Assessment of fossil fuel carbon dioxide and other anthropogenic trace gas emissions from airborne measurements over Sacramento, California in spring 2009

Direct quantification of fossil fuel CO2 (CO2ff) in atmospheric samples can be used to examine several carbon cycle and air quality questions. We collected in situ CO2, CO, and CH4 measurements and flask samples in the boundary layer and free troposphere over Sacramento, California, USA, during two...

Full description

Saved in:
Bibliographic Details
Published inAtmospheric chemistry and physics Vol. 11; no. 2; pp. 705 - 721
Main Authors Turnbull, J. C., Karion, A., Fischer, M. L., Faloona, I., Guilderson, T., Lehman, S. J., Miller, B. R., Miller, J. B., Montzka, S., Sherwood, T., Saripalli, S., Sweeney, C., Tans, P. P.
Format Journal Article
LanguageEnglish
Published Katlenburg-Lindau Copernicus GmbH 01.01.2011
Copernicus Publications
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Direct quantification of fossil fuel CO2 (CO2ff) in atmospheric samples can be used to examine several carbon cycle and air quality questions. We collected in situ CO2, CO, and CH4 measurements and flask samples in the boundary layer and free troposphere over Sacramento, California, USA, during two aircraft flights over and downwind of this urban area during spring of 2009. The flask samples were analyzed for Δ14CO2 and CO2 to determine the recently added CO2ff mole fraction. A suite of greenhouse and other trace gases, including hydrocarbons and halocarbons, were measured in the same samples. Strong correlations were observed between CO2ff and numerous trace gases associated with urban emissions. From these correlations we estimate emission ratios between CO2ff and these species, and compare these with bottom-up inventory-derived estimates. Recent county level inventory estimates for carbon monoxide (CO) and benzene from the California Air Resources Board CEPAM database are in good agreement with our measured emission ratios, whereas older emissions inventories appear to overestimate emissions of these gases by a factor of two. For most other trace species, there are substantial differences (200–500%) between our measured emission ratios and those derived from available emission inventories. For the first flight, we combine in situ CO measurements with the measured CO:CO2ff emission ratio of 14 ± 2 ppbCO/ppmCO2 to derive an estimate of CO2ff mole fraction throughout this flight, and also estimate the biospheric CO2 mixing ratio (CO2bio) from the difference of total and fossil CO2. The resulting CO2bio varies dramatically from up to 8 ± 2 ppm in the urban plume to −6 ± 1 ppm in the surrounding boundary layer air. Finally, we use the in situ estimates of CO2ff mole fraction to infer total fossil fuel CO2 emissions from the Sacramento region, using a mass balance approach. The resulting emissions are uncertain to within a factor of two due to uncertainties in wind speed and boundary layer height. Nevertheless, this first attempt to estimate urban-scale CO2ff from atmospheric radiocarbon measurements shows that CO2ff can be used to verify and improve emission inventories for many poorly known anthropogenic species, separate biospheric CO2, and indicates the potential to constrain CO2ff emissions if transport uncertainties are reduced.
AbstractList Direct quantification of fossil fuel CO 2 (CO 2 ff) in atmospheric samples can be used to examine several carbon cycle and air quality questions. We collected in situ CO 2 , CO, and CH 4 measurements and flask samples in the boundary layer and free troposphere over Sacramento, California, USA, during two aircraft flights over and downwind of this urban area during spring of 2009. The flask samples were analyzed for Δ 14 CO 2 and CO 2 to determine the recently added CO 2 ff mole fraction. A suite of greenhouse and other trace gases, including hydrocarbons and halocarbons, were measured in the same samples. Strong correlations were observed between CO 2 ff and numerous trace gases associated with urban emissions. From these correlations we estimate emission ratios between CO 2 ff and these species, and compare these with bottom-up inventory-derived estimates. Recent county level inventory estimates for carbon monoxide (CO) and benzene from the California Air Resources Board CEPAM database are in good agreement with our measured emission ratios, whereas older emissions inventories appear to overestimate emissions of these gases by a factor of two. For most other trace species, there are substantial differences (200–500%) between our measured emission ratios and those derived from available emission inventories. For the first flight, we combine in situ CO measurements with the measured CO:CO 2 ff emission ratio of 14 ± 2 ppbCO/ppmCO 2 to derive an estimate of CO 2 ff mole fraction throughout this flight, and also estimate the biospheric CO 2 mixing ratio (CO 2 bio) from the difference of total and fossil CO 2 . The resulting CO 2 bio varies dramatically from up to 8 ± 2 ppm in the urban plume to −6 ± 1 ppm in the surrounding boundary layer air. Finally, we use the in situ estimates of CO 2 ff mole fraction to infer total fossil fuel CO 2 emissions from the Sacramento region, using a mass balance approach. The resulting emissions are uncertain to within a factor of two due to uncertainties in wind speed and boundary layer height. Nevertheless, this first attempt to estimate urban-scale CO 2 ff from atmospheric radiocarbon measurements shows that CO 2 ff can be used to verify and improve emission inventories for many poorly known anthropogenic species, separate biospheric CO 2 , and indicates the potential to constrain CO 2 ff emissions if transport uncertainties are reduced.
