Compressive Creep Performances of Dispersion Coated Particle Surrogate Fuel Pellets with ZrC–SiC Composite Matrix

Nuclear fuel pellets are subject to stress for long periods during the in-pile operation, and this study on high-temperature creep performance is of great significance for predicting the in-pile behaviors and safety evaluation of fuel elements. In the present study, a mixture of ZrC (50 wt%), SiC (4...

Full description

Saved in:
Bibliographic Details
Published inMaterials Vol. 18; no. 11; p. 2659
Main Authors Ren, Qisen, Liu, Yang, Fang, Runjie, Wu, Lixiang, Liu, Weiqiang
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 05.06.2025
MDPI
Subjects
Online AccessGet full text
ISSN1996-1944
1996-1944
DOI10.3390/ma18112659

Cover

Abstract Nuclear fuel pellets are subject to stress for long periods during the in-pile operation, and this study on high-temperature creep performance is of great significance for predicting the in-pile behaviors and safety evaluation of fuel elements. In the present study, a mixture of ZrC (50 wt%), SiC (46 wt%), and Si (4 wt%) powder was ball-milled for 24 h and then evaporated to obtain ZrC–SiC composite material. ZrC–SiC composite was adopted as the matrix, with ZrO2 surrogate kernel TRSIO particles and dispersion coated particle fuel pellets prepared with different TRISO packing fractions using the Spark Plasma Sintering (SPS) process. This study on compressive creep performances was conducted under a temperature range of 1373–2073 K and a stress range of 5–250 MPa, elucidating the creep behavior and mechanism of dispersed coated particles fuel pellets, and obtaining the variation laws of key parameters such as creep stress exponents and activation energy with TRISO packing fraction. The results showed that creep stress exponents of the surrogate fuel pellets are between 0.89 and 2.12. The activation energies for high temperature–low stress creep (1873–2073 K, 5–50 MPa) are 457.81–623.77 kJ/mol, and 135.14–161.59 kJ/mol for low temperature high stress creep (1373–1773 K, 50–250 MPa). Based on the experimental results, a high-temperature creep model was established, providing a valuable reference for the research and application of a ceramic matrix dispersed with coated particle fuels.
AbstractList Nuclear fuel pellets are subject to stress for long periods during the in-pile operation, and this study on high-temperature creep performance is of great significance for predicting the in-pile behaviors and safety evaluation of fuel elements. In the present study, a mixture of ZrC (50 wt%), SiC (46 wt%), and Si (4 wt%) powder was ball-milled for 24 h and then evaporated to obtain ZrC–SiC composite material. ZrC–SiC composite was adopted as the matrix, with ZrO 2 surrogate kernel TRSIO particles and dispersion coated particle fuel pellets prepared with different TRISO packing fractions using the Spark Plasma Sintering (SPS) process. This study on compressive creep performances was conducted under a temperature range of 1373–2073 K and a stress range of 5–250 MPa, elucidating the creep behavior and mechanism of dispersed coated particles fuel pellets, and obtaining the variation laws of key parameters such as creep stress exponents and activation energy with TRISO packing fraction. The results showed that creep stress exponents of the surrogate fuel pellets are between 0.89 and 2.12. The activation energies for high temperature–low stress creep (1873–2073 K, 5–50 MPa) are 457.81–623.77 kJ/mol, and 135.14–161.59 kJ/mol for low temperature high stress creep (1373–1773 K, 50–250 MPa). Based on the experimental results, a high-temperature creep model was established, providing a valuable reference for the research and application of a ceramic matrix dispersed with coated particle fuels.
Nuclear fuel pellets are subject to stress for long periods during the in-pile operation, and this study on high-temperature creep performance is of great significance for predicting the in-pile behaviors and safety evaluation of fuel elements. In the present study, a mixture of ZrC (50 wt%), SiC (46 wt%), and Si (4 wt%) powder was ball-milled for 24 h and then evaporated to obtain ZrC-SiC composite material. ZrC-SiC composite was adopted as the matrix, with ZrO2 surrogate kernel TRSIO particles and dispersion coated particle fuel pellets prepared with different TRISO packing fractions using the Spark Plasma Sintering (SPS) process. This study on compressive creep performances was conducted under a temperature range of 1373-2073 K and a stress range of 5-250 MPa, elucidating the creep behavior and mechanism of dispersed coated particles fuel pellets, and obtaining the variation laws of key parameters such as creep stress exponents and activation energy with TRISO packing fraction. The results showed that creep stress exponents of the surrogate fuel pellets are between 0.89 and 2.12. The activation energies for high temperature-low stress creep (1873-2073 K, 5-50 MPa) are 457.81-623.77 kJ/mol, and 135.14-161.59 kJ/mol for low temperature high stress creep (1373-1773 K, 50-250 MPa). Based on the experimental results, a high-temperature creep model was established, providing a valuable reference for the research and application of a ceramic matrix dispersed with coated particle fuels.Nuclear fuel pellets are subject to stress for long periods during the in-pile operation, and this study on high-temperature creep performance is of great significance for predicting the in-pile behaviors and safety evaluation of fuel elements. In the present study, a mixture of ZrC (50 wt%), SiC (46 wt%), and Si (4 wt%) powder was ball-milled for 24 h and then evaporated to obtain ZrC-SiC composite material. ZrC-SiC composite was adopted as the matrix, with ZrO2 surrogate kernel TRSIO particles and dispersion coated particle fuel pellets prepared with different TRISO packing fractions using the Spark Plasma Sintering (SPS) process. This study on compressive creep performances was conducted under a temperature range of 1373-2073 K and a stress range of 5-250 MPa, elucidating the creep behavior and mechanism of dispersed coated particles fuel pellets, and obtaining the variation laws of key parameters such as creep stress exponents and activation energy with TRISO packing fraction. The results showed that creep stress exponents of the surrogate fuel pellets are between 0.89 and 2.12. The activation energies for high temperature-low stress creep (1873-2073 K, 5-50 MPa) are 457.81-623.77 kJ/mol, and 135.14-161.59 kJ/mol for low temperature high stress creep (1373-1773 K, 50-250 MPa). Based on the experimental results, a high-temperature creep model was established, providing a valuable reference for the research and application of a ceramic matrix dispersed with coated particle fuels.
Nuclear fuel pellets are subject to stress for long periods during the in-pile operation, and this study on high-temperature creep performance is of great significance for predicting the in-pile behaviors and safety evaluation of fuel elements. In the present study, a mixture of ZrC (50 wt%), SiC (46 wt%), and Si (4 wt%) powder was ball-milled for 24 h and then evaporated to obtain ZrC–SiC composite material. ZrC–SiC composite was adopted as the matrix, with ZrO[sub.2] surrogate kernel TRSIO particles and dispersion coated particle fuel pellets prepared with different TRISO packing fractions using the Spark Plasma Sintering (SPS) process. This study on compressive creep performances was conducted under a temperature range of 1373–2073 K and a stress range of 5–250 MPa, elucidating the creep behavior and mechanism of dispersed coated particles fuel pellets, and obtaining the variation laws of key parameters such as creep stress exponents and activation energy with TRISO packing fraction. The results showed that creep stress exponents of the surrogate fuel pellets are between 0.89 and 2.12. The activation energies for high temperature–low stress creep (1873–2073 K, 5–50 MPa) are 457.81–623.77 kJ/mol, and 135.14–161.59 kJ/mol for low temperature high stress creep (1373–1773 K, 50–250 MPa). Based on the experimental results, a high-temperature creep model was established, providing a valuable reference for the research and application of a ceramic matrix dispersed with coated particle fuels.
