Long-range correlation energy calculated from coupled atomic response functions
An accurate determination of the electron correlation energy is an essential prerequisite for describing the structure, stability, and function in a wide variety of systems. Therefore, the development of efficient approaches for the calculation of the correlation energy (and hence the dispersion ene...
Saved in:
Published in | The Journal of chemical physics Vol. 140; no. 18; p. 18A508 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Institute of Physics
14.05.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | An accurate determination of the electron correlation energy is an essential prerequisite for describing the structure, stability, and function in a wide variety of systems. Therefore, the development of efficient approaches for the calculation of the correlation energy (and hence the dispersion energy as well) is essential and such methods can be coupled with many density-functional approximations, local methods for the electron correlation energy, and even interatomic force fields. In this work, we build upon the previously developed many-body dispersion (MBD) framework, which is intimately linked to the random-phase approximation for the correlation energy. We separate the correlation energy into short-range contributions that are modeled by semi-local functionals and long-range contributions that are calculated by mapping the complex all-electron problem onto a set of atomic response functions coupled in the dipole approximation. We propose an effective range-separation of the coupling between the atomic response functions that extends the already broad applicability of the MBD method to non-metallic materials with highly anisotropic responses, such as layered nanostructures. Application to a variety of high-quality benchmark datasets illustrates the accuracy and applicability of the improved MBD approach, which offers the prospect of first-principles modeling of large structurally complex systems with an accurate description of the long-range correlation energy. |
---|---|
AbstractList | An accurate determination of the electron correlation energy is an essential prerequisite for describing the structure, stability, and function in a wide variety of systems. Therefore, the development of efficient approaches for the calculation of the correlation energy (and hence the dispersion energy as well) is essential and such methods can be coupled with many density-functional approximations, local methods for the electron correlation energy, and even interatomic force fields. In this work, we build upon the previously developed many-body dispersion (MBD) framework, which is intimately linked to the random-phase approximation for the correlation energy. We separate the correlation energy into short-range contributions that are modeled by semi-local functionals and long-range contributions that are calculated by mapping the complex all-electron problem onto a set of atomic response functions coupled in the dipole approximation. We propose an effective range-separation of the coupling between the atomic response functions that extends the already broad applicability of the MBD method to non-metallic materials with highly anisotropic responses, such as layered nanostructures. Application to a variety of high-quality benchmark datasets illustrates the accuracy and applicability of the improved MBD approach, which offers the prospect of first-principles modeling of large structurally complex systems with an accurate description of the long-range correlation energy. An accurate determination of the electron correlation energy is an essential prerequisite for describing the structure, stability, and function in a wide variety of systems. Therefore, the development of efficient approaches for the calculation of the correlation energy (and hence the dispersion energy as well) is essential and such methods can be coupled with many density-functional approximations, local methods for the electron correlation energy, and even interatomic force fields. In this work, we build upon the previously developed many-body dispersion (MBD) framework, which is intimately linked to the random-phase approximation for the correlation energy. We separate the correlation energy into short-range contributions that are modeled by semi-local functionals and long-range contributions that are calculated by mapping the complex all-electron problem onto a set of atomic response functions coupled in the dipole approximation. We propose an effective range-separation of the coupling between the atomic response functions that extends the already broad applicability of the MBD method to non-metallic materials with highly anisotropic responses, such as layered nanostructures. Application to a variety of high-quality benchmark datasets illustrates the accuracy and applicability of the improved MBD approach, which offers the prospect of first-principles modeling of large structurally complex systems with an accurate description of the long-range correlation energy.An accurate determination of the electron correlation energy is an essential prerequisite for describing the structure, stability, and function in a wide variety of systems. Therefore, the development of efficient approaches for the calculation of the correlation energy (and hence the dispersion energy as well) is essential and such methods can be coupled with many density-functional approximations, local methods for the electron correlation energy, and even interatomic force fields. In this work, we build upon the previously developed many-body dispersion (MBD) framework, which is intimately linked to the random-phase approximation for the correlation energy. We separate the correlation energy into short-range contributions that are modeled by semi-local functionals and long-range contributions that are calculated by mapping the complex all-electron problem onto a set of atomic response functions coupled in the dipole approximation. We propose an effective range-separation of the coupling between the atomic response functions that extends the already broad applicability of the MBD method to non-metallic materials with highly anisotropic responses, such as layered nanostructures. Application to a variety of high-quality benchmark datasets illustrates the accuracy and applicability of the improved MBD approach, which offers the prospect of first-principles modeling of large structurally complex systems with an accurate description of the long-range correlation energy. |
