Long-range correlation energy calculated from coupled atomic response functions

An accurate determination of the electron correlation energy is an essential prerequisite for describing the structure, stability, and function in a wide variety of systems. Therefore, the development of efficient approaches for the calculation of the correlation energy (and hence the dispersion ene...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of chemical physics Vol. 140; no. 18; p. 18A508
Main Authors Ambrosetti, Alberto, Reilly, Anthony M., DiStasio, Robert A., Tkatchenko, Alexandre
Format Journal Article
LanguageEnglish
Published United States American Institute of Physics 14.05.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract An accurate determination of the electron correlation energy is an essential prerequisite for describing the structure, stability, and function in a wide variety of systems. Therefore, the development of efficient approaches for the calculation of the correlation energy (and hence the dispersion energy as well) is essential and such methods can be coupled with many density-functional approximations, local methods for the electron correlation energy, and even interatomic force fields. In this work, we build upon the previously developed many-body dispersion (MBD) framework, which is intimately linked to the random-phase approximation for the correlation energy. We separate the correlation energy into short-range contributions that are modeled by semi-local functionals and long-range contributions that are calculated by mapping the complex all-electron problem onto a set of atomic response functions coupled in the dipole approximation. We propose an effective range-separation of the coupling between the atomic response functions that extends the already broad applicability of the MBD method to non-metallic materials with highly anisotropic responses, such as layered nanostructures. Application to a variety of high-quality benchmark datasets illustrates the accuracy and applicability of the improved MBD approach, which offers the prospect of first-principles modeling of large structurally complex systems with an accurate description of the long-range correlation energy.
AbstractList An accurate determination of the electron correlation energy is an essential prerequisite for describing the structure, stability, and function in a wide variety of systems. Therefore, the development of efficient approaches for the calculation of the correlation energy (and hence the dispersion energy as well) is essential and such methods can be coupled with many density-functional approximations, local methods for the electron correlation energy, and even interatomic force fields. In this work, we build upon the previously developed many-body dispersion (MBD) framework, which is intimately linked to the random-phase approximation for the correlation energy. We separate the correlation energy into short-range contributions that are modeled by semi-local functionals and long-range contributions that are calculated by mapping the complex all-electron problem onto a set of atomic response functions coupled in the dipole approximation. We propose an effective range-separation of the coupling between the atomic response functions that extends the already broad applicability of the MBD method to non-metallic materials with highly anisotropic responses, such as layered nanostructures. Application to a variety of high-quality benchmark datasets illustrates the accuracy and applicability of the improved MBD approach, which offers the prospect of first-principles modeling of large structurally complex systems with an accurate description of the long-range correlation energy.
An accurate determination of the electron correlation energy is an essential prerequisite for describing the structure, stability, and function in a wide variety of systems. Therefore, the development of efficient approaches for the calculation of the correlation energy (and hence the dispersion energy as well) is essential and such methods can be coupled with many density-functional approximations, local methods for the electron correlation energy, and even interatomic force fields. In this work, we build upon the previously developed many-body dispersion (MBD) framework, which is intimately linked to the random-phase approximation for the correlation energy. We separate the correlation energy into short-range contributions that are modeled by semi-local functionals and long-range contributions that are calculated by mapping the complex all-electron problem onto a set of atomic response functions coupled in the dipole approximation. We propose an effective range-separation of the coupling between the atomic response functions that extends the already broad applicability of the MBD method to non-metallic materials with highly anisotropic responses, such as layered nanostructures. Application to a variety of high-quality benchmark datasets illustrates the accuracy and applicability of the improved MBD approach, which offers the prospect of first-principles modeling of large structurally complex systems with an accurate description of the long-range correlation energy.An accurate determination of the electron correlation energy is an essential prerequisite for describing the structure, stability, and function in a wide variety of systems. Therefore, the development of efficient approaches for the calculation of the correlation energy (and hence the dispersion energy as well) is essential and such methods can be coupled with many density-functional approximations, local methods for the electron correlation energy, and even interatomic force fields. In this work, we build upon the previously developed many-body dispersion (MBD) framework, which is intimately linked to the random-phase approximation for the correlation energy. We separate the correlation energy into short-range contributions that are modeled by semi-local functionals and long-range contributions that are calculated by mapping the complex all-electron problem onto a set of atomic response functions coupled in the dipole approximation. We propose an effective range-separation of the coupling between the atomic response functions that extends the already broad applicability of the MBD method to non-metallic materials with highly anisotropic responses, such as layered nanostructures. Application to a variety of high-quality benchmark datasets illustrates the accuracy and applicability of the improved MBD approach, which offers the prospect of first-principles modeling of large structurally complex systems with an accurate description of the long-range correlation energy.
Author Reilly, Anthony M.
Ambrosetti, Alberto
DiStasio, Robert A.
Tkatchenko, Alexandre
Author_xml – sequence: 1
  givenname: Alberto
  surname: Ambrosetti
  fullname: Ambrosetti, Alberto
– sequence: 2
  givenname: Anthony M.
  surname: Reilly
  fullname: Reilly, Anthony M.
– sequence: 3
  givenname: Robert A.
  surname: DiStasio
  fullname: DiStasio, Robert A.
