Viscosity investigation of natural gas hydrate slurries with anti-agglomerants additives

•Viscosity of natural gas hydrates slurry is investigated with anti-agglomerants.•Hydrates slurry viscosity model is developed based on Einstein effective medium theory.•Empirical correlations for non-Newtonian coefficient is extracted from experimental data.•Aggregation and broken of hydrates parti...

Full description

Saved in:
Bibliographic Details
Published inFuel (Guildford) Vol. 185; pp. 323 - 338
Main Authors Shi, Bo-Hui, Chai, Shuai, Wang, Lin-Yan, Lv, Xiaofang, Liu, Hui-Shu, Wu, Hai-Hao, Wang, Wei, Yu, Da, Gong, Jing
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.12.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Viscosity of natural gas hydrates slurry is investigated with anti-agglomerants.•Hydrates slurry viscosity model is developed based on Einstein effective medium theory.•Empirical correlations for non-Newtonian coefficient is extracted from experimental data.•Aggregation and broken of hydrates particles was considered by four dimensionless parameters. The viscosity of natural gas hydrates slurry in high-pressure hydrates slurry rheological measurement system is investigated, which is meaningful for hydrates risk management to solve flow assurance issues in deep-water offshore field. Based on an appropriate stirring speed and time, a relatively uniform and stable hydrates slurry were formed from a water-in-oil emulsion to study the hydrates formation and slurry viscosity under different water cuts, bath temperatures and AAs concentrations. The influence of water cut on hydrates formation and hydrates slurry viscosity is much more significant than that of bath temperature and AAs concentration. Results indicate that the hydrates volume fraction, the continuous liquid phase viscosity and the dispersion degree of hydrates particles in the slurry are the critical factors to affect the viscosity of natural gas hydrates slurry. Considering both of aggregation and breakage of hydrates particles, a natural gas hydrates slurry viscosity semi-empirical model is developed based on the Einstein effective medium theory. The key parameter non-Newtonian coefficient K of this model is determined by several empirical correlations according to the experimental conditions and fluid properties. The consistence of predicted and experimental data demonstrates the feasibility of this model.
AbstractList •Viscosity of natural gas hydrates slurry is investigated with anti-agglomerants.•Hydrates slurry viscosity model is developed based on Einstein effective medium theory.•Empirical correlations for non-Newtonian coefficient is extracted from experimental data.•Aggregation and broken of hydrates particles was considered by four dimensionless parameters. The viscosity of natural gas hydrates slurry in high-pressure hydrates slurry rheological measurement system is investigated, which is meaningful for hydrates risk management to solve flow assurance issues in deep-water offshore field. Based on an appropriate stirring speed and time, a relatively uniform and stable hydrates slurry were formed from a water-in-oil emulsion to study the hydrates formation and slurry viscosity under different water cuts, bath temperatures and AAs concentrations. The influence of water cut on hydrates formation and hydrates slurry viscosity is much more significant than that of bath temperature and AAs concentration. Results indicate that the hydrates volume fraction, the continuous liquid phase viscosity and the dispersion degree of hydrates particles in the slurry are the critical factors to affect the viscosity of natural gas hydrates slurry. Considering both of aggregation and breakage of hydrates particles, a natural gas hydrates slurry viscosity semi-empirical model is developed based on the Einstein effective medium theory. The key parameter non-Newtonian coefficient K of this model is determined by several empirical correlations according to the experimental conditions and fluid properties. The consistence of predicted and experimental data demonstrates the feasibility of this model.
Author Wu, Hai-Hao
Wang, Wei
Gong, Jing
Wang, Lin-Yan
Yu, Da
Liu, Hui-Shu
Chai, Shuai
Lv, Xiaofang
Shi, Bo-Hui
Author_xml – sequence: 1
  givenname: Bo-Hui
  surname: Shi
  fullname: Shi, Bo-Hui
  email: bh.shi@cup.edu.cn
  organization: National Engineering Laboratory for Pipeline Safety/MOE Key Laboratory of Petroleum Engineering/Beijing Key Laboratory of Urban Oil and Gas Distribution Technology, China University of Petroleum-Beijing, Changping, Beijing 102249, China
– sequence: 2
  givenname: Shuai
  surname: Chai
  fullname: Chai, Shuai
  organization: National Engineering Laboratory for Pipeline Safety/MOE Key Laboratory of Petroleum Engineering/Beijing Key Laboratory of Urban Oil and Gas Distribution Technology, China University of Petroleum-Beijing, Changping, Beijing 102249, China
– sequence: 3
  givenname: Lin-Yan
  surname: Wang
  fullname: Wang, Lin-Yan
  organization: CNPC Research Institute of Safety & Environment Technology, Beijing Huayou Senior Engineering Supervision Co. Ltd, Langfang, Hebei 065000, China
– sequence: 4
  givenname: Xiaofang
  surname: Lv
  fullname: Lv, Xiaofang
  organization: Jiangsu Key Laboratory of Oil and Gas Storage & Transportation Technology, School of Petroleum Engineering, Changzhou University, Changzhou 213016, China
– sequence: 5
  givenname: Hui-Shu
  surname: Liu
  fullname: Liu, Hui-Shu
  organization: Department of Military Petroleum Supply Engineering, Logistical Engineering University, Shapingba, Chongqing 401311, China
– sequence: 6
  givenname: Hai-Hao
  surname: Wu
  fullname: Wu, Hai-Hao
  organization: National Engineering Laboratory for Pipeline Safety/MOE Key Laboratory of Petroleum Engineering/Beijing Key Laboratory of Urban Oil and Gas Distribution Technology, China University of Petroleum-Beijing, Changping, Beijing 102249, China
– sequence: 7
  givenname: Wei
  surname: Wang
  fullname: Wang, Wei
  organization: National Engineering Laboratory for Pipeline Safety/MOE Key Laboratory of Petroleum Engineering/Beijing Key Laboratory of Urban Oil and Gas Distribution Technology, China University of Petroleum-Beijing, Changping, Beijing 102249, China
– sequence: 8
  givenname: Da
  surname: Yu
  fullname: Yu, Da
  organization: National Engineering Laboratory for Pipeline Safety/MOE Key Laboratory of Petroleum Engineering/Beijing Key Laboratory of Urban Oil and Gas Distribution Technology, China University of Petroleum-Beijing, Changping, Beijing 102249, China
– sequence: 9
  givenname: Jing
  surname: Gong
  fullname: Gong, Jing
  email: ydgj@cup.edu.cn
  organization: National Engineering Laboratory for Pipeline Safety/MOE Key Laboratory of Petroleum Engineering/Beijing Key Laboratory of Urban Oil and Gas Distribution Technology, China University of Petroleum-Beijing, Changping, Beijing 102249, China
BookMark eNp9kMFKw0AQhhepYFt9AU_7Aom72SSbgBcpaoWCFxVvy2QzSaekiexuK317U-vJQ08zw_D98H8zNumHHhm7lSKWQuZ3m7jZYRcn4x4LHUupLthUFlpFWmZqwqZi_ESJyuUVm3m_EULoIkun7PODvB08hQOnfo8-UAuBhp4PDe8h7Bx0vAXP14faQUDuu51zhJ5_U1hz6ANF0LbdsEU3Hp5DXVOgMeiaXTbQebz5m3P2_vT4tlhGq9fnl8XDKrKp0CHKikylApSoVdqgLlWeVUmV5KpKtUzAijwvdF0WFTRpoctKV1gCKMS0Kcskq9ScJadc6wbvHTbmy9EW3MFIYY5uzMYc3ZijGyO0Gd2MUPEPshR-ewcH1J1H708ojqX2hM54S9hbrMmhDaYe6Bz-AwoBhBA
CitedBy_id crossref_primary_10_2118_201101_PA
crossref_primary_10_1016_j_fuel_2023_127782
crossref_primary_10_1021_acs_energyfuels_7b00559
crossref_primary_10_1021_acs_energyfuels_1c00646
crossref_primary_10_1016_j_petrol_2021_109756
crossref_primary_10_1021_acsomega_1c06523
crossref_primary_10_1070_RCR4986
crossref_primary_10_1016_j_petrol_2019_106504
crossref_primary_10_1016_j_sna_2025_116401
crossref_primary_10_1016_j_cjche_2018_12_002
crossref_primary_10_1021_acs_iecr_7b01332
crossref_primary_10_1016_j_ces_2025_121290
crossref_primary_10_1021_acs_energyfuels_2c04254
crossref_primary_10_1021_acs_energyfuels_1c02247
crossref_primary_10_1021_acs_energyfuels_8b01323
crossref_primary_10_3390_app8122464
crossref_primary_10_1016_j_petsci_2022_07_001
crossref_primary_10_1021_acs_energyfuels_7b02789
crossref_primary_10_3390_pharmaceutics12050453
crossref_primary_10_1080_01932691_2022_2093737
crossref_primary_10_1016_j_petlm_2021_11_003
crossref_primary_10_1016_j_geoen_2025_213765
crossref_primary_10_1016_j_fuel_2018_10_110
crossref_primary_10_1039_D0RA00350F
crossref_primary_10_1016_j_jngse_2021_104106
crossref_primary_10_1016_j_ces_2021_116608
crossref_primary_10_1016_j_petrol_2019_106454
crossref_primary_10_1021_acsomega_2c03283
crossref_primary_10_1021_acs_energyfuels_1c04359
crossref_primary_10_1021_acs_energyfuels_8b04268
crossref_primary_10_1021_acs_energyfuels_4c02602
crossref_primary_10_1016_j_ces_2022_118111
crossref_primary_10_1016_j_est_2024_112059
crossref_primary_10_1016_j_cherd_2023_01_017
crossref_primary_10_1016_j_cej_2018_12_143
crossref_primary_10_1039_D0RA08184A
crossref_primary_10_1016_j_petsci_2023_08_008
crossref_primary_10_1002_aic_16192
crossref_primary_10_1088_1755_1315_237_2_022040
crossref_primary_10_2118_199903_PA
crossref_primary_10_1115_1_4045168
crossref_primary_10_1021_acs_energyfuels_0c04209
crossref_primary_10_1016_j_fuel_2019_116691
crossref_primary_10_1007_s12206_021_0136_9
crossref_primary_10_1016_j_fuel_2018_06_054
crossref_primary_10_1016_j_pecs_2022_101026
crossref_primary_10_1016_j_apt_2024_104638
crossref_primary_10_1016_j_energy_2018_12_138
crossref_primary_10_1039_C8CS00989A
Cites_doi 10.2516/ogst:2004005
10.1016/j.cej.2011.05.029
10.1016/0017-9310(94)90314-X
10.1016/j.ces.2013.11.015
10.1051/jphyslet:01985004607030100
10.1016/S1385-8947(98)00126-0
10.2118/56567-MS
10.2516/ogst/2009042
10.1016/j.ces.2008.06.025
10.1016/j.ces.2009.09.074
10.1006/jcis.2000.7133
10.1016/j.jcis.2004.04.049
10.1016/j.ijrefrig.2005.01.002
10.1016/j.ces.2012.11.022
10.1063/1.3675889
10.1016/j.ijrefrig.2014.10.016
10.1021/ef300163y
10.1016/j.cej.2012.04.027
10.3923/pjn.2008.395.399
10.1021/la4022432
10.1021/ef4004768
10.1016/j.ijheatmasstransfer.2010.04.025
10.1016/j.fuel.2011.06.038
10.1111/j.1749-6632.2000.tb06786.x
10.1016/S0894-1777(01)00109-1
10.1016/S0140-7007(01)00091-3
10.1016/j.ces.2014.01.035
10.1002/1521-4117(200205)19:2<84::AID-PPSC84>3.0.CO;2-1
10.1016/j.jmatprotec.2005.06.071
10.1002/cjce.5450420311
10.1016/j.ces.2005.07.001
10.1021/ef5022413
10.1016/j.ces.2009.05.051
10.1111/j.1749-6632.2000.tb06844.x
10.1016/j.ces.2009.08.013
10.1016/j.ces.2005.04.019
10.1016/S1003-9953(09)60062-1
10.1016/j.ces.2005.01.008
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Copyright_xml – notice: 2016 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.fuel.2016.07.113
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-7153
EndPage 338
ExternalDocumentID 10_1016_j_fuel_2016_07_113
S0016236116307165
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AARLI
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABYKQ
ACDAQ
ACIWK
ACNCT
ACPRK
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AFZHZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSJ
SSK
SSR
SSZ
T5K
TWZ
WH7
ZMT
~02
~G-
29H
8WZ
A6W
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDEX
ABEFU
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
R2-
SAC
SCB
SEW
SSH
VH1
WUQ
XPP
ZY4
ID FETCH-LOGICAL-c407t-585340a30d34fe79365b2b263b4712ac06687d98baf4879b7be9aa3ee4f9925b3
IEDL.DBID .~1
ISSN 0016-2361
IngestDate Tue Jul 01 00:44:01 EDT 2025
Thu Apr 24 23:13:08 EDT 2025
Fri Feb 23 02:21:29 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Viscosity
Einstein effective medium theory
Natural gas hydrates
Hydrates slurry
Anti-agglomerants
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c407t-585340a30d34fe79365b2b263b4712ac06687d98baf4879b7be9aa3ee4f9925b3
PageCount 16
ParticipantIDs crossref_primary_10_1016_j_fuel_2016_07_113
crossref_citationtrail_10_1016_j_fuel_2016_07_113
elsevier_sciencedirect_doi_10_1016_j_fuel_2016_07_113
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-12-01
PublicationDateYYYYMMDD 2016-12-01
PublicationDate_xml – month: 12
  year: 2016
  text: 2016-12-01
  day: 01
PublicationDecade 2010
PublicationTitle Fuel (Guildford)
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Turner, Miller, Sloan (b0270) 2009; 64
Gong, Shi, Zhao (b0275) 2010; 19
Leba, Cameirao, Herri, Darbouret, Peytavy, Glénat (b0235) 2010; 65
Nuland, Tande (b0120) 2005
Chen, Sun, Ma (b0005) 2007
Pinder (b0070) 1964; 42
Chen, Guo (b0030) 1998; 71
Turner, Miller, Sloan (b0205) 2009; 64
Delgado-Linares, Majid, Sloan, Koh, Sum (b0300) 2013; 27
Schuller, Tande, Kvandal (b0115) 2005
Einstein (b0145) 1956
Shi, Fan, Lou (b0265) 2014; 109
Pauchard, Darbouret, Palermo, Peytavy (b0090) 2007
Li, Wilkinson, Patchigolla (b0255) 2005; 60
Yan, Sun, Chen, Chen, Shen, Liu (b0105) 2014; 106
Shi, Gong, Sun, Zhao, Ding, Chen (b0280) 2011; 171
Greaves, Boxall, Mulligan, Sloan, Koh (b0225) 2008; 63
Šikalo, Marengo, Tropea, Ganić (b0305) 2002; 25
Gainville, Sinquin, Darbouret (b0290) 2011
Prabu, Karunamoorthy, Kathiresan, Mohan (b0215) 2006; 171
Darbouret, Cournil, Herri (b0045) 2005; 28
Sloan, Koh (b0010) 2007
Clain, Delahaye, Fournaison, Mayoufi, Dalmazzone, Fürst (b0055) 2012; 193–194
Heath, Fawell, Bahri, Swift (b0260) 2002; 19
Webb, Rensing, Koh, Sloan, Sum, Liberatore (b0125) 2012; 26
Peysson, Nuland, Maurel, Vilagines (b0095) 2003
Sloan, Koh, Sum, Ballard, Creek, Eaton (b0020) 2010
Mettler-Toleda Lasentec® Product Group (b0245) 2010
Camargo, Palermo, Sinquin, Glenat (b0085) 2000; 912
Moradpour, Chapoy, Tohidi (b0190) 2011; 90
Gudmundsson (b0040) 2002
Clain, Ndoye, Delahaye, Fournaison, Lin, Dalmazzone (b0240) 2015; 50
Hashimoto, Kawamura, Ito, Nobeoka, Ohgaki, Inoue (b0185) 2011
Andersson V, Gudmundsson JS. Flow experiments on concentrated hydrate slurries. In: SPE annual technical conference and exhibition, Houston, Texas, 1999 3–6 October; 1999.
Colombel, Gateau, Barré, Gruy, Palermo (b0175) 2009; 64
Yang, Kleehammer, Huo, Sloan, Miller (b0285) 2004; 277
Wang, Liu, Wang, Duan, Gong (b0230) 2013; 91
Dou (b0295) 2006
Webb, Rensing, Koh, Sloan, Sum, Liberatore (b0130) 2012; 83
Kitanovski, Poredoš (b0155) 2002; 25
Ding (b0065) 2010
Xie, Zhang, Duan (b0015) 2007; 28
Camargo, Palermo (b0110) 2002
Chen, Xu (b0210) 2014
Sinquin, Palermo, Peysson (b0025) 2004; 59
Ma, Zhang, Wang, Furui, Xi (b0050) 2010; 53
Li, Wilkinson (b0250) 2005; 60
Yagoub, Gasim, Kheir, Sabah, Baker, Asma (b0220) 2008; 7
Fidel-dufour, Herri (b0100) 2002
Andersson, Gudmundsson (b0075) 2000; 912
Makogon, Sloan (b0180) 2002
Frank, Dieter (b0035) 1994; 37
Pal (b0195) 2000; 231
Fidel-dufour, Gruy, Herri (b0170) 2006; 61
Frostman (b0150) 2000
Hald, Nuland (b0140) 2007
Mills (b0160) 1985; 46
Webb, Koh, Liberatore (b0135) 2013; 29
Palermo, Fidel-dufour, Maurel, Peytavy, Hurtevent (b0165) 2005
Chen, Wang, Sun, Li, Ren, Jia (b0200) 2015; 29
Zhao (b0060) 2009
Chen (10.1016/j.fuel.2016.07.113_b0030) 1998; 71
Shi (10.1016/j.fuel.2016.07.113_b0280) 2011; 171
Sloan (10.1016/j.fuel.2016.07.113_b0020) 2010
Hashimoto (10.1016/j.fuel.2016.07.113_b0185) 2011
Chen (10.1016/j.fuel.2016.07.113_b0200) 2015; 29
Zhao (10.1016/j.fuel.2016.07.113_b0060) 2009
Sinquin (10.1016/j.fuel.2016.07.113_b0025) 2004; 59
Fidel-dufour (10.1016/j.fuel.2016.07.113_b0100) 2002
Kitanovski (10.1016/j.fuel.2016.07.113_b0155) 2002; 25
Greaves (10.1016/j.fuel.2016.07.113_b0225) 2008; 63
Yang (10.1016/j.fuel.2016.07.113_b0285) 2004; 277
Šikalo (10.1016/j.fuel.2016.07.113_b0305) 2002; 25
Dou (10.1016/j.fuel.2016.07.113_b0295) 2006
Sloan (10.1016/j.fuel.2016.07.113_b0010) 2007
Xie (10.1016/j.fuel.2016.07.113_b0015) 2007; 28
Li (10.1016/j.fuel.2016.07.113_b0250) 2005; 60
Hald (10.1016/j.fuel.2016.07.113_b0140) 2007
Leba (10.1016/j.fuel.2016.07.113_b0235) 2010; 65
Li (10.1016/j.fuel.2016.07.113_b0255) 2005; 60
Peysson (10.1016/j.fuel.2016.07.113_b0095) 2003
Chen (10.1016/j.fuel.2016.07.113_b0005) 2007
Yan (10.1016/j.fuel.2016.07.113_b0105) 2014; 106
Wang (10.1016/j.fuel.2016.07.113_b0230) 2013; 91
Darbouret (10.1016/j.fuel.2016.07.113_b0045) 2005; 28
Mills (10.1016/j.fuel.2016.07.113_b0160) 1985; 46
Turner (10.1016/j.fuel.2016.07.113_b0270) 2009; 64
Frostman (10.1016/j.fuel.2016.07.113_b0150) 2000
Mettler-Toleda Lasentec® Product Group (10.1016/j.fuel.2016.07.113_b0245) 2010
Prabu (10.1016/j.fuel.2016.07.113_b0215) 2006; 171
Palermo (10.1016/j.fuel.2016.07.113_b0165) 2005
Colombel (10.1016/j.fuel.2016.07.113_b0175) 2009; 64
Frank (10.1016/j.fuel.2016.07.113_b0035) 1994; 37
Webb (10.1016/j.fuel.2016.07.113_b0135) 2013; 29
Pinder (10.1016/j.fuel.2016.07.113_b0070) 1964; 42
Delgado-Linares (10.1016/j.fuel.2016.07.113_b0300) 2013; 27
Ma (10.1016/j.fuel.2016.07.113_b0050) 2010; 53
Fidel-dufour (10.1016/j.fuel.2016.07.113_b0170) 2006; 61
Yagoub (10.1016/j.fuel.2016.07.113_b0220) 2008; 7
Gong (10.1016/j.fuel.2016.07.113_b0275) 2010; 19
Gainville (10.1016/j.fuel.2016.07.113_b0290) 2011
Webb (10.1016/j.fuel.2016.07.113_b0130) 2012; 83
Shi (10.1016/j.fuel.2016.07.113_b0265) 2014; 109
Clain (10.1016/j.fuel.2016.07.113_b0055) 2012; 193–194
Gudmundsson (10.1016/j.fuel.2016.07.113_b0040) 2002
Camargo (10.1016/j.fuel.2016.07.113_b0110) 2002
Moradpour (10.1016/j.fuel.2016.07.113_b0190) 2011; 90
Nuland (10.1016/j.fuel.2016.07.113_b0120) 2005
Chen (10.1016/j.fuel.2016.07.113_b0210) 2014
Webb (10.1016/j.fuel.2016.07.113_b0125) 2012; 26
Turner (10.1016/j.fuel.2016.07.113_b0205) 2009; 64
Einstein (10.1016/j.fuel.2016.07.113_b0145) 1956
Pauchard (10.1016/j.fuel.2016.07.113_b0090) 2007
Heath (10.1016/j.fuel.2016.07.113_b0260) 2002; 19
Camargo (10.1016/j.fuel.2016.07.113_b0085) 2000; 912
Makogon (10.1016/j.fuel.2016.07.113_b0180) 2002
10.1016/j.fuel.2016.07.113_b0080
Ding (10.1016/j.fuel.2016.07.113_b0065) 2010
Pal (10.1016/j.fuel.2016.07.113_b0195) 2000; 231
Schuller (10.1016/j.fuel.2016.07.113_b0115) 2005
Andersson (10.1016/j.fuel.2016.07.113_b0075) 2000; 912
Clain (10.1016/j.fuel.2016.07.113_b0240) 2015; 50
References_xml – volume: 65
  start-page: 1185
  year: 2010
  end-page: 1200
  ident: b0235
  article-title: Chord length distributions measurements during crystallization and agglomeration of gas hydrate in a water-in-oil emulsion: simulation and experimentation
  publication-title: Chem Eng Sci
– volume: 50
  start-page: 19
  year: 2015
  end-page: 31
  ident: b0240
  article-title: Particle size distribution of TBPB hydrates by focused beam reflectance measurement (FBRM) for
  publication-title: Int J Refrig
– volume: 277
  start-page: 335
  year: 2004
  end-page: 341
  ident: b0285
  article-title: Temperature dependence of particle–particle adherence forces in ice and clathrate hydrates
  publication-title: J Colloid Interface Sci
– year: 2010
  ident: b0020
  article-title: Natural gas hydrates in flow assurance
– volume: 61
  start-page: 505
  year: 2006
  end-page: 515
  ident: b0170
  article-title: Rheology of methane hydrate slurries during their crystallization in a water in dodecane emulsion under flowing
  publication-title: Chem Eng Sci
– year: 2003
  ident: b0095
  article-title: Flow of hydrates dispersed in production lines
  publication-title: SPE annual technical conference and exhibition, Denver, Colorado, 2003/1/1
– year: 2010
  ident: b0065
  article-title: Study on rheological properties of hydrate suspensions
– year: 1956
  ident: b0145
  article-title: Investigations on the theory of Brownian motion
– volume: 19
  start-page: 261
  year: 2010
  end-page: 266
  ident: b0275
  article-title: Natural gas hydrate shell model in gas-slurry pipeline flow
  publication-title: J Nat Gas Chem
– reference: Andersson V, Gudmundsson JS. Flow experiments on concentrated hydrate slurries. In: SPE annual technical conference and exhibition, Houston, Texas, 1999 3–6 October; 1999.
– year: 2007
  ident: b0010
  article-title: Clathrate hydrates of natural gases
– volume: 59
  start-page: 41
  year: 2004
  end-page: 57
  ident: b0025
  article-title: Rheological and flow properties of gas hydrate suspensions
  publication-title: Oil Gas Sci Technol – Rev. IFP
– start-page: 83
  year: 2005
  end-page: 90
  ident: b0115
  article-title: Rheological hydrate detection and characterization
  publication-title: Ann Trans Nordic Rheol Soc
– year: 2005
  ident: b0165
  article-title: Model of hydrates agglomeration – application to hydrates formation in an acidic crude oil
  publication-title: 12th international conference on multiphase production technology, Barcelona, Spain, 25–27 May 2005
– volume: 231
  start-page: 168
  year: 2000
  end-page: 175
  ident: b0195
  article-title: Viscosity–concentration equation for emulsions of nearly spherical droplets
  publication-title: J Colloid Interface Sci
– volume: 42
  start-page: 132
  year: 1964
  end-page: 138
  ident: b0070
  article-title: Time dependent rheology of the tetrahydrofuran-hydrogen sulphide gas hydrate slurry
  publication-title: Can J Chem Eng
– volume: 109
  start-page: 315
  year: 2014
  end-page: 325
  ident: b0265
  article-title: Application of the shrinking-core model to the kinetics of repeated formation of methane hydrates in a system of mixed dry-water and porous hydrogel particulates
  publication-title: Chem Eng Sci
– volume: 912
  start-page: 322
  year: 2000
  end-page: 329
  ident: b0075
  article-title: Flow properties of hydrate-in-water slurries
  publication-title: Ann NY Acad Sci
– year: 2009
  ident: b0060
  article-title: Study on flow properties of hydrate slurry in multiphase pipeline
– volume: 37
  start-page: 2131
  year: 1994
  end-page: 2137
  ident: b0035
  article-title: The influence of heat transfer on the formation of hydrate layers in pipes
  publication-title: Int J Heat Mass Transf
– volume: 7
  start-page: 395
  year: 2008
  end-page: 399
  ident: b0220
  article-title: Emulsion-stabilizing effect of gum from acacia senegal (L) willd. The role of quality and grade of gum, oil Type, temperature, stirring time and concentration
  publication-title: Pakistan J Nutr
– volume: 25
  start-page: 827
  year: 2002
  end-page: 835
  ident: b0155
  article-title: Concentration distribution and viscosity of ice-slurry in heterogeneous flow
  publication-title: Int J Refrig
– volume: 29
  start-page: 122
  year: 2015
  end-page: 129
  ident: b0200
  article-title: Evaluation of gas hydrate anti-agglomerant based on laser measurement
  publication-title: Energy Fuels
– year: 2014
  ident: b0210
  article-title: The process and equipment of chemical reaction
– volume: 90
  start-page: 3343
  year: 2011
  end-page: 3351
  ident: b0190
  article-title: Bimodal model for predicting the emulsion-hydrate mixture viscosity in high water cut systems
  publication-title: Fuel
– year: 2006
  ident: b0295
  article-title: Study on physical properties of crude oil/water emulsion and reversed-phase law of pipe flow
– volume: 64
  start-page: 629
  year: 2009
  end-page: 636
  ident: b0175
  article-title: Discussion of agglomeration mechanisms between hydrate particles in water in oil emulsions
  publication-title: Oil Gas Sci Technol
– volume: 171
  start-page: 268
  year: 2006
  end-page: 273
  ident: b0215
  article-title: Influence of stirring speed and stirring time on distribution of particles in cast metal matrix composite
  publication-title: J Mater Process Technol
– volume: 91
  start-page: 173
  year: 2013
  end-page: 179
  ident: b0230
  article-title: Evolution of dispersed drops during the mixing of mineral oil and water phases in a stirring tank
  publication-title: Chem Eng Sci
– year: 2002
  ident: b0180
  article-title: Mechanism of kinetic hydrate inhibitors
  publication-title: 4th international conference on gas hydrates, Yokohama, Japan, 19–23 May 2002
– year: 2007
  ident: b0140
  article-title: Hydrate slurry rheology in the petroleum industry
  publication-title: The 16th Nordic Rheology Conference (NRC), Stavanger, 13–15 June 2007
– year: 2011
  ident: b0185
  article-title: Rheological study on tetra-n-butyl ammonium salt semi-clathrate hydrate slurries
  publication-title: 7th international conference on gas hydrates, Edinburgh, UK, 17–21 July 2011
– volume: 193–194
  start-page: 112
  year: 2012
  end-page: 122
  ident: b0055
  article-title: Rheological properties of tetra-n-butylphosphonium bromide hydrate slurry flow
  publication-title: Chem Eng J
– year: 2011
  ident: b0290
  article-title: Hydrate slurry characterisation for laminar and turbulent flows in pipelines
  publication-title: 7th international conference on gas hydrates, Edinburgh, Scotland, United Kingdom, 17–21 July 2011
– volume: 25
  start-page: 503
  year: 2002
  end-page: 510
  ident: b0305
  article-title: Analysis of impact of droplets on horizontal surfaces
  publication-title: Exp Therm Fluid Sci
– volume: 60
  start-page: 4992
  year: 2005
  end-page: 5003
  ident: b0255
  article-title: Determination of non-spherical particle size distribution from chord length measurements. Part 2: Experimental validation
  publication-title: Chem Eng Sci
– year: 2002
  ident: b0110
  article-title: Rheological properties of hydrate suspensions in asphaltenic crude oil
  publication-title: 4th international conference on gas hydrates 19–23 May 2002.
– volume: 28
  year: 2007
  ident: b0015
  article-title: Engineering mode and plat form selection for deepwater oilfield development in South China Sea
  publication-title: Acta Petrol Sinica
– volume: 60
  start-page: 3251
  year: 2005
  end-page: 3265
  ident: b0250
  article-title: Determination of non-spherical particle size distribution from chord length measurements. Part 1: Theoretical analysis
  publication-title: Chem Eng Sci
– year: 2005
  ident: b0120
  article-title: Hydrate slurry flow modeling
  publication-title: 12th international conference on multiphase production technology, Barcelona, Spain, 25–27 May 2005.
– volume: 83
  start-page: 015106
  year: 2012
  ident: b0130
  article-title: High pressure rheometer for in situ formation and characterization of methane hydrates
  publication-title: Rev Sci Instrum
– volume: 171
  start-page: 1308
  year: 2011
  end-page: 1316
  ident: b0280
  article-title: An inward and outward natural gas hydrates growth shell model considering intrinsic kinetics, mass and heat transfer
  publication-title: Chem Eng J
– year: 2000
  ident: b0150
  article-title: Anti-agglomerant hydrate inhibitors for prevention of hydrate plugs in deepwater systems
  publication-title: SPE annual technical conference and exhibition, Dallas, Texas, 2000/1/1
– volume: 912
  start-page: 906
  year: 2000
  end-page: 916
  ident: b0085
  article-title: Rheological characterization of hydrate suspensions in oil dominated systems
  publication-title: Ann NY Acad Sci
– year: 2002
  ident: b0100
  article-title: Formation and transportation of methane hydrate slurries in a flow loop reactor: influence of a dispersant
  publication-title: 4th international conference on gas hydrates, Yokohama, Japan, 19–23 May 2002
– volume: 53
  start-page: 3745
  year: 2010
  end-page: 3757
  ident: b0050
  article-title: Forced flow and convective melting heat transfer of clathrate hydrate slurry in tubes
  publication-title: Int J Heat Mass Transf
– year: 2007
  ident: b0090
  article-title: Gas hydrate slurry flow in a black oil. Prediction of gas hydrate particles agglomeration and linear pressure drop
  publication-title: 13th international conference on multiphase production technology, Edinburgh, UK, 13 June 2007
– volume: 64
  start-page: 3996
  year: 2009
  end-page: 4004
  ident: b0205
  article-title: Methane hydrate formation and an inward growing shell model in water-in-oil dispersions
  publication-title: Chem Eng Sci
– year: 2002
  ident: b0040
  article-title: Cold flow hydrate technology
  publication-title: 4th international conference on gas hydrates, 19–23 May 2002
– volume: 46
  start-page: 301
  year: 1985
  end-page: 309
  ident: b0160
  article-title: Non-newtonian behaviour of flocculated suspensions
  publication-title: J Phys Lett
– year: 2010
  ident: b0245
  article-title: FBRM® D600 hardware manual: powerful data collection and interpretation
– volume: 106
  start-page: 99
  year: 2014
  end-page: 108
  ident: b0105
  article-title: Flow characteristics and rheological properties of natural gas hydrate slurry in the presence of anti-agglomerant in a flow loop apparatus
  publication-title: Chem Eng Sci
– volume: 63
  start-page: 4570
  year: 2008
  end-page: 4579
  ident: b0225
  article-title: Hydrate formation from high water content-crude oil emulsions
  publication-title: Chem Eng Sci
– volume: 64
  start-page: 5066
  year: 2009
  end-page: 5072
  ident: b0270
  article-title: Direct conversion of water droplets to methane hydrate in crude oil
  publication-title: Chem Eng Sci
– volume: 28
  start-page: 663
  year: 2005
  end-page: 671
  ident: b0045
  article-title: Rheological study of TBAB hydrate slurries as secondary two-phase refrigerants
  publication-title: Int J Refrig
– volume: 29
  start-page: 10997
  year: 2013
  end-page: 11004
  ident: b0135
  article-title: Rheological properties of methane hydrate slurries formed from AOT
  publication-title: Langmuir
– year: 2007
  ident: b0005
  article-title: Natural gas hydrate science and technology
– volume: 19
  start-page: 84
  year: 2002
  end-page: 95
  ident: b0260
  article-title: Estimating average particle size by Focused Beam Reflectance Measurement (FBRM)
  publication-title: Part Part Syst Charact
– volume: 71
  start-page: 145
  year: 1998
  end-page: 151
  ident: b0030
  article-title: A new approach to gas hydrate modelling
  publication-title: Chem Eng J
– volume: 26
  start-page: 3504
  year: 2012
  end-page: 3509
  ident: b0125
  article-title: High-pressure rheology of hydrate slurries formed from water-in-oil emulsions
  publication-title: Energy Fuels
– volume: 27
  start-page: 4564
  year: 2013
  end-page: 4573
  ident: b0300
  article-title: Model water-in-oil emulsions for gas hydrate studies in oil continuous systems
  publication-title: Energy Fuels
– year: 2007
  ident: 10.1016/j.fuel.2016.07.113_b0140
  article-title: Hydrate slurry rheology in the petroleum industry
– year: 2002
  ident: 10.1016/j.fuel.2016.07.113_b0100
  article-title: Formation and transportation of methane hydrate slurries in a flow loop reactor: influence of a dispersant
– year: 1956
  ident: 10.1016/j.fuel.2016.07.113_b0145
– volume: 59
  start-page: 41
  year: 2004
  ident: 10.1016/j.fuel.2016.07.113_b0025
  article-title: Rheological and flow properties of gas hydrate suspensions
  publication-title: Oil Gas Sci Technol – Rev. IFP
  doi: 10.2516/ogst:2004005
– volume: 171
  start-page: 1308
  year: 2011
  ident: 10.1016/j.fuel.2016.07.113_b0280
  article-title: An inward and outward natural gas hydrates growth shell model considering intrinsic kinetics, mass and heat transfer
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2011.05.029
– year: 2002
  ident: 10.1016/j.fuel.2016.07.113_b0040
  article-title: Cold flow hydrate technology
– volume: 37
  start-page: 2131
  year: 1994
  ident: 10.1016/j.fuel.2016.07.113_b0035
  article-title: The influence of heat transfer on the formation of hydrate layers in pipes
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/0017-9310(94)90314-X
– volume: 106
  start-page: 99
  year: 2014
  ident: 10.1016/j.fuel.2016.07.113_b0105
  article-title: Flow characteristics and rheological properties of natural gas hydrate slurry in the presence of anti-agglomerant in a flow loop apparatus
  publication-title: Chem Eng Sci
  doi: 10.1016/j.ces.2013.11.015
– volume: 46
  start-page: 301
  year: 1985
  ident: 10.1016/j.fuel.2016.07.113_b0160
  article-title: Non-newtonian behaviour of flocculated suspensions
  publication-title: J Phys Lett
  doi: 10.1051/jphyslet:01985004607030100
– year: 2002
  ident: 10.1016/j.fuel.2016.07.113_b0110
  article-title: Rheological properties of hydrate suspensions in asphaltenic crude oil
– year: 2007
  ident: 10.1016/j.fuel.2016.07.113_b0090
  article-title: Gas hydrate slurry flow in a black oil. Prediction of gas hydrate particles agglomeration and linear pressure drop
– year: 2009
  ident: 10.1016/j.fuel.2016.07.113_b0060
– year: 2002
  ident: 10.1016/j.fuel.2016.07.113_b0180
  article-title: Mechanism of kinetic hydrate inhibitors
– volume: 71
  start-page: 145
  year: 1998
  ident: 10.1016/j.fuel.2016.07.113_b0030
  article-title: A new approach to gas hydrate modelling
  publication-title: Chem Eng J
  doi: 10.1016/S1385-8947(98)00126-0
– ident: 10.1016/j.fuel.2016.07.113_b0080
  doi: 10.2118/56567-MS
– volume: 64
  start-page: 629
  year: 2009
  ident: 10.1016/j.fuel.2016.07.113_b0175
  article-title: Discussion of agglomeration mechanisms between hydrate particles in water in oil emulsions
  publication-title: Oil Gas Sci Technol
  doi: 10.2516/ogst/2009042
– volume: 63
  start-page: 4570
  year: 2008
  ident: 10.1016/j.fuel.2016.07.113_b0225
  article-title: Hydrate formation from high water content-crude oil emulsions
  publication-title: Chem Eng Sci
  doi: 10.1016/j.ces.2008.06.025
– volume: 65
  start-page: 1185
  year: 2010
  ident: 10.1016/j.fuel.2016.07.113_b0235
  article-title: Chord length distributions measurements during crystallization and agglomeration of gas hydrate in a water-in-oil emulsion: simulation and experimentation
  publication-title: Chem Eng Sci
  doi: 10.1016/j.ces.2009.09.074
– year: 2007
  ident: 10.1016/j.fuel.2016.07.113_b0010
– volume: 231
  start-page: 168
  year: 2000
  ident: 10.1016/j.fuel.2016.07.113_b0195
  article-title: Viscosity–concentration equation for emulsions of nearly spherical droplets
  publication-title: J Colloid Interface Sci
  doi: 10.1006/jcis.2000.7133
– volume: 277
  start-page: 335
  year: 2004
  ident: 10.1016/j.fuel.2016.07.113_b0285
  article-title: Temperature dependence of particle–particle adherence forces in ice and clathrate hydrates
  publication-title: J Colloid Interface Sci
  doi: 10.1016/j.jcis.2004.04.049
– volume: 28
  start-page: 663
  year: 2005
  ident: 10.1016/j.fuel.2016.07.113_b0045
  article-title: Rheological study of TBAB hydrate slurries as secondary two-phase refrigerants
  publication-title: Int J Refrig
  doi: 10.1016/j.ijrefrig.2005.01.002
– year: 2010
  ident: 10.1016/j.fuel.2016.07.113_b0065
– volume: 91
  start-page: 173
  year: 2013
  ident: 10.1016/j.fuel.2016.07.113_b0230
  article-title: Evolution of dispersed drops during the mixing of mineral oil and water phases in a stirring tank
  publication-title: Chem Eng Sci
  doi: 10.1016/j.ces.2012.11.022
– volume: 83
  start-page: 015106
  year: 2012
  ident: 10.1016/j.fuel.2016.07.113_b0130
  article-title: High pressure rheometer for in situ formation and characterization of methane hydrates
  publication-title: Rev Sci Instrum
  doi: 10.1063/1.3675889
– volume: 50
  start-page: 19
  year: 2015
  ident: 10.1016/j.fuel.2016.07.113_b0240
  article-title: Particle size distribution of TBPB hydrates by focused beam reflectance measurement (FBRM) forsecondary refrigeration application
  publication-title: Int J Refrig
  doi: 10.1016/j.ijrefrig.2014.10.016
– year: 2010
  ident: 10.1016/j.fuel.2016.07.113_b0020
– volume: 26
  start-page: 3504
  year: 2012
  ident: 10.1016/j.fuel.2016.07.113_b0125
  article-title: High-pressure rheology of hydrate slurries formed from water-in-oil emulsions
  publication-title: Energy Fuels
  doi: 10.1021/ef300163y
– year: 2011
  ident: 10.1016/j.fuel.2016.07.113_b0185
  article-title: Rheological study on tetra-n-butyl ammonium salt semi-clathrate hydrate slurries
– volume: 193–194
  start-page: 112
  year: 2012
  ident: 10.1016/j.fuel.2016.07.113_b0055
  article-title: Rheological properties of tetra-n-butylphosphonium bromide hydrate slurry flow
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2012.04.027
– volume: 7
  start-page: 395
  year: 2008
  ident: 10.1016/j.fuel.2016.07.113_b0220
  article-title: Emulsion-stabilizing effect of gum from acacia senegal (L) willd. The role of quality and grade of gum, oil Type, temperature, stirring time and concentration
  publication-title: Pakistan J Nutr
  doi: 10.3923/pjn.2008.395.399
– volume: 29
  start-page: 10997
  year: 2013
  ident: 10.1016/j.fuel.2016.07.113_b0135
  article-title: Rheological properties of methane hydrate slurries formed from AOT+water+oil microemulsions
  publication-title: Langmuir
  doi: 10.1021/la4022432
– year: 2014
  ident: 10.1016/j.fuel.2016.07.113_b0210
– volume: 27
  start-page: 4564
  year: 2013
  ident: 10.1016/j.fuel.2016.07.113_b0300
  article-title: Model water-in-oil emulsions for gas hydrate studies in oil continuous systems
  publication-title: Energy Fuels
  doi: 10.1021/ef4004768
– volume: 53
  start-page: 3745
  year: 2010
  ident: 10.1016/j.fuel.2016.07.113_b0050
  article-title: Forced flow and convective melting heat transfer of clathrate hydrate slurry in tubes
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2010.04.025
– year: 2011
  ident: 10.1016/j.fuel.2016.07.113_b0290
  article-title: Hydrate slurry characterisation for laminar and turbulent flows in pipelines
– year: 2010
  ident: 10.1016/j.fuel.2016.07.113_b0245
– year: 2005
  ident: 10.1016/j.fuel.2016.07.113_b0120
  article-title: Hydrate slurry flow modeling
– volume: 90
  start-page: 3343
  year: 2011
  ident: 10.1016/j.fuel.2016.07.113_b0190
  article-title: Bimodal model for predicting the emulsion-hydrate mixture viscosity in high water cut systems
  publication-title: Fuel
  doi: 10.1016/j.fuel.2011.06.038
– volume: 28
  year: 2007
  ident: 10.1016/j.fuel.2016.07.113_b0015
  article-title: Engineering mode and plat form selection for deepwater oilfield development in South China Sea
  publication-title: Acta Petrol Sinica
– year: 2000
  ident: 10.1016/j.fuel.2016.07.113_b0150
  article-title: Anti-agglomerant hydrate inhibitors for prevention of hydrate plugs in deepwater systems
– volume: 912
  start-page: 322
  year: 2000
  ident: 10.1016/j.fuel.2016.07.113_b0075
  article-title: Flow properties of hydrate-in-water slurries
  publication-title: Ann NY Acad Sci
  doi: 10.1111/j.1749-6632.2000.tb06786.x
– volume: 25
  start-page: 503
  year: 2002
  ident: 10.1016/j.fuel.2016.07.113_b0305
  article-title: Analysis of impact of droplets on horizontal surfaces
  publication-title: Exp Therm Fluid Sci
  doi: 10.1016/S0894-1777(01)00109-1
– volume: 25
  start-page: 827
  year: 2002
  ident: 10.1016/j.fuel.2016.07.113_b0155
  article-title: Concentration distribution and viscosity of ice-slurry in heterogeneous flow
  publication-title: Int J Refrig
  doi: 10.1016/S0140-7007(01)00091-3
– volume: 109
  start-page: 315
  year: 2014
  ident: 10.1016/j.fuel.2016.07.113_b0265
  article-title: Application of the shrinking-core model to the kinetics of repeated formation of methane hydrates in a system of mixed dry-water and porous hydrogel particulates
  publication-title: Chem Eng Sci
  doi: 10.1016/j.ces.2014.01.035
– year: 2005
  ident: 10.1016/j.fuel.2016.07.113_b0165
  article-title: Model of hydrates agglomeration – application to hydrates formation in an acidic crude oil
– volume: 19
  start-page: 84
  year: 2002
  ident: 10.1016/j.fuel.2016.07.113_b0260
  article-title: Estimating average particle size by Focused Beam Reflectance Measurement (FBRM)
  publication-title: Part Part Syst Charact
  doi: 10.1002/1521-4117(200205)19:2<84::AID-PPSC84>3.0.CO;2-1
– volume: 171
  start-page: 268
  year: 2006
  ident: 10.1016/j.fuel.2016.07.113_b0215
  article-title: Influence of stirring speed and stirring time on distribution of particles in cast metal matrix composite
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2005.06.071
– volume: 42
  start-page: 132
  year: 1964
  ident: 10.1016/j.fuel.2016.07.113_b0070
  article-title: Time dependent rheology of the tetrahydrofuran-hydrogen sulphide gas hydrate slurry
  publication-title: Can J Chem Eng
  doi: 10.1002/cjce.5450420311
– volume: 61
  start-page: 505
  year: 2006
  ident: 10.1016/j.fuel.2016.07.113_b0170
  article-title: Rheology of methane hydrate slurries during their crystallization in a water in dodecane emulsion under flowing
  publication-title: Chem Eng Sci
  doi: 10.1016/j.ces.2005.07.001
– volume: 29
  start-page: 122
  year: 2015
  ident: 10.1016/j.fuel.2016.07.113_b0200
  article-title: Evaluation of gas hydrate anti-agglomerant based on laser measurement
  publication-title: Energy Fuels
  doi: 10.1021/ef5022413
– year: 2003
  ident: 10.1016/j.fuel.2016.07.113_b0095
  article-title: Flow of hydrates dispersed in production lines
– volume: 64
  start-page: 3996
  year: 2009
  ident: 10.1016/j.fuel.2016.07.113_b0205
  article-title: Methane hydrate formation and an inward growing shell model in water-in-oil dispersions
  publication-title: Chem Eng Sci
  doi: 10.1016/j.ces.2009.05.051
– volume: 912
  start-page: 906
  year: 2000
  ident: 10.1016/j.fuel.2016.07.113_b0085
  article-title: Rheological characterization of hydrate suspensions in oil dominated systems
  publication-title: Ann NY Acad Sci
  doi: 10.1111/j.1749-6632.2000.tb06844.x
– start-page: 83
  year: 2005
  ident: 10.1016/j.fuel.2016.07.113_b0115
  article-title: Rheological hydrate detection and characterization
  publication-title: Ann Trans Nordic Rheol Soc
– volume: 64
  start-page: 5066
  year: 2009
  ident: 10.1016/j.fuel.2016.07.113_b0270
  article-title: Direct conversion of water droplets to methane hydrate in crude oil
  publication-title: Chem Eng Sci
  doi: 10.1016/j.ces.2009.08.013
– volume: 60
  start-page: 4992
  year: 2005
  ident: 10.1016/j.fuel.2016.07.113_b0255
  article-title: Determination of non-spherical particle size distribution from chord length measurements. Part 2: Experimental validation
  publication-title: Chem Eng Sci
  doi: 10.1016/j.ces.2005.04.019
– volume: 19
  start-page: 261
  year: 2010
  ident: 10.1016/j.fuel.2016.07.113_b0275
  article-title: Natural gas hydrate shell model in gas-slurry pipeline flow
  publication-title: J Nat Gas Chem
  doi: 10.1016/S1003-9953(09)60062-1
– year: 2006
  ident: 10.1016/j.fuel.2016.07.113_b0295
– volume: 60
  start-page: 3251
  year: 2005
  ident: 10.1016/j.fuel.2016.07.113_b0250
  article-title: Determination of non-spherical particle size distribution from chord length measurements. Part 1: Theoretical analysis
  publication-title: Chem Eng Sci
  doi: 10.1016/j.ces.2005.01.008
– year: 2007
  ident: 10.1016/j.fuel.2016.07.113_b0005
SSID ssj0007854
Score 2.4344556
Snippet •Viscosity of natural gas hydrates slurry is investigated with anti-agglomerants.•Hydrates slurry viscosity model is developed based on Einstein effective...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 323
SubjectTerms Anti-agglomerants
Einstein effective medium theory
Hydrates slurry
Natural gas hydrates
Viscosity
Title Viscosity investigation of natural gas hydrate slurries with anti-agglomerants additives
URI https://dx.doi.org/10.1016/j.fuel.2016.07.113
Volume 185
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIryqDywIdM4dl5jVVEVEJ0o6hbFsV2CqrQi6dCF385dk9IioQ6MiXxS9Mm-V777TMhtpByuObdMc98waSKHQRS0TKU60DKUVmgsFF-G_mAkn8beuEF661kYpFXWvr_y6StvXb_p1Gh25lmGM77cR-kQyCggTvo4aC5lgLv8_mtD8whCr1Ji5j7D1fXgTMXxsguDvx_4SsCTc_F3cNoKOP0jclhnirRbfcwxaZj8hBxs6QeekvFbVqTIulrSbKOXMcvpzNKVYifYT5KCvi81KkLQYooNP1NQ7L5SwDRjyWQynWFjKi8LiuQidH_FGRn1H157A1ZflcBSqMhKBkm_kE4iHC2kNXDmfE-5yvWFguDjJikkFmGgo1AlFiqUSAXKREkijJE2ilxPiXPSzGe5uSDUBDo0QnGhbQJeFOK5Iy2UVZBaKTc0vEX4GqM4rXXE8TqLabwmjH3EiGuMuMZOADWGaJG7H5t5paKxc7W3hj7-tRdicPM77C7_aXdF9vGpIqlck2b5uTA3kGqUqr3aS22y1318Hgy_AdO61BQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGYAB8RRvPLAh0zh2XiOqqAoUJoq6RXFsl6AqRaQduvDbucuDgoQYWBOfFJ3s--6c774j5CJSDtecW6a5b5g0kcMABS1TqQ60DKUVGgvFh0e_P5R3I2_UIt2mFwZplXXsr2J6Ga3rJ53am523LMMeX-6jdAhkFICTvrdCViUcXxxjcPWx5HkEoVdJMXOf4fK6c6Yiedm5wf8PvFTw5Fz8jk7fEKe3RTbrVJFeV1-zTVom3yEb3wQEd8noOStSpF0taLYUzJjmdGppKdkJ9uOkoC8LjZIQtJjgjZ8pKF6_UnBqxpLxeDLFm6l8VlBkF2H8K_bIsHfz1O2zelYCS6EkmzHI-oV0EuFoIa2BQ-d7ylWuLxSgj5ukkFmEgY5ClVgoUSIVKBMliTBG2ihyPSX2STuf5uaAUBPo0AjFhbYJhFEAdEdaqKsgt1JuaPgh4Y2P4rQWEsd5FpO4YYy9xujXGP0aOwEUGeKQXH7ZvFUyGn-u9hrXxz82Qwxx_g-7o3_anZO1_tPDIB7cPt4fk3V8UzFWTkh79j43p5B3zNRZua8-AdR-1aI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Viscosity+investigation+of+natural+gas+hydrate+slurries+with+anti-agglomerants+additives&rft.jtitle=Fuel+%28Guildford%29&rft.au=Shi%2C+Bo-Hui&rft.au=Chai%2C+Shuai&rft.au=Wang%2C+Lin-Yan&rft.au=Lv%2C+Xiaofang&rft.date=2016-12-01&rft.issn=0016-2361&rft.volume=185&rft.spage=323&rft.epage=338&rft_id=info:doi/10.1016%2Fj.fuel.2016.07.113&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_fuel_2016_07_113
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-2361&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-2361&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-2361&client=summon