Author | Reilly, Anthony M. Ambrosetti, Alberto DiStasio, Robert A. Tkatchenko, Alexandre |
Author_xml | – sequence: 1 givenname: Alberto surname: Ambrosetti fullname: Ambrosetti, Alberto – sequence: 2 givenname: Anthony M. surname: Reilly fullname: Reilly, Anthony M. – sequence: 3 givenname: Robert A. surname: DiStasio fullname: DiStasio, Robert A. – sequence: 4 givenname: Alexandre surname: Tkatchenko fullname: Tkatchenko, Alexandre |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24832316$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/22253520$$D View this record in Osti.gov |
BookMark | eNpt0UFP3TAMAOBoYhoP2GF_YKrEBQ4Fx0mT9ogQsElP4gLnKE3dt6I2eUvaA_-ewHu8w7STZeuzJdsn7MgHT4z94HDFQYlrfiVrVXGQX9iKQ92UWjVwxFYAyMtGgTpmJym9AADXKL-xY5S1QMHVij2ug9-U0foNFS7ESKOdh-AL8hQ3r4Wzo1tyibqij2HKZNmOObFzmAZXRErb4BMV_eLde186Y197Oyb6vo-n7Pn-7un2V7l-fPh9e7MunQQ9lwpaDm3rpGysqkWndd01JKF1FrvKSaGrnHTQYW0Jna0RbMVVq-oOsO97ccrOd3NDmgeT3DCT--OC9-Rmg4iVqBCyutipbQx_F0qzmYbkaBytp7AkwyustEKV-WHggb6EJfq8g0GOWgsplMjq514t7USd2cZhsvHVfB40g8sdcDGkFKk_EA7m_VmGm_2zsr3-x-Y1Ps4_RzuM_-l4A4Y9k5w |
CitedBy_id | crossref_primary_10_1021_acs_jpcc_0c02293 crossref_primary_10_1021_acs_jpclett_3c02723 crossref_primary_10_1021_acsnano_6b02402 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123681 crossref_primary_10_1039_D1SC03665C crossref_primary_10_1021_acs_jpclett_2c02197 crossref_primary_10_1021_acsaem_4c01847 crossref_primary_10_1039_D3ME00044C crossref_primary_10_1038_s41467_024_54484_8 crossref_primary_10_1021_jacs_4c13291 crossref_primary_10_1103_PhysRevMaterials_3_031001 crossref_primary_10_1021_acs_jpcc_8b03267 crossref_primary_10_1088_1367_2630_ab4509 crossref_primary_10_1103_PhysRevLett_132_196201 crossref_primary_10_1002_jcc_27222 crossref_primary_10_1088_1361_648X_aa693e crossref_primary_10_1103_PhysRevB_105_195105 crossref_primary_10_1016_j_susc_2020_121795 crossref_primary_10_35848_1347_4065_acb74d crossref_primary_10_1103_PhysRevLett_114_106804 crossref_primary_10_1039_D3CE00216K crossref_primary_10_1063_5_0163842 crossref_primary_10_1021_acs_chemmater_6b04190 crossref_primary_10_1021_acs_chemmater_2c03444 crossref_primary_10_1021_acs_jctc_3c00495 crossref_primary_10_1039_C9NR00596J crossref_primary_10_1039_C9CP06040E crossref_primary_10_1021_jp5125266 crossref_primary_10_1002_adma_201700681 crossref_primary_10_1002_jcc_27454 crossref_primary_10_1103_PhysRevB_93_035118 crossref_primary_10_1021_acs_jctc_1c01291 crossref_primary_10_1021_acs_jctc_1c01295 crossref_primary_10_1021_acs_langmuir_4c02194 crossref_primary_10_1039_D0CE00774A crossref_primary_10_1088_1361_648X_ab554e crossref_primary_10_1021_acs_accounts_1c00387 crossref_primary_10_1021_acs_cgd_0c01266 crossref_primary_10_1039_C5RA08937A crossref_primary_10_1073_pnas_2111769119 crossref_primary_10_1016_j_cpc_2025_109525 crossref_primary_10_1021_acs_jpcc_7b00365 crossref_primary_10_1038_s41467_020_15480_w crossref_primary_10_1021_acs_chemmater_9b00994 crossref_primary_10_1002_qua_25150 crossref_primary_10_1038_s41597_021_00812_2 crossref_primary_10_1016_j_physe_2023_115776 crossref_primary_10_1021_acs_jpca_7b06431 crossref_primary_10_1103_PhysRevLett_125_255702 crossref_primary_10_1063_5_0205448 crossref_primary_10_1088_1361_648X_aabcfb crossref_primary_10_1063_1_4930137 crossref_primary_10_1063_5_0094727 crossref_primary_10_1126_sciadv_aav0129 crossref_primary_10_1021_acs_jpclett_9b03415 crossref_primary_10_1038_s41467_022_31093_x crossref_primary_10_1063_1_4972810 crossref_primary_10_1063_1_5143190 crossref_primary_10_1007_s00214_015_1751_2 crossref_primary_10_1021_acs_jctc_2c00883 crossref_primary_10_1039_D2CP00744D crossref_primary_10_1021_acs_cgd_0c00163 crossref_primary_10_1103_PhysRevB_105_184114 crossref_primary_10_1080_00268976_2015_1059959 crossref_primary_10_3390_cryst15030274 crossref_primary_10_1021_acs_jctc_6b00222 crossref_primary_10_1039_D1CP04922D crossref_primary_10_1021_acs_jctc_3c00353 crossref_primary_10_1126_sciadv_abj9751 crossref_primary_10_1063_5_0196690 crossref_primary_10_1063_5_0024727 crossref_primary_10_1063_5_0214165 crossref_primary_10_1103_PhysRevB_107_064101 crossref_primary_10_1063_5_0071995 crossref_primary_10_1021_ct500707w crossref_primary_10_1063_1_4922688 crossref_primary_10_1103_PhysRevB_108_235403 crossref_primary_10_1016_j_carbon_2017_03_024 crossref_primary_10_1021_acs_chemmater_4c01771 crossref_primary_10_1021_acs_cgd_1c00723 crossref_primary_10_1016_j_jssc_2017_10_009 crossref_primary_10_1063_1_4885339 crossref_primary_10_1103_PhysRevLett_118_266802 crossref_primary_10_1002_qua_25061 crossref_primary_10_1063_1_5006596 crossref_primary_10_1088_2516_1075_ac25d7 crossref_primary_10_1039_D2CE01594C crossref_primary_10_3390_ijms25053023 crossref_primary_10_1063_1_4962188 crossref_primary_10_1021_acs_nanolett_5b01940 crossref_primary_10_1063_5_0185319 crossref_primary_10_1021_acs_cgd_2c00419 crossref_primary_10_1021_acs_jpcc_7b11271 crossref_primary_10_1039_C4CP04354E crossref_primary_10_1039_C7CP06446B