– sequence: 4
  givenname: Alexandre
  surname: Tkatchenko
  fullname: Tkatchenko, Alexandre
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24832316$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/22253520$$D View this record in Osti.gov
BookMark eNpt0UFP3TAMAOBoYhoP2GF_YKrEBQ4Fx0mT9ogQsElP4gLnKE3dt6I2eUvaA_-ewHu8w7STZeuzJdsn7MgHT4z94HDFQYlrfiVrVXGQX9iKQ92UWjVwxFYAyMtGgTpmJym9AADXKL-xY5S1QMHVij2ug9-U0foNFS7ESKOdh-AL8hQ3r4Wzo1tyibqij2HKZNmOObFzmAZXRErb4BMV_eLde186Y197Oyb6vo-n7Pn-7un2V7l-fPh9e7MunQQ9lwpaDm3rpGysqkWndd01JKF1FrvKSaGrnHTQYW0Jna0RbMVVq-oOsO97ccrOd3NDmgeT3DCT--OC9-Rmg4iVqBCyutipbQx_F0qzmYbkaBytp7AkwyustEKV-WHggb6EJfq8g0GOWgsplMjq514t7USd2cZhsvHVfB40g8sdcDGkFKk_EA7m_VmGm_2zsr3-x-Y1Ps4_RzuM_-l4A4Y9k5w
CitedBy_id crossref_primary_10_1021_acs_jpcc_0c02293
crossref_primary_10_1021_acs_jpclett_3c02723
crossref_primary_10_1021_acsnano_6b02402
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123681
crossref_primary_10_1039_D1SC03665C
crossref_primary_10_1021_acs_jpclett_2c02197
crossref_primary_10_1021_acsaem_4c01847
crossref_primary_10_1039_D3ME00044C
crossref_primary_10_1038_s41467_024_54484_8
crossref_primary_10_1021_jacs_4c13291
crossref_primary_10_1103_PhysRevMaterials_3_031001
crossref_primary_10_1021_acs_jpcc_8b03267
crossref_primary_10_1088_1367_2630_ab4509
crossref_primary_10_1103_PhysRevLett_132_196201
crossref_primary_10_1002_jcc_27222
crossref_primary_10_1088_1361_648X_aa693e
crossref_primary_10_1103_PhysRevB_105_195105
crossref_primary_10_1016_j_susc_2020_121795
crossref_primary_10_35848_1347_4065_acb74d
crossref_primary_10_1103_PhysRevLett_114_106804
crossref_primary_10_1039_D3CE00216K
crossref_primary_10_1063_5_0163842
crossref_primary_10_1021_acs_chemmater_6b04190
crossref_primary_10_1021_acs_chemmater_2c03444
crossref_primary_10_1021_acs_jctc_3c00495
crossref_primary_10_1039_C9NR00596J
crossref_primary_10_1039_C9CP06040E
crossref_primary_10_1021_jp5125266
crossref_primary_10_1002_adma_201700681
crossref_primary_10_1002_jcc_27454
crossref_primary_10_1103_PhysRevB_93_035118
crossref_primary_10_1021_acs_jctc_1c01291
crossref_primary_10_1021_acs_jctc_1c01295
crossref_primary_10_1021_acs_langmuir_4c02194
crossref_primary_10_1039_D0CE00774A
crossref_primary_10_1088_1361_648X_ab554e
crossref_primary_10_1021_acs_accounts_1c00387
crossref_primary_10_1021_acs_cgd_0c01266
crossref_primary_10_1039_C5RA08937A
crossref_primary_10_1073_pnas_2111769119
crossref_primary_10_1016_j_cpc_2025_109525
crossref_primary_10_1021_acs_jpcc_7b00365
crossref_primary_10_1038_s41467_020_15480_w
crossref_primary_10_1021_acs_chemmater_9b00994
crossref_primary_10_1002_qua_25150
crossref_primary_10_1038_s41597_021_00812_2
crossref_primary_10_1016_j_physe_2023_115776
crossref_primary_10_1021_acs_jpca_7b06431
crossref_primary_10_1103_PhysRevLett_125_255702
crossref_primary_10_1063_5_0205448
crossref_primary_10_1088_1361_648X_aabcfb
crossref_primary_10_1063_1_4930137
crossref_primary_10_1063_5_0094727
crossref_primary_10_1126_sciadv_aav0129
crossref_primary_10_1021_acs_jpclett_9b03415
crossref_primary_10_1038_s41467_022_31093_x
crossref_primary_10_1063_1_4972810
crossref_primary_10_1063_1_5143190
crossref_primary_10_1007_s00214_015_1751_2
crossref_primary_10_1021_acs_jctc_2c00883
crossref_primary_10_1039_D2CP00744D
crossref_primary_10_1021_acs_cgd_0c00163
crossref_primary_10_1103_PhysRevB_105_184114
crossref_primary_10_1080_00268976_2015_1059959
crossref_primary_10_3390_cryst15030274
crossref_primary_10_1021_acs_jctc_6b00222
crossref_primary_10_1039_D1CP04922D
crossref_primary_10_1021_acs_jctc_3c00353
crossref_primary_10_1126_sciadv_abj9751
crossref_primary_10_1063_5_0196690
crossref_primary_10_1063_5_0024727
crossref_primary_10_1063_5_0214165
crossref_primary_10_1103_PhysRevB_107_064101
crossref_primary_10_1063_5_0071995
crossref_primary_10_1021_ct500707w
crossref_primary_10_1063_1_4922688
crossref_primary_10_1103_PhysRevB_108_235403
crossref_primary_10_1016_j_carbon_2017_03_024
crossref_primary_10_1021_acs_chemmater_4c01771
crossref_primary_10_1021_acs_cgd_1c00723
crossref_primary_10_1016_j_jssc_2017_10_009
crossref_primary_10_1063_1_4885339
crossref_primary_10_1103_PhysRevLett_118_266802
crossref_primary_10_1002_qua_25061
crossref_primary_10_1063_1_5006596
crossref_primary_10_1088_2516_1075_ac25d7
crossref_primary_10_1039_D2CE01594C
crossref_primary_10_3390_ijms25053023
crossref_primary_10_1063_1_4962188
crossref_primary_10_1021_acs_nanolett_5b01940
crossref_primary_10_1063_5_0185319
crossref_primary_10_1021_acs_cgd_2c00419
crossref_primary_10_1021_acs_jpcc_7b11271
crossref_primary_10_1039_C4CP04354E
crossref_primary_10_1039_C7CP06446B
crossref_primary_10_1103_RevModPhys_88_045003
crossref_primary_10_1021_acs_jpcc_1c02611
crossref_primary_10_1021_acs_jctc_8b00114
crossref_primary_10_1063_1_5009502
crossref_primary_10_1021_acs_jctc_7b00837
crossref_primary_10_1039_C4CP05541A
crossref_primary_10_1039_C6CC05851E
crossref_primary_10_1038_s41570_017_0017
crossref_primary_10_1038_sdata_2016_9
crossref_primary_10_1063_1_5046908
crossref_primary_10_1016_j_jpcs_2024_112125
crossref_primary_10_1039_C8FD00066B
crossref_primary_10_1039_D4NA00322E
crossref_primary_10_1021_acsami_6b16493
crossref_primary_10_1039_D1CP03888E
crossref_primary_10_1088_2516_1075_ab9bb5
crossref_primary_10_1021_acs_jctc_9b00908
crossref_primary_10_1021_acs_jpca_0c06595
crossref_primary_10_1039_D0CC02935A
crossref_primary_10_1063_1_5017106
crossref_primary_10_1016_j_apsusc_2017_09_119
crossref_primary_10_1088_2516_1075_ac3b5c
crossref_primary_10_1021_jacs_9b11589
crossref_primary_10_1016_j_micromeso_2023_112916
crossref_primary_10_1021_acs_jpclett_9b01156
crossref_primary_10_1039_C9RA01983A
crossref_primary_10_1016_j_cplett_2019_01_027
crossref_primary_10_3762_bjoc_14_99
crossref_primary_10_1039_C5SC00410A
crossref_primary_10_1021_acs_jctc_6b00147
crossref_primary_10_1021_acsomega_8b00485
crossref_primary_10_1039_D0CP06063A
crossref_primary_10_1088_0953_8984_26_39_395005
crossref_primary_10_1021_acs_jcim_9b00601
crossref_primary_10_1103_PhysRevB_101_195426
crossref_primary_10_1038_srep15095
crossref_primary_10_1039_D3SC03903J
crossref_primary_10_1021_acs_cgd_4c00965
crossref_primary_10_1021_acs_jpcc_3c03900
crossref_primary_10_1021_acs_jpcc_6b07141
crossref_primary_10_1021_acs_jctc_8b00484
crossref_primary_10_1016_j_jcat_2016_11_010
crossref_primary_10_1039_C6CE00873A
crossref_primary_10_1063_5_0088027
crossref_primary_10_1038_s41467_018_07298_4
crossref_primary_10_1063_5_0091781
crossref_primary_10_1063_5_0035530
crossref_primary_10_1063_5_0128780
crossref_primary_10_1088_1367_2630_ab0a87
crossref_primary_10_1002_adfm_201403029
crossref_primary_10_1021_acs_jctc_4c00941
crossref_primary_10_1039_C7CP01881A
crossref_primary_10_1063_1_5030539
crossref_primary_10_1021_jp412055r
crossref_primary_10_1039_D1SC03095G
crossref_primary_10_1021_acs_jpca_0c05006
crossref_primary_10_1021_acs_jctc_3c01082
crossref_primary_10_3390_cryst9050243
crossref_primary_10_1103_PhysRevMaterials_4_116001
crossref_primary_10_1002_adfm_201902332
crossref_primary_10_1107_S2052520616007447
crossref_primary_10_1021_jacs_3c07105
crossref_primary_10_1088_1361_648X_abbdbc
crossref_primary_10_1021_acssuschemeng_0c04707
crossref_primary_10_1063_1_5120587
crossref_primary_10_1021_acs_jpca_3c04540
crossref_primary_10_1063_1_4973839
crossref_primary_10_1021_jacs_1c10563
crossref_primary_10_3390_molecules26216719
crossref_primary_10_1021_acs_jctc_6b00876
crossref_primary_10_1021_jacs_0c09284
crossref_primary_10_1039_D0SC03629C
crossref_primary_10_1063_5_0115151
crossref_primary_10_1063_5_0138032
crossref_primary_10_3390_pharmaceutics13101606
crossref_primary_10_1063_1_4971790
crossref_primary_10_1002_cphc_201700378
crossref_primary_10_1021_acs_jpcc_8b02431
crossref_primary_10_1073_pnas_1811569115
crossref_primary_10_1021_acs_cgd_9b01522
crossref_primary_10_1021_acs_jpclett_1c01987
crossref_primary_10_1063_5_0154710
crossref_primary_10_1021_acs_jpcc_3c04135
crossref_primary_10_1021_acs_jpca_3c04332
crossref_primary_10_1063_5_0213582
crossref_primary_10_1103_PhysRevResearch_5_043072
crossref_primary_10_1016_j_susc_2022_122027
crossref_primary_10_1038_s41467_022_28461_y
crossref_primary_10_1021_acs_jctc_0c00966
crossref_primary_10_1039_D1CE00745A
crossref_primary_10_1039_C4CP05216A
crossref_primary_10_1103_RevModPhys_89_035003
crossref_primary_10_1039_D0CP04137H
crossref_primary_10_1039_C8CP02508H
crossref_primary_10_1088_0953_8984_27_41_415502
crossref_primary_10_1039_D1NR03001A
crossref_primary_10_1039_D3CE00833A
crossref_primary_10_1002_zaac_201800381
crossref_primary_10_1002_jcc_26784
crossref_primary_10_1016_j_apsusc_2018_03_198
crossref_primary_10_1021_acs_jpcc_3c03275
crossref_primary_10_1021_acs_jpclett_2c00936
crossref_primary_10_1063_5_0059364
crossref_primary_10_1080_00268976_2019_1652366
crossref_primary_10_1021_acs_jctc_8b00842
crossref_primary_10_1002_jcc_24248
crossref_primary_10_1021_acs_jpcc_0c00915
crossref_primary_10_3762_bjoc_15_12
crossref_primary_10_1039_D0NR08973G
crossref_primary_10_1126_sciadv_aax0024
crossref_primary_10_1103_PhysRevLett_134_073002
crossref_primary_10_1007_s43673_024_00125_7
crossref_primary_10_1021_acsnano_3c01523
crossref_primary_10_1103_PhysRevLett_116_146101
crossref_primary_10_1063_5_0074936
crossref_primary_10_1016_j_commatsci_2019_109160
crossref_primary_10_3390_nano12234281
crossref_primary_10_1002_jcc_26452
crossref_primary_10_1088_1367_2630_acb3ee
crossref_primary_10_1021_ct5003225
crossref_primary_10_1021_acs_jpclett_9b03716
crossref_primary_10_1038_s42004_019_0171_y
crossref_primary_10_1039_D2SC06770F
crossref_primary_10_1021_acs_jpcc_9b09396
crossref_primary_10_1039_C4CP05973E
crossref_primary_10_1021_acs_jctc_6b00323
crossref_primary_10_1103_PhysRevB_97_115140
crossref_primary_10_1038_ncomms14052
crossref_primary_10_1063_1_4947214
crossref_primary_10_1039_D1TC01972D
crossref_primary_10_3390_ijms24108778
crossref_primary_10_1021_acs_jctc_9b00979
crossref_primary_10_1021_acs_jctc_9b00615
crossref_primary_10_1002_cphc_201600539
crossref_primary_10_1039_D0CP00394H
crossref_primary_10_1002_adfm_202311875
crossref_primary_10_1103_PhysRevMaterials_3_063602
crossref_primary_10_1038_s41524_022_00724_8
crossref_primary_10_1103_PhysRevB_110_075409
crossref_primary_10_1002_anie_202216658
crossref_primary_10_1039_D4SC06529H
crossref_primary_10_1007_s10909_016_1515_y
crossref_primary_10_1039_D3SC03598K
crossref_primary_10_3762_bjoc_14_26
crossref_primary_10_1021_acs_chemmater_9b01807
crossref_primary_10_1021_acs_jpclett_8b01589
crossref_primary_10_1016_j_cplett_2024_141134
crossref_primary_10_1016_j_cartre_2022_100242
crossref_primary_10_1021_acs_jpcc_3c08414
crossref_primary_10_1002_admi_202400326
crossref_primary_10_1021_acsami_4c11178
crossref_primary_10_1039_C9CS00060G
crossref_primary_10_1103_PhysRevB_92_184301
crossref_primary_10_3762_bjnano_10_180
crossref_primary_10_1039_D3MA00460K
crossref_primary_10_1039_D1CP01148K
crossref_primary_10_1021_acs_jpclett_7b00253
crossref_primary_10_1016_j_carbon_2023_118244
crossref_primary_10_1021_acs_cgd_6b01654
crossref_primary_10_1021_acs_jpcc_7b07091
crossref_primary_10_1021_ar500118y
crossref_primary_10_1126_science_abe8177
crossref_primary_10_1002_wcms_1631
crossref_primary_10_1016_j_apsusc_2016_12_128
crossref_primary_10_1063_1_4977180
crossref_primary_10_1063_5_0051604
crossref_primary_10_1103_PhysRevB_106_014102
crossref_primary_10_1021_acs_chemmater_7b00965
crossref_primary_10_1021_acs_jpcc_2c08413
crossref_primary_10_1038_s41467_021_24119_3