Nuclear fuel pellets are subject to stress for long periods during the in-pile operation, and this study on high-temperature creep performance is of great significance for predicting the in-pile behaviors and safety evaluation of fuel elements. In the present study, a mixture of ZrC (50 wt%), SiC (46 wt%), and Si (4 wt%) powder was ball-milled for 24 h and then evaporated to obtain ZrC–SiC composite material. ZrC–SiC composite was adopted as the matrix, with ZrO2 surrogate kernel TRSIO particles and dispersion coated particle fuel pellets prepared with different TRISO packing fractions using the Spark Plasma Sintering (SPS) process. This study on compressive creep performances was conducted under a temperature range of 1373–2073 K and a stress range of 5–250 MPa, elucidating the creep behavior and mechanism of dispersed coated particles fuel pellets, and obtaining the variation laws of key parameters such as creep stress exponents and activation energy with TRISO packing fraction. The results showed that creep stress exponents of the surrogate fuel pellets are between 0.89 and 2.12. The activation energies for high temperature–low stress creep (1873–2073 K, 5–50 MPa) are 457.81–623.77 kJ/mol, and 135.14–161.59 kJ/mol for low temperature high stress creep (1373–1773 K, 50–250 MPa). Based on the experimental results, a high-temperature creep model was established, providing a valuable reference for the research and application of a ceramic matrix dispersed with coated particle fuels.
Nuclear fuel pellets are subject to stress for long periods during the in-pile operation, and this study on high-temperature creep performance is of great significance for predicting the in-pile behaviors and safety evaluation of fuel elements. In the present study, a mixture of ZrC (50 wt%), SiC (46 wt%), and Si (4 wt%) powder was ball-milled for 24 h and then evaporated to obtain ZrC-SiC composite material. ZrC-SiC composite was adopted as the matrix, with ZrO surrogate kernel TRSIO particles and dispersion coated particle fuel pellets prepared with different TRISO packing fractions using the Spark Plasma Sintering (SPS) process. This study on compressive creep performances was conducted under a temperature range of 1373-2073 K and a stress range of 5-250 MPa, elucidating the creep behavior and mechanism of dispersed coated particles fuel pellets, and obtaining the variation laws of key parameters such as creep stress exponents and activation energy with TRISO packing fraction. The results showed that creep stress exponents of the surrogate fuel pellets are between 0.89 and 2.12. The activation energies for high temperature-low stress creep (1873-2073 K, 5-50 MPa) are 457.81-623.77 kJ/mol, and 135.14-161.59 kJ/mol for low temperature high stress creep (1373-1773 K, 50-250 MPa). Based on the experimental results, a high-temperature creep model was established, providing a valuable reference for the research and application of a ceramic matrix dispersed with coated particle fuels.
Audience Academic
Author Liu, Yang
Liu, Weiqiang
Fang, Runjie
Ren, Qisen
Wu, Lixiang
AuthorAffiliation 1 Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; liuweiqiang@mail.tsinghua.edu.cn
2 China Nuclear Power Technology Research Institute Co., Ltd., Shenzhen 518026, China; liuyang@cgnpc.com.cn (Y.L.); fangrunjie@cgnpc.com.cn (R.F.); wulixiang@cgnpc.com.cn (L.W.)
AuthorAffiliation_xml – name: 2 China Nuclear Power Technology Research Institute Co., Ltd., Shenzhen 518026, China; liuyang@cgnpc.com.cn (Y.L.); fangrunjie@cgnpc.com.cn (R.F.); wulixiang@cgnpc.com.cn (L.W.)
– name: 1 Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; liuweiqiang@mail.tsinghua.edu.cn
Author_xml – sequence: 1
  givenname: Qisen
  surname: Ren
  fullname: Ren, Qisen
– sequence: 2
  givenname: Yang
  surname: Liu
  fullname: Liu, Yang
– sequence: 3
  givenname: Runjie
  surname: Fang
  fullname: Fang, Runjie
– sequence: 4
  givenname: Lixiang
  surname: Wu
  fullname: Wu, Lixiang
– sequence: 5
  givenname: Weiqiang
  surname: Liu
  fullname: Liu, Weiqiang
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40508655$$D View this record in MEDLINE/PubMed
BookMark eNpdks1u1TAQhS3UipbSDQ-ALLFBSLf4N7FXqAq0IBVRqbBhYznO-NZVEgc7KbDjHXhDnqS-um0p2Atb42_O-GjmCdoZ4wgIPaPkiHNNXg-WKkpZJfUjtE-1rlZUC7Hz4L6HDnO-ImVxThXTj9GeIJKoSsp9lJs4TAlyDteAmwQw4XNIPqbBjg4yjh6_DXmClEMccRPtDB0-t2kOrgd8saQU1yWGTxboS2bfw5zx9zBf4q-p-fPr90Vo8KZEzKFQH-2cwo-naNfbPsPh7XmAvpy8-9y8X519Ov3QHJ-tnCD1vJK2Vkxox52QrPMeXAuEeCmYV7YSjreqqmrBVOt129GulVR60mlSUd16W_MD9GarOy3tAJ2DcU62N1MKg00_TbTB_PsyhkuzjteGMiorVW8UXt4qpPhtgTybIWRXXNoR4pINZ1SJmrOaFfTFf-hVXNJY_G2ooqW0VIU62lJr24MJo4-lsCu7gyG40lkfSvxYCSmkroQoCc8ferj__F0HC_BqC7gUc07g7xFKzGZCzN8J4TdjVK7s
Cites_doi 10.1016/j.jnucmat.2023.154449
10.1016/j.ceramint.2024.11.489
10.1002/ces2.10014
10.1016/j.nucengdes.2015.04.021
10.1016/j.jnucmat.2019.151837
10.1016/j.jeurceramsoc.2019.12.036
10.1016/j.jeurceramsoc.2024.117114
10.1016/j.msea.2015.07.025
10.1016/j.jnucmat.2020.151987
10.1016/j.jnucmat.2012.03.049
10.1016/j.jnucmat.2013.12.005
10.1016/j.nucengdes.2018.05.018
10.1016/j.jnucmat.2012.05.021
10.1016/j.jnucmat.2023.154870
10.1016/j.jnucmat.2007.05.016
10.1016/j.jnucmat.2013.09.052
10.1016/j.jnucmat.2018.09.044
10.1016/j.jeurceramsoc.2020.07.036
10.1016/j.nucengdes.2017.05.022
10.1016/j.jnucmat.2013.05.037
10.1016/j.jeurceramsoc.2021.02.020
10.1039/C8RA02386G
10.1016/j.jeurceramsoc.2013.03.022
10.1016/j.jnucmat.2012.04.010
10.1016/j.jeurceramsoc.2022.11.010
10.1016/j.ceramint.2013.08.105
10.1016/j.jnucmat.2014.10.034
10.1016/j.jnucmat.2022.153568
10.1016/j.ceramint.2019.10.260
10.1016/j.jeurceramsoc.2021.11.010
10.1016/j.jnucmat.2020.152139
10.1016/j.scriptamat.2016.10.018
10.1016/j.jnucmat.2022.153675
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 by the authors. 2025
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 by the authors. 2025
DBID AAYXX
CITATION
NPM
7SR
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
JG9
KB.
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.3390/ma18112659
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central - New (Subscription)
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
Materials Research Database
Materials Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Materials Research Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

CrossRef
Publicly Available Content Database
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1944
ExternalDocumentID PMC12156877
A845459644
40508655
10_3390_ma18112659
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 12132005
GroupedDBID 29M
2WC
2XV
53G
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CZ9
D1I
E3Z
EBS
ESX
FRP
GX1
HCIFZ
HH5
HYE
I-F
IAO
ITC
KB.
KC.
KQ8
MK~
MODMG
M~E
OK1
OVT
P2P
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RPM
TR2
TUS
NPM
PQGLB
7SR
8FD
ABUWG
AZQEC
DWQXO
JG9
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c407t-5a78249c3c452dffecbe00f542f8a64c3b8667428bf9bd1db515f0d90619bfa73
IEDL.DBID BENPR
ISSN 1996-1944
IngestDate Thu Aug 21 18:24:36 EDT 2025
Fri Sep 05 15:53:43 EDT 2025
Fri Jul 25 09:49:52 EDT 2025
Tue Jul 01 05:41:48 EDT 2025
Mon Jul 21 05:36:15 EDT 2025
Thu Jul 03 08:37:12 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords activation energy
creep
stress exponent
accident tolerant fuel
dispersion coated particle fuel
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c407t-5a78249c3c452dffecbe00f542f8a64c3b8667428bf9bd1db515f0d90619bfa73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0009-0007-9474-3970
OpenAccessLink https://www.proquest.com/docview/3217738958?pq-origsite=%requestingapplication%&accountid=15518
PMID 40508655
PQID 3217738958
PQPubID 2032366
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_12156877
proquest_miscellaneous_3218473272
proquest_journals_3217738958
gale_infotracacademiconefile_A845459644
pubmed_primary_40508655
crossref_primary_10_3390_ma18112659
PublicationCentury 2000
PublicationDate 2025-06-05
PublicationDateYYYYMMDD 2025-06-05
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-05
  day: 05
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Materials
PublicationTitleAlternate Materials (Basel)
PublicationYear 2025
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Demkowicz (ref_12) 2019; 515
Tan (ref_19) 2023; 581
Guo (ref_32) 2025; 51
Fu (ref_20) 2024; 589
Kim (ref_18) 2021; 41
Yang (ref_8) 2020; 46
Han (ref_33) 2020; 40
Kim (ref_16) 2020; 15
Gong (ref_27) 2022; 561
Bird (ref_31) 2013; 33
Wei (ref_24) 2018; 8
Zinkle (ref_1) 2014; 448
Pizon (ref_25) 2014; 40
Huang (ref_5) 2017; 320
Fahrenholtz (ref_26) 2017; 129
Ang (ref_4) 2020; 531
Chun (ref_6) 2015; 289
Connor (ref_30) 2025; 45
Terrani (ref_21) 2012; 427
Katoh (ref_23) 2013; 441
Was (ref_2) 2019; 527
Schappel (ref_7) 2018; 335
Cheng (ref_34) 2022; 42
Terrani (ref_11) 2012; 427
Ott (ref_3) 2014; 448
Ang (ref_22) 2019; 1
Brown (ref_9) 2020; 534
Terrani (ref_13) 2015; 457
Snead (ref_10) 2011; 104
Kim (ref_15) 2023; 43
Snead (ref_28) 2007; 371
Antou (ref_29) 2015; 643
Liu (ref_14) 2022; 564
Terrani (ref_17) 2012; 426
References_xml – volume: 581
  start-page: 154449
  year: 2023
  ident: ref_19
  article-title: Fully ceramic microencapsulated fuels with high TRISO particles loading capacity fabricated by gel-casting
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2023.154449
– volume: 51
  start-page: 5148
  year: 2025
  ident: ref_32
  article-title: High creep resistance of (Hf0.2Ta0.2Ti0.2Nb0.2Zr0.2)C high entropy ceramics prepared by spark plasma sintering of the self-propagating high temperature synthesized powders
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2024.11.489
– volume: 1
  start-page: 92
  year: 2019
  ident: ref_22
  article-title: Niobium carbide as a technology demonstrator of ultra-high temperature ceramics for fully ceramic microencapsulated fuels
  publication-title: Int. J. Ceram. Eng. Sci.
  doi: 10.1002/ces2.10014
– volume: 289
  start-page: 287
  year: 2015
  ident: ref_6
  article-title: Safety evaluation of accident-tolerant FCM fueled core with SiC-coated zircalloy cladding for design-basis-accidents and beyond DBAs
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/j.nucengdes.2015.04.021
– volume: 527
  start-page: 151837
  year: 2019
  ident: ref_2
  article-title: Materials for future nuclear energy systems
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2019.151837
– volume: 40
  start-page: 2709
  year: 2020
  ident: ref_33
  article-title: Improved creep resistance of high entropy transition metal carbides
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2019.12.036
– volume: 45
  start-page: 117114
  year: 2025
  ident: ref_30
  article-title: Analysis of initial stage densification kinetics of zirconium carbide (ZrC) powders
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2024.117114
– volume: 643
  start-page: 1
  year: 2015
  ident: ref_29
  article-title: Thermomechanical properties of a spark plasma sintered ZrC–SiC composite obtained by a precursor derived ceramic route
  publication-title: Mat. Sci. Eng A
  doi: 10.1016/j.msea.2015.07.025
– volume: 531
  start-page: 151987
  year: 2020
  ident: ref_4
  article-title: A logical approach for zero-rupture fully ceramic microencapsulated (FCM) fuels via pressure-assisted sintering route
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2020.151987
– volume: 426
  start-page: 268
  year: 2012
  ident: ref_17
  article-title: Fabrication and characterization of fully ceramic microencapsulated fuels
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2012.03.049
– volume: 448
  start-page: 374
  year: 2014
  ident: ref_1
  article-title: Accident tolerant fuels for LWRs: A perspective
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2013.12.005
– volume: 335
  start-page: 116
  year: 2018
  ident: ref_7
  article-title: Modeling the performance of TRISO-based fully ceramic matrix (FCM) fuel in an LWR environment using BISON
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/j.nucengdes.2018.05.018
– volume: 427
  start-page: 209
  year: 2012
  ident: ref_11
  article-title: Microencapsulated fuel technology for commercial light water and advanced reactor application
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2012.05.021
– volume: 589
  start-page: 154870
  year: 2024
  ident: ref_20
  article-title: Pressureless sintering of large sized fully ceramic microencapsulated fuel pellets
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2023.154870
– volume: 104
  start-page: 668
  year: 2011
  ident: ref_10
  article-title: Fully Ceramic Microencapsulated Fuels: A Transformational Technology for Present and Next Generation Reactors—Properties and Fabrication of FCM fuel
  publication-title: Trans. Am. Nucl. Soc.
– volume: 371
  start-page: 329
  year: 2007
  ident: ref_28
  article-title: Handbook of SiC properties for fuel performance modeling
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2007.05.016
– volume: 448
  start-page: 520
  year: 2014
  ident: ref_3
  article-title: Preliminary assessment of accident-tolerant fuels on LWR performance during normal operation and under DB and BDB accident conditions
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2013.09.052
– volume: 515
  start-page: 434
  year: 2019
  ident: ref_12
  article-title: Coated particle fuel: Historical perspectives and current progress
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2018.09.044
– volume: 15
  start-page: 5180
  year: 2020
  ident: ref_16
  article-title: Pressureless sintering of fully ceramic microencapsulated fuels
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2020.07.036
– volume: 320
  start-page: 250
  year: 2017
  ident: ref_5
  article-title: The safety analysis of a small pressurized water reactor utilizing fully ceramic microencapsulated fuel
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/j.nucengdes.2017.05.022
– volume: 441
  start-page: 718
  year: 2013
  ident: ref_23
  article-title: Properties of zirconium carbide for nuclear fuel applications
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2013.05.037
– volume: 41
  start-page: 3980
  year: 2021
  ident: ref_18
  article-title: Processing of fully ceramic microencapsulated fuels with a small amount of additives by hot-pressing
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2021.02.020
– volume: 8
  start-page: 18163
  year: 2018
  ident: ref_24
  article-title: Corrosion kinetics and mechanisms of ZrC1-x ceramics in high temperature water vapor
  publication-title: RSC Adv.
  doi: 10.1039/C8RA02386G
– volume: 33
  start-page: 2407
  year: 2013
  ident: ref_31
  article-title: Creep behavi.or of a zirconium diboride–silicon carbide composite
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2013.03.022
– volume: 427
  start-page: 79
  year: 2012
  ident: ref_21
  article-title: Snead. Fabrication and preliminary evaluation of metal matrix microencapsulated fuels
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2012.04.010
– volume: 43
  start-page: 783
  year: 2023
  ident: ref_15
  article-title: Effects of starting powder on microstructure and thermal conductivity of pressureless-sintered fully ceramic microencapsulated fuels
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2022.11.010
– volume: 40
  start-page: 5025
  year: 2014
  ident: ref_25
  article-title: Oxidation behavior of spark plasma sintered ZrC-SiC composites obtained from the polymer-derived ceramics route
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2013.08.105
– volume: 457
  start-page: 9
  year: 2015
  ident: ref_13
  article-title: Progress on matrix SiC processing and properties for fully ceramic microencapsulated fuel form
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2014.10.034
– volume: 561
  start-page: 153568
  year: 2022
  ident: ref_27
  article-title: High-temperature compressive creep tests of U3Si2 with spark plasma sintering: Experiments and finite element modeling
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2022.153568
– volume: 46
  start-page: 5159
  year: 2020
  ident: ref_8
  article-title: Microstructure and thermal physical properties of SiC matrix microencapsulated composites at temperature up to 1900 °C
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2019.10.260
– volume: 42
  start-page: 820
  year: 2022
  ident: ref_34
  article-title: Ultra-high creep resistant SiC ceramics prepared by rapid hot pressing
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2021.11.010
– volume: 534
  start-page: 152139
  year: 2020
  ident: ref_9
  article-title: A review of in-pile fuel safety tests of TRISO fuel forms and future testing opportunities in non-HTGR applications
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2020.152139
– volume: 129
  start-page: 94
  year: 2017
  ident: ref_26
  article-title: Ultra-high temperature ceramics: Materials for extreme environments
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2016.10.018
– volume: 564
  start-page: 153675
  year: 2022
  ident: ref_14
  article-title: Fully ceramic microencapsulated fuels fabricated by tape casting
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2022.153675
SSID ssj0000331829
Score 2.4100094
Snippet Nuclear fuel pellets are subject to stress for long periods during the in-pile operation, and this study on high-temperature creep performance is of great...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 2659
SubjectTerms Activation energy
Carbon
Coated particles
Cold flow
Composite materials
Creep (materials)
Design optimization
Exponents
Heat conductivity
High temperature
Hot pressing
Low temperature
Nuclear accidents & safety
Nuclear energy
Nuclear fuel elements
Nuclear fuels
Nuclear industry
Nuclear power plants
Nuclear reactors
Nuclear safety
Oxidation
Pellets
Plasma sintering
Polyvinyl alcohol
Powders
Silicon carbide
Sintering
Sintering (powder metallurgy)
Spark plasma sintering
Temperature
Zirconium carbide
Zirconium dioxide
Title Compressive Creep Performances of Dispersion Coated Particle Surrogate Fuel Pellets with ZrC–SiC Composite Matrix
URI https://www.ncbi.nlm.nih.gov/pubmed/40508655
https://www.proquest.com/docview/3217738958
https://www.proquest.com/docview/3218473272
https://pubmed.ncbi.nlm.nih.gov/PMC12156877
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB71cYFDxZtAqYxA4hQ1Gzuxc0CohG4rpK5WlEorLpFfEStBss3uIo78B_4hv4SZbLIPDhyjOIrlGXu-Gc98A_C6zLxGmMHDyKO7KlIhQ2OtDCWChYF0SpWa6p2vRunljfg4SSZ7MOprYSitsj8T24Pa1ZZi5KccsbNE65qod7PbkLpG0e1q30JDd60V3NuWYmwfDvFIVqj3h-_PR-NP66hLxFGH42zFU8rR3z_9rtHGDeKUyEq3LNO_5_OWgdpNntyyRsN7cNTBSHa2kvt92PPVA7i7RS74EOa01dss1x-e5Y33MzbeVAnMWV2yD1PiCad4GctrBJ2OjTtNYtfLpqkpxMaGS_8NvySW7jmjsC370uR_fv2-nuaMfkFZX55dEdX_z0dwMzz_nF-GXYuF0KIntwgTjQhBZJZbkcSOMkiMj6IyEXGpdCosNypN0XtWpsyMGziD8KeMXIYoIDOllvwxHFR15Z8C45lDXzH2PBFSWJSxdZGNjPSp98p5E8CrfnmL2YpJo0APhIRQbIQQwBta-YK2Fy6v1V2VAP6DiKqKMyUQ82WI4gI47oVTdPtuXmy0JICX69e4Y-gaRFe-XrZj0CTzWMYBPFnJcj0hhK8RleoGoHakvB5AbNy7b6rp15aVm2g6UiXls__P6znciamFMAVykmM4WDRL_wJxzcKcwL4aXpx0KotPF5PBX6ZQ_po
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9AAcEG8MBRYB4mTV8a699qFCxW2U0iaKaCtVXIz3YREJ7GAnPG78B_4PP4ZfwozjvDhw69lP7czsfDM78w3Aizy2GcIM7noWw1URCukqraUrESx0pYmiPKN-58Ew7J-LtxfBxRb8XvTCUFnlYk9sNmpTasqR73LEzhK9axC9nnxxaWoUna4uRmhk7WgFs9dQjLWNHcf2xzcM4eq9owOU90vf7x2eJX23nTLgagxmpm6QoZMUseZaBL6hIgplPS8PhJ9HWSg0V1EYYgAZqTxWpmsUIoDcMzE6wljlmeT43iuwLajDtQPbbw6Ho3fLLI_H0Wb8eM6Lynns7X7O0Kd2_ZDIUdc84b_-YM0hbhZrrnm_3k240cJWtj_Xs1uwZYvbcH2NzPAO1LS1NFW1Xy1LKmsnbLTqSqhZmbODMfGSU36OJSWCXMNGreay01lVlZTSY72Z_YRPEit4zShNzN5XyZ-fv07HCaNPUJWZZQMaLfD9LpxfymLfg05RFvYBMB4bjE19ywMhhUad0sbTnpI2tDYyVjnwfLG86WTO3JFixENCSFdCcOAVrXxK5ozLq7O2KwG_QcRY6X4kEGPGiBod2FkIJ23tvE5XWunAs-VltFA6dskKW86aexACcF_6Dtyfy3L5QwiXPWoNdiDakPLyBmL_3rxSjD82LOBECxJGUj78_389hav9s8FJenI0PH4E13waX0xJpGAHOtNqZh8jppqqJ63iMvhw2bbyF5EkOlU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6VVEJwQPxjKLAIECcrjnftXR8qVJxGLaVRRKlUcTH27lpEAjvYCdBb34G34jF4EmYc548Dt579q52ZnW9mZ74BeJFHNkWYwV3PYrgqQiHdTGvpSgQLPWmUylPqdz4ehgen4u1ZcLYFvxe9MFRWudgTm43alJpy5F2O2Fmidw1UN2_LIkb9wevJN5cmSNFJ62KcRtqOWTC7Dd1Y2-RxZM9_YDhX7x72UfYvfX-w_yE-cNuJA67GwGbqBik6TBFprkXgGyqoyKzn5YHwc5WGQvNMhSEGkyrLo8z0TIZoIPdMhE4xyvJUcnzvFdiW6CVFB7bf7A9H75cZH4-j_fjRnCOV88jrfk3Rv_b8kIhS17ziv75hzTluFm6uecLBTbjRQli2N9e5W7Bli9twfY3Y8A7UtM00FbbfLYsraydstOpQqFmZs_6YOMopV8fiEgGvYaNWi9nJrKpKSu-xwcx-wSeJIbxmlDJmH6v4z8Wvk3HM6BNUcWbZMY0Z-HkXTi9lse9BpygL-wAYjwzGqb7lgZBCo35p42kvkza0VhmbOfB8sbzJZM7ikWD0Q0JIVkJw4BWtfEKmjcur07ZDAb9BJFnJnhKINyNEkA7sLISTtDZfJysNdeDZ8jJaKx3BpIUtZ809CAe4L30H7s9lufwhhM4etQk7oDakvLyBmMA3rxTjzw0jOFGEhErKh___r6dwFW0meXc4PHoE13yaZEz5pGAHOtNqZh8jvJpmT1q9ZfDpsk3lL66CPoE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Compressive+Creep+Performances+of+Dispersion+Coated+Particle+Surrogate+Fuel+Pellets+with+ZrC%E2%80%93SiC+Composite+Matrix&rft.jtitle=Materials&rft.au=Ren%2C+Qisen&rft.au=Liu%2C+Yang&rft.au=Fang%2C+Runjie&rft.au=Wu%2C+Lixiang&rft.date=2025-06-05&rft.pub=MDPI&rft.eissn=1996-1944&rft.volume=18&rft.issue=11&rft_id=info:doi/10.3390%2Fma18112659&rft.externalDocID=PMC12156877
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1944&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1944&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1944&client=summon