Unifying Type II Supernova Light Curves with Dense Circumstellar Material
A longstanding problem in the study of supernovae (SNe) has been the relationship between the Type IIP and Type IIL subclasses. Whether they come from distinct progenitors or they are from similar stars with some property that smoothly transitions from one class to another has been the subject of mu...
Saved in:
Published in | The Astrophysical journal Vol. 838; no. 1; pp. 28 - 39 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Philadelphia
The American Astronomical Society
20.03.2017
IOP Publishing |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A longstanding problem in the study of supernovae (SNe) has been the relationship between the Type IIP and Type IIL subclasses. Whether they come from distinct progenitors or they are from similar stars with some property that smoothly transitions from one class to another has been the subject of much debate. Here, using one-dimensional radiation-hydrodynamic SN models, we show that the multi-band light curves of SNe IIL are well fit by ordinary red supergiants surrounded by dense circumstellar material (CSM). The inferred extent of this material, coupled with a typical wind velocity of , suggests enhanced activity by these stars during the last ~months to ∼years of their lives, which may be connected with advanced stages of nuclear burning. Furthermore, we find that, even for more plateau-like SNe, dense CSM provides a better fit to the first days of their light curves, indicating that the presence of such material may be more widespread than previously appreciated. Here we choose to model the CSM with a wind-like density profile, but it is unclear whether this just generally represents some other mass distribution, such as a recent mass ejection, thick disk, or even inflated envelope material. Better understanding the exact geometry and density distribution of this material will be an important question for future studies. |
---|---|
AbstractList | A longstanding problem in the study of supernovae (SNe) has been the relationship between the Type IIP and Type IIL subclasses. Whether they come from distinct progenitors or they are from similar stars with some property that smoothly transitions from one class to another has been the subject of much debate. Here, using one-dimensional radiation-hydrodynamic SN models, we show that the multi-band light curves of SNe IIL are well fit by ordinary red supergiants surrounded by dense circumstellar material (CSM). The inferred extent of this material, coupled with a typical wind velocity of ∼10--100 km s{sup −1}, suggests enhanced activity by these stars during the last ∼months to ∼years of their lives, which may be connected with advanced stages of nuclear burning. Furthermore, we find that, even for more plateau-like SNe, dense CSM provides a better fit to the first ∼20 days of their light curves, indicating that the presence of such material may be more widespread than previously appreciated. Here we choose to model the CSM with a wind-like density profile, but it is unclear whether this just generally represents some other mass distribution, such as a recent mass ejection, thick disk, or even inflated envelope material. Better understanding the exact geometry and density distribution of this material will be an important question for future studies. A longstanding problem in the study of supernovae (SNe) has been the relationship between the Type IIP and Type IIL subclasses. Whether they come from distinct progenitors or they are from similar stars with some property that smoothly transitions from one class to another has been the subject of much debate. Here, using one-dimensional radiation-hydrodynamic SN models, we show that the multi-band light curves of SNe IIL are well fit by ordinary red supergiants surrounded by dense circumstellar material (CSM). The inferred extent of this material, coupled with a typical wind velocity of , suggests enhanced activity by these stars during the last ~months to ∼years of their lives, which may be connected with advanced stages of nuclear burning. Furthermore, we find that, even for more plateau-like SNe, dense CSM provides a better fit to the first days of their light curves, indicating that the presence of such material may be more widespread than previously appreciated. Here we choose to model the CSM with a wind-like density profile, but it is unclear whether this just generally represents some other mass distribution, such as a recent mass ejection, thick disk, or even inflated envelope material. Better understanding the exact geometry and density distribution of this material will be an important question for future studies. A longstanding problem in the study of supernovae (SNe) has been the relationship between the Type IIP and Type IIL subclasses. Whether they come from distinct progenitors or they are from similar stars with some property that smoothly transitions from one class to another has been the subject of much debate. Here, using one-dimensional radiation-hydrodynamic SN models, we show that the multi-band light curves of SNe IIL are well fit by ordinary red supergiants surrounded by dense circumstellar material (CSM). The inferred extent of this material, coupled with a typical wind velocity of \(\sim 10\mbox{--}100\,\mathrm{km}\,{{\rm{s}}}^{-1}\), suggests enhanced activity by these stars during the last ~months to ∼years of their lives, which may be connected with advanced stages of nuclear burning. Furthermore, we find that, even for more plateau-like SNe, dense CSM provides a better fit to the first \(\sim 20\,\) days of their light curves, indicating that the presence of such material may be more widespread than previously appreciated. Here we choose to model the CSM with a wind-like density profile, but it is unclear whether this just generally represents some other mass distribution, such as a recent mass ejection, thick disk, or even inflated envelope material. Better understanding the exact geometry and density distribution of this material will be an important question for future studies. A longstanding problem in the study of supernovae (SNe) has been the relationship between the Type IIP and Type IIL subclasses. Whether they come from distinct progenitors or they are from similar stars with some property that smoothly transitions from one class to another has been the subject of much debate. Here, using one-dimensional radiation-hydrodynamic SN models, we show that the multi-band light curves of SNe IIL are well fit by ordinary red supergiants surrounded by dense circumstellar material (CSM). The inferred extent of this material, coupled with a typical wind velocity of , suggests enhanced activity by these stars during the last ~months to ∼years of their lives, which may be connected with advanced stages of nuclear burning. Furthermore, we find that, even for more plateau-like SNe, dense CSM provides a better fit to the first days of their light curves, indicating that the presence of such material may be more widespread than previously appreciated. Here we choose to model the CSM with a wind-like density profile, but it is unclear whether this just generally represents some other mass distribution, such as a recent mass ejection, thick disk, or even inflated envelope material. Better understanding the exact geometry and density distribution of this material will be an important question for future studies. |
Author | Piro, Anthony L. Valenti, Stefano Morozova, Viktoriya |
Author_xml | – sequence: 1 givenname: Viktoriya surname: Morozova fullname: Morozova, Viktoriya email: vsg@astro.princeton.edu organization: California Institute of Technology TAPIR, Walter Burke Institute for Theoretical Physics, MC 350-17, Pasadena, CA 91125, USA – sequence: 2 givenname: Anthony L. orcidid: 0000-0001-6806-0673 surname: Piro fullname: Piro, Anthony L. organization: Carnegie Observatories , 813 Santa Barbara Street, Pasadena, CA 91101, USA – sequence: 3 givenname: Stefano surname: Valenti fullname: Valenti, Stefano organization: University of California Department of Physics, Davis, CA 95616, USA |
BackLink | https://www.osti.gov/biblio/22869195$$D View this record in Osti.gov |
BookMark | eNp9kEFr3DAQhUVJoZs09x4FzTFOJEuy5WPYpM3Clh6aQG9C0o6yWhzJkeSU_fe12dBACWEOwwzfe8y8Y3QUYgCEvlBywSRvL6lgsuJMtJdaN7WgH9Di3-oILQghvGpY-_sTOs55N4911y3Q6j54t_fhAd_tB8CrFf41DpBCfNZ47R-2BS_H9AwZ__Fli68hZMBLn-z4mAv0vU74hy6QvO4_o49O9xlOX_oJuv92c7e8rdY_v6-WV-vKctKWSkBniJFGWmdM05ippgHE9APdOOe05Ix2rOUGOk4sq5tWC8dbMHxjjGPsBH09-MZcvMrWF7BbG0MAW1Rdy6ajnXilhhSfRshF7eKYwnSYqlkjpBCMzl7NgbIp5pzAqclOFx9DSdr3ihI1h6vmJNWcpDqEOwnJf8Ih-Ued9u9Jzg8SH4fXY97Bz97A9bBTciKpqqUaNo79BVCXl6o |
CitedBy_id | crossref_primary_10_3847_1538_4357_ab8945 crossref_primary_10_3847_1538_4357_ac6dcf crossref_primary_10_1093_mnras_stab350 crossref_primary_10_3847_1538_4357_aa9a37 crossref_primary_10_1093_mnras_stab1582 crossref_primary_10_3847_1538_4357_acdb71 crossref_primary_10_1038_s41550_019_0856_2 crossref_primary_10_3847_1538_4357_aa72f1 crossref_primary_10_3847_2515_5172_ab7c68 crossref_primary_10_3847_1538_4357_ad60c0 crossref_primary_10_1093_mnras_staa1133 crossref_primary_10_3847_1538_4357_ab22b6 crossref_primary_10_1038_s41586_022_05252_5 crossref_primary_10_1093_mnras_staa3675 crossref_primary_10_1093_mnras_stz2714 crossref_primary_10_1051_0004_6361_202450805 crossref_primary_10_1051_0004_6361_202141244 crossref_primary_10_3847_2041_8213_ace4ca crossref_primary_10_3847_1538_4357_ac5631 crossref_primary_10_1093_mnras_stac399 crossref_primary_10_1093_mnras_stae1289 crossref_primary_10_3847_1538_4357_ab7205 crossref_primary_10_1051_0004_6361_202142555 crossref_primary_10_1051_0004_6361_202244401 crossref_primary_10_3847_1538_4357_aad5ea crossref_primary_10_3847_1538_4357_aca1b7 crossref_primary_10_1051_0004_6361_202142158 