crossref_primary_10_1021_acs_cgd_1c00123
crossref_primary_10_1063_1_5052728
crossref_primary_10_1021_acs_jctc_2c01149
crossref_primary_10_1039_D1NR01047F
crossref_primary_10_1039_D4CP03451A
crossref_primary_10_1103_PhysRevLett_121_045901
crossref_primary_10_1088_1361_648X_aa8f79
crossref_primary_10_1071_CH19023
crossref_primary_10_3390_molecules28062841
crossref_primary_10_1021_acs_cgd_4c00195
crossref_primary_10_1021_acs_jpcc_2c08464
crossref_primary_10_1063_5_0219185
crossref_primary_10_1039_D2CP00148A
crossref_primary_10_1021_acs_jctc_0c01194
crossref_primary_10_1002_adma_202412005
crossref_primary_10_1107_S2052520616009227
crossref_primary_10_1016_j_ssnmr_2022_101820
crossref_primary_10_1039_D3CE00163F
crossref_primary_10_1002_pssr_202200118
crossref_primary_10_1038_s41598_024_63552_4
crossref_primary_10_1002_aenm_202403876
crossref_primary_10_1021_jacs_7b09102
crossref_primary_10_1039_D1SC06467C
crossref_primary_10_1021_acs_jpclett_0c02201
crossref_primary_10_1103_PhysRevLett_115_036104
crossref_primary_10_1039_C8TA11685G
crossref_primary_10_1038_s41586_023_06587_3
crossref_primary_10_1063_1_4869330
crossref_primary_10_1039_D4CE01105H
crossref_primary_10_1103_PhysRevLett_114_096101
crossref_primary_10_1021_acs_jpcc_6b12581
crossref_primary_10_1103_PhysRevMaterials_2_055603
crossref_primary_10_1063_1_5018818
crossref_primary_10_1103_PhysRevMaterials_3_053605
crossref_primary_10_1002_anie_201612121
crossref_primary_10_1063_5_0248728
crossref_primary_10_1021_acs_jctc_6b00925
crossref_primary_10_1021_acs_jpcb_2c04255
crossref_primary_10_1038_s41467_024_50401_1
crossref_primary_10_1021_acs_jpca_6b03167
crossref_primary_10_1021_acs_jpcc_5b06165
crossref_primary_10_1021_acs_cgd_1c01114
crossref_primary_10_1021_acs_jctc_1c00782
crossref_primary_10_1016_j_jcat_2021_02_011
crossref_primary_10_1021_acs_jpcc_6b07903
crossref_primary_10_1103_PhysRevB_111_054103
crossref_primary_10_1021_acs_jcim_3c01684
crossref_primary_10_7567_1347_4065_ab355a
crossref_primary_10_1002_chem_202302933
crossref_primary_10_1021_acs_jpcc_0c09460
crossref_primary_10_1007_s11249_022_01653_9
crossref_primary_10_1021_jacs_4c11211
crossref_primary_10_1039_D0CC04758A
crossref_primary_10_1021_acs_jctc_9b00425
crossref_primary_10_1021_acsami_1c05617
crossref_primary_10_1063_1_5108829
crossref_primary_10_1063_5_0142465
crossref_primary_10_1007_s00214_016_1925_6
crossref_primary_10_1016_j_progsurf_2019_100561
crossref_primary_10_1063_5_0051235
crossref_primary_10_1038_s41467_023_39214_w
crossref_primary_10_1038_s41467_020_19168_z
crossref_primary_10_1038_s41597_022_01297_3
crossref_primary_10_1039_C9CP04488D
crossref_primary_10_1063_1_4996687
crossref_primary_10_1103_PhysRevMaterials_4_073601
crossref_primary_10_1021_acs_cgd_9b00162
crossref_primary_10_1021_acs_chemrev_6b00446
crossref_primary_10_3390_molecules23010118
crossref_primary_10_1088_1361_6528_ad9b33
crossref_primary_10_1021_acs_jpcc_0c06188
crossref_primary_10_1021_acs_jpcc_7b06243
crossref_primary_10_1039_D2DD00150K
crossref_primary_10_1002_adts_202200055
crossref_primary_10_1021_ct500642x
crossref_primary_10_1021_acs_jpcc_9b08918
crossref_primary_10_1103_PhysRevB_102_085403
crossref_primary_10_1021_acs_jpcc_2c08212
crossref_primary_10_1039_C8CP04936J
crossref_primary_10_1088_2399_1984_aada8e
crossref_primary_10_1021_jp504914u
crossref_primary_10_1021_acs_jpca_2c01421
crossref_primary_10_1021_acs_nanolett_4c02794
crossref_primary_10_1103_PhysRevLett_121_146401
crossref_primary_10_1063_1_5086541
crossref_primary_10_1038_s42005_024_01764_w
crossref_primary_10_1021_acs_jpclett_7b01634
crossref_primary_10_1039_C8SC01274A
crossref_primary_10_1002_chem_202400779
crossref_primary_10_1021_acs_jpcc_2c07170
crossref_primary_10_1103_PhysRevLett_124_146401
crossref_primary_10_1038_s41586_022_04409_6
crossref_primary_10_1021_acs_jctc_0c00181
crossref_primary_10_1039_C9RA03003D
crossref_primary_10_1021_ar500144s
crossref_primary_10_1021_acs_jpcc_2c01514
crossref_primary_10_1021_acs_jcim_3c01895
crossref_primary_10_1063_5_0170972
crossref_primary_10_1088_1367_2630_aa57c2
crossref_primary_10_1021_acs_jctc_4c00293
crossref_primary_10_1103_PhysRevB_94_035140
crossref_primary_10_1103_PhysRevLett_119_097404
crossref_primary_10_1021_acs_cgd_4c00026
crossref_primary_10_1088_2515_7655_abd295
crossref_primary_10_1038_s41467_020_20212_1
crossref_primary_10_1002_adts_201800085
crossref_primary_10_1039_C5DT01627D
crossref_primary_10_1063_5_0182711
crossref_primary_10_1021_acs_jctc_6b00969
crossref_primary_10_1039_C5SC04676A
crossref_primary_10_1063_1_4893377
crossref_primary_10_1039_D2SC05997E
crossref_primary_10_1039_C6RA06425F
crossref_primary_10_1126_science_aae0509
crossref_primary_10_1039_C5SC03234B
crossref_primary_10_5940_jcrsj_62_260
crossref_primary_10_1002_cplu_202300062
crossref_primary_10_1088_2515_7655_ad139d
crossref_primary_10_1016_j_jcat_2016_05_018
crossref_primary_10_1021_acs_jpclett_9b00860
crossref_primary_10_1103_PhysRevLett_122_026001
crossref_primary_10_1002_wcms_1241
crossref_primary_10_1039_D4CY00548A
crossref_primary_10_1016_j_molliq_2020_114496
crossref_primary_10_1039_D2TC02253B
crossref_primary_10_1063_5_0166476
crossref_primary_10_1088_1361_648X_aafcfd
crossref_primary_10_1039_D0CP00502A
crossref_primary_10_1039_D1CE00343G
crossref_primary_10_1103_PhysRevLett_117_246101
crossref_primary_10_1063_1_4972213
crossref_primary_10_1103_PhysRevMaterials_4_124003
crossref_primary_10_1002_adfm_202417891
crossref_primary_10_1002_advs_202204684
crossref_primary_10_1103_PhysRevLett_113_055701
crossref_primary_10_1002_wcms_1357
crossref_primary_10_1002_wcms_1599
crossref_primary_10_1021_acs_jpclett_5b01899
crossref_primary_10_1021_acs_chemmater_4c03161
crossref_primary_10_1039_D1CP04550D