Direct quantification of fossil fuel CO2 (CO2ff) in atmospheric samples can be used to examine several carbon cycle and air quality questions. We collected in situ CO2, CO, and CH4 measurements and flask samples in the boundary layer and free troposphere over Sacramento, California, USA, during two aircraft flights over and downwind of this urban area during spring of 2009. The flask samples were analyzed for Δ14CO2 and CO2 to determine the recently added CO2ff mole fraction. A suite of greenhouse and other trace gases, including hydrocarbons and halocarbons, were measured in the same samples. Strong correlations were observed between CO2ff and numerous trace gases associated with urban emissions. From these correlations we estimate emission ratios between CO2ff and these species, and compare these with bottom-up inventory-derived estimates. Recent county level inventory estimates for carbon monoxide (CO) and benzene from the California Air Resources Board CEPAM database are in good agreement with our measured emission ratios, whereas older emissions inventories appear to overestimate emissions of these gases by a factor of two. For most other trace species, there are substantial differences (200–500%) between our measured emission ratios and those derived from available emission inventories. For the first flight, we combine in situ CO measurements with the measured CO:CO2ff emission ratio of 14 ± 2 ppbCO/ppmCO2 to derive an estimate of CO2ff mole fraction throughout this flight, and also estimate the biospheric CO2 mixing ratio (CO2bio) from the difference of total and fossil CO2. The resulting CO2bio varies dramatically from up to 8 ± 2 ppm in the urban plume to −6 ± 1 ppm in the surrounding boundary layer air. Finally, we use the in situ estimates of CO2ff mole fraction to infer total fossil fuel CO2 emissions from the Sacramento region, using a mass balance approach. The resulting emissions are uncertain to within a factor of two due to uncertainties in wind speed and boundary layer height. Nevertheless, this first attempt to estimate urban-scale CO2ff from atmospheric radiocarbon measurements shows that CO2ff can be used to verify and improve emission inventories for many poorly known anthropogenic species, separate biospheric CO2, and indicates the potential to constrain CO2ff emissions if transport uncertainties are reduced.
Direct quantification of fossil fuel CO sub(2) (CO sub(2)ff) in atmospheric samples can be used to examine several carbon cycle and air quality questions. We collected in situ CO sub(2), CO, and CH sub(4) measurements and flask samples in the boundary layer and free troposphere over Sacramento, California, USA, during two aircraft flights over and downwind of this urban area during spring of 2009. The flask samples were analyzed for Delta super(14)CO sub(2) and CO sub(2) to determine the recently added CO sub(2)ff mole fraction. A suite of greenhouse and other trace gases, including hydrocarbons and halocarbons, were measured in the same samples. Strong correlations were observed between CO sub(2)ff and numerous trace gases associated with urban emissions. From these correlations we estimate emission ratios between CO sub(2)ff and these species, and compare these with bottom-up inventory-derived estimates. Recent county level inventory estimates for carbon monoxide (CO) and benzene from the California Air Resources Board CEPAM database are in good agreement with our measured emission ratios, whereas older emissions inventories appear to overestimate emissions of these gases by a factor of two. For most other trace species, there are substantial differences (200-500%) between our measured emission ratios and those derived from available emission inventories. For the first flight, we combine in situ CO measurements with the measured CO:CO sub(2)ff emission ratio of 14 plus or minus 2 ppbCO/ppmCO sub(2) to derive an estimate of CO sub(2)ff mole fraction throughout this flight, and also estimate the biospheric CO sub(2) mixing ratio (CO sub(2)bio) from the difference of total and fossil CO sub(2). The resulting CO sub(2)bio varies dramatically from up to 8 plus or minus 2 ppm in the urban plume to -6 plus or minus 1 ppm in the surrounding boundary layer air. Finally, we use the in situ estimates of CO sub(2)ff mole fraction to infer total fossil fuel CO sub(2) emissions from the Sacramento region, using a mass balance approach. The resulting emissions are uncertain to within a factor of two due to uncertainties in wind speed and boundary layer height. Nevertheless, this first attempt to estimate urban-scale CO sub(2)ff from atmospheric radiocarbon measurements shows that CO sub(2)ff can be used to verify and improve emission inventories for many poorly known anthropogenic species, separate biospheric CO sub(2), and indicates the potential to constrain CO sub(2)ff emissions if transport uncertainties are reduced.
Direct quantification of fossil fuel CO2 (CO2 ff) in atmospheric samples can be used to examine several carbon cycle and air quality questions. We collected in situ CO2 , CO, and CH4 measurements and flask samples in the boundary layer and free troposphere over Sacramento, California, USA, during two aircraft flights over and downwind of this urban area during spring of 2009. The flask samples were analyzed for δ14 CO2 and CO2 to determine the recently added CO2 ff mole fraction. A suite of greenhouse and other trace gases, including hydrocarbons and halocarbons, were measured in the same samples. Strong correlations were observed between CO2 ff and numerous trace gases associated with urban emissions. From these correlations we estimate emission ratios between CO2 ff and these species, and compare these with bottom-up inventory-derived estimates. Recent county level inventory estimates for carbon monoxide (CO) and benzene from the California Air Resources Board CEPAM database are in good agreement with our measured emission ratios, whereas older emissions inventories appear to overestimate emissions of these gases by a factor of two. For most other trace species, there are substantial differences (200-500%) between our measured emission ratios and those derived from available emission inventories. For the first flight, we combine in situ CO measurements with the measured CO:CO2 ff emission ratio of 14 ± 2 ppbCO/ppmCO2 to derive an estimate of CO2 ff mole fraction throughout this flight, and also estimate the biospheric CO2 mixing ratio (CO2 bio) from the difference of total and fossil CO2 . The resulting CO2 bio varies dramatically from up to 8 ± 2 ppm in the urban plume to -6 ± 1 ppm in the surrounding boundary layer air. Finally, we use the in situ estimates of CO2 ff mole fraction to infer total fossil fuel CO2 emissions from the Sacramento region, using a mass balance approach. The resulting emissions are uncertain to within a factor of two due to uncertainties in wind speed and boundary layer height. Nevertheless, this first attempt to estimate urban-scale CO2 ff from atmospheric radiocarbon measurements shows that CO2 ff can be used to verify and improve emission inventories for many poorly known anthropogenic species, separate biospheric CO2 , and indicates the potential to constrain CO2 ff emissions if transport uncertainties are reduced.
Author Lehman, S. J.
Guilderson, T.
Tans, P. P.
Sherwood, T.
Saripalli, S.
Faloona, I.
Miller, J. B.
Miller, B. R.
Fischer, M. L.
Turnbull, J. C.
Sweeney, C.
Montzka, S.
Karion, A.
Author_xml – sequence: 1
  givenname: J. C.
  surname: Turnbull
  fullname: Turnbull, J. C.
– sequence: 2
  givenname: A.
  surname: Karion
  fullname: Karion, A.
– sequence: 3
  givenname: M. L.
  surname: Fischer
  fullname: Fischer, M. L.
– sequence: 4
  givenname: I.
  surname: Faloona
  fullname: Faloona, I.
– sequence: 5
  givenname: T.
  surname: Guilderson
  fullname: Guilderson, T.
– sequence: 6
  givenname: S. J.
  surname: Lehman
  fullname: Lehman, S. J.
– sequence: 7
  givenname: B. R.
  surname: Miller
  fullname: Miller, B. R.
– sequence: 8
  givenname: J. B.
  surname: Miller
  fullname: Miller, J. B.
– sequence: 9
  givenname: S.
  surname: Montzka
  fullname: Montzka, S.
– sequence: 10
  givenname: T.
  surname: Sherwood
  fullname: Sherwood, T.
– sequence: 11
  givenname: S.
  surname: Saripalli
  fullname: Saripalli, S.
– sequence: 12
  givenname: C.
  surname: Sweeney
  fullname: Sweeney, C.
– sequence: 13
  givenname: P. P.
  surname: Tans
  fullname: Tans, P. P.
BookMark eNpdkU1v1DAQhi1UJNrCmavFhQuh448kzrFaUahUiQNwtibOeOtVYi92guCv8GvxsgghTjNjPfOOZ94rdhFTJMZeCnjbikHfoDs2QjQ9tI0EIZ6wS9EZaHol9cU_-TN2VcoBQLYg9CX7eVsKlbJQXHny3KdSwsz9RjN3mMcU-RTS9zARxzjxtD5Srtn6mNMx7SkGx9eMjvgeC6cl1O4UC_c5LRxD7c-R-EJYtkynGYWnb1XhE7qMpzq94Tucg69cQB4iL8cc4p5LgOE5e-pxLvTiT7xmX-7efd59aB4-vr_f3T40TkO_Ntp1QlKrpOzJ99J0UkuUUhrRt6C6QWoaVU9Dp0yt3QhiApjc1DmjFGmvrtn9WXdKeLB1_oL5h00Y7O-HlPcW8xrcTFbJdvLaoZY06M604wjjIARI6Ml456rW67PWMaevG5XV1ps4mmeMlLZiTdv1xkArK_nqP_KQthzrotbooS6jNFTo5gy5XI3J5P9-T4A9uW6r61YIW123J9fVLx59on0
CitedBy_id crossref_primary_10_1016_j_cacint_2019_06_001
crossref_primary_10_1029_2019JD030528
crossref_primary_10_1029_2011JD016691
crossref_primary_10_7717_peerj_9283
crossref_primary_10_1016_j_scitotenv_2019_01_081
crossref_primary_10_5194_amt_12_2949_2019
crossref_primary_10_5194_gmd_7_1901_2014
crossref_primary_10_5194_acp_21_17345_2021
crossref_primary_10_1002_grl_50811
crossref_primary_10_1029_2019JD031339
crossref_primary_10_1175_JAMC_D_17_0358_1
crossref_primary_10_1021_acsearthspacechem_9b00322
crossref_primary_10_1016_j_atmosenv_2014_08_006
crossref_primary_10_3402_tellusb_v67_27989
crossref_primary_10_5194_acp_14_7273_2014
crossref_primary_10_5194_amt_8_3745_2015
crossref_primary_10_5194_acp_11_1685_2011
crossref_primary_10_1016_j_envpol_2014_10_001
crossref_primary_10_1016_j_atmosenv_2013_04_067
crossref_primary_10_1029_2022JD037915
crossref_primary_10_1017_RDC_2021_88
crossref_primary_10_1002_2014JD022555
crossref_primary_10_1007_s00376_020_9241_4
crossref_primary_10_1525_elementa_188
crossref_primary_10_1016_j_atmosenv_2021_118340
crossref_primary_10_5194_amt_6_511_2013
crossref_primary_10_1002_2015JD024473
crossref_primary_10_5194_acp_13_7343_2013
crossref_primary_10_5194_acp_19_7789_2019
crossref_primary_10_1016_j_envpol_2016_08_036
crossref_primary_10_1021_es4009486
crossref_primary_10_1098_rsta_2022_0204
crossref_primary_10_1029_2018JG004850
crossref_primary_10_1016_j_jenvrad_2024_107401
crossref_primary_10_5194_acp_17_10753_2017
crossref_primary_10_1021_acs_est_7b01810
crossref_primary_10_3390_rs16091609
crossref_primary_10_5194_acp_19_8931_2019
crossref_primary_10_1002_jgrd_50135
crossref_primary_10_5194_amt_8_3481_2015
crossref_primary_10_1111_jiec_12358
crossref_primary_10_1007_s11027_018_9821_0
crossref_primary_10_5194_acp_14_9029_2014
crossref_primary_10_1021_acs_est_8b05552
crossref_primary_10_1371_journal_pone_0228106
crossref_primary_10_1002_2016JD025617
crossref_primary_10_1029_2018EA000437
crossref_primary_10_5194_acp_13_11101_2013
crossref_primary_10_12952_journal_elementa_000037
crossref_primary_10_5194_acp_14_2105_2014
crossref_primary_10_5194_acp_14_5001_2014
crossref_primary_10_1029_2020JD034525
crossref_primary_10_1016_j_chemosphere_2021_129921
crossref_primary_10_1029_2022AV000732
crossref_primary_10_5194_acp_16_3843_2016
crossref_primary_10_1029_2020JD034362
crossref_primary_10_5194_acp_23_14425_2023
crossref_primary_10_3389_fphy_2021_633012
crossref_primary_10_1016_j_jes_2021_09_034
crossref_primary_10_1080_16000889_2017_1353388
crossref_primary_10_5194_acp_16_9019_2016
crossref_primary_10_5194_amt_10_3345_2017
crossref_primary_10_1038_s41598_021_93092_0
crossref_primary_10_5194_bg_16_117_2019
crossref_primary_10_5194_acp_21_15461_2021
crossref_primary_10_1017_RDC_2016_20
crossref_primary_10_1016_j_scitotenv_2023_169204
crossref_primary_10_1016_j_atmosenv_2019_117053
crossref_primary_10_1002_2017JD027917
crossref_primary_10_2139_ssrn_3978864
crossref_primary_10_1029_2020JD033538
crossref_primary_10_1017_RDC_2022_7
crossref_primary_10_1016_j_envres_2013_09_002
crossref_primary_10_1002_2014JD022876
crossref_primary_10_1029_2020JD034106
crossref_primary_10_5194_acp_15_12705_2015
crossref_primary_10_5194_acp_20_12033_2020
crossref_primary_10_1017_S0033822200057957
crossref_primary_10_3390_atmos14020208
crossref_primary_10_1073_pnas_2005253117
crossref_primary_10_5194_acp_19_13911_2019
crossref_primary_10_1016_j_atmosenv_2021_118266
crossref_primary_10_5194_acp_14_12871_2014
crossref_primary_10_1029_2018JD029697
crossref_primary_10_3390_rs9070744
crossref_primary_10_1002_2015JD024715
crossref_primary_10_5194_acp_19_7055_2019
crossref_primary_10_5194_acp_16_15653_2016
crossref_primary_10_5194_acp_19_4177_2019
crossref_primary_10_1525_elementa_131
crossref_primary_10_5194_amt_14_1047_2021
crossref_primary_10_1016_j_ijheh_2013_12_003
crossref_primary_10_5194_acp_22_14547_2022
crossref_primary_10_1525_elementa_134
crossref_primary_10_5194_acp_19_14057_2019
crossref_primary_10_1525_elementa_136
crossref_primary_10_1186_s13021_019_0118_8
crossref_primary_10_1175_JAMC_D_13_038_1
crossref_primary_10_5194_acp_13_4359_2013
crossref_primary_10_1073_pnas_1602824113
crossref_primary_10_1029_2012JD018487
crossref_primary_10_1088_1748_9326_ad521e
crossref_primary_10_5194_acp_16_6153_2016
crossref_primary_10_5194_acp_20_11855_2020
crossref_primary_10_1002_2014EF000255
crossref_primary_10_5194_acp_17_3963_2017
crossref_primary_10_5194_amt_16_247_2023
crossref_primary_10_1016_j_atmosenv_2016_08_044
crossref_primary_10_1016_j_atmosenv_2024_120496
crossref_primary_10_5194_acp_20_12675_2020
crossref_primary_10_5194_gmd_8_1259_2015
crossref_primary_10_5194_acp_13_4349_2013
crossref_primary_10_5194_acp_19_2991_2019
crossref_primary_10_1038_jes_2013_84
crossref_primary_10_5194_bg_9_1845_2012
crossref_primary_10_1088_1748_9326_ac7c29
Cites_doi 10.5194/acp-10-4403-2010
10.5194/amt-3-375-2010
10.5194/acpd-9-7457-2009
10.1029/2009JD012308
10.1029/1999JD901006
10.1029/2005JD006354
10.1111/j.1600-0889.2009.00421.x
10.1126/science.959846
10.5194/acp-7-4419-2007
10.1021/es901326b
10.1029/1998JD100031
10.1029/2000GB001382
10.1029/95JD01641
10.1175/BAMS-87-3-343
10.1126/science.1137004
10.1029/97GL00523
10.1029/98GB02265
10.1038/415626a
10.1029/2005JD006725
10.1029/2005JD006878
10.1016/S1352-2310(00)00461-1
10.1029/1999JD900102
10.1029/2008JD011671
10.1029/2004GB002443
10.1029/93JD02256
10.1016/j.atmosenv.2007.09.007
10.1021/es702413b
10.1017/S0033822200046348
10.1029/2005JD006003
10.1029/2005GL024213
10.1029/93GL00753
10.1016/j.atmosenv.2007.08.040
10.1017/S0033822200042284
10.1029/2006JD007930
10.1063/1.4823074
10.1029/1999JD900818
10.1016/B978-044451114-0/50016-8
10.1016/j.atmosenv.2005.11.033
10.1038/nature05132
10.1029/2006JD008184
10.1016/S1352-2310(02)00975-5
10.3334/CDIAC/00001
10.1029/2007GL032393
10.1111/j.1600-0889.2006.00244.x
10.1126/science.1058113
ContentType Journal Article
Copyright Atmospheric Chemistry and Physics 2011
Copyright_xml – notice: Atmospheric Chemistry and Physics 2011
DBID AAYXX
CITATION
7QH
7TG
7TN
7UA
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
ATCPS
AZQEC
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H8D
H96
HCIFZ
KL.
L.G
L7M
P5Z
P62
PATMY
PCBAR
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PYCSY
7TV
DOA
DOI 10.5194/acp-11-705-2011
DatabaseName CrossRef
Aqualine
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database‎ (1962 - current)
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Continental Europe Database
Technology Collection
ProQuest Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
ProQuest Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Access via ProQuest (Open Access)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
Pollution Abstracts
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Continental Europe Database
ProQuest SciTech Collection
Aqualine
Environmental Science Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Science Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
Pollution Abstracts
DatabaseTitleList
CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 1680-7324
EndPage 721
ExternalDocumentID oai_doaj_org_article_325df4ca42e94685bb0b9110207e8fcc
2257344801
10_5194_acp_11_705_2011
Genre Feature
GeographicLocations USA, California, Sacramento
GeographicLocations_xml – name: USA, California, Sacramento
GroupedDBID 23N
2WC
3V.
4P2
5GY
5VS
6J9
7XC
8FE
8FG
8FH
8R4
8R5
AAFWJ
AAYXX
ABUWG
ACGFO
ADBBV
AENEX
AFKRA
AFPKN
AFRAH
AHGZY
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ATCPS
BBORY
BCNDV
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
BPHCQ
C1A
CCPQU
CITATION
D1K
E3Z
EBS
EDH
EJD
FD6
GROUPED_DOAJ
GX1
H13
HCIFZ
HH5
IPNFZ
K6-
KQ8
M~E
OK1
P2P
P62
PATMY
PCBAR
PIMPY
PQQKQ
PROAC
PYCSY
Q2X
RIG
RKB
RNS
TR2
XSB
~02
7QH
7TG
7TN
7UA
8FD
AZQEC
C1K
DWQXO
F1W
GNUQQ
H8D
H96
KL.
L.G
L7M
PQEST
PQUKI
PRINS
7TV
ID FETCH-LOGICAL-c407t-4c612e53227ef7286242a2228175036924eb37e9638503cb01d00dcd6c833e4f3
IEDL.DBID DOA
ISSN 1680-7324
1680-7316
IngestDate Thu Jul 04 21:11:11 EDT 2024
Wed Jun 05 05:16:08 EDT 2024
Fri Sep 13 00:01:48 EDT 2024
Fri Aug 23 01:38:40 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c407t-4c612e53227ef7286242a2228175036924eb37e9638503cb01d00dcd6c833e4f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/325df4ca42e94685bb0b9110207e8fcc
PQID 849227340
PQPubID 105744
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_325df4ca42e94685bb0b9110207e8fcc
proquest_miscellaneous_856788052
proquest_journals_849227340
crossref_primary_10_5194_acp_11_705_2011
PublicationCentury 2000
PublicationDate 2011-01-01
PublicationDateYYYYMMDD 2011-01-01
PublicationDate_xml – month: 01
  year: 2011
  text: 2011-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Katlenburg-Lindau
PublicationPlace_xml – name: Katlenburg-Lindau
PublicationTitle Atmospheric chemistry and physics
PublicationYear 2011
Publisher Copernicus GmbH
Copernicus Publications
Publisher_xml – name: Copernicus GmbH
– name: Copernicus Publications
References ref13
ref57
ref12
ref56
ref15
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref36
  doi: 10.5194/acp-10-4403-2010
– ident: ref9
  doi: 10.5194/amt-3-375-2010
– ident: ref34
  doi: 10.5194/acpd-9-7457-2009
– ident: ref20
– ident: ref24
– ident: ref46
  doi: 10.1029/2009JD012308
– ident: ref40
  doi: 10.1029/1999JD901006
– ident: ref11
– ident: ref13
  doi: 10.1029/2005JD006354
– ident: ref18
  doi: 10.1111/j.1600-0889.2009.00421.x
– ident: ref55
  doi: 10.1126/science.959846
– ident: ref31
  doi: 10.5194/acp-7-4419-2007
– ident: ref27
  doi: 10.1021/es901326b
– ident: ref15
  doi: 10.1029/1998JD100031
– ident: ref23
– ident: ref1
  doi: 10.1029/2000GB001382
– ident: ref43
  doi: 10.1029/95JD01641
– ident: ref29
  doi: 10.1175/BAMS-87-3-343
– ident: ref16
– ident: ref41
  doi: 10.1126/science.1137004
– ident: ref12
– ident: ref14
  doi: 10.1029/97GL00523
– ident: ref4
  doi: 10.1029/98GB02265
– ident: ref19
  doi: 10.1038/415626a
– ident: ref38
  doi: 10.1029/2005JD006725
– ident: ref52
  doi: 10.1029/2005JD006878
– ident: ref54
  doi: 10.1016/S1352-2310(00)00461-1
– ident: ref35
  doi: 10.1029/1999JD900102
– ident: ref25
– ident: ref51
– ident: ref58
  doi: 10.1029/2008JD011671
– ident: ref48
– ident: ref21
  doi: 10.1029/2004GB002443
– ident: ref56
  doi: 10.1029/93JD02256
– ident: ref3
  doi: 10.1016/j.atmosenv.2007.09.007
– ident: ref6
  doi: 10.1021/es702413b
– ident: ref32
– ident: ref47
  doi: 10.1017/S0033822200046348
– ident: ref57
  doi: 10.1029/2005JD006003
– ident: ref44
  doi: 10.1029/2005GL024213
– ident: ref30
  doi: 10.1029/93GL00753
– ident: ref2
  doi: 10.1016/j.atmosenv.2007.08.040
– ident: ref17
  doi: 10.1017/S0033822200042284
– ident: ref42
– ident: ref53
  doi: 10.1029/2006JD007930
– ident: ref49
– ident: ref37
  doi: 10.1063/1.4823074
– ident: ref5
  doi: 10.1029/1999JD900818
– ident: ref50
  doi: 10.1016/B978-044451114-0/50016-8
– ident: ref33
  doi: 10.1016/j.atmosenv.2005.11.033
– ident: ref8
  doi: 10.1038/nature05132
– ident: ref45
  doi: 10.1029/2006JD008184
– ident: ref28
  doi: 10.1016/S1352-2310(02)00975-5
– ident: ref7
  doi: 10.3334/CDIAC/00001
– ident: ref22
  doi: 10.1029/2007GL032393
– ident: ref10
– ident: ref26
  doi: 10.1111/j.1600-0889.2006.00244.x
– ident: ref39
  doi: 10.1126/science.1058113
SSID ssj0025014
Score 2.4064555
Snippet Direct quantification of fossil fuel CO2 (CO2ff) in atmospheric samples can be used to examine several carbon cycle and air quality questions. We collected in...
Direct quantification of fossil fuel CO2 (CO2 ff) in atmospheric samples can be used to examine several carbon cycle and air quality questions. We collected in...
Direct quantification of fossil fuel CO sub(2) (CO sub(2)ff) in atmospheric samples can be used to examine several carbon cycle and air quality questions. We...
Direct quantification of fossil fuel CO 2 (CO 2 ff) in atmospheric samples can be used to examine several carbon cycle and air quality questions. We collected...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
StartPage 705
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZpeumlpC_qJi1zKKWHmtWuJdt7CmnoJhTSSxvITegZDFt56_VCfkt-bWZkr0MpFHzwQ5axRtK8v2Hso6wEgahTcKusc1G6Za6R7eQuFJbLYAuRcAuufpSX1-L7jbw5YBf7XBgKq9zviWmjdq0lG_msFssFQbHwmTZkBLD97HTzJ6fyUeRmHWtpPGFP5wSJRynjq4tJ8yLnGWleZc1zKtU0YPyg8CJm2m4otaziMide-Bd7Sij-_2zSifOsjtjzUWSEs4HGL9iBjy9ZdoXSbtslozh8gvN1g6JnunrF7s8muE1oAwT8ULOGsPNrsLozbQTXtHeN86Cjg5SChWdDwQScT40F-nMPt3oLVA6ODGpboEQU0A2-30UPvx9ti1ugMFD4qS0FesW-_QKPGV_QRBh8v0AektfsevXt1_llPtZgyC2qen0uLIpAXuKyr3yoFimdRJPVaE4O0BK1N9TGK0_LGK-t4XPHubOutHVReBGKN-wwttG_ZSC50KW3VGHGCR_E0hjtsJ_CShOE1hn7vB96tRmgNhSqKEQlhVRCXUUhlRRRKWNfiTRTM8LITjfa7laNS04VC-mCsFos_FKUtTSGG9zaUT6ufB2szdjxnrBqXLhbNU2zjMH0FEea3Cg6-naHTSQyeKoE8e6_HRyzZ4P9mY4Tdth3O_8eBZjefEiT8wESq_Br
  priority: 102
  providerName: ProQuest
Title Assessment of fossil fuel carbon dioxide and other anthropogenic trace gas emissions from airborne measurements over Sacramento, California in spring 2009
URI https://www.proquest.com/docview/849227340/abstract/
https://search.proquest.com/docview/856788052
https://doaj.org/article/325df4ca42e94685bb0b9110207e8fcc
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBZteumlpC_qpF3mEEIPNdGuJdt7TEK2obChr9DchJ7FsJGD1wv9Lf21nZG9m5YeeikY_JJtoRl5XppvGDuSlSAQdVrcKutclG6eaxQ7uQuF5TLYQiTcguVVeXktPtzIm99KfdGasAEeeBi4k2ImXRBWi5mfi7KWxnCDExS1nMrXwdr0953KrTE1mloULSNTq6x5TrWZBlAf1FbEibZ3lEtWcZmT8PtDHiXY_r_-yknULPbZk1FHhNOhb0_ZAx-fsWyJ6m3bJS84HMP5qkFdM509Zz9Pd_ia0AYI-KFmBWHjV2B1Z9oIrml_NM6Djg5SzhUeDRUSkIEaC32nrYfveg1U_408aGugzBPQDT7fRQ-3987ENdC6T_iiLa3sin37Du5TvKCJMAR7gUIiL9j14uLr-WU-Fl3ILdp2fS4s6jxe4jyvfKhmKX9Ek5toShHPEs01NL8rT_MWz63hU8e5s660dVF4EYqXbC-20b9iILnQpbdUUsYJH8TcGO3wPYWVJgitM_Z2O_TqbsDWUGiTEJUUUgmNE4VUUkSljJ0RaXbNCBQ7XUBWUSOrqH-xSsYOt4RV40xdq1rMZwTxwzMGu7s40hQ30dG3G2wiUaJT6YeD_9GLQ_Z48EvT9prt9d3Gv0HFpjcT9rBevJ-wR2cXVx8_036x_PRtkjj7F-jP-b4
link.rule.ids 315,786,790,870,2115,12792,21416,27957,27958,33408,33409,33779,33780,43635,43840,74392,74659
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1Na9RAdNB60ItYPzBW23cQ8eDQdDOTZE9Si9tVu73YQm_DfJbAmqxJFvwt_lrfm2RTRBByyCSTCcyb9_3F2FtZCCqiTsGtsuQid3Ouke1wFzKbymAzEesWrC7z5bX4eiNvxticbgyr3NHESKhdY8lGflyK-YxKsaQfNz85NY0i5-rYQeM-eyAy5JyUKL44n_QtcpmRvpWXKacGTUNlHxRZxLG2G0ooK1LJiQP-xZRi7f5_SHPkN4sn7PEoKMLpANl9ds_XT1myQhm3aaMpHN7B2bpCgTOOnrHfp1ORTWgCBPxRtYaw9WuwujVNDa5qflXOg64dxMQrvBvaJOApqiz0rbYebnUH1ASOzGgdUPoJ6Aq_b2sPP-4sih1Q8Cd815bCu-q--QB3eV5Q1TB4fIH8Is_Z9eLz1dmSj50XuEUFr-fCouDjJSJ74UMxi0kkmmxFJ-T2zFFnQx288IS8OLYmPXFp6qzLbZllXoTsBdurm9q_ZCBToXNvqa-MEz6IuTHa4TqZlSYIrRP2frf1ajMU2FComBCUFEIJNRSFUFIEpYR9ItBM06gydnzQtLdqRDSVzaQLwmox83ORl9KY1CBBR6m48GWwNmEHO8CqEV07NR2uhMH0FneanCe69s0Wp0hk69T_4dV_FzhiD5dXqwt18eXy2wF7NFig6XrN9vp269-gCNObw3hQ_wDyte-Z
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ba9RAFB60BfFFvGKsl_Mg4oNh081Mkn2Stnaply5FLfRtmMylBNbJmmTB3-Kv9ZzJbIoIQh4yySSBnDNz7t9h7LUoOYGoU3KrqFJemEWqUOykxuU6E07nPOAWnK-Ks0v-6UpcRUihPqZV7vbEsFGbVpOPfFbxxZygWLKZi1kRFx-W7zc_U2ogRYHW2E3jNtsveSGQwfePT1cXXyfriwJoZH0VVZZSu6YR5wcVGD5TekPlZWUmUpKHf4mogOT_z0YdpM_yPrsX1UY4Gun8gN2y_iFLzlHjbbvgGIc3cLJuUP0Mo0fs99EEuQmtA4cfatbgtnYNWnV168E07a_GWFDeQCjDwrOxaQLyVKNh6JS2cK16oJZw5FTrgYpRQDX4fOct_LjxL_ZAqaDwTWlK9vJD-w5uqr6g8TDGf4GiJI_Z5fL0-8lZGvswpBrNvSHlGtUgK3Dpl9aV81BSoshzdEhB0AItOLTIS0tLGce6zg5NlhltCl3lueUuf8L2fOvtUwYi46qwmrrMGG4dX9S1MvieXIvacaUS9nb36-VmhNuQaKYQlSRSCe0ViVSSRKWEHRNppmmEkx0utN21jMtO5nNhHNeKz-2CF5Wo66zG7R115NJWTuuEHewIK-Pi7eXEagmD6S7-aQqlKG_bLU4RKOSpG8Sz_77gFbuDXCq_fFx9PmB3R3c0Hc_Z3tBt7QvUZ4b6ZeTUPzwG9Tw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessment+of+fossil+fuel+carbon+dioxide+and+other+anthropogenic+trace+gas+emissions+from+airborne+measurements+over+Sacramento%2C+California+in+spring+2009&rft.jtitle=Atmospheric+chemistry+and+physics&rft.au=Turnbull%2C+J+C&rft.au=Karion%2C+A&rft.au=Fischer%2C+M+L&rft.au=Faloona%2C+I&rft.date=2011-01-01&rft.issn=1680-7316&rft.eissn=1680-7324&rft.volume=11&rft.issue=2&rft.spage=705&rft.epage=721&rft_id=info:doi/10.5194%2Facp-11-705-2011&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1680-7324&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1680-7324&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1680-7324&client=summon