crossref_primary_10_1093_mnras_staa255 crossref_primary_10_3847_1538_4365_aaa5a8 crossref_primary_10_1103_PhysRevD_97_081301 crossref_primary_10_1103_PhysRevD_109_103020 crossref_primary_10_1093_mnras_stz570 crossref_primary_10_3847_1538_4357_ad11e1 crossref_primary_10_1093_mnras_staa1540 crossref_primary_10_3847_1538_4357_ac7528 crossref_primary_10_1093_mnras_stz2703 crossref_primary_10_1103_PhysRevD_108_083035 crossref_primary_10_3847_1538_4357_ab12d0 crossref_primary_10_3847_1538_4357_abc417 crossref_primary_10_1093_mnras_stx1314 crossref_primary_10_1093_pasj_psae070 crossref_primary_10_1017_S1743921317004483 crossref_primary_10_3847_1538_3881_ac0ef1 crossref_primary_10_1051_0004_6361_202452014 crossref_primary_10_1051_0004_6361_201935854 crossref_primary_10_31857_S0320010824030035 crossref_primary_10_3847_1538_4357_abca8a crossref_primary_10_3847_1538_4357_abb4e8 crossref_primary_10_1093_mnras_stx3174 crossref_primary_10_3847_1538_4357_abc87c crossref_primary_10_1093_mnras_sty475 crossref_primary_10_3847_1538_4357_ad1829 crossref_primary_10_1017_pasa_2018_47 crossref_primary_10_1093_mnras_stx3179 crossref_primary_10_1093_mnras_stx2415 crossref_primary_10_3847_1538_4357_ab3222 crossref_primary_10_1051_0004_6361_202243372 crossref_primary_10_1093_mnras_sty508 crossref_primary_10_1007_s10509_022_04115_9 crossref_primary_10_3847_1538_4357_adb0bb crossref_primary_10_1017_pasa_2019_31 crossref_primary_10_1051_0004_6361_201935100 crossref_primary_10_1093_mnras_stab1550 crossref_primary_10_1093_mnras_stac217 crossref_primary_10_1051_0004_6361_201730942 crossref_primary_10_1093_mnras_stab1957 crossref_primary_10_3847_1538_4357_abdd36 crossref_primary_10_3847_2041_8213_ace4c4 crossref_primary_10_1093_mnras_stad1822 crossref_primary_10_3847_1538_4357_ad8b19 crossref_primary_10_3847_2041_8213_ab9300 crossref_primary_10_1093_mnras_stx3220 crossref_primary_10_3847_1538_4357_ac3820 crossref_primary_10_3847_1538_4357_ac2574 crossref_primary_10_3847_1538_4357_ac3f3a crossref_primary_10_3847_1538_4357_abe938 crossref_primary_10_3847_1538_4357_ad87f4 crossref_primary_10_3847_1538_4357_aac8d8 crossref_primary_10_3847_1538_4357_ab4421 crossref_primary_10_3847_1538_4357_ad4a2a crossref_primary_10_1093_mnras_stz949 crossref_primary_10_3847_1538_4357_aab9a6 crossref_primary_10_1088_1475_7516_2024_04_083 crossref_primary_10_3847_1538_4357_ab6328 crossref_primary_10_1051_0004_6361_202348642 crossref_primary_10_3847_1538_4357_aa8f42 crossref_primary_10_3847_1538_4357_ab3050 crossref_primary_10_1093_mnras_sty3363 crossref_primary_10_3847_1538_4357_abf6d6 crossref_primary_10_1093_mnras_staa2947 crossref_primary_10_1093_mnras_stab831 crossref_primary_10_1007_s11214_018_0479_4 crossref_primary_10_3847_1538_4357_ab7014 crossref_primary_10_1007_s11214_018_0468_7 crossref_primary_10_1093_mnras_stab3729 crossref_primary_10_3847_1538_4357_acbbc6 crossref_primary_10_3847_1538_4357_aae2b3 crossref_primary_10_3847_1538_4357_aac5f6 crossref_primary_10_1093_mnras_stac2551 crossref_primary_10_3847_1538_4357_aa9189 crossref_primary_10_3847_1538_4357_ab425c crossref_primary_10_3847_1538_4357_ad701e crossref_primary_10_1051_0004_6361_202349066 crossref_primary_10_1093_mnras_stac2427 crossref_primary_10_3847_1538_4357_abe765 crossref_primary_10_1051_0004_6361_202245379 crossref_primary_10_1093_mnras_stae1921 crossref_primary_10_3847_1538_4357_ad5fe8 crossref_primary_10_3847_1538_4357_ad7955 crossref_primary_10_1051_0004_6361_202346754 crossref_primary_10_1093_mnras_staa2273 crossref_primary_10_1051_0004_6361_201834732 crossref_primary_10_3847_1538_4357_acb8a9 crossref_primary_10_1093_mnras_sty1218 crossref_primary_10_3847_1538_4357_ab1a37 crossref_primary_10_1093_mnras_sty045 crossref_primary_10_1088_1475_7516_2022_08_011 crossref_primary_10_3847_1538_4357_ad3637 crossref_primary_10_3847_1538_4365_aa8ef4 crossref_primary_10_1093_mnras_stac1970 crossref_primary_10_1093_pasj_psad024 crossref_primary_10_3847_1538_4357_acef18 crossref_primary_10_1093_mnrasl_slx056 crossref_primary_10_1093_mnras_staa365 crossref_primary_10_3847_1538_4357_ad08b5 crossref_primary_10_1093_mnras_staa2006 crossref_primary_10_3847_1538_4357_ab1136 crossref_primary_10_3847_1538_4357_ad37fe crossref_primary_10_3847_2041_8213_ace618 crossref_primary_10_1093_mnras_stad3073 crossref_primary_10_3847_1538_4357_acd8be crossref_primary_10_1093_mnras_staa2527 crossref_primary_10_1098_rsos_200467 crossref_primary_10_3847_1538_4357_aaffd9 crossref_primary_10_3847_1538_4357_aa8999 crossref_primary_10_1038_s41550_018_0563_4 crossref_primary_10_3847_1538_4357_ad2a49 crossref_primary_10_3847_1538_4357_ac60fe crossref_primary_10_3847_1538_4357_aa8595 crossref_primary_10_3847_1538_4357_ac6187 crossref_primary_10_3847_1538_4357_ad973d crossref_primary_10_1093_mnras_stae170 crossref_primary_10_3847_1538_4357_ad9bad crossref_primary_10_3847_1538_4357_ad50cb crossref_primary_10_3847_2041_8213_adbb63 crossref_primary_10_3847_1538_4357_abac5d crossref_primary_10_1134_S1063773723350013 crossref_primary_10_3847_1538_4357_ac75f0 crossref_primary_10_1093_mnras_staa2898 crossref_primary_10_3847_1538_4357_aabee7 crossref_primary_10_3847_1538_4357_aa97e1 crossref_primary_10_1093_mnras_sty1957 crossref_primary_10_1051_0004_6361_202450838 crossref_primary_10_3847_2041_8213_ab77c8 crossref_primary_10_3847_1538_4357_ad4d55 crossref_primary_10_3847_1538_4357_ab4c40 crossref_primary_10_3847_1538_4357_ac5ab3 |
Cites_doi | 10.1093/mnras/stv566 10.1088/0004-6256/137/6/4744 10.1088/0004-6256/139/4/1451 10.3847/0004-637X/818/1/3 10.1088/0004-637X/785/2/82 10.1088/0004-637X/804/1/28 10.1088/0004-6256/137/3/3558 10.1093/mnrasl/slt179 10.1051/0004-6361/201527931 10.1093/mnras/stw365 10.1007/BF01008387 10.1093/mnras/stv2720 10.1086/648598 10.1093/mnras/stw1419 10.1088/0004-637X/728/1/63 10.1088/2041-8205/808/2/L51 10.1086/516749 10.1086/504417 10.3847/0004-637X/819/1/5 10.1038/nature04892 10.1086/425675 10.1038/nature06333 10.1093/mnras/stu1760 10.1088/0004-637X/732/1/32 10.1051/0004-6361/201219126 10.1093/mnrasl/slt171 10.1093/mnras/stv208 10.1146/annurev.astro.35.1.309 10.1093/mnras/sts075 10.1051/0004-6361/201525868 10.1016/0370-1573(94)00107-E 10.1093/mnras/stt009 10.1088/0004-637X/744/1/10 10.1088/0004-637X/780/1/96 10.1086/117905 10.3847/0004-637X/820/1/33 10.1088/2041-8205/756/2/L30 10.1093/mnras/stv354 10.1088/0004-637X/725/1/904 10.3847/0004-637X/821/1/38 10.1051/0004-6361/201321180 10.1088/0004-637X/783/1/10 10.1088/0004-637X/742/1/6 10.1088/0004-637X/729/1/61 10.1086/160870 10.3847/0004-637X/817/1/22 10.1088/0004-637X/788/1/48 10.1088/0004-637X/807/1/59 10.1093/mnras/stv2336 10.1086/513145 10.3847/0004-637X/822/1/6 10.1086/430901 10.1111/j.1365-2966.2008.13603.x 10.3847/0004-637X/820/1/57 10.1088/0004-637X/814/1/63 10.1088/2041-8205/729/1/L6 10.1088/0004-637X/786/1/67 10.1111/j.1365-2966.2010.16851.x 10.1088/0004-637X/810/1/34 10.1088/0004-637X/724/2/1396 10.1086/590141 10.1007/s10509-007-9510-z 10.1088/1538-4357/462/1/L27 10.1088/0004-637X/810/2/101 10.1111/j.1365-2966.2011.18689.x 10.1086/167900 10.3847/0004-637X/829/2/109 10.1088/0004-637X/806/2/160 10.1088/0004-637X/797/2/118 10.1038/nature11877 10.1016/j.physrep.2007.02.009 10.1088/2041-8205/786/2/L15 10.1088/0004-637X/703/2/2205 10.1111/j.1365-2966.2011.18160.x 10.1111/j.1365-2966.2011.17229.x 10.1111/j.1745-3933.2012.01264.x 10.1086/519949 10.1146/annurev-astro-081913-040025 10.1088/0004-637X/767/1/1 10.1086/518160 10.1088/0004-637X/782/1/42 10.1088/0004-637X/799/2/208 10.1086/524681 10.1093/mnras/stu955 10.1088/0004-637X/789/2/104 10.1088/0022-3727/33/8/314 10.1088/0004-637X/788/2/193 10.1093/mnras/stw870 10.1086/156569 10.3847/0004-637X/823/2/127 10.1088/2041-8205/714/2/L280 10.1038/nature13304 10.1038/nature05825 |
ContentType | Journal Article |
Copyright | 2017. The American Astronomical Society. All rights reserved. Copyright IOP Publishing Mar 20, 2017 |
Copyright_xml | – notice: 2017. The American Astronomical Society. All rights reserved. – notice: Copyright IOP Publishing Mar 20, 2017 |
DBID | AAYXX CITATION 7TG 8FD H8D KL. L7M OTOTI |
DOI | 10.3847/1538-4357/aa6251 |
DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Technology Research Database Aerospace Database Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace OSTI.GOV |
DatabaseTitle | CrossRef Aerospace Database Meteorological & Geoastrophysical Abstracts Technology Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | Aerospace Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Physics |
DocumentTitleAlternate | Unifying Type II Supernova Light Curves with Dense Circumstellar Material |
EISSN | 1538-4357 |
ExternalDocumentID | 22869195 10_3847_1538_4357_aa6251 apjaa6251 |
GroupedDBID | -DZ -~X 123 1JI 23N 2FS 2WC 4.4 6J9 85S AAFWJ AAGCD AAJIO AALHV ABHWH ACBEA ACGFS ACHIP ACNCT ADACN AEFHF AENEX AFPKN AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN CJUJL CRLBU CS3 EBS EJD F5P FRP GROUPED_DOAJ IJHAN IOP KOT M~E N5L O3W O43 OK1 PJBAE RIN RNS ROL SJN SY9 T37 TN5 TR2 WH7 XSW AAYXX CITATION 7TG 8FD AEINN H8D KL. L7M ABPTK OTOTI |
ID | FETCH-LOGICAL-c407t-5e9b0b8b8cfbb66b6b68b8e58471dfffa84319374be940c3267a5f47eb4dbbf33 |
IEDL.DBID | O3W |
ISSN | 0004-637X |
IngestDate | Fri May 19 01:45:25 EDT 2023 Wed Aug 13 06:41:43 EDT 2025 Tue Jul 01 04:08:54 EDT 2025 Thu Apr 24 22:58:04 EDT 2025 Wed Aug 21 03:41:36 EDT 2024 Thu Jan 07 13:49:48 EST 2021 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c407t-5e9b0b8b8cfbb66b6b68b8e58471dfffa84319374be940c3267a5f47eb4dbbf33 |
Notes | High-Energy Phenomena and Fundamental Physics AAS03188 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6806-0673 |
OpenAccessLink | https://iopscience.iop.org/article/10.3847/1538-4357/aa6251/pdf |
PQID | 2365855313 |
PQPubID | 4562441 |
PageCount | 12 |
ParticipantIDs | iop_journals_10_3847_1538_4357_aa6251 proquest_journals_2365855313 crossref_citationtrail_10_3847_1538_4357_aa6251 crossref_primary_10_3847_1538_4357_aa6251 osti_scitechconnect_22869195 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-03-20 |
PublicationDateYYYYMMDD | 2017-03-20 |
PublicationDate_xml | – month: 03 year: 2017 text: 2017-03-20 day: 20 |
PublicationDecade | 2010 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia – name: United States |
PublicationTitle | The Astrophysical journal |
PublicationTitleAbbrev | APJ |
PublicationTitleAlternate | Astrophys. J |
PublicationYear | 2017 |
Publisher | The American Astronomical Society IOP Publishing |
Publisher_xml | – name: The American Astronomical Society – name: IOP Publishing |
References | Andrae (apjaa6251bib2) 2010 Leonard (apjaa6251bib41) 2013; 5275 Foley (apjaa6251bib24) 2007; 657 Dopita (apjaa6251bib18) 2007; 310 Sukhbold (apjaa6251bib94) 2016; 821 Valenti (apjaa6251bib98) 2013; 3609 Piro (apjaa6251bib74) 2015; 808 Quataert (apjaa6251bib75) 2016; 458 Ofek (apjaa6251bib63) 2007; 659 Rabinak (apjaa6251bib77) 2011; 728 Shappee (apjaa6251bib81) 2013; 5237 Ofek (apjaa6251bib64) 2010; 724 Smith (apjaa6251bib86) 2009; 137 Young (apjaa6251bib110) 2004; 617 Morozova (apjaa6251bib54) 2016; 829 Smith (apjaa6251bib84) 2014; 52 Paczyński (apjaa6251bib67) 1983; 267 Valenti (apjaa6251bib99) 2014; 438 Gal-Yam (apjaa6251bib29) 2014; 509 Pastorello (apjaa6251bib69) 2013; 767 Margutti (apjaa6251bib48) 2013a; 5243 Cardelli (apjaa6251bib10) 1989; 345 LSST Science Collaboration (apjaa6251bib47) 2009 Litvinova (apjaa6251bib46) 1983; 89 Bersten (apjaa6251bib5) 2011; 729 Bose (apjaa6251bib8) 2015; 806 Childress (apjaa6251bib14) 2013b; 5527 Fraser (apjaa6251bib26) 2010; 714 Ofek (apjaa6251bib65) 2013; 494 Moriya (apjaa6251bib51) 2011; 415 Levesque (apjaa6251bib43) 2006; 645 Ofek (apjaa6251bib66) 2014; 789 Sukhbold (apjaa6251bib95) 2014; 783 Woosley (apjaa6251bib108) 2015; 810 Margutti (apjaa6251bib49) 2013b; 5106 Wittkowski (apjaa6251bib105) 2012; 540 Kumar (apjaa6251bib39) 2016; 456 Nakar (apjaa6251bib59) 2016; 823 Kasen (apjaa6251bib35) 2009; 703 Law (apjaa6251bib40) 2009; 121 Schlegel (apjaa6251bib80) 1996; 111 Wang (apjaa6251bib103) 1996; 462 Patat (apjaa6251bib73) 1994; 282 Fuller (apjaa6251bib28) 2015; 810 Khazov (apjaa6251bib36) 2016; 818 Barbon (apjaa6251bib4) 1979; 72 Smith (apjaa6251bib85) 2014; 785 Mauerhan (apjaa6251bib50) 2013; 430 Valenti (apjaa6251bib100) 2015; 448 Gutiérrez (apjaa6251bib33) 2014; 786 Nakano (apjaa6251bib57) 2013; 3671 Fraser (apjaa6251bib27) 2014; 439 Moriya (apjaa6251bib52) 2013; 428 Nieuwenhuijzen (apjaa6251bib61) 1990; 231 Kim (apjaa6251bib38) 2013; 3606 Shiode (apjaa6251bib83) 2014; 780 Shappee (apjaa6251bib82) 2014; 788 Nakar (apjaa6251bib58) 2014; 788 Chevalier (apjaa6251bib12) 2011; 729 Chugai (apjaa6251bib15) 2007; 662 Tanaka (apjaa6251bib97) 2016; 819 Woosley (apjaa6251bib106) 2007; 450 Campana (apjaa6251bib9) 2006; 442 Patat (apjaa6251bib72) 1993; 98 van Marle (apjaa6251bib102) 2010; 407 Faran (apjaa6251bib21) 2014b; 442 Zaghloul (apjaa6251bib112) 2000; 33 Valenti (apjaa6251bib101) 2016; 459 Fransson (apjaa6251bib25) 2014; 797 Bilinski (apjaa6251bib6) 2015; 450 Kiewe (apjaa6251bib37) 2012; 744 Yaron (apjaa6251bib109) 2017 Pastorello (apjaa6251bib70) 2008; 389 Pastorello (apjaa6251bib71) 2007; 447 Blinnikov (apjaa6251bib7) 1993; 273 Dhungana (apjaa6251bib17) 2016; 822 Morozova (apjaa6251bib55) 2015; 814 Smith (apjaa6251bib87) 2011; 412 Faran (apjaa6251bib20) 2014a; 445 Gall (apjaa6251bib30) 2015; 582 Parker (apjaa6251bib68) 2013; 3506 Smith (apjaa6251bib88) 2007; 671 Sanders (apjaa6251bib79) 2015; 799 Foley (apjaa6251bib23) 2011; 732 Filippenko (apjaa6251bib22) 1997; 35 Li (apjaa6251bib45) 2011; 412 Elias-Rosa (apjaa6251bib19) 2011; 742 Smith (apjaa6251bib90) 2008; 686 Smith (apjaa6251bib89) 2007; 666 Taddia (apjaa6251bib96) 2013; 555 Weaver (apjaa6251bib104) 1978; 225 Arcavi (apjaa6251bib3) 2012; 756 Nagy (apjaa6251bib56) 2016; 589 Smith (apjaa6251bib92) 2015; 449 Childress (apjaa6251bib13) 2013a; 5455 Huang (apjaa6251bib34) 2015; 807 Rubin (apjaa6251bib78) 2016; 820 Levesque (apjaa6251bib44) 2009; 137 Nomoto (apjaa6251bib62) 1995; 256 Chakraborti (apjaa6251bib11) 2016; 817 Levesque (apjaa6251bib42) 2005; 628 Nakar (apjaa6251bib60) 2010; 725 Sokolovsky (apjaa6251bib93) 2013; 5264 Quataert (apjaa6251bib76) 2012; 423 Moriya (apjaa6251bib53) 2016; 455 Ganot (apjaa6251bib31) 2016; 820 Yuan (apjaa6251bib111) 2016; 461 Anderson (apjaa6251bib1) 2014; 786 Gezari (apjaa6251bib32) 2015; 804 Smith (apjaa6251bib91) 2010; 139 Corsi (apjaa6251bib16) 2014; 782 Woosley (apjaa6251bib107) 2007; 442 |
References_xml | – volume: 450 start-page: 246 year: 2015 ident: apjaa6251bib6 publication-title: MNRAS doi: 10.1093/mnras/stv566 – volume: 137 start-page: 4744 year: 2009 ident: apjaa6251bib44 publication-title: AJ doi: 10.1088/0004-6256/137/6/4744 – volume: 139 start-page: 1451 year: 2010 ident: apjaa6251bib91 publication-title: AJ doi: 10.1088/0004-6256/139/4/1451 – volume: 818 start-page: 3 year: 2016 ident: apjaa6251bib36 publication-title: ApJ doi: 10.3847/0004-637X/818/1/3 – volume: 785 start-page: 82 year: 2014 ident: apjaa6251bib85 publication-title: ApJ doi: 10.1088/0004-637X/785/2/82 – volume: 804 start-page: 28 year: 2015 ident: apjaa6251bib32 publication-title: ApJ doi: 10.1088/0004-637X/804/1/28 – year: 2017 ident: apjaa6251bib109 publication-title: NatPh – volume: 137 start-page: 3558 year: 2009 ident: apjaa6251bib86 publication-title: AJ doi: 10.1088/0004-6256/137/3/3558 – volume: 5527 year: 2013b ident: apjaa6251bib14 publication-title: ATel – volume: 439 start-page: L56 year: 2014 ident: apjaa6251bib27 publication-title: MNRAS doi: 10.1093/mnrasl/slt179 – volume: 589 start-page: A53 year: 2016 ident: apjaa6251bib56 publication-title: A&A doi: 10.1051/0004-6361/201527931 – volume: 458 start-page: 1214 year: 2016 ident: apjaa6251bib75 publication-title: MNRAS doi: 10.1093/mnras/stw365 – volume: 89 start-page: 89 year: 1983 ident: apjaa6251bib46 publication-title: Ap&SS doi: 10.1007/BF01008387 – volume: 5275 year: 2013 ident: apjaa6251bib41 publication-title: ATel – volume: 456 start-page: 3157 year: 2016 ident: apjaa6251bib39 publication-title: MNRAS doi: 10.1093/mnras/stv2720 – volume: 121 start-page: 1395 year: 2009 ident: apjaa6251bib40 publication-title: PASP doi: 10.1086/648598 – volume: 5106 year: 2013b ident: apjaa6251bib49 publication-title: ATel – volume: 461 start-page: 2003 year: 2016 ident: apjaa6251bib111 publication-title: MNRAS doi: 10.1093/mnras/stw1419 – volume: 728 start-page: 63 year: 2011 ident: apjaa6251bib77 publication-title: ApJ doi: 10.1088/0004-637X/728/1/63 – volume: 808 start-page: L51 year: 2015 ident: apjaa6251bib74 publication-title: ApJL doi: 10.1088/2041-8205/808/2/L51 – volume: 273 start-page: 106 year: 1993 ident: apjaa6251bib7 publication-title: A&A – volume: 659 start-page: L13 year: 2007 ident: apjaa6251bib63 publication-title: ApJL doi: 10.1086/516749 – volume: 645 start-page: 1102 year: 2006 ident: apjaa6251bib43 publication-title: ApJ doi: 10.1086/504417 – volume: 819 start-page: 5 year: 2016 ident: apjaa6251bib97 publication-title: ApJ doi: 10.3847/0004-637X/819/1/5 – volume: 442 start-page: 1008 year: 2006 ident: apjaa6251bib9 publication-title: Natur doi: 10.1038/nature04892 – volume: 3606 year: 2013 ident: apjaa6251bib38 publication-title: CBET – volume: 5455 year: 2013a ident: apjaa6251bib13 publication-title: ATel – volume: 617 start-page: 1233 year: 2004 ident: apjaa6251bib110 publication-title: ApJ doi: 10.1086/425675 – volume: 450 start-page: 390 year: 2007 ident: apjaa6251bib106 publication-title: Natur doi: 10.1038/nature06333 – volume: 445 start-page: 554 year: 2014a ident: apjaa6251bib20 publication-title: MNRAS doi: 10.1093/mnras/stu1760 – volume: 732 start-page: 32 year: 2011 ident: apjaa6251bib23 publication-title: ApJ doi: 10.1088/0004-637X/732/1/32 – volume: 540 start-page: L12 year: 2012 ident: apjaa6251bib105 publication-title: A&A doi: 10.1051/0004-6361/201219126 – volume: 438 start-page: L101 year: 2014 ident: apjaa6251bib99 publication-title: MNRAS doi: 10.1093/mnrasl/slt171 – volume: 448 start-page: 2608 year: 2015 ident: apjaa6251bib100 publication-title: MNRAS doi: 10.1093/mnras/stv208 – volume: 35 start-page: 309 year: 1997 ident: apjaa6251bib22 publication-title: ARA&A doi: 10.1146/annurev.astro.35.1.309 – volume: 428 start-page: 1020 year: 2013 ident: apjaa6251bib52 publication-title: MNRAS doi: 10.1093/mnras/sts075 – volume: 582 start-page: A3 year: 2015 ident: apjaa6251bib30 publication-title: A&A doi: 10.1051/0004-6361/201525868 – volume: 256 start-page: 173 year: 1995 ident: apjaa6251bib62 publication-title: PhR doi: 10.1016/0370-1573(94)00107-E – volume: 430 start-page: 1801 year: 2013 ident: apjaa6251bib50 publication-title: MNRAS doi: 10.1093/mnras/stt009 – volume: 5243 year: 2013a ident: apjaa6251bib48 publication-title: ATel – volume: 744 start-page: 10 year: 2012 ident: apjaa6251bib37 publication-title: ApJ doi: 10.1088/0004-637X/744/1/10 – volume: 780 start-page: 96 year: 2014 ident: apjaa6251bib83 publication-title: ApJ doi: 10.1088/0004-637X/780/1/96 – volume: 111 start-page: 1660 year: 1996 ident: apjaa6251bib80 publication-title: AJ doi: 10.1086/117905 – volume: 820 start-page: 33 year: 2016 ident: apjaa6251bib78 publication-title: ApJ doi: 10.3847/0004-637X/820/1/33 – volume: 756 start-page: L30 year: 2012 ident: apjaa6251bib3 publication-title: ApJL doi: 10.1088/2041-8205/756/2/L30 – volume: 449 start-page: 1876 year: 2015 ident: apjaa6251bib92 publication-title: MNRAS doi: 10.1093/mnras/stv354 – volume: 725 start-page: 904 year: 2010 ident: apjaa6251bib60 publication-title: ApJ doi: 10.1088/0004-637X/725/1/904 – volume: 3506 year: 2013 ident: apjaa6251bib68 publication-title: CBET – volume: 821 start-page: 38 year: 2016 ident: apjaa6251bib94 publication-title: ApJ doi: 10.3847/0004-637X/821/1/38 – volume: 555 start-page: A10 year: 2013 