crossref_primary_10_1063_1_4985878
crossref_primary_10_1021_acs_jpcb_3c07335
crossref_primary_10_1039_D3CP04364A
crossref_primary_10_1021_acs_jpclett_2c03722
crossref_primary_10_1063_1_5063569
crossref_primary_10_1039_D2DD00016D
crossref_primary_10_1103_PhysRevMaterials_3_016002
crossref_primary_10_1088_0953_8984_28_4_045201
crossref_primary_10_1103_PhysRevResearch_2_023157
crossref_primary_10_1007_s00214_018_2357_2
crossref_primary_10_1103_PhysRevB_106_075201
crossref_primary_10_1103_PhysRevB_97_241411
crossref_primary_10_1103_PhysRevLett_131_228001
crossref_primary_10_1021_acs_jctc_8b01242
crossref_primary_10_1021_acs_jpclett_7b03180
crossref_primary_10_1038_s41597_024_03521_8
crossref_primary_10_1016_j_carbon_2016_10_024
crossref_primary_10_1021_acs_jctc_7b01152
crossref_primary_10_1021_acs_jpcb_4c02882
crossref_primary_10_1103_PhysRevB_103_094118
crossref_primary_10_1021_acs_cgd_3c00027
crossref_primary_10_1063_5_0242359
crossref_primary_10_1002_adts_202100187
crossref_primary_10_1016_j_carbon_2020_01_085
crossref_primary_10_1021_acs_jctc_2c00343
crossref_primary_10_1063_5_0053493
crossref_primary_10_1103_PhysRevB_99_195418
crossref_primary_10_1063_1_5030094
crossref_primary_10_3390_ma14237175
crossref_primary_10_1039_C4CC06722C
crossref_primary_10_1039_D0NR00443J
crossref_primary_10_1021_acs_jctc_2c00350
crossref_primary_10_1039_D3CP04358D
crossref_primary_10_1063_5_0010615
crossref_primary_10_1021_acs_jpca_0c09388
crossref_primary_10_1063_1_5085394
crossref_primary_10_1038_s41598_024_69290_x
crossref_primary_10_1021_acs_jpclett_6b00916
crossref_primary_10_1146_annurev_matsci_070218_010143
crossref_primary_10_1002_smtd_202201358
crossref_primary_10_1039_D5CP00567A
crossref_primary_10_1063_5_0102645
crossref_primary_10_1088_2516_1075_ac495b
crossref_primary_10_1016_j_electacta_2019_01_081
crossref_primary_10_1063_1_4927476
crossref_primary_10_1021_acs_jctc_7b01014
crossref_primary_10_1039_C7SC05020H
crossref_primary_10_1088_2632_2153_ad652c
crossref_primary_10_1021_acs_jctc_8b00058
crossref_primary_10_3390_surfaces7040070
crossref_primary_10_1039_D2CP00282E
crossref_primary_10_1002_ange_201612121
crossref_primary_10_1021_acs_jpcc_4c01633
crossref_primary_10_1021_acsmacrolett_5b00837
crossref_primary_10_1126_sciadv_1501438
crossref_primary_10_1021_acs_jctc_9b00035
crossref_primary_10_1039_C9CP04031E
crossref_primary_10_1103_PhysRevB_98_174103
crossref_primary_10_1016_j_ijengsci_2024_104126
crossref_primary_10_1021_acs_cgd_4c00480
crossref_primary_10_1021_jacs_7b10980
crossref_primary_10_1063_1_4890003
crossref_primary_10_1107_S2052520624002774
crossref_primary_10_1021_acs_jctc_8b00167
crossref_primary_10_1021_acs_jctc_8b00288
crossref_primary_10_1016_j_icarus_2021_114611
crossref_primary_10_1016_j_apsusc_2024_160218
crossref_primary_10_1103_PhysRevMaterials_7_035402
crossref_primary_10_1021_acs_jctc_0c00471
crossref_primary_10_1021_acs_jctc_0c00232
crossref_primary_10_1021_acs_jctc_1c00328
crossref_primary_10_1021_acs_cgd_4c00315
crossref_primary_10_1016_j_jpcs_2020_109736
crossref_primary_10_1021_jacs_2c12095
crossref_primary_10_1016_j_ccr_2015_05_002
crossref_primary_10_1038_srep39529
crossref_primary_10_1039_D0SC05765G
crossref_primary_10_1103_PhysRevB_94_045124
crossref_primary_10_1021_acs_jpcc_9b01098
crossref_primary_10_1021_acs_cgd_2c00249
crossref_primary_10_1103_PhysRevLett_128_106101
crossref_primary_10_1021_acs_jctc_3c01308
crossref_primary_10_1002_adma_201908028
crossref_primary_10_1126_sciadv_aau3338
crossref_primary_10_1021_acs_inorgchem_3c01696
crossref_primary_10_1021_acs_chemrev_5b00648
crossref_primary_10_1021_acs_jcim_5b00243
crossref_primary_10_1063_5_0204064
crossref_primary_10_1016_j_susmat_2019_e00103
crossref_primary_10_1021_acs_chemmater_2c01508
crossref_primary_10_1038_s41560_020_00716_2
crossref_primary_10_1039_C7NR07779C
crossref_primary_10_1002_wcms_1294
crossref_primary_10_1038_s41467_023_43785_z
crossref_primary_10_1021_acs_jctc_4c00689
crossref_primary_10_1063_5_0055522
crossref_primary_10_1021_acs_inorgchem_4c01674
crossref_primary_10_1038_s42004_023_00925_2
crossref_primary_10_1021_acs_jctc_7b01172
crossref_primary_10_1021_acs_jpca_7b12467
crossref_primary_10_1021_acs_jpcc_9b08824
crossref_primary_10_1021_acs_jctc_7b01179
crossref_primary_10_1038_srep07881
crossref_primary_10_1021_acs_chemrev_5b00533
crossref_primary_10_1002_ange_202216658
crossref_primary_10_1021_acs_jpcc_8b05349
crossref_primary_10_1021_acs_jctc_1c01302
crossref_primary_10_1002_ijch_202100062
crossref_primary_10_1002_asia_202200494
crossref_primary_10_1021_acs_jpclett_5c00257
crossref_primary_10_1063_5_0041008
crossref_primary_10_1039_D4DD00312H
crossref_primary_10_1002_cctc_201801271
crossref_primary_10_1080_00268976_2015_1058432
crossref_primary_10_3390_molecules28020772
crossref_primary_10_1039_D3CP02256K
crossref_primary_10_1021_acs_jctc_9b01167
crossref_primary_10_1039_C8FD00048D
crossref_primary_10_1002_adma_202107515
crossref_primary_10_1103_PhysRevB_108_165108
crossref_primary_10_1021_acs_jctc_0c00119
Cites_doi 10.1103/PhysRevLett.105.196401
10.1063/1.4816964
10.1103/PhysRev.136.B864
10.1063/1.1743991
10.1063/1.4704546
10.1016/0038-1098(82)90993-0
10.1103/PhysRevLett.76.102
10.1063/1.3317437
10.1063/1.1564060
10.1126/science.1158722
10.1021/ct300711r
10.1063/1.1424928
10.1103/PhysRevB.78.045116
10.1073/pnas.1208121109
10.1103/PhysRev.129.62
10.1002/jcc.20495
10.1103/PhysRevB.87.064110
10.1103/PhysRevLett.100.053002
10.1002/anie.201301938
10.1103/PhysRevLett.92.246401
10.1103/PhysRevA.82.032502
10.1103/PhysRevB.82.081101
10.1103/PhysRevLett.77.3865
10.1088/0953-8984/24/7/073201
10.1103/PhysRev.140.A1133
10.1021/ct2002946
10.1063/1.2795701
10.1103/PhysRevB.87.144103
10.1063/1.4754130
10.1021/jz402663k
10.1021/ct301081n
10.1063/1.4812819
10.1063/1.4738961
10.1103/PhysRev.126.413
10.1002/cphc.201100826
10.1103/PhysRevLett.108.235502
10.1103/PhysRevA.81.062708
10.1103/PhysRevLett.107.245501
10.1103/PhysRevLett.106.153003
10.1038/ncomms3341
10.1063/1.3521275
10.1063/1.3494541
10.1021/ct400446t
10.1021/cr1000173
10.1063/1.4789421
10.1039/b600027d
10.1063/1.1779576
10.1002/chem.201200497
10.1023/A:1014915307738
10.1103/PhysRevLett.102.073005
10.1088/1367-2630/14/5/053020
10.1103/PhysRevB.69.155406
10.1063/1.478522
10.1063/1.3382344
10.1016/j.cpc.2009.06.022
10.1063/1.1723844
10.1007/s00214-011-1084-8
10.1103/PhysRevA.70.062505
10.1021/jz400226x
10.1103/PhysRevB.87.060104
10.1063/1.4789814
10.1103/PhysRevLett.108.236402
10.1103/PhysRevB.87.041108
10.1103/PhysRevB.79.205114
10.1063/1.4705760
ContentType Journal Article
Copyright 2014 AIP Publishing LLC.
Copyright_xml – notice: 2014 AIP Publishing LLC.
DBID AAYXX
CITATION
NPM
8FD
H8D
L7M
7X8
OTOTI
DOI 10.1063/1.4865104
DatabaseName CrossRef
PubMed
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
OSTI.GOV
DatabaseTitle CrossRef
PubMed
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitleList Technology Research Database
MEDLINE - Academic
CrossRef

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1089-7690
ExternalDocumentID 22253520
24832316
10_1063_1_4865104
Genre Journal Article
GroupedDBID ---
-DZ
-ET
-~X
123
1UP
2-P
29K
4.4
53G
5VS
85S
AAAAW
AABDS
AAGWI
AAPUP
AAYIH
AAYXX
ABJGX
ABPPZ
ABRJW
ABZEH
ACBRY
ACLYJ
ACNCT
ACZLF
ADCTM
ADMLS
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BDMKI
BPZLN
CITATION
CS3
D-I
DU5
EBS
EJD
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P0-
P2P
RIP
RNS
RQS
TN5
TWZ
UPT
WH7
YQT
YZZ
~02
NPM
8FD
H8D
L7M
7X8
0ZJ
AAEUA
ABPTK
AGIHO
ESX
OTOTI
UE8
ZHY
ID FETCH-LOGICAL-c407t-60b10bbc449a683d778d9e40bca2d5c437540bd0d28ae2ca820a516b68d02fff3
ISSN 0021-9606
1089-7690
IngestDate Thu May 18 22:32:15 EDT 2023
Thu Jul 10 19:19:36 EDT 2025
Mon Jun 30 13:09:55 EDT 2025
Mon Jul 21 06:04:02 EDT 2025
Thu Apr 24 23:09:10 EDT 2025
Tue Jul 01 04:15:40 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c407t-60b10bbc449a683d778d9e40bca2d5c437540bd0d28ae2ca820a516b68d02fff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 24832316
PQID 2127734363
PQPubID 2050685
ParticipantIDs osti_scitechconnect_22253520
proquest_miscellaneous_1525762625
proquest_journals_2127734363
pubmed_primary_24832316
crossref_primary_10_1063_1_4865104
crossref_citationtrail_10_1063_1_4865104
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-05-14
PublicationDateYYYYMMDD 2014-05-14
PublicationDate_xml – month: 05
  year: 2014
  text: 2014-05-14
  day: 14
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Melville
PublicationTitle The Journal of chemical physics
PublicationTitleAlternate J Chem Phys
PublicationYear 2014
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References (2023062407195022800_c32) 2010; 132
(2023062407195022800_c37) 2013; 87
(2023062407195022800_c47) 2006; 8
(2023062407195022800_c64) 2013; 9
(2023062407195022800_c26) 2013; 139
(2023062407195022800_c18) 2012; 109
(2023062407195022800_c28) 2012; 8
(2023062407195022800_c41) 2002; 116
(2023062407195022800_c44) 2013; 87
(2023062407195022800_c15) 2013; 4
(2023062407195022800_c13) 2012; 137
(2023062407195022800_c53) 2010; 81
(2023062407195022800_c2) 1964; 136
(2023062407195022800_c34) 2010; 82
(2023062407195022800_c1) 2012; 136
(2023062407195022800_c55) 2011; 107
(2023062407195022800_c7) 2007; 127
(2023062407195022800_c3) 1965; 140
(2023062407195022800_c59) 2003; 118
(2023062407195022800_c30) 2009; 79
(2023062407195022800_c38) 2008; 100
(2023062407195022800_c48) 2011; 7
(2023062407195022800_c54) 1982; 42
2023062407195022800_c12
(2023062407195022800_c14) 2013; 52
(2023062407195022800_c22) 2012; 24
(2023062407195022800_c6) 2004; 92
(2023062407195022800_c33) 2004; 70
(2023062407195022800_c23) 2010; 133
(2023062407195022800_c42) 2006; 27
(2023062407195022800_c16) 2012; 108
(2023062407195022800_c9) 2010; 132
(2023062407195022800_c11) 2013; 87
(2023062407195022800_c49) 2012; 18
(2023062407195022800_c60) 2012; 136
(2023062407195022800_c62) 2004; 69
(2023062407195022800_c4) 2008; 321
(2023062407195022800_c20) 2012; 14
(2023062407195022800_c56) 2013; 87
(2023062407195022800_c21) 2012; 131
(2023062407195022800_c52) 2008; 78
(2023062407195022800_c19) 2012; 108
(2023062407195022800_c51) 2009; 180
(2023062407195022800_c35) 1962; 126
(2023062407195022800_c17) 2013; 9
(2023062407195022800_c29) 1996; 76
(2023062407195022800_c63) 2010; 105
(2023062407195022800_c36) 1963; 129
(2023062407195022800_c45) 1996; 77
(2023062407195022800_c46) 1999; 110
(2023062407195022800_c5) 2012; 137
(2023062407195022800_c40) 2004; 121
(2023062407195022800_c58) 2010; 82
(2023062407195022800_c25) 2013; 138
(2023062407195022800_c39) 2010; 133
(2023062407195022800_c65) 1957; 27
(2023062407195022800_c61) 2002; 37
(2023062407195022800_c50) 2013; 139
(2023062407195022800_c31) 2011; 106
(2023062407195022800_c8) 2010; 110
(2023062407195022800_c57) 2011; 12
(2023062407195022800_c10) 2009; 102
(2023062407195022800_c24) 1943; 11
(2023062407195022800_c43) 2013; 4
(2023062407195022800_c27) 2013; 138
References_xml – volume: 105
  start-page: 196401
  year: 2010
  ident: 2023062407195022800_c63
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.196401
– volume: 139
  start-page: 054106
  year: 2013
  ident: 2023062407195022800_c26
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4816964
– volume: 136
  start-page: B864
  year: 1964
  ident: 2023062407195022800_c2
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.136.B864
– volume: 27
  start-page: 1280
  year: 1957
  ident: 2023062407195022800_c65
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1743991
– volume: 136
  start-page: 150901
  year: 2012
  ident: 2023062407195022800_c1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4704546
– volume: 42
  start-page: 153
  year: 1982
  ident: 2023062407195022800_c54
  publication-title: Solid State Commun.
  doi: 10.1016/0038-1098(82)90993-0
– volume: 76
  start-page: 102
  year: 1996
  ident: 2023062407195022800_c29
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.76.102
– volume: 132
  start-page: 094103
  year: 2010
  ident: 2023062407195022800_c32
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3317437
– volume: 118
  start-page: 8207
  year: 2003
  ident: 2023062407195022800_c59
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1564060
– volume: 321
  start-page: 792
  year: 2008
  ident: 2023062407195022800_c4
  publication-title: Science
  doi: 10.1126/science.1158722
– volume: 8
  start-page: 4317
  year: 2012
  ident: 2023062407195022800_c28
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct300711r
– volume: 116
  start-page: 515
  year: 2002
  ident: 2023062407195022800_c41
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1424928
– volume: 78
  start-page: 045116
  year: 2008
  ident: 2023062407195022800_c52
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.78.045116
– volume: 109
  start-page: 14791
  year: 2012
  ident: 2023062407195022800_c18
  publication-title: Proc. Natl. Acad. U.S.A.
  doi: 10.1073/pnas.1208121109
– volume: 129
  start-page: 62
  year: 1963
  ident: 2023062407195022800_c36
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.129.62
– volume: 27
  start-page: 1787
  year: 2006
  ident: 2023062407195022800_c42
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20495
– volume: 87
  start-page: 064110
  year: 2013
  ident: 2023062407195022800_c44
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.87.064110
– volume: 100
  start-page: 053002
  year: 2008
  ident: 2023062407195022800_c38
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.053002
– volume: 52
  start-page: 6629
  year: 2013
  ident: 2023062407195022800_c14
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201301938
– volume: 92
  start-page: 246401
  year: 2004
  ident: 2023062407195022800_c6
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.92.246401
– volume: 82
  start-page: 032502
  year: 2010
  ident: 2023062407195022800_c34
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.82.032502
– volume: 82
  start-page: 081101
  year: 2010
  ident: 2023062407195022800_c58
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.82.081101
– volume: 77
  start-page: 3865
  year: 1996
  ident: 2023062407195022800_c45
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 24
  start-page: 073201
  year: 2012
  ident: 2023062407195022800_c22
  publication-title: J. Phys.: Condens. Matter
  doi: 10.1088/0953-8984/24/7/073201
– volume: 140
  start-page: A1133
  year: 1965
  ident: 2023062407195022800_c3
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.140.A1133
– volume: 7
  start-page: 2427
  year: 2011
  ident: 2023062407195022800_c48
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct2002946
– volume: 127
  start-page: 154108
  year: 2007
  ident: 2023062407195022800_c7
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2795701
– volume: 87
  start-page: 144103
  year: 2013
  ident: 2023062407195022800_c37
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.87.144103
– volume: 137
  start-page: 120901
  year: 2012
  ident: 2023062407195022800_c5
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4754130
– volume-title: J. Phys. Chem. Lett.
  ident: 2023062407195022800_c12
  article-title: Hard numbers for large molecules: Towards exact energetics for supramolecular systems
  doi: 10.1021/jz402663k
– volume: 9
  start-page: 1580
  year: 2013
  ident: 2023062407195022800_c17
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct301081n
– volume: 139
  start-page: 024705
  year: 2013
  ident: 2023062407195022800_c50
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4812819
– volume: 137
  start-page: 054103
  year: 2012
  ident: 2023062407195022800_c13
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4738961
– volume: 126
  start-page: 413
  year: 1962
  ident: 2023062407195022800_c35
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.126.413
– volume: 12
  start-page: 3421
  year: 2011
  ident: 2023062407195022800_c57
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.201100826
– volume: 108
  start-page: 235502
  year: 2012
  ident: 2023062407195022800_c16
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.235502
– volume: 81
  start-page: 062708
  year: 2010
  ident: 2023062407195022800_c53
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.81.062708
– volume: 107
  start-page: 245501
  year: 2011
  ident: 2023062407195022800_c55
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.107.245501
– volume: 106
  start-page: 153003
  year: 2011
  ident: 2023062407195022800_c31
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.106.153003
– volume: 4
  start-page: 2341
  year: 2013
  ident: 2023062407195022800_c43
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3341
– volume: 133
  start-page: 244103
  year: 2010
  ident: 2023062407195022800_c39
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3521275
– volume: 133
  start-page: 154110
  year: 2010
  ident: 2023062407195022800_c23
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3494541
– volume: 9
  start-page: 3473
  year: 2013
  ident: 2023062407195022800_c64
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct400446t
– volume: 110
  start-page: 5023
  year: 2010
  ident: 2023062407195022800_c8
  publication-title: Chem. Rev.
  doi: 10.1021/cr1000173
– volume: 138
  start-page: 054103
  year: 2013
  ident: 2023062407195022800_c25
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4789421
– volume: 8
  start-page: 1985
  year: 2006
  ident: 2023062407195022800_c47
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b600027d
– volume: 121
  start-page: 4083
  year: 2004
  ident: 2023062407195022800_c40
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1779576
– volume: 18
  start-page: 9955
  year: 2012
  ident: 2023062407195022800_c49
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201200497
– volume: 37
  start-page: 1475
  year: 2002
  ident: 2023062407195022800_c61
  publication-title: J. Mater. Sci.
  doi: 10.1023/A:1014915307738
– volume: 102
  start-page: 073005
  year: 2009
  ident: 2023062407195022800_c10
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.073005
– volume: 14
  start-page: 053020
  year: 2012
  ident: 2023062407195022800_c20
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/14/5/053020
– volume: 69
  start-page: 155406
  year: 2004
  ident: 2023062407195022800_c62
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.69.155406
– volume: 110
  start-page: 6158
  year: 1999
  ident: 2023062407195022800_c46
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.478522
– volume: 132
  start-page: 154104
  year: 2010
  ident: 2023062407195022800_c9
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3382344
– volume: 180
  start-page: 2175
  year: 2009
  ident: 2023062407195022800_c51
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2009.06.022
– volume: 11
  start-page: 299
  year: 1943
  ident: 2023062407195022800_c24
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1723844
– volume: 131
  start-page: 1084
  year: 2012
  ident: 2023062407195022800_c21
  publication-title: Theor. Chem. Acc.
  doi: 10.1007/s00214-011-1084-8
– volume: 70
  start-page: 062505
  year: 2004
  ident: 2023062407195022800_c33
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.70.062505
– volume: 4
  start-page: 1028
  year: 2013
  ident: 2023062407195022800_c15
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz400226x
– volume: 87
  start-page: 060104
  year: 2013
  ident: 2023062407195022800_c56
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.87.060104
– volume: 138
  start-page: 074106
  year: 2013
  ident: 2023062407195022800_c27
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4789814
– volume: 108
  start-page: 236402
  year: 2012
  ident: 2023062407195022800_c19
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.236402
– volume: 87
  start-page: 041108
  year: 2013
  ident: 2023062407195022800_c11
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.87.041108
– volume: 79
  start-page: 205114
  year: 2009
  ident: 2023062407195022800_c30
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.79.205114
– volume: 136
  start-page: 174109
  year: 2012
  ident: 2023062407195022800_c60
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4705760
SSID ssj0001724
Score 2.6246095
Snippet An accurate determination of the electron correlation energy is an essential prerequisite for describing the structure, stability, and function in a wide...
SourceID osti
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 18A508
SubjectTerms ACCURACY
ANISOTROPY
Approximation
Complex systems
Correlation
DENSITY FUNCTIONAL METHOD
DIPOLES
Dispersion
DISPERSIONS
ELECTRON CORRELATION
ELECTRONS
Energy
First principles
FUNCTIONALS
INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY
INTERATOMIC FORCES
Mathematical analysis
Mathematical models
NANOSCIENCE AND NANOTECHNOLOGY
NANOSTRUCTURES
RANDOM PHASE APPROXIMATION
RESPONSE FUNCTIONS
SIMULATION
Title Long-range correlation energy calculated from coupled atomic response functions
URI https://www.ncbi.nlm.nih.gov/pubmed/24832316
https://www.proquest.com/docview/2127734363
https://www.proquest.com/docview/1525762625
https://www.osti.gov/biblio/22253520
Volume 140
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZKJwQvCMatMFBAPCBN2ZzYcdLHahdNU7ch0Up9s2LHRWVbMq2phPj1nBM7TisVBLxEbZJars9nn8_H50LIp5ymuWZREnKm0xCzm8CUUkmoMp5RoYwwjWng4lKcTfn5LJn1ej_WvJZWtTrQP7fGlfyPVOEeyBWjZP9Bsr5RuAGfQb5wBQnD9a9kPK7Kb-E9hgfsa6yyYf3a9o2N54PRRydTpJRNEImuVnc38AW22bdN4ubGO9bso2rrzHbfO_iskVXd5hWwlhBPxEe3CtSsqa1TwAgTZtWVP8QxC1fI2qUo6EyvxwtguctF5Ty7YXk6917Ck-scoVReV234jXPQdcaJiOO5etQZJ_2p04bnw5e1nrYhBVGIWymrlOxKTLNhmApbS9Qv1Ta1U4vJbKsOANKF5ogDnonE1TbezLN9eSVPp-OxnJzMJg_ITgwbjLhPdkbHF-OvXosDsXMZvG3X2qxUgh36pje4TL-Cv_j7fUrDVyZPyRMnu2BkUfOM9Ey5Sx4dtfX9dslDN0DPyVWHo2ANR4HFUdDhKEAcBQ5HgcVR0OIo8Dh6QaanJ5Ojs9AV2gg17OfrUFAVUaU058NcZKxI06wYGk6VzuMi0RzLJFNV0CLOchPrHFhjnkRCiayg8Xw-Zy9Jv6xK85oEqQJOLijT8EMuTKqE0rHh0RxPtJM4G5DP7ZBJ7bLQYzGUG9l4QwgmI-lGd0A--lfvbOqVbS_t4bhL4IuY9Fijd5iuJVoxYGtB4XErD-km7lJiUYOUcSbYgHzwj2H08awsL021WkosCwY8QcTJgLyycvSdiDmoQRaJN39u_C153E2JPdKv71fmHTDYWr13YPsFmN6fMg
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Long-range+correlation+energy+calculated+from+coupled+atomic+response+functions&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Ambrosetti%2C+Alberto&rft.au=Reilly%2C+Anthony+M&rft.au=DiStasio+Robert+A+Jr&rft.au=Tkatchenko+Alexandre&rft.date=2014-05-14&rft.pub=American+Institute+of+Physics&rft.issn=0021-9606&rft.eissn=1089-7690&rft.volume=140&rft.issue=18&rft_id=info:doi/10.1063%2F1.4865104&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon