bGaAhjhguDGBuxDxuYq64-x4Ot5YBUM2SeIq80KD4ehFIbqL9o859wbwe6MbhoCQO28e3N0nC03TMq0yNG7FVHUJveCy0UKoHxm__86x57gnd5Fye3z7ZX1zf-ABWnlTsMK-OQPSo-H09nd_UeFdA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkYALgpbH8hwk4ILSXdtxEh84rIDVln0cSiv1ZuzEW4LYpCJb0F74Afwd_iAzeSzi0CIh9RYlHsf22DNjzzdjxp6jznMDh-t7kXkVhM4lgaudvJKcfFLI1FK882wejY_C98fqeIv96mJhCFbZyv5GptfSun3Tb0ezf5rn_Q9oaWNlCdrU5N3TUYusnPj1d9y3Va_33yKTXwgxenf4Zhy0VwsEKe5gVkGUKBU776x0OlmE1kZWRtkgdpkWPJVcpsInmuN35ZRQPrROo26zUivvE-kl1nuFXQ1RXNC1CXs__uBKUMHz5lAxCqh5baROAypzZUG5OXlcn0FyeZ42PM_arbXe6Ba72ZqrMGxG5Dbb8sUO2x0WuFVfruEl1ADS-mR-h12btX76XfZzWhYnUJRFkJakHOFgPoQx11AHqqB1iw8UckwzBGoMPRbNiwznWQYUdlKekAzOKygXQL2BZZ0sEskqZNGn9RLpKAU1kOOhgm-5hdFwAm4NBPmli5dgmR9Q6sM77OhSWHOXbWP__H0GsY1T1L5C21CGGW5EVWgXnscDGyep5YMe493om7RNiU43c3wxHfbts6E-GuKY4cIgx3rs1YbmtEkIcmFp2THVdKGuKJwN6qsLqdSG6q_F8E-6Z928MSgliAO28OVZZbhGwUx5gUSP3Wsm1Kb1QguFVufgwX_-9Sm7Pj6cTc10fz55yG7gl6QB6T1i26uvZ_4xWm0r96ReJcA-Xvay_A3W11GS |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Long+non-coding+RNA+H19+mediates+mechanical+tension-induced+osteogenesis+of+bone+marrow+mesenchymal+stem+cells+via+FAK+by+sponging+miR-138&rft.jtitle=Bone+%28New+York%2C+N.Y.%29&rft.au=Wu%2C+Jiajing&rft.au=Zhao%2C+Jing&rft.au=Sun%2C+Lian&rft.au=Pan%2C+Yongchu&rft.date=2018-03-01&rft.pub=Elsevier+Inc&rft.issn=8756-3282&rft.eissn=1873-2763&rft.volume=108&rft.spage=62&rft.epage=70&rft_id=info:doi/10.1016%2Fj.bone.2017.12.013&rft.externalDocID=S8756328217304696 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=8756-3282&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=8756-3282&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=8756-3282&client=summon |