crossref_primary_10_1103_RevModPhys_88_045003 crossref_primary_10_1021_acs_jpcc_1c02611 crossref_primary_10_1021_acs_jctc_8b00114 crossref_primary_10_1063_1_5009502 crossref_primary_10_1021_acs_jctc_7b00837 crossref_primary_10_1039_C4CP05541A crossref_primary_10_1039_C6CC05851E crossref_primary_10_1038_s41570_017_0017 crossref_primary_10_1038_sdata_2016_9 crossref_primary_10_1063_1_5046908 crossref_primary_10_1016_j_jpcs_2024_112125 crossref_primary_10_1039_C8FD00066B crossref_primary_10_1039_D4NA00322E crossref_primary_10_1021_acsami_6b16493 crossref_primary_10_1039_D1CP03888E crossref_primary_10_1088_2516_1075_ab9bb5 crossref_primary_10_1021_acs_jctc_9b00908 crossref_primary_10_1021_acs_jpca_0c06595 crossref_primary_10_1039_D0CC02935A crossref_primary_10_1063_1_5017106 crossref_primary_10_1016_j_apsusc_2017_09_119 crossref_primary_10_1088_2516_1075_ac3b5c crossref_primary_10_1021_jacs_9b11589 crossref_primary_10_1016_j_micromeso_2023_112916 crossref_primary_10_1021_acs_jpclett_9b01156 crossref_primary_10_1039_C9RA01983A crossref_primary_10_1016_j_cplett_2019_01_027 crossref_primary_10_3762_bjoc_14_99 crossref_primary_10_1039_C5SC00410A crossref_primary_10_1021_acs_jctc_6b00147 crossref_primary_10_1021_acsomega_8b00485 crossref_primary_10_1039_D0CP06063A crossref_primary_10_1088_0953_8984_26_39_395005 crossref_primary_10_1021_acs_jcim_9b00601 crossref_primary_10_1103_PhysRevB_101_195426 crossref_primary_10_1038_srep15095 crossref_primary_10_1039_D3SC03903J crossref_primary_10_1021_acs_cgd_4c00965 crossref_primary_10_1021_acs_jpcc_3c03900 crossref_primary_10_1021_acs_jpcc_6b07141 crossref_primary_10_1021_acs_jctc_8b00484 crossref_primary_10_1016_j_jcat_2016_11_010 crossref_primary_10_1039_C6CE00873A crossref_primary_10_1063_5_0088027 crossref_primary_10_1038_s41467_018_07298_4 crossref_primary_10_1063_5_0091781 crossref_primary_10_1063_5_0035530 crossref_primary_10_1063_5_0128780 crossref_primary_10_1088_1367_2630_ab0a87 crossref_primary_10_1002_adfm_201403029 crossref_primary_10_1021_acs_jctc_4c00941 crossref_primary_10_1039_C7CP01881A crossref_primary_10_1063_1_5030539 crossref_primary_10_1021_jp412055r crossref_primary_10_1039_D1SC03095G crossref_primary_10_1021_acs_jpca_0c05006 crossref_primary_10_1021_acs_jctc_3c01082 crossref_primary_10_3390_cryst9050243 crossref_primary_10_1103_PhysRevMaterials_4_116001 crossref_primary_10_1002_adfm_201902332 crossref_primary_10_1107_S2052520616007447 crossref_primary_10_1021_jacs_3c07105 crossref_primary_10_1088_1361_648X_abbdbc crossref_primary_10_1021_acssuschemeng_0c04707 crossref_primary_10_1063_1_5120587 crossref_primary_10_1021_acs_jpca_3c04540 crossref_primary_10_1063_1_4973839 crossref_primary_10_1021_jacs_1c10563 crossref_primary_10_3390_molecules26216719 crossref_primary_10_1021_acs_jctc_6b00876 crossref_primary_10_1021_jacs_0c09284 crossref_primary_10_1039_D0SC03629C crossref_primary_10_1063_5_0115151 crossref_primary_10_1063_5_0138032 crossref_primary_10_3390_pharmaceutics13101606 crossref_primary_10_1063_1_4971790 crossref_primary_10_1002_cphc_201700378 crossref_primary_10_1021_acs_jpcc_8b02431 crossref_primary_10_1073_pnas_1811569115 crossref_primary_10_1021_acs_cgd_9b01522 crossref_primary_10_1021_acs_jpclett_1c01987 crossref_primary_10_1063_5_0154710 crossref_primary_10_1021_acs_jpcc_3c04135 crossref_primary_10_1021_acs_jpca_3c04332 crossref_primary_10_1063_5_0213582 crossref_primary_10_1103_PhysRevResearch_5_043072 crossref_primary_10_1016_j_susc_2022_122027 crossref_primary_10_1038_s41467_022_28461_y crossref_primary_10_1021_acs_jctc_0c00966 crossref_primary_10_1039_D1CE00745A crossref_primary_10_1039_C4CP05216A crossref_primary_10_1103_RevModPhys_89_035003 crossref_primary_10_1039_D0CP04137H crossref_primary_10_1039_C8CP02508H crossref_primary_10_1088_0953_8984_27_41_415502 crossref_primary_10_1039_D1NR03001A crossref_primary_10_1039_D3CE00833A crossref_primary_10_1002_zaac_201800381 crossref_primary_10_1002_jcc_26784 crossref_primary_10_1016_j_apsusc_2018_03_198 crossref_primary_10_1021_acs_jpcc_3c03275 crossref_primary_10_1021_acs_jpclett_2c00936 crossref_primary_10_1063_5_0059364 crossref_primary_10_1080_00268976_2019_1652366 crossref_primary_10_1021_acs_jctc_8b00842 crossref_primary_10_1002_jcc_24248 crossref_primary_10_1021_acs_jpcc_0c00915 crossref_primary_10_3762_bjoc_15_12 crossref_primary_10_1039_D0NR08973G crossref_primary_10_1126_sciadv_aax0024 crossref_primary_10_1103_PhysRevLett_134_073002 crossref_primary_10_1007_s43673_024_00125_7 crossref_primary_10_1021_acsnano_3c01523 crossref_primary_10_1103_PhysRevLett_116_146101 crossref_primary_10_1063_5_0074936 crossref_primary_10_1016_j_commatsci_2019_109160 crossref_primary_10_3390_nano12234281 crossref_primary_10_1002_jcc_26452 crossref_primary_10_1088_1367_2630_acb3ee crossref_primary_10_1021_ct5003225 crossref_primary_10_1021_acs_jpclett_9b03716 crossref_primary_10_1038_s42004_019_0171_y crossref_primary_10_1039_D2SC06770F crossref_primary_10_1021_acs_jpcc_9b09396 crossref_primary_10_1039_C4CP05973E crossref_primary_10_1021_acs_jctc_6b00323 crossref_primary_10_1103_PhysRevB_97_115140 crossref_primary_10_1038_ncomms14052 crossref_primary_10_1063_1_4947214 crossref_primary_10_1039_D1TC01972D crossref_primary_10_3390_ijms24108778 crossref_primary_10_1021_acs_jctc_9b00979 crossref_primary_10_1021_acs_jctc_9b00615 crossref_primary_10_1002_cphc_201600539 crossref_primary_10_1039_D0CP00394H crossref_primary_10_1002_adfm_202311875 crossref_primary_10_1103_PhysRevMaterials_3_063602 crossref_primary_10_1038_s41524_022_00724_8 crossref_primary_10_1103_PhysRevB_110_075409 crossref_primary_10_1002_anie_202216658 crossref_primary_10_1039_D4SC06529H crossref_primary_10_1007_s10909_016_1515_y crossref_primary_10_1039_D3SC03598K crossref_primary_10_3762_bjoc_14_26 crossref_primary_10_1021_acs_chemmater_9b01807 crossref_primary_10_1021_acs_jpclett_8b01589 crossref_primary_10_1016_j_cplett_2024_141134 crossref_primary_10_1016_j_cartre_2022_100242 crossref_primary_10_1021_acs_jpcc_3c08414 crossref_primary_10_1002_admi_202400326 crossref_primary_10_1021_acsami_4c11178 crossref_primary_10_1039_C9CS00060G crossref_primary_10_1103_PhysRevB_92_184301 crossref_primary_10_3762_bjnano_10_180 crossref_primary_10_1039_D3MA00460K crossref_primary_10_1039_D1CP01148K crossref_primary_10_1021_acs_jpclett_7b00253 crossref_primary_10_1016_j_carbon_2023_118244 crossref_primary_10_1021_acs_cgd_6b01654 crossref_primary_10_1021_acs_jpcc_7b07091 crossref_primary_10_1021_ar500118y crossref_primary_10_1126_science_abe8177 crossref_primary_10_1002_wcms_1631 crossref_primary_10_1016_j_apsusc_2016_12_128 crossref_primary_10_1063_1_4977180 crossref_primary_10_1063_5_0051604 crossref_primary_10_1103_PhysRevB_106_014102 crossref_primary_10_1021_acs_chemmater_7b00965 crossref_primary_10_1021_acs_jpcc_2c08413 crossref_primary_10_1038_s41467_021_24119_3 crossref_primary_10_1021_acs_cgd_1c00123 crossref_primary_10_1063_1_5052728 crossref_primary_10_1021_acs_jctc_2c01149 crossref_primary_10_1039_D1NR01047F crossref_primary_10_1039_D4CP03451A crossref_primary_10_1103_PhysRevLett_121_045901 crossref_primary_10_1088_1361_648X_aa8f79 crossref_primary_10_1071_CH19023 crossref_primary_10_3390_molecules28062841 crossref_primary_10_1021_acs_cgd_4c00195 crossref_primary_10_1021_acs_jpcc_2c08464 crossref_primary_10_1063_5_0219185 crossref_primary_10_1039_D2CP00148A crossref_primary_10_1021_acs_jctc_0c01194 crossref_primary_10_1002_adma_202412005 crossref_primary_10_1107_S2052520616009227 crossref_primary_10_1016_j_ssnmr_2022_101820 crossref_primary_10_1039_D3CE00163F crossref_primary_10_1002_pssr_202200118 crossref_primary_10_1038_s41598_024_63552_4 crossref_primary_10_1002_aenm_202403876 crossref_primary_10_1021_jacs_7b09102 crossref_primary_10_1039_D1SC06467C crossref_primary_10_1021_acs_jpclett_0c02201 crossref_primary_10_1103_PhysRevLett_115_036104 crossref_primary_10_1039_C8TA11685G crossref_primary_10_1038_s41586_023_06587_3 crossref_primary_10_1063_1_4869330 crossref_primary_10_1039_D4CE01105H crossref_primary_10_1103_PhysRevLett_114_096101 crossref_primary_10_1021_acs_jpcc_6b12581 crossref_primary_10_1103_PhysRevMaterials_2_055603 crossref_primary_10_1063_1_5018818 crossref_primary_10_1103_PhysRevMaterials_3_053605 crossref_primary_10_1002_anie_201612121 crossref_primary_10_1063_5_0248728 crossref_primary_10_1021_acs_jctc_6b00925 crossref_primary_10_1021_acs_jpcb_2c04255 crossref_primary_10_1038_s41467_024_50401_1 crossref_primary_10_1021_acs_jpca_6b03167 crossref_primary_10_1021_acs_jpcc_5b06165 crossref_primary_10_1021_acs_cgd_1c01114 crossref_primary_10_1021_acs_jctc_1c00782 crossref_primary_10_1016_j_jcat_2021_02_011 crossref_primary_10_1021_acs_jpcc_6b07903 crossref_primary_10_1103_PhysRevB_111_054103 crossref_primary_10_1021_acs_jcim_3c01684 crossref_primary_10_7567_1347_4065_ab355a crossref_primary_10_1002_chem_202302933 crossref_primary_10_1021_acs_jpcc_0c09460 crossref_primary_10_1007_s11249_022_01653_9 crossref_primary_10_1021_jacs_4c11211 crossref_primary_10_1039_D0CC04758A crossref_primary_10_1021_acs_jctc_9b00425 crossref_primary_10_1021_acsami_1c05617 crossref_primary_10_1063_1_5108829 crossref_primary_10_1063_5_0142465 crossref_primary_10_1007_s00214_016_1925_6 crossref_primary_10_1016_j_progsurf_2019_100561 crossref_primary_10_1063_5_0051235 crossref_primary_10_1038_s41467_023_39214_w crossref_primary_10_1038_s41467_020_19168_z crossref_primary_10_1038_s41597_022_01297_3 crossref_primary_10_1039_C9CP04488D crossref_primary_10_1063_1_4996687 crossref_primary_10_1103_PhysRevMaterials_4_073601 crossref_primary_10_1021_acs_cgd_9b00162 crossref_primary_10_1021_acs_chemrev_6b00446 crossref_primary_10_3390_molecules23010118 crossref_primary_10_1088_1361_6528_ad9b33 crossref_primary_10_1021_acs_jpcc_0c06188 crossref_primary_10_1021_acs_jpcc_7b06243 crossref_primary_10_1039_D2DD00150K crossref_primary_10_1002_adts_202200055 crossref_primary_10_1021_ct500642x crossref_primary_10_1021_acs_jpcc_9b08918 crossref_primary_10_1103_PhysRevB_102_085403 crossref_primary_10_1021_acs_jpcc_2c08212 crossref_primary_10_1039_C8CP04936J crossref_primary_10_1088_2399_1984_aada8e crossref_primary_10_1021_jp504914u crossref_primary_10_1021_acs_jpca_2c01421 crossref_primary_10_1021_acs_nanolett_4c02794 crossref_primary_10_1103_PhysRevLett_121_146401 crossref_primary_10_1063_1_5086541 crossref_primary_10_1038_s42005_024_01764_w crossref_primary_10_1021_acs_jpclett_7b01634 crossref_primary_10_1039_C8SC01274A crossref_primary_10_1002_chem_202400779 crossref_primary_10_1021_acs_jpcc_2c07170 crossref_primary_10_1103_PhysRevLett_124_146401 crossref_primary_10_1038_s41586_022_04409_6 crossref_primary_10_1021_acs_jctc_0c00181 crossref_primary_10_1039_C9RA03003D crossref_primary_10_1021_ar500144s crossref_primary_10_1021_acs_jpcc_2c01514 crossref_primary_10_1021_acs_jcim_3c01895 crossref_primary_10_1063_5_0170972 crossref_primary_10_1088_1367_2630_aa57c2 crossref_primary_10_1021_acs_jctc_4c00293 crossref_primary_10_1103_PhysRevB_94_035140 crossref_primary_10_1103_PhysRevLett_119_097404 crossref_primary_10_1021_acs_cgd_4c00026 crossref_primary_10_1088_2515_7655_abd295 crossref_primary_10_1038_s41467_020_20212_1 crossref_primary_10_1002_adts_201800085 crossref_primary_10_1039_C5DT01627D crossref_primary_10_1063_5_0182711 crossref_primary_10_1021_acs_jctc_6b00969 crossref_primary_10_1039_C5SC04676A crossref_primary_10_1063_1_4893377 crossref_primary_10_1039_D2SC05997E crossref_primary_10_1039_C6RA06425F crossref_primary_10_1126_science_aae0509 crossref_primary_10_1039_C5SC03234B crossref_primary_10_5940_jcrsj_62_260 crossref_primary_10_1002_cplu_202300062 crossref_primary_10_1088_2515_7655_ad139d crossref_primary_10_1016_j_jcat_2016_05_018 crossref_primary_10_1021_acs_jpclett_9b00860 crossref_primary_10_1103_PhysRevLett_122_026001 crossref_primary_10_1002_wcms_1241 crossref_primary_10_1039_D4CY00548A crossref_primary_10_1016_j_molliq_2020_114496 crossref_primary_10_1039_D2TC02253B crossref_primary_10_1063_5_0166476 crossref_primary_10_1088_1361_648X_aafcfd crossref_primary_10_1039_D0CP00502A crossref_primary_10_1039_D1CE00343G crossref_primary_10_1103_PhysRevLett_117_246101 crossref_primary_10_1063_1_4972213 crossref_primary_10_1103_PhysRevMaterials_4_124003 crossref_primary_10_1002_adfm_202417891 crossref_primary_10_1002_advs_202204684 crossref_primary_10_1103_PhysRevLett_113_055701 crossref_primary_10_1002_wcms_1357 crossref_primary_10_1002_wcms_1599 crossref_primary_10_1021_acs_jpclett_5b01899 crossref_primary_10_1021_acs_chemmater_4c03161 crossref_primary_10_1039_D1CP04550D crossref_primary_10_1063_1_4985878 crossref_primary_10_1021_acs_jpcb_3c07335 crossref_primary_10_1039_D3CP04364A crossref_primary_10_1021_acs_jpclett_2c03722 crossref_primary_10_1063_1_5063569 crossref_primary_10_1039_D2DD00016D crossref_primary_10_1103_PhysRevMaterials_3_016002 crossref_primary_10_1088_0953_8984_28_4_045201 crossref_primary_10_1103_PhysRevResearch_2_023157 crossref_primary_10_1007_s00214_018_2357_2 crossref_primary_10_1103_PhysRevB_106_075201 crossref_primary_10_1103_PhysRevB_97_241411 crossref_primary_10_1103_PhysRevLett_131_228001 crossref_primary_10_1021_acs_jctc_8b01242 crossref_primary_10_1021_acs_jpclett_7b03180 crossref_primary_10_1038_s41597_024_03521_8 crossref_primary_10_1016_j_carbon_2016_10_024 crossref_primary_10_1021_acs_jctc_7b01152 crossref_primary_10_1021_acs_jpcb_4c02882 crossref_primary_10_1103_PhysRevB_103_094118 crossref_primary_10_1021_acs_cgd_3c00027 crossref_primary_10_1063_5_0242359 crossref_primary_10_1002_adts_202100187 crossref_primary_10_1016_j_carbon_2020_01_085 crossref_primary_10_1021_acs_jctc_2c00343 crossref_primary_10_1063_5_0053493 crossref_primary_10_1103_PhysRevB_99_195418 crossref_primary_10_1063_1_5030094 crossref_primary_10_3390_ma14237175 crossref_primary_10_1039_C4CC06722C crossref_primary_10_1039_D0NR00443J crossref_primary_10_1021_acs_jctc_2c00350 crossref_primary_10_1039_D3CP04358D crossref_primary_10_1063_5_0010615 crossref_primary_10_1021_acs_jpca_0c09388 crossref_primary_10_1063_1_5085394 crossref_primary_10_1038_s41598_024_69290_x crossref_primary_10_1021_acs_jpclett_6b00916 crossref_primary_10_1146_annurev_matsci_070218_010143 crossref_primary_10_1002_smtd_202201358 crossref_primary_10_1039_D5CP00567A crossref_primary_10_1063_5_0102645 crossref_primary_10_1088_2516_1075_ac495b crossref_primary_10_1016_j_electacta_2019_01_081 crossref_primary_10_1063_1_4927476 crossref_primary_10_1021_acs_jctc_7b01014 crossref_primary_10_1039_C7SC05020H crossref_primary_10_1088_2632_2153_ad652c crossref_primary_10_1021_acs_jctc_8b00058 crossref_primary_10_3390_surfaces7040070 crossref_primary_10_1039_D2CP00282E crossref_primary_10_1002_ange_201612121 crossref_primary_10_1021_acs_jpcc_4c01633 crossref_primary_10_1021_acsmacrolett_5b00837 crossref_primary_10_1126_sciadv_1501438 crossref_primary_10_1021_acs_jctc_9b00035 crossref_primary_10_1039_C9CP04031E crossref_primary_10_1103_PhysRevB_98_174103 crossref_primary_10_1016_j_ijengsci_2024_104126 crossref_primary_10_1021_acs_cgd_4c00480 crossref_primary_10_1021_jacs_7b10980 crossref_primary_10_1063_1_4890003 crossref_primary_10_1107_S2052520624002774 crossref_primary_10_1021_acs_jctc_8b00167 crossref_primary_10_1021_acs_jctc_8b00288 crossref_primary_10_1016_j_icarus_2021_114611 crossref_primary_10_1016_j_apsusc_2024_160218 crossref_primary_10_1103_PhysRevMaterials_7_035402 crossref_primary_10_1021_acs_jctc_0c00471 crossref_primary_10_1021_acs_jctc_0c00232 crossref_primary_10_1021_acs_jctc_1c00328 crossref_primary_10_1021_acs_cgd_4c00315 crossref_primary_10_1016_j_jpcs_2020_109736 crossref_primary_10_1021_jacs_2c12095 crossref_primary_10_1016_j_ccr_2015_05_002 crossref_primary_10_1038_srep39529 crossref_primary_10_1039_D0SC05765G crossref_primary_10_1103_PhysRevB_94_045124 crossref_primary_10_1021_acs_jpcc_9b01098 crossref_primary_10_1021_acs_cgd_2c00249 crossref_primary_10_1103_PhysRevLett_128_106101 crossref_primary_10_1021_acs_jctc_3c01308 crossref_primary_10_1002_adma_201908028 crossref_primary_10_1126_sciadv_aau3338 crossref_primary_10_1021_acs_inorgchem_3c01696 crossref_primary_10_1021_acs_chemrev_5b00648 crossref_primary_10_1021_acs_jcim_5b00243 crossref_primary_10_1063_5_0204064 crossref_primary_10_1016_j_susmat_2019_e00103 crossref_primary_10_1021_acs_chemmater_2c01508 crossref_primary_10_1038_s41560_020_00716_2 crossref_primary_10_1039_C7NR07779C crossref_primary_10_1002_wcms_1294 crossref_primary_10_1038_s41467_023_43785_z crossref_primary_10_1021_acs_jctc_4c00689 crossref_primary_10_1063_5_0055522 crossref_primary_10_1021_acs_inorgchem_4c01674 crossref_primary_10_1038_s42004_023_00925_2 crossref_primary_10_1021_acs_jctc_7b01172 crossref_primary_10_1021_acs_jpca_7b12467 crossref_primary_10_1021_acs_jpcc_9b08824 crossref_primary_10_1021_acs_jctc_7b01179 crossref_primary_10_1038_srep07881 crossref_primary_10_1021_acs_chemrev_5b00533 crossref_primary_10_1002_ange_202216658 crossref_primary_10_1021_acs_jpcc_8b05349 crossref_primary_10_1021_acs_jctc_1c01302 crossref_primary_10_1002_ijch_202100062 crossref_primary_10_1002_asia_202200494 crossref_primary_10_1021_acs_jpclett_5c00257 crossref_primary_10_1063_5_0041008 crossref_primary_10_1039_D4DD00312H crossref_primary_10_1002_cctc_201801271 crossref_primary_10_1080_00268976_2015_1058432 crossref_primary_10_3390_molecules28020772 crossref_primary_10_1039_D3CP02256K crossref_primary_10_1021_acs_jctc_9b01167 crossref_primary_10_1039_C8FD00048D crossref_primary_10_1002_adma_202107515 crossref_primary_10_1103_PhysRevB_108_165108 crossref_primary_10_1021_acs_jctc_0c00119 |
Cites_doi | 10.1103/PhysRevLett.105.196401 10.1063/1.4816964 10.1103/PhysRev.136.B864 10.1063/1.1743991 10.1063/1.4704546 10.1016/0038-1098(82)90993-0 10.1103/PhysRevLett.76.102 10.1063/1.3317437 10.1063/1.1564060 10.1126/science.1158722 10.1021/ct300711r 10.1063/1.1424928 10.1103/PhysRevB.78.045116 10.1073/pnas.1208121109 10.1103/PhysRev.129.62 10.1002/jcc.20495 10.1103/PhysRevB.87.064110 10.1103/PhysRevLett.100.053002 10.1002/anie.201301938 10.1103/PhysRevLett.92.246401 10.1103/PhysRevA.82.032502 10.1103/PhysRevB.82.081101 10.1103/PhysRevLett.77.3865 10.1088/0953-8984/24/7/073201 10.1103/PhysRev.140.A1133 10.1021/ct2002946 10.1063/1.2795701 10.1103/PhysRevB.87.144103 10.1063/1.4754130 10.1021/jz402663k 10.1021/ct301081n 10.1063/1.4812819 10.1063/1.4738961 10.1103/PhysRev.126.413 10.1002/cphc.201100826 10.1103/PhysRevLett.108.235502 10.1103/PhysRevA.81.062708 10.1103/PhysRevLett.107.245501 10.1103/PhysRevLett.106.153003 10.1038/ncomms3341 10.1063/1.3521275 10.1063/1.3494541 10.1021/ct400446t 10.1021/cr1000173 10.1063/1.4789421 10.1039/b600027d 10.1063/1.1779576 10.1002/chem.201200497 10.1023/A:1014915307738 10.1103/PhysRevLett.102.073005 10.1088/1367-2630/14/5/053020 10.1103/PhysRevB.69.155406 10.1063/1.478522 10.1063/1.3382344 10.1016/j.cpc.2009.06.022 10.1063/1.1723844 10.1007/s00214-011-1084-8 10.1103/PhysRevA.70.062505 10.1021/jz400226x 10.1103/PhysRevB.87.060104 10.1063/1.4789814 10.1103/PhysRevLett.108.236402 10.1103/PhysRevB.87.041108 10.1103/PhysRevB.79.205114 10.1063/1.4705760 |
ContentType | Journal Article |
Copyright | 2014 AIP Publishing LLC. |
Copyright_xml | – notice: 2014 AIP Publishing LLC. |
DBID | AAYXX CITATION NPM 8FD H8D L7M 7X8 OTOTI |
DOI | 10.1063/1.4865104 |
DatabaseName | CrossRef PubMed Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic OSTI.GOV |
DatabaseTitle | CrossRef PubMed Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitleList | Technology Research Database MEDLINE - Academic CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1089-7690 |
ExternalDocumentID | 22253520 24832316 10_1063_1_4865104 |
Genre | Journal Article |
GroupedDBID | --- -DZ -ET -~X 123 1UP 2-P 29K 4.4 53G 5VS 85S AAAAW AABDS AAGWI AAPUP AAYIH AAYXX ABJGX ABPPZ ABRJW ABZEH ACBRY ACLYJ ACNCT ACZLF ADCTM ADMLS AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BDMKI BPZLN CITATION CS3 D-I DU5 EBS EJD F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P0- P2P RIP RNS RQS TN5 TWZ UPT WH7 YQT YZZ ~02 NPM 8FD H8D L7M 7X8 0ZJ AAEUA ABPTK AGIHO ESX OTOTI UE8 ZHY |
ID | FETCH-LOGICAL-c407t-60b10bbc449a683d778d9e40bca2d5c437540bd0d28ae2ca820a516b68d02fff3 |
ISSN | 0021-9606 1089-7690 |
IngestDate | Thu May 18 22:32:15 EDT 2023 Thu Jul 10 19:19:36 EDT 2025 Mon Jun 30 13:09:55 EDT 2025 Mon Jul 21 06:04:02 EDT 2025 Thu Apr 24 23:09:10 EDT 2025 Tue Jul 01 04:15:40 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c407t-60b10bbc449a683d778d9e40bca2d5c437540bd0d28ae2ca820a516b68d02fff3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 24832316 |
PQID | 2127734363 |
PQPubID | 2050685 |
ParticipantIDs | osti_scitechconnect_22253520 proquest_miscellaneous_1525762625 proquest_journals_2127734363 pubmed_primary_24832316 crossref_primary_10_1063_1_4865104 crossref_citationtrail_10_1063_1_4865104 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-05-14 |
PublicationDateYYYYMMDD | 2014-05-14 |
PublicationDate_xml | – month: 05 year: 2014 text: 2014-05-14 day: 14 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Melville |
PublicationTitle | The Journal of chemical physics |
PublicationTitleAlternate | J Chem Phys |
PublicationYear | 2014 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | (2023062407195022800_c32) 2010; 132 (2023062407195022800_c37) 2013; 87 (2023062407195022800_c47) 2006; 8 (2023062407195022800_c64) 2013; 9 (2023062407195022800_c26) 2013; 139 (2023062407195022800_c18) 2012; 109 (2023062407195022800_c28) 2012; 8 (2023062407195022800_c41) 2002; 116 (2023062407195022800_c44) 2013; 87 (2023062407195022800_c15) 2013; 4 (2023062407195022800_c13) 2012; 137 (2023062407195022800_c53) 2010; 81 (2023062407195022800_c2) 1964; 136 (2023062407195022800_c34) 2010; 82 (2023062407195022800_c1) 2012; 136 (2023062407195022800_c55) 2011; 107 (2023062407195022800_c7) 2007; 127 (2023062407195022800_c3) 1965; 140 (2023062407195022800_c59) 2003; 118 (2023062407195022800_c30) 2009; 79 (2023062407195022800_c38) 2008; 100 (2023062407195022800_c48) 2011; 7 (2023062407195022800_c54) 1982; 42 2023062407195022800_c12 (2023062407195022800_c14) 2013; 52 (2023062407195022800_c22) 2012; 24 (2023062407195022800_c6) 2004; 92 (2023062407195022800_c33) 2004; 70 (2023062407195022800_c23) 2010; 133 (2023062407195022800_c42) 2006; 27 (2023062407195022800_c16) 2012; 108 (2023062407195022800_c9) 2010; 132 (2023062407195022800_c11) 2013; 87 (2023062407195022800_c49) 2012; 18 (2023062407195022800_c60) 2012; 136 (2023062407195022800_c62) 2004; 69 (2023062407195022800_c4) 2008; 321 (2023062407195022800_c20) 2012; 14 (2023062407195022800_c56) 2013; 87 (2023062407195022800_c21) 2012; 131 (2023062407195022800_c52) 2008; 78 (2023062407195022800_c19) 2012; 108 (2023062407195022800_c51) 2009; 180 (2023062407195022800_c35) 1962; 126 (2023062407195022800_c17) 2013; 9 (2023062407195022800_c29) 1996; 76 (2023062407195022800_c63) 2010; 105 (2023062407195022800_c36) 1963; 129 (2023062407195022800_c45) 1996; 77 (2023062407195022800_c46) 1999; 110 (2023062407195022800_c5) 2012; 137 (2023062407195022800_c40) 2004; 121 (2023062407195022800_c58) 2010; 82 (2023062407195022800_c25) 2013; 138 (2023062407195022800_c39) 2010; 133 (2023062407195022800_c65) 1957; 27 (2023062407195022800_c61) 2002; 37 (2023062407195022800_c50) 2013; 139 (2023062407195022800_c31) 2011; 106 (2023062407195022800_c8) 2010; 110 (2023062407195022800_c57) 2011; 12 (2023062407195022800_c10) 2009; 102 (2023062407195022800_c24) 1943; 11 (2023062407195022800_c43) 2013; 4 (2023062407195022800_c27) 2013; 138 |
References_xml | – volume: 105 start-page: 196401 year: 2010 ident: 2023062407195022800_c63 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.196401 – volume: 139 start-page: 054106 year: 2013 ident: 2023062407195022800_c26 publication-title: J. Chem. Phys. doi: 10.1063/1.4816964 – volume: 136 start-page: B864 year: 1964 ident: 2023062407195022800_c2 publication-title: Phys. Rev. doi: 10.1103/PhysRev.136.B864 – volume: 27 start-page: 1280 year: 1957 ident: 2023062407195022800_c65 publication-title: J. Chem. Phys. doi: 10.1063/1.1743991 – volume: 136 start-page: 150901 year: 2012 ident: 2023062407195022800_c1 publication-title: J. Chem. Phys. doi: 10.1063/1.4704546 – volume: 42 start-page: 153 year: 1982 ident: 2023062407195022800_c54 publication-title: Solid State Commun. doi: 10.1016/0038-1098(82)90993-0 – volume: 76 start-page: 102 year: 1996 ident: 2023062407195022800_c29 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.76.102 – volume: 132 start-page: 094103 year: 2010 ident: 2023062407195022800_c32 publication-title: J. Chem. Phys. doi: 10.1063/1.3317437 – volume: 118 start-page: 8207 year: 2003 ident: 2023062407195022800_c59 publication-title: J. Chem. Phys. doi: 10.1063/1.1564060 – volume: 321 start-page: 792 year: 2008 ident: 2023062407195022800_c4 publication-title: Science doi: 10.1126/science.1158722 – volume: 8 start-page: 4317 year: 2012 ident: 2023062407195022800_c28 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct300711r – volume: 116 start-page: 515 year: 2002 ident: 2023062407195022800_c41 publication-title: J. Chem. Phys. doi: 10.1063/1.1424928 – volume: 78 start-page: 045116 year: 2008 ident: 2023062407195022800_c52 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.78.045116 – volume: 109 start-page: 14791 year: 2012 ident: 2023062407195022800_c18 publication-title: Proc. Natl. Acad. U.S.A. doi: 10.1073/pnas.1208121109 – volume: 129 start-page: 62 year: 1963 ident: 2023062407195022800_c36 publication-title: Phys. Rev. doi: 10.1103/PhysRev.129.62 – volume: 27 start-page: 1787 year: 2006 ident: 2023062407195022800_c42 publication-title: J. Comput. Chem. doi: 10.1002/jcc.20495 – volume: 87 start-page: 064110 year: 2013 ident: 2023062407195022800_c44 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.87.064110 – volume: 100 start-page: 053002 year: 2008 ident: 2023062407195022800_c38 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.053002 – volume: 52 start-page: 6629 year: 2013 ident: 2023062407195022800_c14 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201301938 – volume: 92 start-page: 246401 year: 2004 ident: 2023062407195022800_c6 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.92.246401 – volume: 82 start-page: 032502 year: 2010 ident: 2023062407195022800_c34 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.82.032502 – volume: 82 start-page: 081101 year: 2010 ident: 2023062407195022800_c58 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.82.081101 – volume: 77 start-page: 3865 year: 1996 ident: 2023062407195022800_c45 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 24 start-page: 073201 year: 2012 ident: 2023062407195022800_c22 publication-title: J. Phys.: Condens. Matter doi: 10.1088/0953-8984/24/7/073201 – volume: 140 start-page: A1133 year: 1965 ident: 2023062407195022800_c3 publication-title: Phys. Rev. doi: 10.1103/PhysRev.140.A1133 – volume: 7 start-page: 2427 year: 2011 ident: 2023062407195022800_c48 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct2002946 – volume: 127 start-page: 154108 year: 2007 ident: 2023062407195022800_c7 publication-title: J. Chem. Phys. doi: 10.1063/1.2795701 – volume: 87 start-page: 144103 year: 2013 ident: 2023062407195022800_c37 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.87.144103 – volume: 137 start-page: 120901 year: 2012 ident: 2023062407195022800_c5 publication-title: J. Chem. Phys. doi: 10.1063/1.4754130 – volume-title: J. Phys. Chem. Lett. ident: 2023062407195022800_c12 article-title: Hard numbers for large molecules: Towards exact energetics for supramolecular systems doi: 10.1021/jz402663k – volume: 9 start-page: 1580 year: 2013 ident: 2023062407195022800_c17 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct301081n – volume: 139 start-page: 024705 year: 2013 ident: 2023062407195022800_c50 publication-title: J. Chem. Phys. doi: 10.1063/1.4812819 – volume: 137 start-page: 054103 year: 2012 ident: 2023062407195022800_c13 publication-title: J. Chem. Phys. doi: 10.1063/1.4738961 – volume: 126 start-page: 413 year: 1962 ident: 2023062407195022800_c35 publication-title: Phys. Rev. doi: 10.1103/PhysRev.126.413 – volume: 12 start-page: 3421 year: 2011 ident: 2023062407195022800_c57 publication-title: ChemPhysChem doi: 10.1002/cphc.201100826 – volume: 108 start-page: 235502 year: 2012 ident: 2023062407195022800_c16 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.235502 – volume: 81 start-page: 062708 year: 2010 ident: 2023062407195022800_c53 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.81.062708 – volume: 107 start-page: 245501 year: 2011 ident: 2023062407195022800_c55 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.107.245501 – volume: 106 start-page: 153003 year: 2011 ident: 2023062407195022800_c31 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.106.153003 – volume: 4 start-page: 2341 year: 2013 ident: 2023062407195022800_c43 publication-title: Nat. Commun. doi: 10.1038/ncomms3341 – volume: 133 start-page: 244103 year: 2010 ident: 2023062407195022800_c39 publication-title: J. Chem. Phys. doi: 10.1063/1.3521275 – volume: 133 start-page: 154110 year: 2010 ident: 2023062407195022800_c23 publication-title: J. Chem. Phys. doi: 10.1063/1.3494541 – volume: 9 start-page: 3473 year: 2013 ident: 2023062407195022800_c64 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct400446t – volume: 110 start-page: 5023 year: 2010 ident: 2023062407195022800_c8 publication-title: Chem. Rev. doi: 10.1021/cr1000173 – volume: 138 start-page: 054103 year: 2013 ident: 2023062407195022800_c25 publication-title: J. Chem. Phys. doi: 10.1063/1.4789421 – volume: 8 start-page: 1985 year: 2006 ident: 2023062407195022800_c47 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b600027d – volume: 121 start-page: 4083 year: 2004 ident: 2023062407195022800_c40 publication-title: J. Chem. Phys. doi: 10.1063/1.1779576 – volume: 18 start-page: 9955 year: 2012 ident: 2023062407195022800_c49 publication-title: Chem. Eur. J. doi: 10.1002/chem.201200497 – volume: 37 start-page: 1475 year: 2002 ident: 2023062407195022800_c61 publication-title: J. Mater. Sci. doi: 10.1023/A:1014915307738 – volume: 102 start-page: 073005 year: 2009 ident: 2023062407195022800_c10 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.073005 – volume: 14 start-page: 053020 year: 2012 ident: 2023062407195022800_c20 publication-title: New J. Phys. doi: 10.1088/1367-2630/14/5/053020 – volume: 69 start-page: 155406 year: 2004 ident: 2023062407195022800_c62 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.69.155406 – volume: 110 start-page: 6158 year: 1999 ident: 2023062407195022800_c46 publication-title: J. Chem. Phys. doi: 10.1063/1.478522 – volume: 132 start-page: 154104 year: 2010 ident: 2023062407195022800_c9 publication-title: J. Chem. Phys. doi: 10.1063/1.3382344 – volume: 180 start-page: 2175 year: 2009 ident: 2023062407195022800_c51 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2009.06.022 – volume: 11 start-page: 299 year: 1943 ident: 2023062407195022800_c24 publication-title: J. Chem. Phys. doi: 10.1063/1.1723844 – volume: 131 start-page: 1084 year: 2012 ident: 2023062407195022800_c21 publication-title: Theor. Chem. Acc. doi: 10.1007/s00214-011-1084-8 – volume: 70 start-page: 062505 year: 2004 ident: 2023062407195022800_c33 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.70.062505 – volume: 4 start-page: 1028 year: 2013 ident: 2023062407195022800_c15 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz400226x – volume: 87 start-page: 060104 year: 2013 ident: 2023062407195022800_c56 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.87.060104 – volume: 138 start-page: 074106 year: 2013 ident: 2023062407195022800_c27 publication-title: J. Chem. Phys. doi: 10.1063/1.4789814 – volume: 108 start-page: 236402 year: 2012 ident: 2023062407195022800_c19 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.236402 – volume: 87 start-page: 041108 year: 2013 ident: 2023062407195022800_c11 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.87.041108 – volume: 79 start-page: 205114 year: 2009 ident: 2023062407195022800_c30 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.79.205114 – volume: 136 start-page: 174109 year: 2012 ident: 2023062407195022800_c60 publication-title: J. Chem. Phys. doi: 10.1063/1.4705760 |
SSID | ssj0001724 |
Score | 2.6246095 |
Snippet | An accurate determination of the electron correlation energy is an essential prerequisite for describing the structure, stability, and function in a wide... |
SourceID | osti proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 18A508 |
SubjectTerms | ACCURACY ANISOTROPY Approximation Complex systems Correlation DENSITY FUNCTIONAL METHOD DIPOLES Dispersion DISPERSIONS ELECTRON CORRELATION ELECTRONS Energy First principles FUNCTIONALS INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY INTERATOMIC FORCES Mathematical analysis Mathematical models NANOSCIENCE AND NANOTECHNOLOGY NANOSTRUCTURES RANDOM PHASE APPROXIMATION RESPONSE FUNCTIONS SIMULATION |
Title | Long-range correlation energy calculated from coupled atomic response functions |
URI | https://www.ncbi.nlm.nih.gov/pubmed/24832316 https://www.proquest.com/docview/2127734363 https://www.proquest.com/docview/1525762625 https://www.osti.gov/biblio/22253520 |
Volume | 140 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZKJwQvCMatMFBAPCBN2ZzYcdLHahdNU7ch0Up9s2LHRWVbMq2phPj1nBM7TisVBLxEbZJars9nn8_H50LIp5ymuWZREnKm0xCzm8CUUkmoMp5RoYwwjWng4lKcTfn5LJn1ej_WvJZWtTrQP7fGlfyPVOEeyBWjZP9Bsr5RuAGfQb5wBQnD9a9kPK7Kb-E9hgfsa6yyYf3a9o2N54PRRydTpJRNEImuVnc38AW22bdN4ubGO9bso2rrzHbfO_iskVXd5hWwlhBPxEe3CtSsqa1TwAgTZtWVP8QxC1fI2qUo6EyvxwtguctF5Ty7YXk6917Ck-scoVReV234jXPQdcaJiOO5etQZJ_2p04bnw5e1nrYhBVGIWymrlOxKTLNhmApbS9Qv1Ta1U4vJbKsOANKF5ogDnonE1TbezLN9eSVPp-OxnJzMJg_ITgwbjLhPdkbHF-OvXosDsXMZvG3X2qxUgh36pje4TL-Cv_j7fUrDVyZPyRMnu2BkUfOM9Ey5Sx4dtfX9dslDN0DPyVWHo2ANR4HFUdDhKEAcBQ5HgcVR0OIo8Dh6QaanJ5Ojs9AV2gg17OfrUFAVUaU058NcZKxI06wYGk6VzuMi0RzLJFNV0CLOchPrHFhjnkRCiayg8Xw-Zy9Jv6xK85oEqQJOLijT8EMuTKqE0rHh0RxPtJM4G5DP7ZBJ7bLQYzGUG9l4QwgmI-lGd0A--lfvbOqVbS_t4bhL4IuY9Fijd5iuJVoxYGtB4XErD-km7lJiUYOUcSbYgHzwj2H08awsL021WkosCwY8QcTJgLyycvSdiDmoQRaJN39u_C153E2JPdKv71fmHTDYWr13YPsFmN6fMg |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Long-range+correlation+energy+calculated+from+coupled+atomic+response+functions&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Ambrosetti%2C+Alberto&rft.au=Reilly%2C+Anthony+M&rft.au=DiStasio+Robert+A+Jr&rft.au=Tkatchenko+Alexandre&rft.date=2014-05-14&rft.pub=American+Institute+of+Physics&rft.issn=0021-9606&rft.eissn=1089-7690&rft.volume=140&rft.issue=18&rft_id=info:doi/10.1063%2F1.4865104&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon |