Long non-coding RNA H19 mediates mechanical tension-induced osteogenesis of bone marrow mesenchymal stem cells via FAK by sponging miR-138

Bone marrow mesenchymal stem cells (BMMSCs) provide the biological basis for bone reconstruction. Mechanical tension stimulation as a potent modulator is able to promote osteogenic capability of BMMSCs. Long non-coding RNAs (LncRNAs) as competing endogenous RNAs (ceRNAs) for microRNAs, are postulate...

Full description

Saved in:
Bibliographic Details
Published inBone (New York, N.Y.) Vol. 108; pp. 62 - 70
Main Authors Wu, Jiajing, Zhao, Jing, Sun, Lian, Pan, Yongchu, Wang, Hua, Zhang, Wei-Bing
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.03.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Bone marrow mesenchymal stem cells (BMMSCs) provide the biological basis for bone reconstruction. Mechanical tension stimulation as a potent modulator is able to promote osteogenic capability of BMMSCs. Long non-coding RNAs (LncRNAs) as competing endogenous RNAs (ceRNAs) for microRNAs, are postulated to regulate the osteogenic differentiation of stem cells. However, the mechanism how (whether) lncRNAs mediates tension-induced osteogenesis of BMSCs still remains poor understood. Here, human BMMSCs (hBMMSCs) were subjected to mechanical tension (10%, 0.5Hz). Results showed that mechanical tension could enhance osteogenic differentiation and increase H19 expression. H19 deficiency suppressed tension-induced osteogenic differentiation, demonstrating that H19 could mediate tension-induced osteogenesis in hBMMSCs. Besides, mechanical tension could suppress miR-138 expression, and down-regulated miR-138 promoted tension-induced osteogenesis in hBMMSCs. Luciferase reporter assays illustrated that H19 had binding sites with miR-138, and H19 deficiency increased miR-138 level, demonstrating that H19 may act as a ceRNA for miR-138 in hBMMSCs. Luciferase reporter assays also showed that miR-138 could target PTK2,a gene encoding focal adhesion kinase (FAK). Up-regulated miR-138 impaired increased FAK expression induced by mechanical tension. The relationship among H19, miR-138 and FAK under tension condition was further studied. H19 deficiency inhibited FAK expression, which could be partly rescued by knock-downing miR-138. In addition, suppressed tension-induced osteogenic differentiation in H19 defective cells was partly rescued by miR-138 knockdown. Taken together, this study indicated that H19 is a positive regulator in tension-induced osteogenesis of hBMMSCs through acting as a ceRNA for miR-138 and then up-regulating downstream FAK. •Mechanical tension could enhance osteogenesis of hBMMSCs.•Long non-coding RNA H19 mediates mechanical tension-induced osteogenesis.•H19 acts as a sponge to hijack miR-138 under tension strain.•H19 as ceRNA for miR-138 regulates tension-induced osteogenesis via downstream FAK.
AbstractList Bone marrow mesenchymal stem cells (BMMSCs) provide the biological basis for bone reconstruction. Mechanical tension stimulation as a potent modulator is able to promote osteogenic capability of BMMSCs. Long non-coding RNAs (LncRNAs) as competing endogenous RNAs (ceRNAs) for microRNAs, are postulated to regulate the osteogenic differentiation of stem cells. However, the mechanism how (whether) lncRNAs mediates tension-induced osteogenesis of BMSCs still remains poor understood. Here, human BMMSCs (hBMMSCs) were subjected to mechanical tension (10%, 0.5Hz). Results showed that mechanical tension could enhance osteogenic differentiation and increase H19 expression. H19 deficiency suppressed tension-induced osteogenic differentiation, demonstrating that H19 could mediate tension-induced osteogenesis in hBMMSCs. Besides, mechanical tension could suppress miR-138 expression, and down-regulated miR-138 promoted tension-induced osteogenesis in hBMMSCs. Luciferase reporter assays illustrated that H19 had binding sites with miR-138, and H19 deficiency increased miR-138 level, demonstrating that H19 may act as a ceRNA for miR-138 in hBMMSCs. Luciferase reporter assays also showed that miR-138 could target PTK2,a gene encoding focal adhesion kinase (FAK). Up-regulated miR-138 impaired increased FAK expression induced by mechanical tension. The relationship among H19, miR-138 and FAK under tension condition was further studied. H19 deficiency inhibited FAK expression, which could be partly rescued by knock-downing miR-138. In addition, suppressed tension-induced osteogenic differentiation in H19 defective cells was partly rescued by miR-138 knockdown. Taken together, this study indicated that H19 is a positive regulator in tension-induced osteogenesis of hBMMSCs through acting as a ceRNA for miR-138 and then up-regulating downstream FAK. •Mechanical tension could enhance osteogenesis of hBMMSCs.•Long non-coding RNA H19 mediates mechanical tension-induced osteogenesis.•H19 acts as a sponge to hijack miR-138 under tension strain.•H19 as ceRNA for miR-138 regulates tension-induced osteogenesis via downstream FAK.
Bone marrow mesenchymal stem cells (BMMSCs) provide the biological basis for bone reconstruction. Mechanical tension stimulation as a potent modulator is able to promote osteogenic capability of BMMSCs. Long non-coding RNAs (LncRNAs) as competing endogenous RNAs (ceRNAs) for microRNAs, are postulated to regulate the osteogenic differentiation of stem cells. However, the mechanism how (whether) lncRNAs mediates tension-induced osteogenesis of BMSCs still remains poor understood. Here, human BMMSCs (hBMMSCs) were subjected to mechanical tension (10%, 0.5Hz). Results showed that mechanical tension could enhance osteogenic differentiation and increase H19 expression. H19 deficiency suppressed tension-induced osteogenic differentiation, demonstrating that H19 could mediate tension-induced osteogenesis in hBMMSCs. Besides, mechanical tension could suppress miR-138 expression, and down-regulated miR-138 promoted tension-induced osteogenesis in hBMMSCs. Luciferase reporter assays illustrated that H19 had binding sites with miR-138, and H19 deficiency increased miR-138 level, demonstrating that H19 may act as a ceRNA for miR-138 in hBMMSCs. Luciferase reporter assays also showed that miR-138 could target PTK2,a gene encoding focal adhesion kinase (FAK). Up-regulated miR-138 impaired increased FAK expression induced by mechanical tension. The relationship among H19, miR-138 and FAK under tension condition was further studied. H19 deficiency inhibited FAK expression, which could be partly rescued by knock-downing miR-138. In addition, suppressed tension-induced osteogenic differentiation in H19 defective cells was partly rescued by miR-138 knockdown. Taken together, this study indicated that H19 is a positive regulator in tension-induced osteogenesis of hBMMSCs through acting as a ceRNA for miR-138 and then up-regulating downstream FAK.Bone marrow mesenchymal stem cells (BMMSCs) provide the biological basis for bone reconstruction. Mechanical tension stimulation as a potent modulator is able to promote osteogenic capability of BMMSCs. Long non-coding RNAs (LncRNAs) as competing endogenous RNAs (ceRNAs) for microRNAs, are postulated to regulate the osteogenic differentiation of stem cells. However, the mechanism how (whether) lncRNAs mediates tension-induced osteogenesis of BMSCs still remains poor understood. Here, human BMMSCs (hBMMSCs) were subjected to mechanical tension (10%, 0.5Hz). Results showed that mechanical tension could enhance osteogenic differentiation and increase H19 expression. H19 deficiency suppressed tension-induced osteogenic differentiation, demonstrating that H19 could mediate tension-induced osteogenesis in hBMMSCs. Besides, mechanical tension could suppress miR-138 expression, and down-regulated miR-138 promoted tension-induced osteogenesis in hBMMSCs. Luciferase reporter assays illustrated that H19 had binding sites with miR-138, and H19 deficiency increased miR-138 level, demonstrating that H19 may act as a ceRNA for miR-138 in hBMMSCs. Luciferase reporter assays also showed that miR-138 could target PTK2,a gene encoding focal adhesion kinase (FAK). Up-regulated miR-138 impaired increased FAK expression induced by mechanical tension. The relationship among H19, miR-138 and FAK under tension condition was further studied. H19 deficiency inhibited FAK expression, which could be partly rescued by knock-downing miR-138. In addition, suppressed tension-induced osteogenic differentiation in H19 defective cells was partly rescued by miR-138 knockdown. Taken together, this study indicated that H19 is a positive regulator in tension-induced osteogenesis of hBMMSCs through acting as a ceRNA for miR-138 and then up-regulating downstream FAK.
Bone marrow mesenchymal stem cells (BMMSCs) provide the biological basis for bone reconstruction. Mechanical tension stimulation as a potent modulator is able to promote osteogenic capability of BMMSCs. Long non-coding RNAs (LncRNAs) as competing endogenous RNAs (ceRNAs) for microRNAs, are postulated to regulate the osteogenic differentiation of stem cells. However, the mechanism how (whether) lncRNAs mediates tension-induced osteogenesis of BMSCs still remains poor understood. Here, human BMMSCs (hBMMSCs) were subjected to mechanical tension (10%, 0.5Hz). Results showed that mechanical tension could enhance osteogenic differentiation and increase H19 expression. H19 deficiency suppressed tension-induced osteogenic differentiation, demonstrating that H19 could mediate tension-induced osteogenesis in hBMMSCs. Besides, mechanical tension could suppress miR-138 expression, and down-regulated miR-138 promoted tension-induced osteogenesis in hBMMSCs. Luciferase reporter assays illustrated that H19 had binding sites with miR-138, and H19 deficiency increased miR-138 level, demonstrating that H19 may act as a ceRNA for miR-138 in hBMMSCs. Luciferase reporter assays also showed that miR-138 could target PTK2,a gene encoding focal adhesion kinase (FAK). Up-regulated miR-138 impaired increased FAK expression induced by mechanical tension. The relationship among H19, miR-138 and FAK under tension condition was further studied. H19 deficiency inhibited FAK expression, which could be partly rescued by knock-downing miR-138. In addition, suppressed tension-induced osteogenic differentiation in H19 defective cells was partly rescued by miR-138 knockdown. Taken together, this study indicated that H19 is a positive regulator in tension-induced osteogenesis of hBMMSCs through acting as a ceRNA for miR-138 and then up-regulating downstream FAK.
Author Sun, Lian
Zhang, Wei-Bing
Wu, Jiajing
Pan, Yongchu
Wang, Hua
Zhao, Jing
Author_xml – sequence: 1
  givenname: Jiajing
  surname: Wu
  fullname: Wu, Jiajing
  organization: Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
– sequence: 2
  givenname: Jing
  surname: Zhao
  fullname: Zhao, Jing
  organization: Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
– sequence: 3
  givenname: Lian
  surname: Sun
  fullname: Sun, Lian
  organization: Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
– sequence: 4
  givenname: Yongchu
  surname: Pan
  fullname: Pan, Yongchu
  organization: Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
– sequence: 5
  givenname: Hua
  surname: Wang
  fullname: Wang, Hua
  email: huawang@njmu.edu.cn
  organization: Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
– sequence: 6
  givenname: Wei-Bing
  surname: Zhang
  fullname: Zhang, Wei-Bing
  email: zhangweibing@njmu.edu.cn
  organization: Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29253550$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9u1DAQxi1URLeFF-CAfOSS4D_r2EZcVhWliBVIFZwt25ltvSTxEmeL9hV4aiZs4dBDOXlkf7-Z8fedkZMhD0DIS85qznjzZlsHvKgF47rmomZcPiELbrSshG7kCVkYrZpKCiNOyVkpW8aYtJo_I6fCCiWVYgvya52HG4qNq5jbhOX15xW94pb20CY_QcEi3vohRd_RCYaSUJqGdh-hpblMkG9ggJIKzRs6r0N7P475J2IFhnh76JFDWU8jdF2hd8nTy9UnGg607HD0PLJP1xWX5jl5uvFdgRf35zn5dvn-68VVtf7y4ePFal3FJdNT1RildIDgZbBms_S-8bJpmQ6tFTxKLqMAYzm-q6CEgqUPVhrupVUARoI8J6-PfXdj_rGHMrk-lXk7P0DeF8etNpqrZilQ-upeug9oiNuNCb93cH_9Q4E4CuKYSxlh80_CmZtDcls3u-LmkBwXDkNCyDyAYpr8hM5Oo0_d4-i7Iwpo0F2C0ZWY0GcMa4Q4uTanx_G3D_DYpT_ZfofD_-DfszrApQ
CitedBy_id crossref_primary_10_1186_s13287_023_03250_6
crossref_primary_10_3892_etm_2021_10993
crossref_primary_10_1631_jzus_B2300497
crossref_primary_10_1016_j_omtn_2019_11_034
crossref_primary_10_1016_j_ncrna_2025_01_003
crossref_primary_10_1016_j_omtn_2021_04_017
crossref_primary_10_1002_jcp_28060
crossref_primary_10_1042_BSR20180448
crossref_primary_10_1186_s12938_021_00949_6
crossref_primary_10_1186_s13287_021_02597_y
crossref_primary_10_1007_s12195_020_00617_0
crossref_primary_10_1002_dmrr_3740
crossref_primary_10_1302_2046_3758_82_BJR_2018_0074_R1
crossref_primary_10_1186_s13287_019_1309_7
crossref_primary_10_1007_s11010_020_03753_3
crossref_primary_10_1016_j_mrrev_2019_108285
crossref_primary_10_1007_s13577_023_00888_5
crossref_primary_10_1080_21655979_2022_2044274
crossref_primary_10_3389_fcell_2024_1355312
crossref_primary_10_2174_1574888X14666181127145809
crossref_primary_10_1038_s41419_019_1337_3
crossref_primary_10_3892_mmr_2021_12200
crossref_primary_10_4252_wjsc_v14_i1_92
crossref_primary_10_3389_fcell_2020_601224
crossref_primary_10_1002_jcp_27815
crossref_primary_10_2319_061118_438_1
crossref_primary_10_1007_s12038_020_0024_y
crossref_primary_10_1016_j_gendis_2023_02_008
crossref_primary_10_1002_term_3277
crossref_primary_10_1016_j_biopha_2019_108912
crossref_primary_10_1016_j_bone_2019_02_013
crossref_primary_10_1111_cpr_13604
crossref_primary_10_1186_s12957_022_02706_y
crossref_primary_10_2147_CMAR_S222878
crossref_primary_10_2174_1381612826666200707130246
crossref_primary_10_15212_bioi_2021_0025
crossref_primary_10_3389_fgene_2020_584118
crossref_primary_10_1038_s41419_023_06214_z
crossref_primary_10_1111_php_13801
crossref_primary_10_3389_fcell_2021_711005
crossref_primary_10_3390_cancers10060196
crossref_primary_10_3390_ijms21165816
crossref_primary_10_1016_j_bone_2024_117340
crossref_primary_10_1016_j_gene_2021_145803
crossref_primary_10_1007_s11033_021_07013_5
crossref_primary_10_1007_s11596_020_2306_x
crossref_primary_10_1002_cbf_3650
crossref_primary_10_1016_j_biochi_2018_12_006
crossref_primary_10_3390_ijms25042013
crossref_primary_10_1002_jcp_28697
crossref_primary_10_1186_s13287_018_0773_9
crossref_primary_10_1186_s10020_021_00386_0
crossref_primary_10_1016_j_actaastro_2021_01_052
crossref_primary_10_1016_j_isci_2022_103949
crossref_primary_10_1038_s41413_019_0048_9
crossref_primary_10_1186_s13287_021_02149_4
crossref_primary_10_1111_jcmm_16273
crossref_primary_10_3389_fcell_2022_903278
crossref_primary_10_1016_j_apmt_2022_101465
crossref_primary_10_1186_s12967_023_03951_9
crossref_primary_10_1007_s00109_021_02164_1
crossref_primary_10_3389_fcell_2021_790050
crossref_primary_10_1186_s40510_022_00450_3
crossref_primary_10_1152_ajpcell_00382_2023
crossref_primary_10_5312_wjo_v15_i4_363
crossref_primary_10_1093_ejo_cjad011
crossref_primary_10_3389_fendo_2023_1219433
crossref_primary_10_3389_fphys_2022_917510
crossref_primary_10_1002_jbm_b_34620
crossref_primary_10_1002_jcp_29522
crossref_primary_10_1080_0886022X_2020_1758722
crossref_primary_10_1152_ajpcell_00364_2021
crossref_primary_10_3389_fcell_2022_903612
crossref_primary_10_1111_jcmm_15040
crossref_primary_10_3389_fcell_2021_807419
crossref_primary_10_1016_j_omtn_2020_07_017
crossref_primary_10_2174_1381612827666211210123959
crossref_primary_10_1002_art_43028
crossref_primary_10_1155_2024_5388064
crossref_primary_10_1016_j_bbrc_2019_02_145
crossref_primary_10_34133_research_0340
crossref_primary_10_1016_j_jot_2020_11_008
crossref_primary_10_1186_s10020_021_00350_y
crossref_primary_10_1002_jcb_27797
crossref_primary_10_3389_fbioe_2022_780211
crossref_primary_10_3389_fcell_2021_646032
crossref_primary_10_2174_1871530319666190904161707
crossref_primary_10_1186_s12964_022_01027_7
crossref_primary_10_1111_bph_14836
crossref_primary_10_1186_s12860_019_0230_3
crossref_primary_10_3390_cells12212559
crossref_primary_10_1038_s41598_025_94012_2
crossref_primary_10_1039_C9RA06563F
crossref_primary_10_1093_ejo_cjy057
crossref_primary_10_1016_j_jot_2020_03_005
crossref_primary_10_3389_fcell_2024_1303688
crossref_primary_10_1002_jcp_26589
crossref_primary_10_1089_dna_2020_5391
crossref_primary_10_2174_1574888X15666191227113742
Cites_doi 10.1016/j.cell.2011.09.028
10.1016/j.cell.2014.03.008
10.1002/1097-4652(200008)184:2<207::AID-JCP8>3.0.CO;2-U
10.1038/boneres.2015.3
10.1359/jbmr.081102
10.3892/ijmm.2015.2354
10.1016/j.archoralbio.2014.10.007
10.1016/j.bbrc.2014.04.091
10.1016/j.bone.2007.12.224
10.1016/j.cell.2013.04.003
10.1038/srep06088
10.1016/j.bone.2010.03.014
10.1002/jbm.a.31685
10.1002/stem.2225
10.1196/annals.1402.081
10.1038/cddis.2016.112
10.3389/fgene.2014.00008
10.1016/j.semcdb.2014.05.015
10.1016/j.molcel.2011.08.018
10.1016/j.cell.2013.08.028
10.3109/03008207.2011.619284
10.1002/jbmr.561
10.1155/2015/632305
10.1073/pnas.1016758108
10.3892/mmr.2013.1540
10.1038/nature12785
10.18632/oncotarget.4154
10.1016/j.jbiomech.2014.12.032
10.1016/S0092-8674(04)00045-5
10.12659/MSM.897044
10.4252/wjsc.v5.i4.136
10.1038/nature12986
10.1073/pnas.0500775102
10.1002/stem.1989
10.1016/j.diff.2012.05.001
ContentType Journal Article
Copyright 2018 Elsevier Inc.
Copyright © 2018 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2018 Elsevier Inc.
– notice: Copyright © 2018 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.bone.2017.12.013
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1873-2763
EndPage 70
ExternalDocumentID 29253550
10_1016_j_bone_2017_12_013
S8756328217304696
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.1-
.55
.FO
.GJ
.~1
0R~
1B1
1P~
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABGSF
ABJNI
ABLJU
ABMAC
ABMZM
ABUDA
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADUVX
AEBSH
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEB
HMK
HMO
HVGLF
HZ~
IHE
J1W
J5H
K-O
KOM
L7B
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OF0
OR.
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPCBC
SSH
SSU
SSZ
T5K
WUQ
X7M
Z5R
ZGI
ZMT
~02
~G-
1RT
AACTN
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AHPSJ
AJBFU
AJOXV
AMFUW
DOVZS
EFLBG
LCYCR
RIG
ZA5
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c407t-68557beba3b98f4aa6a36d07bd921c313c2e891ba35b525e4ab9381a395ee83e3
IEDL.DBID .~1
ISSN 8756-3282
1873-2763
IngestDate Fri Jul 11 00:36:09 EDT 2025
Mon Jul 21 05:53:08 EDT 2025
Thu Apr 24 23:06:28 EDT 2025
Tue Jul 01 03:41:35 EDT 2025
Fri Feb 23 02:45:16 EST 2024
Tue Aug 26 16:32:50 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Bone marrow mesenchymal stem cells (BMMSCs)
LncRNA H19
miR-138
Osteogenesis
Mechanical tension
Language English
License Copyright © 2018 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c407t-68557beba3b98f4aa6a36d07bd921c313c2e891ba35b525e4ab9381a395ee83e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 29253550
PQID 1978715642
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_1978715642
pubmed_primary_29253550
crossref_primary_10_1016_j_bone_2017_12_013
crossref_citationtrail_10_1016_j_bone_2017_12_013
elsevier_sciencedirect_doi_10_1016_j_bone_2017_12_013
elsevier_clinicalkey_doi_10_1016_j_bone_2017_12_013
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2018
2018-03-00
20180301
PublicationDateYYYYMMDD 2018-03-01
PublicationDate_xml – month: 03
  year: 2018
  text: March 2018
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Bone (New York, N.Y.)
PublicationTitleAlternate Bone
PublicationYear 2018
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Felekkis, Touvana, Stefanou, Deltas (bb0100) 2010; 14
Xia, Liao, Jiang, Shao, Xiao, Xi, Guo (bb0115) 2014; 4
Orom, Shiekhattar (bb0060) 2013; 154
Kumar, Armenteros-Monterroso, East, Chakravorty, Matthews, Winslow, Downward (bb0140) 2014; 505
Zhang, Zhong, Wang (bb0105) 2013
Kang, Yoon, Seo, Park (bb0025) 2012; 53
Zhang, Wu, Jiang, Jiang, Fang (bb0195) 2012; 29
Dai, Dong, Fang, Uemura (bb0015) 2008; 86
Wang, Chang (bb0065) 2011; 43
Tian, Ji, Xiao, Wang, Wang (bb0020) 2015; 2015
Cech, Steitz (bb0055) 2014; 157
Wang, Sun, Ma, Pan, Wang, Zhang (bb0120) 2014; 9
Yates, Norbury, Gilbert (bb0085) 2013; 153
Mizuno, Fujisawa, Kuboki (bb0210) 2000; 184
Fakhry, Hamade, Badran, Buchet, Magne (bb0005) 2013; 5
Jia, Jiang, Ni (bb0075) 2015; 60
Huang, Zheng, Jin, Li, Jia, Li (bb0180) 2016; 6
Li, Liang, Dou, Huang, Mo, Wang, Yu (bb0205) 2015; 2015
Yoon, Abdelmohsen, Gorospe (bb0110) 2014; 34
Mathews, Bhonde, Gupta, Totey (bb0215) 2012; 84
Bonewald, Johnson (bb0035) 2008; 42
Tan, Xu, Tong, Lin, Yu, Lin, Kuang (bb0040) 2015; 3
Hu, Liao, Ma, Chen, Huang, Zhang, Yu, Chen, Focal Adhesion (bb0200) 2016; 6
Bartel (bb0095) 2004; 116
Kartha, Subramanian (bb0090) 2014; 5
Tay, Rinn, Pandolfi (bb0170) 2014; 505
Cesana, Cacchiarelli, Legnini, Santini, Sthandier, Chinappi, Tramontano, Bozzoni (bb0135) 2011; 147
Huang, Zheng, Jia, Li (bb0175) 2015; 33
Ge, Yang, Zhao, Yu, Kirkwood, Franceschi (bb0190) 2012; 27
Franceschi, Ge, Xiao, Roca, Jiang (bb0185) 2007; 1116
Zuo, Wang, Lu, Dai, Liu, Cui (bb0070) 2013; 8
Eskildsen, Taipaleenmaki, Stenvang, Abdallah, Ditzel, Nossent, Bak, Kauppinen, Kassem (bb0155) 2011; 108
Zeng, Yin, Zhang, Jing, Feng (bb0030) 2015; 36
Zhuang, Ge, Yang, Huang, Zhuang, Chen, Zhang, Fu, Qu, Li (bb0080) 2015; 33
Robins, Li, Padgett (bb0145) 2005; 102
Qu, Xia, HH, CQ, Pan (bb0130) 2014; 448
Wang, Wang, Zhang, Tong, Zhang, Shan, Zhang, Li (bb0045) 2016; 7
Young, Gerard-O'Riley, Kim, Pavalko (bb0160) 2009; 24
Wang, Meng, Wang, Zhao, Peng, Wang (bb0010) 2016; 22
Liang, WM, Wong, Wang, Wang, GX, Zhang, Xiao, Wan, Zhang, Waye (bb0150) 2015; 6
Liang, WM, Wang, Sun, LL, Wong, Chan, Li, Waye, Zhang (bb0050) 2016; 6
Young, Gerard-O'Riley, Harrington, Pavalko (bb0165) 2010; 47
Wang, Sun, Ma, Pan, Wang, Zhang (bb0125) 2015; 48
Wang (10.1016/j.bone.2017.12.013_bb0120) 2014; 9
Liang (10.1016/j.bone.2017.12.013_bb0050) 2016; 6
Zhang (10.1016/j.bone.2017.12.013_bb0105) 2013
Huang (10.1016/j.bone.2017.12.013_bb0175) 2015; 33
Yates (10.1016/j.bone.2017.12.013_bb0085) 2013; 153
Zhuang (10.1016/j.bone.2017.12.013_bb0080) 2015; 33
Zuo (10.1016/j.bone.2017.12.013_bb0070) 2013; 8
Wang (10.1016/j.bone.2017.12.013_bb0125) 2015; 48
Tan (10.1016/j.bone.2017.12.013_bb0040) 2015; 3
Ge (10.1016/j.bone.2017.12.013_bb0190) 2012; 27
Kartha (10.1016/j.bone.2017.12.013_bb0090) 2014; 5
Mizuno (10.1016/j.bone.2017.12.013_bb0210) 2000; 184
Yoon (10.1016/j.bone.2017.12.013_bb0110) 2014; 34
Wang (10.1016/j.bone.2017.12.013_bb0010) 2016; 22
Bartel (10.1016/j.bone.2017.12.013_bb0095) 2004; 116
Young (10.1016/j.bone.2017.12.013_bb0165) 2010; 47
Cesana (10.1016/j.bone.2017.12.013_bb0135) 2011; 147
Mathews (10.1016/j.bone.2017.12.013_bb0215) 2012; 84
Zeng (10.1016/j.bone.2017.12.013_bb0030) 2015; 36
Young (10.1016/j.bone.2017.12.013_bb0160) 2009; 24
Wang (10.1016/j.bone.2017.12.013_bb0045) 2016; 7
Fakhry (10.1016/j.bone.2017.12.013_bb0005) 2013; 5
Kumar (10.1016/j.bone.2017.12.013_bb0140) 2014; 505
Jia (10.1016/j.bone.2017.12.013_bb0075) 2015; 60
Wang (10.1016/j.bone.2017.12.013_bb0065) 2011; 43
Xia (10.1016/j.bone.2017.12.013_bb0115) 2014; 4
Huang (10.1016/j.bone.2017.12.013_bb0180) 2016; 6
Kang (10.1016/j.bone.2017.12.013_bb0025) 2012; 53
Franceschi (10.1016/j.bone.2017.12.013_bb0185) 2007; 1116
Robins (10.1016/j.bone.2017.12.013_bb0145) 2005; 102
Hu (10.1016/j.bone.2017.12.013_bb0200) 2016; 6
Qu (10.1016/j.bone.2017.12.013_bb0130) 2014; 448
Li (10.1016/j.bone.2017.12.013_bb0205) 2015; 2015
Tian (10.1016/j.bone.2017.12.013_bb0020) 2015; 2015
Orom (10.1016/j.bone.2017.12.013_bb0060) 2013; 154
Liang (10.1016/j.bone.2017.12.013_bb0150) 2015; 6
Zhang (10.1016/j.bone.2017.12.013_bb0195) 2012; 29
Cech (10.1016/j.bone.2017.12.013_bb0055) 2014; 157
Dai (10.1016/j.bone.2017.12.013_bb0015) 2008; 86
Felekkis (10.1016/j.bone.2017.12.013_bb0100) 2010; 14
Bonewald (10.1016/j.bone.2017.12.013_bb0035) 2008; 42
Tay (10.1016/j.bone.2017.12.013_bb0170) 2014; 505
Eskildsen (10.1016/j.bone.2017.12.013_bb0155) 2011; 108
References_xml – volume: 6
  year: 2016
  ident: bb0180
  article-title: Long non-coding RNA H19 inhibits adipocyte differentiation of bone marrow mesenchymal stem cells through epigenetic modulation of histone deacetylases
  publication-title: Sci. Rep.
– volume: 505
  start-page: 212
  year: 2014
  end-page: 217
  ident: bb0140
  article-title: HMGA2 functions as a competing endogenous RNA to promote lung cancer progression
  publication-title: Nature
– volume: 448
  start-page: 241
  year: 2014
  end-page: 247
  ident: bb0130
  article-title: PDGF-regulated miRNA-138 inhibits the osteogenic differentiation of mesenchymal stem cells
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 36
  start-page: 1273
  year: 2015
  end-page: 1281
  ident: bb0030
  article-title: Cyclic stretch enhances bone morphogenetic protein-2-induced osteoblastic differentiation through the inhibition of Hey1
  publication-title: Int. J. Mol. Med.
– volume: 147
  start-page: 358
  year: 2011
  end-page: 369
  ident: bb0135
  article-title: A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA
  publication-title: Cell
– volume: 42
  start-page: 606
  year: 2008
  end-page: 615
  ident: bb0035
  article-title: Osteocytes, mechanosensing and Wnt signaling
  publication-title: Bone
– volume: 8
  start-page: 463
  year: 2013
  end-page: 467
  ident: bb0070
  article-title: Expression profiling of lncRNAs in C3H10T1/2 mesenchymal stem cells undergoing early osteoblast differentiation
  publication-title: Mol. Med. Rep.
– volume: 108
  start-page: 6139
  year: 2011
  end-page: 6144
  ident: bb0155
  article-title: MicroRNA-138 regulates osteogenic differentiation of human stromal (mesenchymal) stem cells in vivo
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 29
  start-page: 1083
  year: 2012
  end-page: 1089
  ident: bb0195
  article-title: Osteogenic response of mesenchymal stem cells to continuous mechanical strain is dependent on ERK1/2-Runx2 signaling
  publication-title: Int. J. Mol. Med.
– volume: 102
  start-page: 4006
  year: 2005
  end-page: 4009
  ident: bb0145
  article-title: Incorporating structure to predict microRNA targets
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 4
  start-page: 6088
  year: 2014
  ident: bb0115
  article-title: Long noncoding RNA associated-competing endogenous RNAs in gastric cancer
  publication-title: Sci. Rep.
– volume: 6
  start-page: 22513
  year: 2015
  end-page: 22525
  ident: bb0150
  article-title: The lncRNA H19 promotes epithelial to mesenchymal transition by functioning as miRNA sponges in colorectal cancer
  publication-title: Oncotarget
– volume: 2015
  year: 2015
  ident: bb0020
  article-title: CXCL13 promotes osteogenic differentiation of mesenchymal stem cells by inhibiting miR-23a expression
  publication-title: Stem Cells Int.
– volume: 3
  year: 2015
  ident: bb0040
  article-title: Decreased osteogenesis of adult mesenchymal stem cells by reactive oxygen species under cyclic stretch: a possible mechanism of age related osteoporosis
  publication-title: Bone Res.
– volume: 157
  start-page: 77
  year: 2014
  end-page: 94
  ident: bb0055
  article-title: The noncoding RNA revolution-trashing old rules to forge new ones
  publication-title: Cell
– volume: 9
  year: 2014
  ident: bb0120
  article-title: Polycystin-1 mediates mechanical strain-induced osteoblastic Mechanoresponses via potentiation of intracellular calcium and Akt/beta-catenin pathway
  publication-title: PLoS One
– volume: 33
  start-page: 3481
  year: 2015
  end-page: 3492
  ident: bb0175
  article-title: Long noncoding RNA H19 promotes osteoblast differentiation via TGF-beta1/Smad3/HDAC signaling pathway by deriving miR-675
  publication-title: Stem Cells
– volume: 14
  start-page: 236
  year: 2010
  end-page: 240
  ident: bb0100
  article-title: microRNAs: a newly described class of encoded molecules that play a role in health and disease
  publication-title: Hippokratia
– volume: 153
  start-page: 516
  year: 2013
  end-page: 519
  ident: bb0085
  article-title: The long and short of microRNA
  publication-title: Cell
– volume: 34
  start-page: 9
  year: 2014
  end-page: 14
  ident: bb0110
  article-title: Functional interactions among microRNAs and long noncoding RNAs
  publication-title: Semin. Cell Dev. Biol.
– volume: 48
  start-page: 432
  year: 2015
  end-page: 440
  ident: bb0125
  article-title: Biglycan mediates suture expansion osteogenesis via potentiation of Wnt/beta-catenin signaling
  publication-title: J. Biomech.
– volume: 60
  start-page: 234
  year: 2015
  end-page: 241
  ident: bb0075
  article-title: Down-regulated non-coding RNA (lncRNA-ANCR) promotes osteogenic differentiation of periodontal ligament stem cells
  publication-title: Arch. Oral Biol.
– volume: 84
  start-page: 185
  year: 2012
  end-page: 192
  ident: bb0215
  article-title: Extracellular matrix protein mediated regulation of the osteoblast differentiation of bone marrow derived human mesenchymal stem cells
  publication-title: Differentiation
– year: 2013
  ident: bb0105
  article-title: A signal-amplification circuit between miR-218 and Wnt/beta-catenin signal promotes human adipose tissue-derived stem cells osteogenic differentiation
  publication-title: Bone
– volume: 47
  start-page: 74
  year: 2010
  end-page: 82
  ident: bb0165
  article-title: Activation of NF-kappaB by fluid shear stress, but not TNF-alpha, requires focal adhesion kinase in osteoblasts
  publication-title: Bone
– volume: 27
  start-page: 538
  year: 2012
  end-page: 551
  ident: bb0190
  article-title: Interactions between extracellular signal-regulated kinase 1/2 and p38 MAP kinase pathways in the control of RUNX2 phosphorylation and transcriptional activity
  publication-title: J. Bone Miner. Res.
– volume: 6
  year: 2016
  ident: bb0050
  article-title: H19 activates Wnt signaling and promotes osteoblast differentiation by functioning as a competing endogenous RNA
  publication-title: Sci. Rep.
– volume: 154
  start-page: 1190
  year: 2013
  end-page: 1193
  ident: bb0060
  article-title: Long noncoding RNAs usher in a new era in the biology of enhancers
  publication-title: Cell
– volume: 505
  start-page: 344
  year: 2014
  end-page: 352
  ident: bb0170
  article-title: The multilayered complexity of ceRNA crosstalk and competition
  publication-title: Nature
– volume: 116
  start-page: 281
  year: 2004
  end-page: 297
  ident: bb0095
  article-title: MicroRNAs: genomics, biogenesis, mechanism, and function
  publication-title: Cell
– volume: 6
  year: 2016
  ident: bb0200
  article-title: Kinase signaling mediated the enhancement of osteogenesis of human mesenchymal stem cells induced by extracorporeal shockwave
  publication-title: Sci. Rep.
– volume: 86
  start-page: 235
  year: 2008
  end-page: 243
  ident: bb0015
  article-title: Stimulation of osteogenic activity in mesenchymal stem cells by FK506
  publication-title: J. Biomed. Mater. Res. A
– volume: 43
  start-page: 904
  year: 2011
  end-page: 914
  ident: bb0065
  article-title: Molecular mechanisms of long noncoding RNAs
  publication-title: Mol. Cell
– volume: 5
  start-page: 8
  year: 2014
  ident: bb0090
  article-title: Competing endogenous RNAs (ceRNAs): new entrants to the intricacies of gene regulation
  publication-title: Front. Genet.
– volume: 33
  start-page: 1985
  year: 2015
  end-page: 1997
  ident: bb0080
  article-title: Upregulation of lncRNA MEG3 promotes osteogenic differentiation of mesenchymal stem cells from multiple myeloma patients by targeting BMP4 transcription
  publication-title: Stem Cells
– volume: 2015
  year: 2015
  ident: bb0205
  article-title: Mechanical strain regulates osteogenic and adipogenic differentiation of bone marrow mesenchymal stem cells
  publication-title: Biomed. Res. Int.
– volume: 5
  start-page: 136
  year: 2013
  end-page: 148
  ident: bb0005
  article-title: Molecular mechanisms of mesenchymal stem cell differentiation towards osteoblasts
  publication-title: World J. Stem Cells
– volume: 7
  year: 2016
  ident: bb0045
  article-title: Mechanical stimulation orchestrates the osteogenic differentiation of human bone marrow stromal cells by regulating HDAC1
  publication-title: Cell Death Dis.
– volume: 24
  start-page: 411
  year: 2009
  end-page: 424
  ident: bb0160
  article-title: Focal adhesion kinase is important for fluid shear stress-induced mechanotransduction in osteoblasts
  publication-title: J. Bone Miner. Res.
– volume: 22
  start-page: 226
  year: 2016
  end-page: 233
  ident: bb0010
  article-title: Differentiation of bone marrow mesenchymal stem cells in osteoblasts and adipocytes and its role in treatment of osteoporosis
  publication-title: Med. Sci. Monit.
– volume: 1116
  start-page: 196
  year: 2007
  end-page: 207
  ident: bb0185
  article-title: Transcriptional regulation of osteoblasts
  publication-title: Ann. N. Y. Acad. Sci.
– volume: 53
  start-page: 149
  year: 2012
  end-page: 159
  ident: bb0025
  article-title: Effect of mechanical stimulation on the differentiation of cord stem cells
  publication-title: Connect. Tissue Res.
– volume: 184
  start-page: 207
  year: 2000
  end-page: 213
  ident: bb0210
  article-title: Type I collagen-induced osteoblastic differentiation of bone-marrow cells mediated by collagen-alpha2beta1 integrin interaction
  publication-title: J. Cell. Physiol.
– volume: 6
  year: 2016
  ident: 10.1016/j.bone.2017.12.013_bb0200
  article-title: Kinase signaling mediated the enhancement of osteogenesis of human mesenchymal stem cells induced by extracorporeal shockwave
  publication-title: Sci. Rep.
– volume: 147
  start-page: 358
  year: 2011
  ident: 10.1016/j.bone.2017.12.013_bb0135
  article-title: A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA
  publication-title: Cell
  doi: 10.1016/j.cell.2011.09.028
– volume: 6
  year: 2016
  ident: 10.1016/j.bone.2017.12.013_bb0180
  article-title: Long non-coding RNA H19 inhibits adipocyte differentiation of bone marrow mesenchymal stem cells through epigenetic modulation of histone deacetylases
  publication-title: Sci. Rep.
– volume: 157
  start-page: 77
  year: 2014
  ident: 10.1016/j.bone.2017.12.013_bb0055
  article-title: The noncoding RNA revolution-trashing old rules to forge new ones
  publication-title: Cell
  doi: 10.1016/j.cell.2014.03.008
– volume: 9
  year: 2014
  ident: 10.1016/j.bone.2017.12.013_bb0120
  article-title: Polycystin-1 mediates mechanical strain-induced osteoblastic Mechanoresponses via potentiation of intracellular calcium and Akt/beta-catenin pathway
  publication-title: PLoS One
– volume: 184
  start-page: 207
  year: 2000
  ident: 10.1016/j.bone.2017.12.013_bb0210
  article-title: Type I collagen-induced osteoblastic differentiation of bone-marrow cells mediated by collagen-alpha2beta1 integrin interaction
  publication-title: J. Cell. Physiol.
  doi: 10.1002/1097-4652(200008)184:2<207::AID-JCP8>3.0.CO;2-U
– volume: 3
  year: 2015
  ident: 10.1016/j.bone.2017.12.013_bb0040
  article-title: Decreased osteogenesis of adult mesenchymal stem cells by reactive oxygen species under cyclic stretch: a possible mechanism of age related osteoporosis
  publication-title: Bone Res.
  doi: 10.1038/boneres.2015.3
– volume: 24
  start-page: 411
  year: 2009
  ident: 10.1016/j.bone.2017.12.013_bb0160
  article-title: Focal adhesion kinase is important for fluid shear stress-induced mechanotransduction in osteoblasts
  publication-title: J. Bone Miner. Res.
  doi: 10.1359/jbmr.081102
– volume: 36
  start-page: 1273
  year: 2015
  ident: 10.1016/j.bone.2017.12.013_bb0030
  article-title: Cyclic stretch enhances bone morphogenetic protein-2-induced osteoblastic differentiation through the inhibition of Hey1
  publication-title: Int. J. Mol. Med.
  doi: 10.3892/ijmm.2015.2354
– volume: 60
  start-page: 234
  year: 2015
  ident: 10.1016/j.bone.2017.12.013_bb0075
  article-title: Down-regulated non-coding RNA (lncRNA-ANCR) promotes osteogenic differentiation of periodontal ligament stem cells
  publication-title: Arch. Oral Biol.
  doi: 10.1016/j.archoralbio.2014.10.007
– volume: 448
  start-page: 241
  year: 2014
  ident: 10.1016/j.bone.2017.12.013_bb0130
  article-title: PDGF-regulated miRNA-138 inhibits the osteogenic differentiation of mesenchymal stem cells
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2014.04.091
– volume: 42
  start-page: 606
  year: 2008
  ident: 10.1016/j.bone.2017.12.013_bb0035
  article-title: Osteocytes, mechanosensing and Wnt signaling
  publication-title: Bone
  doi: 10.1016/j.bone.2007.12.224
– volume: 153
  start-page: 516
  year: 2013
  ident: 10.1016/j.bone.2017.12.013_bb0085
  article-title: The long and short of microRNA
  publication-title: Cell
  doi: 10.1016/j.cell.2013.04.003
– volume: 4
  start-page: 6088
  year: 2014
  ident: 10.1016/j.bone.2017.12.013_bb0115
  article-title: Long noncoding RNA associated-competing endogenous RNAs in gastric cancer
  publication-title: Sci. Rep.
  doi: 10.1038/srep06088
– volume: 47
  start-page: 74
  year: 2010
  ident: 10.1016/j.bone.2017.12.013_bb0165
  article-title: Activation of NF-kappaB by fluid shear stress, but not TNF-alpha, requires focal adhesion kinase in osteoblasts
  publication-title: Bone
  doi: 10.1016/j.bone.2010.03.014
– volume: 86
  start-page: 235
  year: 2008
  ident: 10.1016/j.bone.2017.12.013_bb0015
  article-title: Stimulation of osteogenic activity in mesenchymal stem cells by FK506
  publication-title: J. Biomed. Mater. Res. A
  doi: 10.1002/jbm.a.31685
– volume: 33
  start-page: 3481
  year: 2015
  ident: 10.1016/j.bone.2017.12.013_bb0175
  article-title: Long noncoding RNA H19 promotes osteoblast differentiation via TGF-beta1/Smad3/HDAC signaling pathway by deriving miR-675
  publication-title: Stem Cells
  doi: 10.1002/stem.2225
– volume: 1116
  start-page: 196
  year: 2007
  ident: 10.1016/j.bone.2017.12.013_bb0185
  article-title: Transcriptional regulation of osteoblasts
  publication-title: Ann. N. Y. Acad. Sci.
  doi: 10.1196/annals.1402.081
– volume: 7
  year: 2016
  ident: 10.1016/j.bone.2017.12.013_bb0045
  article-title: Mechanical stimulation orchestrates the osteogenic differentiation of human bone marrow stromal cells by regulating HDAC1
  publication-title: Cell Death Dis.
  doi: 10.1038/cddis.2016.112
– volume: 5
  start-page: 8
  year: 2014
  ident: 10.1016/j.bone.2017.12.013_bb0090
  article-title: Competing endogenous RNAs (ceRNAs): new entrants to the intricacies of gene regulation
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2014.00008
– volume: 34
  start-page: 9
  year: 2014
  ident: 10.1016/j.bone.2017.12.013_bb0110
  article-title: Functional interactions among microRNAs and long noncoding RNAs
  publication-title: Semin. Cell Dev. Biol.
  doi: 10.1016/j.semcdb.2014.05.015
– volume: 43
  start-page: 904
  year: 2011
  ident: 10.1016/j.bone.2017.12.013_bb0065
  article-title: Molecular mechanisms of long noncoding RNAs
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2011.08.018
– volume: 2015
  year: 2015
  ident: 10.1016/j.bone.2017.12.013_bb0205
  article-title: Mechanical strain regulates osteogenic and adipogenic differentiation of bone marrow mesenchymal stem cells
  publication-title: Biomed. Res. Int.
– volume: 154
  start-page: 1190
  year: 2013
  ident: 10.1016/j.bone.2017.12.013_bb0060
  article-title: Long noncoding RNAs usher in a new era in the biology of enhancers
  publication-title: Cell
  doi: 10.1016/j.cell.2013.08.028
– volume: 53
  start-page: 149
  year: 2012
  ident: 10.1016/j.bone.2017.12.013_bb0025
  article-title: Effect of mechanical stimulation on the differentiation of cord stem cells
  publication-title: Connect. Tissue Res.
  doi: 10.3109/03008207.2011.619284
– volume: 27
  start-page: 538
  year: 2012
  ident: 10.1016/j.bone.2017.12.013_bb0190
  article-title: Interactions between extracellular signal-regulated kinase 1/2 and p38 MAP kinase pathways in the control of RUNX2 phosphorylation and transcriptional activity
  publication-title: J. Bone Miner. Res.
  doi: 10.1002/jbmr.561
– volume: 6
  year: 2016
  ident: 10.1016/j.bone.2017.12.013_bb0050
  article-title: H19 activates Wnt signaling and promotes osteoblast differentiation by functioning as a competing endogenous RNA
  publication-title: Sci. Rep.
– volume: 2015
  year: 2015
  ident: 10.1016/j.bone.2017.12.013_bb0020
  article-title: CXCL13 promotes osteogenic differentiation of mesenchymal stem cells by inhibiting miR-23a expression
  publication-title: Stem Cells Int.
  doi: 10.1155/2015/632305
– volume: 108
  start-page: 6139
  year: 2011
  ident: 10.1016/j.bone.2017.12.013_bb0155
  article-title: MicroRNA-138 regulates osteogenic differentiation of human stromal (mesenchymal) stem cells in vivo
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1016758108
– volume: 8
  start-page: 463
  year: 2013
  ident: 10.1016/j.bone.2017.12.013_bb0070
  article-title: Expression profiling of lncRNAs in C3H10T1/2 mesenchymal stem cells undergoing early osteoblast differentiation
  publication-title: Mol. Med. Rep.
  doi: 10.3892/mmr.2013.1540
– volume: 505
  start-page: 212
  year: 2014
  ident: 10.1016/j.bone.2017.12.013_bb0140
  article-title: HMGA2 functions as a competing endogenous RNA to promote lung cancer progression
  publication-title: Nature
  doi: 10.1038/nature12785
– volume: 6
  start-page: 22513
  year: 2015
  ident: 10.1016/j.bone.2017.12.013_bb0150
  article-title: The lncRNA H19 promotes epithelial to mesenchymal transition by functioning as miRNA sponges in colorectal cancer
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.4154
– volume: 48
  start-page: 432
  year: 2015
  ident: 10.1016/j.bone.2017.12.013_bb0125
  article-title: Biglycan mediates suture expansion osteogenesis via potentiation of Wnt/beta-catenin signaling
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2014.12.032
– volume: 116
  start-page: 281
  year: 2004
  ident: 10.1016/j.bone.2017.12.013_bb0095
  article-title: MicroRNAs: genomics, biogenesis, mechanism, and function
  publication-title: Cell
  doi: 10.1016/S0092-8674(04)00045-5
– volume: 22
  start-page: 226
  year: 2016
  ident: 10.1016/j.bone.2017.12.013_bb0010
  article-title: Differentiation of bone marrow mesenchymal stem cells in osteoblasts and adipocytes and its role in treatment of osteoporosis
  publication-title: Med. Sci. Monit.
  doi: 10.12659/MSM.897044
– volume: 29
  start-page: 1083
  year: 2012
  ident: 10.1016/j.bone.2017.12.013_bb0195
  article-title: Osteogenic response of mesenchymal stem cells to continuous mechanical strain is dependent on ERK1/2-Runx2 signaling
  publication-title: Int. J. Mol. Med.
– year: 2013
  ident: 10.1016/j.bone.2017.12.013_bb0105
  article-title: A signal-amplification circuit between miR-218 and Wnt/beta-catenin signal promotes human adipose tissue-derived stem cells osteogenic differentiation
  publication-title: Bone
– volume: 5
  start-page: 136
  year: 2013
  ident: 10.1016/j.bone.2017.12.013_bb0005
  article-title: Molecular mechanisms of mesenchymal stem cell differentiation towards osteoblasts
  publication-title: World J. Stem Cells
  doi: 10.4252/wjsc.v5.i4.136
– volume: 505
  start-page: 344
  year: 2014
  ident: 10.1016/j.bone.2017.12.013_bb0170
  article-title: The multilayered complexity of ceRNA crosstalk and competition
  publication-title: Nature
  doi: 10.1038/nature12986
– volume: 102
  start-page: 4006
  year: 2005
  ident: 10.1016/j.bone.2017.12.013_bb0145
  article-title: Incorporating structure to predict microRNA targets
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0500775102
– volume: 33
  start-page: 1985
  year: 2015
  ident: 10.1016/j.bone.2017.12.013_bb0080
  article-title: Upregulation of lncRNA MEG3 promotes osteogenic differentiation of mesenchymal stem cells from multiple myeloma patients by targeting BMP4 transcription
  publication-title: Stem Cells
  doi: 10.1002/stem.1989
– volume: 14
  start-page: 236
  year: 2010
  ident: 10.1016/j.bone.2017.12.013_bb0100
  article-title: microRNAs: a newly described class of encoded molecules that play a role in health and disease
  publication-title: Hippokratia
– volume: 84
  start-page: 185
  year: 2012
  ident: 10.1016/j.bone.2017.12.013_bb0215
  article-title: Extracellular matrix protein mediated regulation of the osteoblast differentiation of bone marrow derived human mesenchymal stem cells
  publication-title: Differentiation
  doi: 10.1016/j.diff.2012.05.001
SSID ssj0003971
Score 2.5634148
Snippet Bone marrow mesenchymal stem cells (BMMSCs) provide the biological basis for bone reconstruction. Mechanical tension stimulation as a potent modulator is able...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 62
SubjectTerms Base Sequence
Bone marrow mesenchymal stem cells (BMMSCs)
Cell Differentiation - genetics
Cell Line
Focal Adhesion Protein-Tyrosine Kinases - metabolism
Humans
LncRNA H19
Mechanical tension
Mesenchymal Stem Cells - metabolism
MicroRNAs - genetics
MicroRNAs - metabolism
miR-138
Osteogenesis
Osteogenesis - genetics
RNA, Long Noncoding - genetics
RNA, Long Noncoding - metabolism
RNA, Messenger - genetics
RNA, Messenger - metabolism
Stress, Mechanical
Title Long non-coding RNA H19 mediates mechanical tension-induced osteogenesis of bone marrow mesenchymal stem cells via FAK by sponging miR-138
URI https://www.clinicalkey.com/#!/content/1-s2.0-S8756328217304696
https://dx.doi.org/10.1016/j.bone.2017.12.013
https://www.ncbi.nlm.nih.gov/pubmed/29253550
https://www.proquest.com/docview/1978715642
Volume 108
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbtQw0KqKhLggaHksfWiQEBcUNrbjJD5GFauF0j0UKvVm2Ym3DWKTqrtF2gsf0K_ujJMs4tAiccvDk9ie8Tw8DzP2DmWeix2u73nlVZQ4l0cuOHklOfmkkKWlfOeTWTo9S76cq_MtdjTkwlBYZc_7O54euHX_ZNzP5viqrsffUNPGj-WoU5N3T1PZ7STJiMo__v4T5oHylnd7fGlErfvEmS7Gy7UNlcrkWdgS5PI-4XSf8hmE0OQZe9prj1B0HXzOtnyzw3aLBi3nxRreQ4jnDBvlO-zxSe8232W3X9vmAtDQj8qWZBWczgqYcg0hbwSVTbygDGBCGISQdmyKxjqivQLKAmkviCXWS2jnQKOBRajdiGBLnLHL9QLhqCI0kB9gCb9qC5PiGNwaKAKXzkGCRX1KlQhfsLPJp-9H06g_hCEq0dZbRWmuVOa8s9LpfJ5Ym1qZVnHmKi14Kbkshc81x_fKKaF8Yp1GLcBKrbzPpZcv2TaOz79mkNmsRGEotE1kUqFdqBI79zyLbZaXlscjxofZN2VfoZwOyvhphlC0H4bGaAhjhguDGBuxDxuYq64-x4Ot5YBUM2SeIq80KD4ehFIbqL9o859wbwe6MbhoCQO28e3N0nC03TMq0yNG7FVHUJveCy0UKoHxm__86x57gnd5Fye3z7ZX1zf-ABWnlTsMK-OQPSo-H09nd_UeFdA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkYALgpbH8hwk4ILSXdtxEh84rIDVln0cSiv1ZuzEW4LYpCJb0F74Afwd_iAzeSzi0CIh9RYlHsf22DNjzzdjxp6jznMDh-t7kXkVhM4lgaudvJKcfFLI1FK882wejY_C98fqeIv96mJhCFbZyv5GptfSun3Tb0ezf5rn_Q9oaWNlCdrU5N3TUYusnPj1d9y3Va_33yKTXwgxenf4Zhy0VwsEKe5gVkGUKBU776x0OlmE1kZWRtkgdpkWPJVcpsInmuN35ZRQPrROo26zUivvE-kl1nuFXQ1RXNC1CXs__uBKUMHz5lAxCqh5baROAypzZUG5OXlcn0FyeZ42PM_arbXe6Ba72ZqrMGxG5Dbb8sUO2x0WuFVfruEl1ADS-mR-h12btX76XfZzWhYnUJRFkJakHOFgPoQx11AHqqB1iw8UckwzBGoMPRbNiwznWQYUdlKekAzOKygXQL2BZZ0sEskqZNGn9RLpKAU1kOOhgm-5hdFwAm4NBPmli5dgmR9Q6sM77OhSWHOXbWP__H0GsY1T1L5C21CGGW5EVWgXnscDGyep5YMe493om7RNiU43c3wxHfbts6E-GuKY4cIgx3rs1YbmtEkIcmFp2THVdKGuKJwN6qsLqdSG6q_F8E-6Z928MSgliAO28OVZZbhGwUx5gUSP3Wsm1Kb1QguFVufgwX_-9Sm7Pj6cTc10fz55yG7gl6QB6T1i26uvZ_4xWm0r96ReJcA-Xvay_A3W11GS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Long+non-coding+RNA+H19+mediates+mechanical+tension-induced+osteogenesis+of+bone+marrow+mesenchymal+stem+cells+via+FAK+by+sponging+miR-138&rft.jtitle=Bone+%28New+York%2C+N.Y.%29&rft.au=Wu%2C+Jiajing&rft.au=Zhao%2C+Jing&rft.au=Sun%2C+Lian&rft.au=Pan%2C+Yongchu&rft.date=2018-03-01&rft.pub=Elsevier+Inc&rft.issn=8756-3282&rft.eissn=1873-2763&rft.volume=108&rft.spage=62&rft.epage=70&rft_id=info:doi/10.1016%2Fj.bone.2017.12.013&rft.externalDocID=S8756328217304696
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=8756-3282&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=8756-3282&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=8756-3282&client=summon