ident: apjaa6251bib96 publication-title: A&A doi: 10.1051/0004-6361/201321180 – volume: 783 start-page: 10 year: 2014 ident: apjaa6251bib95 publication-title: ApJ doi: 10.1088/0004-637X/783/1/10 – volume: 3671 year: 2013 ident: apjaa6251bib57 publication-title: CBET – volume: 742 start-page: 6 year: 2011 ident: apjaa6251bib19 publication-title: ApJ doi: 10.1088/0004-637X/742/1/6 – volume: 729 start-page: 61 year: 2011 ident: apjaa6251bib5 publication-title: ApJ doi: 10.1088/0004-637X/729/1/61 – volume: 267 start-page: 315 year: 1983 ident: apjaa6251bib67 publication-title: ApJ doi: 10.1086/160870 – volume: 817 start-page: 22 year: 2016 ident: apjaa6251bib11 publication-title: ApJ doi: 10.3847/0004-637X/817/1/22 – volume: 788 start-page: 48 year: 2014 ident: apjaa6251bib82 publication-title: ApJ doi: 10.1088/0004-637X/788/1/48 – volume: 807 start-page: 59 year: 2015 ident: apjaa6251bib34 publication-title: ApJ doi: 10.1088/0004-637X/807/1/59 – volume: 455 start-page: 423 year: 2016 ident: apjaa6251bib53 publication-title: MNRAS doi: 10.1093/mnras/stv2336 – volume: 657 start-page: L105 year: 2007 ident: apjaa6251bib24 publication-title: ApJL doi: 10.1086/513145 – volume: 822 start-page: 6 year: 2016 ident: apjaa6251bib17 publication-title: ApJ doi: 10.3847/0004-637X/822/1/6 – year: 2010 ident: apjaa6251bib2 – volume: 628 start-page: 973 year: 2005 ident: apjaa6251bib42 publication-title: ApJ doi: 10.1086/430901 – volume: 389 start-page: 131 year: 2008 ident: apjaa6251bib70 publication-title: MNRAS doi: 10.1111/j.1365-2966.2008.13603.x – volume: 820 start-page: 57 year: 2016 ident: apjaa6251bib31 publication-title: ApJ doi: 10.3847/0004-637X/820/1/57 – volume: 814 start-page: 63 year: 2015 ident: apjaa6251bib55 publication-title: ApJ doi: 10.1088/0004-637X/814/1/63 – volume: 729 start-page: L6 year: 2011 ident: apjaa6251bib12 publication-title: ApJL doi: 10.1088/2041-8205/729/1/L6 – volume: 786 start-page: 67 year: 2014 ident: apjaa6251bib1 publication-title: ApJ doi: 10.1088/0004-637X/786/1/67 – volume: 407 start-page: 2305 year: 2010 ident: apjaa6251bib102 publication-title: MNRAS doi: 10.1111/j.1365-2966.2010.16851.x – volume: 810 start-page: 34 year: 2015 ident: apjaa6251bib108 publication-title: ApJ doi: 10.1088/0004-637X/810/1/34 – volume: 231 start-page: 134 year: 1990 ident: apjaa6251bib61 publication-title: A&A – volume: 724 start-page: 1396 year: 2010 ident: apjaa6251bib64 publication-title: ApJ doi: 10.1088/0004-637X/724/2/1396 – volume: 686 start-page: 485 year: 2008 ident: apjaa6251bib90 publication-title: ApJ doi: 10.1086/590141 – volume: 310 start-page: 255 year: 2007 ident: apjaa6251bib18 publication-title: Ap&SS doi: 10.1007/s10509-007-9510-z – volume: 462 start-page: L27 year: 1996 ident: apjaa6251bib103 publication-title: ApJL doi: 10.1088/1538-4357/462/1/L27 – volume: 3609 year: 2013 ident: apjaa6251bib98 publication-title: CBET – volume: 810 start-page: 101 year: 2015 ident: apjaa6251bib28 publication-title: ApJ doi: 10.1088/0004-637X/810/2/101 – volume: 415 start-page: 199 year: 2011 ident: apjaa6251bib51 publication-title: MNRAS doi: 10.1111/j.1365-2966.2011.18689.x – volume: 345 start-page: 245 year: 1989 ident: apjaa6251bib10 publication-title: ApJ doi: 10.1086/167900 – volume: 829 start-page: 109 year: 2016 ident: apjaa6251bib54 publication-title: ApJ doi: 10.3847/0004-637X/829/2/109 – volume: 806 start-page: 160 year: 2015 ident: apjaa6251bib8 publication-title: ApJ doi: 10.1088/0004-637X/806/2/160 – volume: 797 start-page: 118 year: 2014 ident: apjaa6251bib25 publication-title: ApJ doi: 10.1088/0004-637X/797/2/118 – volume: 494 start-page: 65 year: 2013 ident: apjaa6251bib65 publication-title: Natur doi: 10.1038/nature11877 – volume: 442 start-page: 269 year: 2007 ident: apjaa6251bib107 publication-title: PhR doi: 10.1016/j.physrep.2007.02.009 – volume: 786 start-page: L15 year: 2014 ident: apjaa6251bib33 publication-title: ApJL doi: 10.1088/2041-8205/786/2/L15 – volume: 703 start-page: 2205 year: 2009 ident: apjaa6251bib35 publication-title: ApJ doi: 10.1088/0004-637X/703/2/2205 – volume: 412 start-page: 1441 year: 2011 ident: apjaa6251bib45 publication-title: MNRAS doi: 10.1111/j.1365-2966.2011.18160.x – volume: 98 start-page: 443 year: 1993 ident: apjaa6251bib72 publication-title: A&AS – volume: 412 start-page: 1522 year: 2011 ident: apjaa6251bib87 publication-title: MNRAS doi: 10.1111/j.1365-2966.2011.17229.x – volume: 423 start-page: L92 year: 2012 ident: apjaa6251bib76 publication-title: MNRAS doi: 10.1111/j.1745-3933.2012.01264.x – volume: 666 start-page: 1116 year: 2007 ident: apjaa6251bib89 publication-title: ApJ doi: 10.1086/519949 – volume: 52 start-page: 487 year: 2014 ident: apjaa6251bib84 publication-title: ARA&A doi: 10.1146/annurev-astro-081913-040025 – volume: 767 start-page: 1 year: 2013 ident: apjaa6251bib69 publication-title: ApJ doi: 10.1088/0004-637X/767/1/1 – volume: 662 start-page: 1136 year: 2007 ident: apjaa6251bib15 publication-title: ApJ doi: 10.1086/518160 – volume: 782 start-page: 42 year: 2014 ident: apjaa6251bib16 publication-title: ApJ doi: 10.1088/0004-637X/782/1/42 – volume: 72 start-page: 287 year: 1979 ident: apjaa6251bib4 publication-title: A&A – year: 2009 ident: apjaa6251bib47 – volume: 799 start-page: 208 year: 2015 ident: apjaa6251bib79 publication-title: ApJ doi: 10.1088/0004-637X/799/2/208 – volume: 671 start-page: L17 year: 2007 ident: apjaa6251bib88 publication-title: ApJL doi: 10.1086/524681 – volume: 442 start-page: 844 year: 2014b ident: apjaa6251bib21 publication-title: MNRAS doi: 10.1093/mnras/stu955 – volume: 789 start-page: 104 year: 2014 ident: apjaa6251bib66 publication-title: ApJ doi: 10.1088/0004-637X/789/2/104 – volume: 33 start-page: 977 year: 2000 ident: apjaa6251bib112 publication-title: JPhD doi: 10.1088/0022-3727/33/8/314 – volume: 5264 year: 2013 ident: apjaa6251bib93 publication-title: ATel – volume: 788 start-page: 193 year: 2014 ident: apjaa6251bib58 publication-title: ApJ doi: 10.1088/0004-637X/788/2/193 – volume: 459 start-page: 3939 year: 2016 ident: apjaa6251bib101 publication-title: MNRAS doi: 10.1093/mnras/stw870 – volume: 225 start-page: 1021 year: 1978 ident: apjaa6251bib104 publication-title: ApJ doi: 10.1086/156569 – volume: 823 start-page: 127 year: 2016 ident: apjaa6251bib59 publication-title: ApJ doi: 10.3847/0004-637X/823/2/127 – volume: 714 start-page: L280 year: 2010 ident: apjaa6251bib26 publication-title: ApJL doi: 10.1088/2041-8205/714/2/L280 – volume: 509 start-page: 471 year: 2014 ident: apjaa6251bib29 publication-title: Natur doi: 10.1038/nature13304 – volume: 5237 year: 2013 ident: apjaa6251bib81 publication-title: ATel – volume: 447 start-page: 829 year: 2007 ident: apjaa6251bib71 publication-title: Natur doi: 10.1038/nature05825 – volume: 282 start-page: 731 year: 1994 ident: apjaa6251bib73 publication-title: A&A |
SSID | ssj0004299 |
Score | 2.6380894 |
Snippet | A longstanding problem in the study of supernovae (SNe) has been the relationship between the Type IIP and Type IIL subclasses. Whether they come from distinct... A longstanding problem in the study of supernovae (SNe) has been the relationship between the Type IIP and Type IIL subclasses. Whether they come from distinct... |
SourceID | osti proquest crossref iop |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 28 |
SubjectTerms | Astrophysics ASTROPHYSICS, COSMOLOGY AND ASTRONOMY DENSITY Density distribution HYDRODYNAMICS Light curve MASS MASS DISTRIBUTION Progenitors (astrophysics) RADIANT HEAT TRANSFER Radiation radiative transfer Supernova Supernovae supernovae: general supernovae: individual (SN 2013by, SN 2013ej, SN 2013fs) TYPE II SUPERNOVAE VELOCITY VISIBLE RADIATION Wind speed Wind velocities |
Title | Unifying Type II Supernova Light Curves with Dense Circumstellar Material |
URI | https://iopscience.iop.org/article/10.3847/1538-4357/aa6251 https://www.proquest.com/docview/2365855313 https://www.osti.gov/biblio/22869195 |
Volume | 838 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEF_aiuCLaFV6tS37oIIP8ZL9yG7wqZyWnlhb0OK9LZnNLijtXUhygv-9M0naUiyl5GVDJptldj5-s5uZZewNSCuCVSrJTGkSVWRFAsJUicljFqNMBaSUKHzyLT8-V18WerHBPl7nwqzq0fR_wOZQKHhgIem3RFs67XUUvbyZliWidwx9HkmbW4q8TuXPm6RIUYzYVyW5NIthj_LOHm75pE38LtrnFWrYf_a5dzpHz9jTES3yw2Fsz9lGWG6zncOW1q9Xl3_5O963h-WJdps9PhtaL9gcwWSfwsQp0uTzOf--rkNDR6DyrxSQ89m6-RNaTgux_BMGs4HPfjV-fdlSXknZ8JOy66XzJTs_-vxjdpyMxyYkHqOzLtGhgBQsWB8B8hzwwptA-6FZFWMsLYIGRCUKQqFSj_jNlDoqE0BVAFHKV2xruVqGHcbT0psQdQo6N0prAJtC5QsrvdFV9DBh0yvGOT_WFKejLS4cxhbEakesdsRqN7B6wt5fv1EP9TTuoX2Lc-FGpWrvodu_RVfWv51FkswJ6-oqTtgezaZDwaLCuJ7-IPKdE8LmKJsaH1_N8k0fQiI002ig5O4DR_GaPRHk8lOJlmePbXXNOuwjYOnggG3OT88OevH8B36c4m4 |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9QwDI_YEIgXBAO0gw3yAEg8lGvz3cfpxmkH25gEE_cWxWkiDbG7qu0h8d_jtB3TBJpQX1LVTSPHdn5OapuQ18ANC0aIrNBOZ6IsygyYrjKtYhEjzxnkKVD45FQdnYuPS7kc65z2sTDrejT977E5JAoeWJj0m6MtnfY6iqu8njqH6L2Y1lXcInclVyrVbvjMv10HRrJyxL8iU1wvh3PKf_ZyY13awm-jjV6jlv1lo_uFZ_6IPBwRIz0YxveY3AmrHbJ70KY97PXlL_qW9u1hi6LdIffOhtYTskBA2Ycx0eRt0sWCftnUoUllUOlxcsrpbNP8DC1Nm7H0EB3aQGcXjd9ctim2xDX0xHW9hD4l5_MPX2dH2Vg6IfPooXWZDCXkYMD4CKAU4IU3IZ2JFlWM0RkEDohMBIRS5B4xnHYyCh1AVACR82dke7VehV1Cc-d1iDIHqbSQEsDkUPnScK9lFT1MyPSKcdaPecVTeYsfFv2LxGqbWG0Tq-3A6gl59-eNesipcQvtG5wLOypWewvd_g06V3-3BkkKy4xFAZmQvTSbFoUrJcf16S8i31nGjEL5lPj4apav-2Ac4ZlEI8Wf_-coXpH7Z4dze7w4_fSCPGAJAeQcDdEe2e6aTdhH_NLBy15GfwMyJeVU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unifying+Type+II+Supernova+Light+Curves+with+Dense+Circumstellar+Material&rft.jtitle=The+Astrophysical+journal&rft.au=Morozova%2C+Viktoriya&rft.au=Piro%2C+Anthony+L.&rft.au=Valenti%2C+Stefano&rft.date=2017-03-20&rft.pub=The+American+Astronomical+Society&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=838&rft.issue=1&rft_id=info:doi/10.3847%2F1538-4357%2Faa6251&rft.externalDocID=apjaa6251 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon |