EEG-based classification of individuals with neuropsychiatric disorders using deep neural networks: A systematic review of current status and future directions

•Comprehensive review of deep learning studies using EEG signals for neuropsychiatric disorder classification.•Analysis of factors impacting classification performance and guidelines for EEG-based diagnostic tool design.•Emphasis on EEG feature extraction for improved classification and need for fur...

Full description

Saved in:
Bibliographic Details
Published inComputer methods and programs in biomedicine Vol. 240; p. 107683
Main Authors Parsa, Mohsen, Rad, Habib Yousefi, Vaezi, Hadi, Hossein-Zadeh, Gholam-Ali, Setarehdan, Seyed Kamaledin, Rostami, Reza, Rostami, Hana, Vahabie, Abdol-Hossein
Format Journal Article
LanguageEnglish
Published Ireland Elsevier B.V 01.10.2023
Subjects
Online AccessGet full text
ISSN0169-2607
1872-7565
1872-7565
DOI10.1016/j.cmpb.2023.107683

Cover

Loading…
Abstract •Comprehensive review of deep learning studies using EEG signals for neuropsychiatric disorder classification.•Analysis of factors impacting classification performance and guidelines for EEG-based diagnostic tool design.•Emphasis on EEG feature extraction for improved classification and need for further research on interpretable features.•Potential of deep neural networks for accurate neuropsychiatric disorder diagnosis using EEG signals. The use of deep neural networks for electroencephalogram (EEG) classification has rapidly progressed and gained popularity in recent years, but automatic feature extraction from EEG signals remains a challenging task. The classification of neuropsychiatric disorders demands the extraction of neuro-markers for use in automated EEG classification. Numerous advanced deep learning algorithms can be used for this purpose. In this article, we present a comprehensive review of the main factors and parameters that affect the performance of deep neural networks in classifying different neuropsychiatric disorders using EEG signals. We also analyze the EEG features used for improving classification performance. Our analysis includes 82 scientific journal papers that applied deep neural networks for subject-wise classification based on EEG signals. We extracted information on the EEG dataset and types of disorders, deep neural network structures, performance, and hyperparameters. The results show that most studies have focused on clinical classification, achieving an average accuracy of 91.83 ± 7.34, with convolutional neural networks (CNNs) being the most frequently used network architecture and resting-state EEG signals being the most commonly used data type. Additionally, the review reveals that depression (N = 18), Alzheimer's (N = 11), and schizophrenia (N = 11) were studied more frequently than other types of neuropsychiatric disorders. Our review provides insight into the performance of deep neural networks in EEG classification and highlights the importance of EEG feature extraction in improving classification accuracy. By identifying the main factors and parameters that affect deep neural network performance in EEG classification, our review can guide future research in this area. We hope that our findings will encourage further exploration of deep learning methods for EEG classification and contribute to the development of more accurate and effective methods for diagnosing and monitoring neuropsychiatric disorders using EEG signals.
AbstractList The use of deep neural networks for electroencephalogram (EEG) classification has rapidly progressed and gained popularity in recent years, but automatic feature extraction from EEG signals remains a challenging task. The classification of neuropsychiatric disorders demands the extraction of neuro-markers for use in automated EEG classification. Numerous advanced deep learning algorithms can be used for this purpose. In this article, we present a comprehensive review of the main factors and parameters that affect the performance of deep neural networks in classifying different neuropsychiatric disorders using EEG signals. We also analyze the EEG features used for improving classification performance. Our analysis includes 82 scientific journal papers that applied deep neural networks for subject-wise classification based on EEG signals. We extracted information on the EEG dataset and types of disorders, deep neural network structures, performance, and hyperparameters. The results show that most studies have focused on clinical classification, achieving an average accuracy of 91.83 ± 7.34, with convolutional neural networks (CNNs) being the most frequently used network architecture and resting-state EEG signals being the most commonly used data type. Additionally, the review reveals that depression (N = 18), Alzheimer's (N = 11), and schizophrenia (N = 11) were studied more frequently than other types of neuropsychiatric disorders. Our review provides insight into the performance of deep neural networks in EEG classification and highlights the importance of EEG feature extraction in improving classification accuracy. By identifying the main factors and parameters that affect deep neural network performance in EEG classification, our review can guide future research in this area. We hope that our findings will encourage further exploration of deep learning methods for EEG classification and contribute to the development of more accurate and effective methods for diagnosing and monitoring neuropsychiatric disorders using EEG signals.The use of deep neural networks for electroencephalogram (EEG) classification has rapidly progressed and gained popularity in recent years, but automatic feature extraction from EEG signals remains a challenging task. The classification of neuropsychiatric disorders demands the extraction of neuro-markers for use in automated EEG classification. Numerous advanced deep learning algorithms can be used for this purpose. In this article, we present a comprehensive review of the main factors and parameters that affect the performance of deep neural networks in classifying different neuropsychiatric disorders using EEG signals. We also analyze the EEG features used for improving classification performance. Our analysis includes 82 scientific journal papers that applied deep neural networks for subject-wise classification based on EEG signals. We extracted information on the EEG dataset and types of disorders, deep neural network structures, performance, and hyperparameters. The results show that most studies have focused on clinical classification, achieving an average accuracy of 91.83 ± 7.34, with convolutional neural networks (CNNs) being the most frequently used network architecture and resting-state EEG signals being the most commonly used data type. Additionally, the review reveals that depression (N = 18), Alzheimer's (N = 11), and schizophrenia (N = 11) were studied more frequently than other types of neuropsychiatric disorders. Our review provides insight into the performance of deep neural networks in EEG classification and highlights the importance of EEG feature extraction in improving classification accuracy. By identifying the main factors and parameters that affect deep neural network performance in EEG classification, our review can guide future research in this area. We hope that our findings will encourage further exploration of deep learning methods for EEG classification and contribute to the development of more accurate and effective methods for diagnosing and monitoring neuropsychiatric disorders using EEG signals.
The use of deep neural networks for electroencephalogram (EEG) classification has rapidly progressed and gained popularity in recent years, but automatic feature extraction from EEG signals remains a challenging task. The classification of neuropsychiatric disorders demands the extraction of neuro-markers for use in automated EEG classification. Numerous advanced deep learning algorithms can be used for this purpose. In this article, we present a comprehensive review of the main factors and parameters that affect the performance of deep neural networks in classifying different neuropsychiatric disorders using EEG signals. We also analyze the EEG features used for improving classification performance. Our analysis includes 82 scientific journal papers that applied deep neural networks for subject-wise classification based on EEG signals. We extracted information on the EEG dataset and types of disorders, deep neural network structures, performance, and hyperparameters. The results show that most studies have focused on clinical classification, achieving an average accuracy of 91.83 ± 7.34, with convolutional neural networks (CNNs) being the most frequently used network architecture and resting-state EEG signals being the most commonly used data type. Additionally, the review reveals that depression (N = 18), Alzheimer's (N = 11), and schizophrenia (N = 11) were studied more frequently than other types of neuropsychiatric disorders. Our review provides insight into the performance of deep neural networks in EEG classification and highlights the importance of EEG feature extraction in improving classification accuracy. By identifying the main factors and parameters that affect deep neural network performance in EEG classification, our review can guide future research in this area. We hope that our findings will encourage further exploration of deep learning methods for EEG classification and contribute to the development of more accurate and effective methods for diagnosing and monitoring neuropsychiatric disorders using EEG signals.
•Comprehensive review of deep learning studies using EEG signals for neuropsychiatric disorder classification.•Analysis of factors impacting classification performance and guidelines for EEG-based diagnostic tool design.•Emphasis on EEG feature extraction for improved classification and need for further research on interpretable features.•Potential of deep neural networks for accurate neuropsychiatric disorder diagnosis using EEG signals. The use of deep neural networks for electroencephalogram (EEG) classification has rapidly progressed and gained popularity in recent years, but automatic feature extraction from EEG signals remains a challenging task. The classification of neuropsychiatric disorders demands the extraction of neuro-markers for use in automated EEG classification. Numerous advanced deep learning algorithms can be used for this purpose. In this article, we present a comprehensive review of the main factors and parameters that affect the performance of deep neural networks in classifying different neuropsychiatric disorders using EEG signals. We also analyze the EEG features used for improving classification performance. Our analysis includes 82 scientific journal papers that applied deep neural networks for subject-wise classification based on EEG signals. We extracted information on the EEG dataset and types of disorders, deep neural network structures, performance, and hyperparameters. The results show that most studies have focused on clinical classification, achieving an average accuracy of 91.83 ± 7.34, with convolutional neural networks (CNNs) being the most frequently used network architecture and resting-state EEG signals being the most commonly used data type. Additionally, the review reveals that depression (N = 18), Alzheimer's (N = 11), and schizophrenia (N = 11) were studied more frequently than other types of neuropsychiatric disorders. Our review provides insight into the performance of deep neural networks in EEG classification and highlights the importance of EEG feature extraction in improving classification accuracy. By identifying the main factors and parameters that affect deep neural network performance in EEG classification, our review can guide future research in this area. We hope that our findings will encourage further exploration of deep learning methods for EEG classification and contribute to the development of more accurate and effective methods for diagnosing and monitoring neuropsychiatric disorders using EEG signals.
ArticleNumber 107683
Author Rostami, Reza
Vaezi, Hadi
Vahabie, Abdol-Hossein
Rostami, Hana
Rad, Habib Yousefi
Setarehdan, Seyed Kamaledin
Parsa, Mohsen
Hossein-Zadeh, Gholam-Ali
Author_xml – sequence: 1
  givenname: Mohsen
  surname: Parsa
  fullname: Parsa, Mohsen
  organization: School of Electrical and Computer Engineering, College of Engineering, University of Tehran, North Kargar St., P.O. Box 14395/515, Tehran, Iran
– sequence: 2
  givenname: Habib Yousefi
  surname: Rad
  fullname: Rad, Habib Yousefi
  organization: School of Electrical and Computer Engineering, College of Engineering, University of Tehran, North Kargar St., P.O. Box 14395/515, Tehran, Iran
– sequence: 3
  givenname: Hadi
  surname: Vaezi
  fullname: Vaezi, Hadi
  organization: School of Electrical and Computer Engineering, College of Engineering, University of Tehran, North Kargar St., P.O. Box 14395/515, Tehran, Iran
– sequence: 4
  givenname: Gholam-Ali
  surname: Hossein-Zadeh
  fullname: Hossein-Zadeh, Gholam-Ali
  organization: Control and Intelligent Processing Center of Excellence, Faculty of Electrical and Computer Engineering, University of Tehran, North Kargar St., P.O. Box 14395/515, Tehran, Iran
– sequence: 5
  givenname: Seyed Kamaledin
  surname: Setarehdan
  fullname: Setarehdan, Seyed Kamaledin
  organization: Control and Intelligent Processing Center of Excellence, Faculty of Electrical and Computer Engineering, University of Tehran, North Kargar St., P.O. Box 14395/515, Tehran, Iran
– sequence: 6
  givenname: Reza
  surname: Rostami
  fullname: Rostami, Reza
  organization: Faculty of Psychology and Education, University of Tehran, Jalal-Al-e-Ahmed, P.O. Box 14155-6456, Tehran, Iran
– sequence: 7
  givenname: Hana
  surname: Rostami
  fullname: Rostami, Hana
  organization: ACNC, Atieh Clinical Neuroscience Center, Valiasr St., P.O. Box 19697-13663, Tehran, Iran
– sequence: 8
  givenname: Abdol-Hossein
  surname: Vahabie
  fullname: Vahabie, Abdol-Hossein
  email: h.vahabie@ut.ac.ir
  organization: Faculty of Psychology and Education, University of Tehran, Jalal-Al-e-Ahmed, P.O. Box 14155-6456, Tehran, Iran
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37406421$$D View this record in MEDLINE/PubMed
BookMark eNqFks1u1DAUhS1URKeFF2CBvGSTIbbzW7GpqqEgVWIDa8uxb6iniRN87Y7mafqqOE1h0UXx5krWd46vzvEZOXGTA0Les3zLclZ92m_1OHdbnnORLuqqEa_IhjU1z-qyKk_IJkFtxqu8PiVniPs8z3lZVm_IqaiLvCo425CH3e466xSCoXpQiLa3WgU7OTr11Dpj762JakB6sOGWOoh-mvGob60K3mpqLE7egEca0bpf1ADMj5Qa0giHyd_hBb2keMQAYzLW1MO9hcNir6P34ALFoEJEqpyhfQzRQ7L1oJct8C153afn4d3TPCc_v-x-XH3Nbr5ff7u6vMl0kdchKypoOOiiLkrdsrJivGDK1E3ZQVNqDlwJ0wLvOO8L0_SVgKbrWmNUqUXLVCXOycfVd_bT7wgY5GhRwzAoB1NEyRsh2nQKkdAPT2jsRjBy9nZU_ij_hpoAvgLaT4ge-n8Iy-XSnNzLpTm5NCfX5pKoeSbSNjw2Ebyyw8vSz6sUUkApXC9RW3Aa1hilmezL8otncj1Yl77BcAfH_4n_AFnwy1k
CitedBy_id crossref_primary_10_1016_j_molstruc_2024_137628
crossref_primary_10_4108_eetpht_10_5432
crossref_primary_10_1016_j_bbr_2024_115325
crossref_primary_10_1109_JBHI_2024_3405941
crossref_primary_10_1016_j_bspc_2024_106985
crossref_primary_10_1016_j_ocecoaman_2024_107167
crossref_primary_10_1177_20552076251324456
crossref_primary_10_1016_j_measurement_2023_113948
crossref_primary_10_30629_2618_6667_2024_22_3_91_99
Cites_doi 10.1109/JSEN.2021.3080135
10.1016/j.neunet.2019.02.005
10.1016/j.cmpb.2020.105738
10.1038/s41598-021-99717-8
10.3390/app9142870
10.21037/atm-20-5100
10.1088/1741-2552/ab3a0a
10.1038/s41598-021-83350-6
10.3390/electronics10141740
10.1142/S0129065720500379
10.1016/0013-4694(93)90169-V
10.1007/s13534-016-0218-2
10.1142/S012906572050029X
10.3389/fnhum.2020.00284
10.1109/JBHI.2019.2941222
10.1109/ACCESS.2019.2901672
10.1038/s41598-021-91614-4
10.1155/2020/8923906
10.1016/j.heliyon.2021.e07258
10.1109/TIM.2021.3053999
10.1088/1741-2552/ab8b7b
10.1007/s11071-020-05665-9
10.1016/j.clinph.2012.12.003
10.1016/j.artmed.2019.07.004
10.1002/hbm.23730
10.1016/j.jneumeth.2021.109282
10.1109/ACCESS.2021.3056724
10.1038/s41598-019-53751-9
10.1155/2021/5511922
10.3390/s21165456
10.3389/fnhum.2020.00365
10.1016/j.neucom.2019.04.058
10.1515/bmt-2020-0005
10.1109/JSAC.2020.3020654
10.1109/ACCESS.2019.2891390
10.1007/s11571-020-09619-0
10.1142/S0219519417500063
10.1016/j.ijmedinf.2019.103983
10.1088/1741-2552/ac05d8
10.1109/JSEN.2018.2885582
10.1016/j.jneumeth.2012.08.020
10.1109/ACCESS.2020.3037658
10.1016/j.cmpb.2018.04.012
10.3390/jcm8071055
10.1109/JSEN.2020.3026830
10.1016/j.clinph.2007.07.028
10.1016/j.bspc.2021.103049
10.1109/TNSRE.2021.3075737
10.1038/s41746-019-0178-x
10.1109/TIM.2021.3070608
10.1109/JBHI.2017.2650199
10.1109/ACCESS.2021.3054670
10.1177/15500594211018545
10.1016/j.neucom.2018.09.071
10.1142/S0129065716500398
10.1049/htl.2016.0022
10.1016/j.ridd.2013.01.016
10.1111/exsy.12773
10.1177/0954411920966937
10.1109/JBHI.2020.2984238
10.1016/j.jneumeth.2011.01.027
10.1038/s41598-018-21495-7
10.18280/ts.370209
10.3389/fnins.2020.00192
10.1016/j.artmed.2019.07.006
10.1007/s13246-020-00938-4
10.1016/j.cmpb.2021.106116
10.1109/TSC.2019.2962673
10.1007/s10916-019-1345-y
10.1371/journal.pone.0253094
10.1109/ACCESS.2021.3049427
10.1007/s13246-020-00925-9
10.1007/s13246-021-01018-x
10.3389/fnins.2020.00251
10.1109/ACCESS.2020.2971656
10.1109/ACCESS.2020.3011185
10.11591/eei.v9i5.2005
10.1109/ACCESS.2021.3089358
10.1016/j.neunet.2014.09.003
10.1016/j.ijpsycho.2012.05.001
10.1007/s00521-018-3689-5
10.1016/j.asoc.2016.04.041
10.1016/j.jneumeth.2019.04.013
10.1007/s11633-020-1231-6
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright © 2023 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2023 Elsevier B.V.
– notice: Copyright © 2023 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.cmpb.2023.107683
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1872-7565
ExternalDocumentID 37406421
10_1016_j_cmpb_2023_107683
S0169260723003486
Genre Systematic Review
Journal Article
GroupedDBID ---
--K
--M
-~X
.1-
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
LG9
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SBC
SDF
SDG
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
T5K
UHS
WUQ
XPP
Z5R
ZGI
ZY4
~G-
AACTN
ABTAH
AFCTW
AFKWA
AJOXV
AMFUW
RIG
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c407t-46e82ec4745c91561241ad785be85c2e2a3d9e2b22f4d8f63e8bb9dda5c391a63
IEDL.DBID .~1
ISSN 0169-2607
1872-7565
IngestDate Wed Jul 30 10:51:30 EDT 2025
Mon Jul 21 05:57:42 EDT 2025
Thu Apr 24 23:02:30 EDT 2025
Tue Jul 01 02:41:29 EDT 2025
Sat Aug 03 15:33:21 EDT 2024
Tue Aug 26 19:05:08 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Neuro-markers
Recurrent neural network
Brain activity
Conventional neural network
Electroencephalography
Neural network
Language English
License Copyright © 2023 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c407t-46e82ec4745c91561241ad785be85c2e2a3d9e2b22f4d8f63e8bb9dda5c391a63
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Undefined-1
ObjectType-Feature-3
ObjectType-Review-4
content type line 23
PMID 37406421
PQID 2833999943
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2833999943
pubmed_primary_37406421
crossref_primary_10_1016_j_cmpb_2023_107683
crossref_citationtrail_10_1016_j_cmpb_2023_107683
elsevier_sciencedirect_doi_10_1016_j_cmpb_2023_107683
elsevier_clinicalkey_doi_10_1016_j_cmpb_2023_107683
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2023
2023-10-00
2023-Oct
20231001
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: October 2023
PublicationDecade 2020
PublicationPlace Ireland
PublicationPlace_xml – name: Ireland
PublicationTitle Computer methods and programs in biomedicine
PublicationTitleAlternate Comput Methods Programs Biomed
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Tosun (bib0075) 2021; 44
Shen, McFadden, McIntosh (bib0005) 2021; 11
Mumtaz, Qayyum (bib0049) 2019; 132
Ieracitano, Mammone, Bramanti, Hussain, Morabito (bib0032) 2019; 323
Oh, Hagiwara, Raghavendra, Yuvaraj, Arunkumar, Murugappan, Acharya (bib0077) 2020; 32
Mukhtar, Qaisar, Zaguia (bib0029) 2021; 21
Loh, Ooi, Aydemir, Tuncer, Dogan, Rajendra Acharya (bib0045) 2022; 39
Farsi, Siuly, Kabir, Wang (bib0081) 2021; 21
Acharya, Oh, Hagiwara, Tan, Adeli, Subha (bib0036) 2018; 161
Bertè, Lamponi, Calabrò, Bramanti (bib0055) 2014; 29
Guerrero, Parada, Espitia (bib0084) 2021; 7
Thoduparambil, Dominic, Varghese (bib0054) 2020; 43
Chen, Song, Li (bib0020) 2019; 16
Djamal, Ramadhan, Mandasari, Djajasasmita (bib0093) 2020; 9
Ahmadlou, Adeli, Adeli (bib0028) 2012; 85
Ahmadlou, Ahmadi, Rezazade, Azad-Marzabadi (bib0091) 2013; 124
Ke, Chen, Shi, Zhang, Liu, Zhang, Li (bib0046) 2020; 13
Dubreuil-Vall, Ruffini, Camprodon (bib0022) 2020; 14
Dominic, Aswathy, Surekha (bib0050) 2019; 8
Amezquita-Sanchez, Mammone, Morabito, Marino, Adeli (bib0056) 2019; 322
Khan, Yahya, Kamel, Faye (bib0014) 2021; 9
Puthankattil, Joseph (bib0026) 2017; 17
Sankari, Adeli (bib0040) 2011; 197
Aslan, Akin (bib0021) 2020; 37
Singh, Singh, Malhotra (bib0064) 2021; 235
Ay, Yildirim, Talo, Baloglu, Aydin, Puthankattil, Rajendra Acharya (bib0027) 2019; 43
Mokatren, Ansari, Cetin, Leow, Ajilore, Klumpp, Vural (bib0042) 2021; 9
Moghaddari, Zolfy Lighvan, Danishvar (bib0074) 2020; 197
Ortiz, Martinez-Murcia, Luque, Giménez, Morales-Ortega, Ortega (bib0017) 2020; 30
Chen, Song, Li (bib0073) 2019; 356
Huggins, Escudero, Parra, Scally, Anghinah, Vitória Lacerda De Araújo, Basile, Abasolo (bib0058) 2021; 18
Savareh, Bashiri, Hatef, Hatef (bib0011) 2021; 66
Li, La, Wang, Hu, Zhang (bib0048) 2020; 14
Klonowski, Elzbieta Olejarczyk, Stepien (bib0003) 2002; 622
Alhussein, Muhammad, Hossain (bib0092) 2019; 7
Ahmedt-Aristizabal, Fernando, Denman, Robinson, Sridharan, Johnston, Laurens, Fookes (bib0034) 2021; 25
Khare, Bajaj, Rajendra Acharya (bib0039) 2021; 21
Sun, Cao, Zhou, Hussain, Wang, Xue, Xiang (bib0070) 2021; 11
Luo, Tian, Wang, Zhang, Wang, Zhang (bib0071) 2020; 8
Sajedi, Ahmadlou, Vameghi, Gharib, Hemmati (bib0089) 2013; 34
Tudor, Tudor, Tudor (bib0001) 2005; 59
Wikswo, Gevins, Williamson (bib0002) 1993; 87
Lai, Ibrahim, Abdullah, Azman, Abdullah (bib0030) 2021; 9
Khan, Yahya, Kamel, Faye (bib0015) 2021; 29
Schirrmeister, Springenberg, Fiederer, Glasstetter, Eggensperger, Tangermann, Hutter, Burgard, Ball (bib0008) 2017; 38
Mazrooei Rad, Azarnoosh, Ghoshuni, Khalilzadeh (bib0059) 2021; 70
Schmidhuber (bib0007) 2015; 61
Şeker, Özbek, Yener, Özerdem (bib0013) 2021; 206
Vahid, Bluschke, Roessner, Stober, Beste (bib0024) 2019; 8
Ahmadlou, Adeli, Adeli (bib0082) 2012; 211
Haputhanthri, Brihadiswaran, Gunathilaka, Meedeniya, Jayarathna, Jaime, Harshaw (bib0038) 2020; 17
Tawhid, Siuly, Wang, Whittaker, Wang, Zhang (bib0031) 2021; 16
Morabito, Campolo, Mammone, Versaci, Franceschetti, Tagliavini, Sofia, Fatuzzo, Gambardella, Labate, Mumoli, Tripodi, Gasparini, Cianci, Sueri, Ferlazzo, Aguglia (bib0016) 2017; 27
Amini, Pedram, Moradi, Ouchani (bib0035) 2021; 2021
Boshra, Ruiter, DeMatteo, Reilly, Connolly (bib0019) 2019; 9
Chaibub Neto, Pratap, Perumal, Tummalacherla, Snyder, Bot, Trister, Friend, Mangravite, Omberg (bib0041) 2019; 2
Duan, Duan, Qiao, Sha, Qi, Zhang, Huang, Huang, Wang (bib0052) 2020; 14
Padma Shri, Sriraam (bib0080) 2016; 46
Oh, Vicnesh, Ciaccio, Yuvaraj, Rajendra Acharya (bib0069) 2019; 9
Saloni Dattani, Lucas Rodés-Guirao, Hannah Ritchie and Max Roser (2021) - “Mental Health”. Published online at OurWorldInData.org. Retrieved from
Paulraj, Subramaniam, Yaccob, Hamid, Hema (bib0090) 2013; 4
Van Putten, Olbrich, Arns (bib0010) 2018; 8
Al-Ezzi, Yahya, Kamel, Faye, Alsaih, Gunaseli (bib0083) 2021; 9
Barry, Clarke, Johnstone, Magee, Rushby (bib0012) 2007; 118
Bi, Wang (bib0061) 2019; 114
Muhammad, Hossain, Kumar (bib0085) 2021; 39
Khare, Bajaj, Rajendra Acharya (bib0065) 2021; 70
Lee, Hussein, Ward, Wang, McKeown (bib0078) 2021; 361
Li, Zhang, Zhu, Mao, Sun, Wang, Xia, Hu (bib0044) 2019; 99
Saeedi, Saeedi, Maghsoudi, Shalbaf (bib0053) 2021; 15
Wan, Huang, Zhang, Zhou, Yang, Zhong (bib0025) 2020; 8
Zhang, Silva, Ohata, Medeiros, Filho (bib0037) 2020; 14
Holzinger, Kieseberg, Weippl, Tjoa (bib0006) 2018
[Online Resource].
Martinez-Murcia, Ortiz, Gorriz, Ramirez, Lopez-Abarejo, Lopez-Zamora, Luque (bib0018) 2020; 30
Triggiani, Bevilacqua, Brunetti, Lizio, Tattoli, Cassano, Soricelli, Ferri, Nobili, Gesualdo, Barulli, Tortelli, Cardinali, Giannini, Spagnolo, Armenise, Stocchi, Buenza, Scianatico, Logroscino, Lacidogna, Orzi, Buttinelli, Giubilei, Del Percio, Frisoni, Babiloni (bib0057) 2017; 10
Lai, Ibrahim, Hamid, Abdullah, Azman, Abdullah (bib0033) 2020; 2020
Dang, Gao, Sun, Li, Cai, Grebogi (bib0047) 2020; 102
Wen, Wen, Zhou, Zhou, Li, Li, Zhang, Zhang, Li, Li, Wang, Li, Bian, Yin, Xu, Xu (bib0062) 2020; 17
Mohammadi, Khaleghi, Nasrabadi, Rafieivand, Begol, Zarafshan (bib0072) 2016; 6
Kaushik, Gupta, Roy, Dogra (bib0009) 2019; 19
Xu, Wang, Sun, Zhang, Wu, Yang, Xue, Cheng (bib0076) 2020; 8
Seal, Bajpai, Agnihotri, Yazidi, Herrera-Viedma, Krejcar (bib0023) 2021; 70
Shalbaf, Bagherzadeh, Maghsoudi (bib0066) 2020; 43
Fawaz, Sim, Tan (bib0043) 2020; 8
Thanjavur, Babul, Foran, Bielecki, Gilchrist, Hristopulos, Brucar, Virji-Babul (bib0086) 2021; 11
Shahin, Ahmed, Hamida, Mulaffer, Glos, Penzel (bib0088) 2017; 21
Uyulan, Salle, Erguzel, Lynn, Blier, Knott, Adamson, Zelka, Tarhan (bib0051) 2022; 53
Phang, Noman, Hussain, Ting, Ombao (bib0063) 2020; 24
Loh, Ooi, Palmer, Barua, Dogan, Tuncer, Baygin, Rajendra Acharya (bib0079) 2021; 10
Jahmunah, Oh, Rajinikanth, Ciaccio, Cheong, Arunkumar, Rajendra Acharya (bib0067) 2019; 100
Chang, Li, Tian, Bo, Zhang, Xiong, Wang (bib0068) 2021
Lazar, Jayapathy, Torrents-Barrena, Mol, Mohanalin, Puig (bib0060) 2016; 3
Amin, Hossain, Muhammad, Alhussein, Rahman (bib0087) 2019; 7
Schmidhuber (10.1016/j.cmpb.2023.107683_bib0007) 2015; 61
Thoduparambil (10.1016/j.cmpb.2023.107683_bib0054) 2020; 43
Mazrooei Rad (10.1016/j.cmpb.2023.107683_bib0059) 2021; 70
Ke (10.1016/j.cmpb.2023.107683_bib0046) 2020; 13
Mukhtar (10.1016/j.cmpb.2023.107683_bib0029) 2021; 21
Moghaddari (10.1016/j.cmpb.2023.107683_bib0074) 2020; 197
Shen (10.1016/j.cmpb.2023.107683_bib0005) 2021; 11
Phang (10.1016/j.cmpb.2023.107683_bib0063) 2020; 24
Muhammad (10.1016/j.cmpb.2023.107683_bib0085) 2021; 39
Khare (10.1016/j.cmpb.2023.107683_bib0065) 2021; 70
Dubreuil-Vall (10.1016/j.cmpb.2023.107683_bib0022) 2020; 14
Loh (10.1016/j.cmpb.2023.107683_bib0045) 2022; 39
Wen (10.1016/j.cmpb.2023.107683_bib0062) 2020; 17
Al-Ezzi (10.1016/j.cmpb.2023.107683_bib0083) 2021; 9
Amin (10.1016/j.cmpb.2023.107683_bib0087) 2019; 7
Haputhanthri (10.1016/j.cmpb.2023.107683_bib0038) 2020; 17
Kaushik (10.1016/j.cmpb.2023.107683_bib0009) 2019; 19
Uyulan (10.1016/j.cmpb.2023.107683_bib0051) 2022; 53
Huggins (10.1016/j.cmpb.2023.107683_bib0058) 2021; 18
Lee (10.1016/j.cmpb.2023.107683_bib0078) 2021; 361
Mumtaz (10.1016/j.cmpb.2023.107683_bib0049) 2019; 132
Ieracitano (10.1016/j.cmpb.2023.107683_bib0032) 2019; 323
Dang (10.1016/j.cmpb.2023.107683_bib0047) 2020; 102
Shahin (10.1016/j.cmpb.2023.107683_bib0088) 2017; 21
Holzinger (10.1016/j.cmpb.2023.107683_bib0006) 2018
Morabito (10.1016/j.cmpb.2023.107683_bib0016) 2017; 27
Aslan (10.1016/j.cmpb.2023.107683_bib0021) 2020; 37
Lazar (10.1016/j.cmpb.2023.107683_bib0060) 2016; 3
Li (10.1016/j.cmpb.2023.107683_bib0044) 2019; 99
Zhang (10.1016/j.cmpb.2023.107683_bib0037) 2020; 14
Farsi (10.1016/j.cmpb.2023.107683_bib0081) 2021; 21
Schirrmeister (10.1016/j.cmpb.2023.107683_bib0008) 2017; 38
Ahmadlou (10.1016/j.cmpb.2023.107683_bib0082) 2012; 211
Tawhid (10.1016/j.cmpb.2023.107683_bib0031) 2021; 16
Dominic (10.1016/j.cmpb.2023.107683_bib0050) 2019; 8
Seal (10.1016/j.cmpb.2023.107683_bib0023) 2021; 70
Mokatren (10.1016/j.cmpb.2023.107683_bib0042) 2021; 9
Wan (10.1016/j.cmpb.2023.107683_bib0025) 2020; 8
Chen (10.1016/j.cmpb.2023.107683_bib0073) 2019; 356
Djamal (10.1016/j.cmpb.2023.107683_bib0093) 2020; 9
Barry (10.1016/j.cmpb.2023.107683_bib0012) 2007; 118
Tosun (10.1016/j.cmpb.2023.107683_bib0075) 2021; 44
Khan (10.1016/j.cmpb.2023.107683_bib0015) 2021; 29
Lai (10.1016/j.cmpb.2023.107683_bib0033) 2020; 2020
Chang (10.1016/j.cmpb.2023.107683_bib0068) 2021
Paulraj (10.1016/j.cmpb.2023.107683_bib0090) 2013; 4
Sajedi (10.1016/j.cmpb.2023.107683_bib0089) 2013; 34
Amini (10.1016/j.cmpb.2023.107683_bib0035) 2021; 2021
Khare (10.1016/j.cmpb.2023.107683_bib0039) 2021; 21
Ay (10.1016/j.cmpb.2023.107683_bib0027) 2019; 43
Fawaz (10.1016/j.cmpb.2023.107683_bib0043) 2020; 8
Amezquita-Sanchez (10.1016/j.cmpb.2023.107683_bib0056) 2019; 322
Ahmedt-Aristizabal (10.1016/j.cmpb.2023.107683_bib0034) 2021; 25
Duan (10.1016/j.cmpb.2023.107683_bib0052) 2020; 14
Bertè (10.1016/j.cmpb.2023.107683_bib0055) 2014; 29
Mohammadi (10.1016/j.cmpb.2023.107683_bib0072) 2016; 6
Xu (10.1016/j.cmpb.2023.107683_bib0076) 2020; 8
Ortiz (10.1016/j.cmpb.2023.107683_bib0017) 2020; 30
Shalbaf (10.1016/j.cmpb.2023.107683_bib0066) 2020; 43
Bi (10.1016/j.cmpb.2023.107683_bib0061) 2019; 114
Luo (10.1016/j.cmpb.2023.107683_bib0071) 2020; 8
Oh (10.1016/j.cmpb.2023.107683_bib0077) 2020; 32
Triggiani (10.1016/j.cmpb.2023.107683_bib0057) 2017; 10
Alhussein (10.1016/j.cmpb.2023.107683_bib0092) 2019; 7
Padma Shri (10.1016/j.cmpb.2023.107683_bib0080) 2016; 46
Vahid (10.1016/j.cmpb.2023.107683_bib0024) 2019; 8
Acharya (10.1016/j.cmpb.2023.107683_bib0036) 2018; 161
Sun (10.1016/j.cmpb.2023.107683_bib0070) 2021; 11
Van Putten (10.1016/j.cmpb.2023.107683_bib0010) 2018; 8
Jahmunah (10.1016/j.cmpb.2023.107683_bib0067) 2019; 100
Lai (10.1016/j.cmpb.2023.107683_bib0030) 2021; 9
Wikswo (10.1016/j.cmpb.2023.107683_bib0002) 1993; 87
10.1016/j.cmpb.2023.107683_bib0004
Chen (10.1016/j.cmpb.2023.107683_bib0020) 2019; 16
Chaibub Neto (10.1016/j.cmpb.2023.107683_bib0041) 2019; 2
Puthankattil (10.1016/j.cmpb.2023.107683_bib0026) 2017; 17
Savareh (10.1016/j.cmpb.2023.107683_bib0011) 2021; 66
Loh (10.1016/j.cmpb.2023.107683_bib0079) 2021; 10
Martinez-Murcia (10.1016/j.cmpb.2023.107683_bib0018) 2020; 30
Tudor (10.1016/j.cmpb.2023.107683_bib0001) 2005; 59
Ahmadlou (10.1016/j.cmpb.2023.107683_bib0028) 2012; 85
Saeedi (10.1016/j.cmpb.2023.107683_bib0053) 2021; 15
Oh (10.1016/j.cmpb.2023.107683_bib0069) 2019; 9
Boshra (10.1016/j.cmpb.2023.107683_bib0019) 2019; 9
Khan (10.1016/j.cmpb.2023.107683_bib0014) 2021; 9
Li (10.1016/j.cmpb.2023.107683_bib0048) 2020; 14
Singh (10.1016/j.cmpb.2023.107683_bib0064) 2021; 235
Şeker (10.1016/j.cmpb.2023.107683_bib0013) 2021; 206
Klonowski (10.1016/j.cmpb.2023.107683_bib0003) 2002; 622
Thanjavur (10.1016/j.cmpb.2023.107683_bib0086) 2021; 11
Guerrero (10.1016/j.cmpb.2023.107683_bib0084) 2021; 7
Ahmadlou (10.1016/j.cmpb.2023.107683_bib0091) 2013; 124
Sankari (10.1016/j.cmpb.2023.107683_bib0040) 2011; 197
References_xml – volume: 206
  year: 2021
  ident: bib0013
  article-title: Complexity of EEG dynamics for early diagnosis of Alzheimer's disease using permutation entropy neuromarker
  publication-title: Comput. Methods Prog. Biomed.
– volume: 9
  start-page: 17341
  year: 2019
  ident: bib0019
  article-title: Neurophysiological correlates of concussion: deep learning for clinical assessment
  publication-title: Sci. Rep.
– volume: 361
  year: 2021
  ident: bib0078
  article-title: A convolutional-recurrent neural network approach to resting-state EEG classification in Parkinson's disease
  publication-title: J. Neurosci. Methods
– volume: 9
  start-page: 8835
  year: 2021
  end-page: 8846
  ident: bib0014
  article-title: Automated diagnosis of major depressive disorder using brain effective connectivity and 3d convolutional neural network
  publication-title: IEEE Access
– volume: 59
  start-page: 307
  year: 2005
  end-page: 313
  ident: bib0001
  article-title: [H
  publication-title: Acta Med. Croat. Cas. Hravatske Akad. Med. Znan.
– volume: 30
  year: 2020
  ident: bib0018
  article-title: EEG connectivity analysis using denoising autoencoders for the detection of dyslexia
  publication-title: Int. J. Neural Syst.
– volume: 17
  year: 2020
  ident: bib0062
  article-title: Resting-state EEG signal classification of amnestic mild cognitive impairment with type 2 diabetes mellitus based on multispectral image and convolutional neural network
  publication-title: J. Neural Eng.
– volume: 14
  year: 2020
  ident: bib0052
  article-title: Machine learning approaches for MDD detection and emotion decoding using EEG signals
  publication-title: Front. Hum. Neurosci.
– volume: 323
  start-page: 96
  year: 2019
  end-page: 107
  ident: bib0032
  article-title: A convolutional neural network approach for classification of dementia stages based on 2D-spectral representation of EEG recordings
  publication-title: Neurocomputing
– volume: 8
  year: 2019
  ident: bib0024
  article-title: Deep learning based on event-related EEG differentiates children with ADHD from healthy controls
  publication-title: J. Clin. Med.
– volume: 197
  year: 2020
  ident: bib0074
  article-title: Diagnose ADHD disorder in children using convolutional neural network based on continuous mental task EEG
  publication-title: Comput. Methods Prog. Biomed.
– volume: 197
  start-page: 165
  year: 2011
  end-page: 170
  ident: bib0040
  article-title: Probabilistic neural networks for diagnosis of Alzheimer's disease using conventional and wavelet coherence
  publication-title: J. Neurosci. Methods
– volume: 24
  start-page: 1333
  year: 2020
  end-page: 1343
  ident: bib0063
  article-title: A multi-domain connectome convolutional neural network for identifying schizophrenia from EEG connectivity patterns
  publication-title: IEEE J. Biomed. Health Inform.
– volume: 622
  start-page: 155
  year: 2002
  end-page: 162
  ident: bib0003
  publication-title: Complexity of EEG‐signal in Time Domain‐Possible Biomedical Application
– volume: 61
  start-page: 85
  year: 2015
  end-page: 117
  ident: bib0007
  article-title: Deep learning in neural networks: an overview
  publication-title: Neural. Netw.
– volume: 132
  year: 2019
  ident: bib0049
  article-title: A deep learning framework for automatic diagnosis of unipolar depression
  publication-title: Int. J. Med. Inform.
– volume: 235
  start-page: 167
  year: 2021
  end-page: 184
  ident: bib0064
  article-title: Spectral features based convolutional neural network for accurate and prompt identification of schizophrenic patients
  publication-title: Proc. Inst. Mech. Eng. Part H J. Eng. Med.
– volume: 6
  start-page: 66
  year: 2016
  end-page: 73
  ident: bib0072
  article-title: EEG classification of ADHD and normal children using non-linear features and neural network
  publication-title: Biomed. Eng. Lett.
– reference: Saloni Dattani, Lucas Rodés-Guirao, Hannah Ritchie and Max Roser (2021) - “Mental Health”. Published online at OurWorldInData.org. Retrieved from:
– volume: 11
  start-page: 12353
  year: 2021
  ident: bib0086
  article-title: Recurrent neural network-based acute concussion classifier using raw resting state EEG data
  publication-title: Sci. Rep.
– volume: 43
  start-page: 1349
  year: 2020
  end-page: 1360
  ident: bib0054
  article-title: EEG-based deep learning model for the automatic detection of clinical depression
  publication-title: Phys. Eng. Sci. Med.
– volume: 2021
  year: 2021
  ident: bib0035
  article-title: Diagnosis of Alzheimer's disease by time-dependent power spectrum descriptors and convolutional neural network using EEG signal
  publication-title: Comput. Math. Methods Med.
– volume: 14
  start-page: 192
  year: 2020
  ident: bib0048
  article-title: A deep learning approach for mild depression recognition based on functional connectivity using electroencephalography
  publication-title: Front. Neurosci.
– volume: 11
  start-page: 4706
  year: 2021
  ident: bib0070
  article-title: A hybrid deep neural network for classification of schizophrenia using EEG data
  publication-title: Sci. Rep.
– volume: 25
  start-page: 69
  year: 2021
  end-page: 76
  ident: bib0034
  article-title: Identification of children at risk of schizophrenia via deep learning and EEG responses
  publication-title: IEEE J. Biomed. Health Inform.
– volume: 3
  start-page: 230
  year: 2016
  end-page: 238
  ident: bib0060
  article-title: Fuzzy-entropy threshold based on a complex wavelet denoising technique to diagnose Alzheimer disease
  publication-title: Healthc. Technol. Lett.
– volume: 16
  year: 2021
  ident: bib0031
  article-title: A spectrogram image based intelligent technique for automatic detection of autism spectrum disorder from EEG
  publication-title: PLoS One
– volume: 39
  year: 2022
  ident: bib0045
  article-title: Decision support system for major depression detection using spectrogram and convolution neural network with EEG signals
  publication-title: Expert Syst.
– volume: 21
  start-page: 3552
  year: 2021
  end-page: 3560
  ident: bib0081
  article-title: Classification of alcoholic EEG signals using a deep learning method
  publication-title: IEEE Sens. J.
– volume: 9
  start-page: 86899
  year: 2021
  end-page: 86913
  ident: bib0083
  article-title: Severity assessment of social anxiety disorder using deep learning models on brain effective connectivity
  publication-title: IEEE Access
– year: 2018
  ident: bib0006
  article-title: Current Advances, Trends and Challenges of Machine Learning and Knowledge Extraction: From Machine Learning to Explainable AI
– volume: 29
  start-page: 796
  year: 2021
  end-page: 808
  ident: bib0015
  article-title: Effective connectivity in default mode network for alcoholism diagnosis
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 356
  start-page: 83
  year: 2019
  end-page: 96
  ident: bib0073
  article-title: A deep learning framework for identifying children with ADHD using an EEG-based brain network
  publication-title: Neurocomputing
– volume: 30
  year: 2020
  ident: bib0017
  article-title: Dyslexia diagnosis by EEG temporal and spectral descriptors: an anomaly detection approach
  publication-title: Int. J. Neural Syst.
– volume: 53
  start-page: 24
  year: 2022
  end-page: 36
  ident: bib0051
  article-title: Depression diagnosis modeling with advanced computational methods: frequency-domain EMVAR and deep learning
  publication-title: Clin. EEG Neurosci.
– volume: 100
  year: 2019
  ident: bib0067
  article-title: Automated detection of schizophrenia using nonlinear signal processing methods
  publication-title: Artif. Intell. Med.
– volume: 9
  year: 2019
  ident: bib0069
  article-title: Deep convolutional neural network model for automated diagnosis of schizophrenia using EEG signals
  publication-title: Appl. Sci.
– volume: 9
  start-page: 1890
  year: 2020
  end-page: 1898
  ident: bib0093
  article-title: Identification of post-stroke EEG signal using wavelet and convolutional neural networks
  publication-title: Bull. Electr. Eng. Inform.
– volume: 21
  start-page: 17017
  year: 2021
  end-page: 17024
  ident: bib0039
  article-title: PDCNNet: an automatic framework for the detection of Parkinson's disease using EEG signals
  publication-title: IEEE Sens J
– volume: 124
  start-page: 1122
  year: 2013
  end-page: 1131
  ident: bib0091
  article-title: Global organization of functional brain connectivity in methamphetamine abusers
  publication-title: Clin. Neurophysiol.
– volume: 14
  start-page: 365
  year: 2020
  ident: bib0037
  article-title: Bi-dimensional approach based on transfer learning for alcoholism pre-disposition classification via EEG signals
  publication-title: Front. Hum. Neurosci.
– volume: 8
  year: 2018
  ident: bib0010
  article-title: Predicting sex from brain rhythms with deep learning
  publication-title: Sci. Rep.
– reference: . [Online Resource].
– volume: 8
  start-page: 30332
  year: 2020
  end-page: 30342
  ident: bib0025
  article-title: HybridEEGNet: a convolutional neural network for EEG feature learning and depression discrimination
  publication-title: IEEE Access
– volume: 8
  start-page: 874
  year: 2020
  ident: bib0076
  article-title: Using a deep recurrent neural network with EEG signal to detect Parkinson's disease
  publication-title: Ann. Transl. Med.
– volume: 46
  start-page: 441
  year: 2016
  end-page: 451
  ident: bib0080
  article-title: Spectral entropy feature subset selection using SEPCOR to detect alcoholic impact on gamma sub band visual event related potentials of multichannel electroencephalograms (EEG)
  publication-title: Appl. Soft Comput. J.
– volume: 322
  start-page: 88
  year: 2019
  end-page: 95
  ident: bib0056
  article-title: A novel methodology for automated differential diagnosis of mild cognitive impairment and the Alzheimer's disease using EEG signals
  publication-title: J. Neurosci. Methods
– volume: 17
  start-page: 837
  year: 2020
  end-page: 854
  ident: bib0038
  article-title: Integration of facial thermography in EEG-based classification of ASD
  publication-title: Int. J. Autom. Comput.
– volume: 13
  start-page: 696
  year: 2020
  end-page: 708
  ident: bib0046
  article-title: Improving brain E-health services via high-performance EEG classification with grouping bayesian optimization
  publication-title: IEEE Trans. Serv. Comput.
– volume: 2020
  year: 2020
  ident: bib0033
  article-title: Detection of moderate traumatic brain injury from resting-state eye-closed electroencephalography
  publication-title: Comput. Intell. Neurosci.
– volume: 19
  start-page: 2634
  year: 2019
  end-page: 2641
  ident: bib0009
  article-title: EEG-based age and gender prediction using deep BLSTM-LSTM network model
  publication-title: IEEE Sens. J.
– volume: 15
  start-page: 239
  year: 2021
  end-page: 252
  ident: bib0053
  article-title: Major depressive disorder diagnosis based on effective connectivity in EEG signals: a convolutional neural network and long short-term memory approach
  publication-title: Cogn. Neurodyn.
– volume: 70
  start-page: 1
  year: 2021
  end-page: 13
  ident: bib0023
  article-title: DeprNet: a deep convolution neural network framework for detecting depression using EEG
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 2
  start-page: 1
  year: 2019
  end-page: 6
  ident: bib0041
  article-title: Detecting the impact of subject characteristics on machine learning-based diagnostic applications
  publication-title: Npj Digit. Med.
– volume: 9
  start-page: 24946
  year: 2021
  end-page: 24964
  ident: bib0030
  article-title: Convolutional neural network utilizing error-correcting output codes support vector machine for classification of non-severe traumatic brain injury from electroencephalogram signal
  publication-title: IEEE Access
– volume: 27
  year: 2017
  ident: bib0016
  article-title: Deep learning representation from electroencephalography of early-stage Creutzfeldt-Jakob disease and features for differentiation from rapidly progressive dementia
  publication-title: Int. J. Neural Syst.
– volume: 8
  start-page: 464
  year: 2019
  end-page: 468
  ident: bib0050
  article-title: Deep learning in computer-aided diagnosis of MDD
  publication-title: Int. J. Innovat. Technol. Explor. Eng.
– volume: 21
  start-page: 1546
  year: 2017
  end-page: 1553
  ident: bib0088
  article-title: Deep learning and insomnia: assisting clinicians with their diagnosis
  publication-title: IEEE J. Biomed. Health Inform.
– volume: 43
  start-page: 1229
  year: 2020
  end-page: 1239
  ident: bib0066
  article-title: Transfer learning with deep convolutional neural network for automated detection of schizophrenia from EEG signals
  publication-title: Phys. Eng. Sci. Med.
– volume: 34
  start-page: 1388
  year: 2013
  end-page: 1396
  ident: bib0089
  article-title: Linear and nonlinear analysis of brain dynamics in children with cerebral palsy
  publication-title: Res. Dev. Disabil.
– volume: 4
  start-page: 204
  year: 2013
  end-page: 212
  ident: bib0090
  article-title: EEG based detection of conductive and sensorineural hearing loss using artificial neural networks
  publication-title: J. Next Gener. Inf. Technol.
– volume: 11
  start-page: 1
  year: 2021
  end-page: 9
  ident: bib0005
  article-title: Signal complexity indicators of health status in clinical EEG
  publication-title: Sci. Rep.
– volume: 14
  year: 2020
  ident: bib0022
  article-title: Deep learning convolutional neural networks discriminate adult ADHD from healthy individuals on the basis of event-related spectral EEG
  publication-title: Front. Neurosci.
– volume: 70
  year: 2021
  ident: bib0065
  article-title: SPWVD-CNN for automated detection of schizophrenia patients using EEG signals
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 114
  start-page: 119
  year: 2019
  end-page: 135
  ident: bib0061
  article-title: Early Alzheimer's disease diagnosis based on EEG spectral images using deep learning
  publication-title: Neural Netw.
– volume: 7
  year: 2021
  ident: bib0084
  article-title: EEG signal analysis using classification techniques: logistic regression, artificial neural networks, support vector machines, and convolutional neural networks
  publication-title: Heliyon
– volume: 7
  start-page: 10745
  year: 2019
  end-page: 10753
  ident: bib0087
  article-title: Cognitive smart healthcare for pathology detection and monitoring
  publication-title: IEEE Access
– year: 2021
  ident: bib0068
  article-title: Classification of first-episode schizophrenia, chronic schizophrenia and healthy control based on brain network of mismatch negativity by graph neural network
  publication-title: Proceedings of the IEEE Transactions on Neural Systems and Rehabilitation Engineering : A Publication of the IEEE Engineering in Medicine and Biology Society
– volume: 44
  start-page: 693
  year: 2021
  end-page: 702
  ident: bib0075
  article-title: Effects of spectral features of EEG signals recorded with different channels and recording statuses on ADHD classification with deep learning
  publication-title: Phys. Eng. Sci. Med.
– volume: 161
  start-page: 103
  year: 2018
  end-page: 113
  ident: bib0036
  article-title: Automated EEG-based screening of depression using deep convolutional neural network
  publication-title: Comput. Methods Prog. Biomed.
– volume: 21
  year: 2021
  ident: bib0029
  article-title: Deep convolutional neural network regularization for alcoholism detection using EEG signals
  publication-title: Sensors
– volume: 37
  start-page: 235
  year: 2020
  end-page: 244
  ident: bib0021
  article-title: Automatic detection of schizophrenia by applying deep learning over spectrogram images of EEG signals
  publication-title: Trait. Du Signal
– volume: 18
  year: 2021
  ident: bib0058
  article-title: Deep learning of resting-state electroencephalogram signals for three-class classification of Alzheimer's disease, mild cognitive impairment and healthy ageing
  publication-title: J. Neural Eng.
– volume: 7
  start-page: 27781
  year: 2019
  end-page: 27788
  ident: bib0092
  article-title: EEG pathology detection based on deep learning
  publication-title: IEEE Access
– volume: 66
  start-page: 275
  year: 2021
  end-page: 284
  ident: bib0011
  article-title: Prediction of salivary cortisol level by electroencephalography features
  publication-title: Biomed. Tech.
– volume: 29
  start-page: 57
  year: 2014
  end-page: 65
  ident: bib0055
  article-title: Elman neural network for the early identification of cognitive impairment in Alzheimer's disease
  publication-title: Funct. Neurol.
– volume: 39
  start-page: 603
  year: 2021
  end-page: 610
  ident: bib0085
  article-title: EEG-based pathology detection for home health monitoring
  publication-title: IEEE J. Sel. Areas Commun.
– volume: 10
  year: 2021
  ident: bib0079
  article-title: Gaborpdnet: gabor transformation and deep neural network for Parkinson's disease detection using EEG signals
  publication-title: Electronics
– volume: 8
  start-page: 135811
  year: 2020
  end-page: 135820
  ident: bib0043
  article-title: Encoding rich frequencies for classification of stroke patients EEG signals
  publication-title: IEEE Access
– volume: 32
  start-page: 10927
  year: 2020
  end-page: 10933
  ident: bib0077
  article-title: A deep learning approach for Parkinson's disease diagnosis from EEG signals
  publication-title: Neural Comput. Appl.
– volume: 38
  start-page: 5391
  year: 2017
  end-page: 5420
  ident: bib0008
  article-title: Deep learning with convolutional neural networks for EEG decoding and visualization
  publication-title: Hum. Brain Mapp.
– volume: 43
  year: 2019
  ident: bib0027
  article-title: Automated depression detection using deep representation and sequence learning with EEG signals
  publication-title: J. Med. Syst.
– volume: 211
  start-page: 203
  year: 2012
  end-page: 209
  ident: bib0082
  article-title: Fuzzy synchronization likelihood-wavelet methodology for diagnosis of autism spectrum disorder
  publication-title: J. Neurosci. Methods
– volume: 87
  start-page: 1
  year: 1993
  end-page: 9
  ident: bib0002
  article-title: The future of the EEG and MEG
  publication-title: Electroencephalogr. Clin. Neurophysiol.
– volume: 8
  start-page: 213078
  year: 2020
  end-page: 213093
  ident: bib0071
  article-title: Biomarkers for prediction of schizophrenia: insights from resting-state EEG microstates
  publication-title: IEEE Access
– volume: 118
  start-page: 2765
  year: 2007
  end-page: 2773
  ident: bib0012
  article-title: EEG differences between eyes-closed and eyes-open resting conditions
  publication-title: Clin. Neurophysiol.
– volume: 70
  year: 2021
  ident: bib0059
  article-title: Diagnosis of mild Alzheimer's disease by EEG and ERP signals using linear and nonlinear classifiers
  publication-title: Biomed. Signal Process. Control
– volume: 99
  year: 2019
  ident: bib0044
  article-title: Depression recognition using machine learning methods with different feature generation strategies
  publication-title: Artif. Intell. Med.
– volume: 17
  year: 2017
  ident: bib0026
  article-title: Half-wave segment feature extraction of EEG signals of patients with depression and performance evaluation of neural network classifiers
  publication-title: J. Mech. Med. Biol.
– volume: 9
  start-page: 19053
  year: 2021
  end-page: 19065
  ident: bib0042
  article-title: EEG classification by factoring in sensor spatial configuration
  publication-title: IEEE Access
– volume: 10
  year: 2017
  ident: bib0057
  article-title: Classification of healthy subjects and Alzheimer's disease patients with dementia from cortical sources of resting state EEG rhythms: a study using artificial neural networks
  publication-title: Front. Neurosci.
– volume: 16
  year: 2019
  ident: bib0020
  article-title: Use of deep learning to detect personalized spatial-frequency abnormalities in EEGs of children with ADHD
  publication-title: J. Neural Eng.
– volume: 85
  start-page: 206
  year: 2012
  end-page: 211
  ident: bib0028
  article-title: Fractality analysis of frontal brain in major depressive disorder
  publication-title: Int. J. Psychophysiol.
– volume: 102
  start-page: 667
  year: 2020
  end-page: 677
  ident: bib0047
  article-title: Multilayer brain network combined with deep convolutional neural network for detecting major depressive disorder
  publication-title: Nonlinear Dyn.
– volume: 21
  start-page: 17017
  issue: 15
  year: 2021
  ident: 10.1016/j.cmpb.2023.107683_bib0039
  article-title: PDCNNet: an automatic framework for the detection of Parkinson's disease using EEG signals
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2021.3080135
– volume: 114
  start-page: 119
  year: 2019
  ident: 10.1016/j.cmpb.2023.107683_bib0061
  article-title: Early Alzheimer's disease diagnosis based on EEG spectral images using deep learning
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2019.02.005
– volume: 197
  year: 2020
  ident: 10.1016/j.cmpb.2023.107683_bib0074
  article-title: Diagnose ADHD disorder in children using convolutional neural network based on continuous mental task EEG
  publication-title: Comput. Methods Prog. Biomed.
  doi: 10.1016/j.cmpb.2020.105738
– volume: 11
  start-page: 1
  issue: 1
  year: 2021
  ident: 10.1016/j.cmpb.2023.107683_bib0005
  article-title: Signal complexity indicators of health status in clinical EEG
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-99717-8
– volume: 9
  issue: 14
  year: 2019
  ident: 10.1016/j.cmpb.2023.107683_bib0069
  article-title: Deep convolutional neural network model for automated diagnosis of schizophrenia using EEG signals
  publication-title: Appl. Sci.
  doi: 10.3390/app9142870
– volume: 622
  start-page: 155
  year: 2002
  ident: 10.1016/j.cmpb.2023.107683_bib0003
– volume: 8
  start-page: 874
  issue: 14
  year: 2020
  ident: 10.1016/j.cmpb.2023.107683_bib0076
  article-title: Using a deep recurrent neural network with EEG signal to detect Parkinson's disease
  publication-title: Ann. Transl. Med.
  doi: 10.21037/atm-20-5100
– volume: 16
  issue: 6
  year: 2019
  ident: 10.1016/j.cmpb.2023.107683_bib0020
  article-title: Use of deep learning to detect personalized spatial-frequency abnormalities in EEGs of children with ADHD
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ab3a0a
– volume: 11
  start-page: 4706
  issue: 1
  year: 2021
  ident: 10.1016/j.cmpb.2023.107683_bib0070
  article-title: A hybrid deep neural network for classification of schizophrenia using EEG data
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-83350-6
– volume: 10
  issue: 14
  year: 2021
  ident: 10.1016/j.cmpb.2023.107683_bib0079
  article-title: Gaborpdnet: gabor transformation and deep neural network for Parkinson's disease detection using EEG signals
  publication-title: Electronics
  doi: 10.3390/electronics10141740
– volume: 30
  issue: 7
  year: 2020
  ident: 10.1016/j.cmpb.2023.107683_bib0018
  article-title: EEG connectivity analysis using denoising autoencoders for the detection of dyslexia
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065720500379
– volume: 87
  start-page: 1
  issue: 1
  year: 1993
  ident: 10.1016/j.cmpb.2023.107683_bib0002
  article-title: The future of the EEG and MEG
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/0013-4694(93)90169-V
– volume: 6
  start-page: 66
  issue: 2
  year: 2016
  ident: 10.1016/j.cmpb.2023.107683_bib0072
  article-title: EEG classification of ADHD and normal children using non-linear features and neural network
  publication-title: Biomed. Eng. Lett.
  doi: 10.1007/s13534-016-0218-2
– volume: 30
  issue: 7
  year: 2020
  ident: 10.1016/j.cmpb.2023.107683_bib0017
  article-title: Dyslexia diagnosis by EEG temporal and spectral descriptors: an anomaly detection approach
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S012906572050029X
– volume: 14
  year: 2020
  ident: 10.1016/j.cmpb.2023.107683_bib0052
  article-title: Machine learning approaches for MDD detection and emotion decoding using EEG signals
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2020.00284
– volume: 24
  start-page: 1333
  issue: 5
  year: 2020
  ident: 10.1016/j.cmpb.2023.107683_bib0063
  article-title: A multi-domain connectome convolutional neural network for identifying schizophrenia from EEG connectivity patterns
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2019.2941222
– volume: 7
  start-page: 27781
  year: 2019
  ident: 10.1016/j.cmpb.2023.107683_bib0092
  article-title: EEG pathology detection based on deep learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2901672
– volume: 11
  start-page: 12353
  issue: 1
  year: 2021
  ident: 10.1016/j.cmpb.2023.107683_bib0086
  article-title: Recurrent neural network-based acute concussion classifier using raw resting state EEG data
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-91614-4
– volume: 2020
  year: 2020
  ident: 10.1016/j.cmpb.2023.107683_bib0033
  article-title: Detection of moderate traumatic brain injury from resting-state eye-closed electroencephalography
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2020/8923906
– volume: 7
  issue: 6
  year: 2021
  ident: 10.1016/j.cmpb.2023.107683_bib0084
  article-title: EEG signal analysis using classification techniques: logistic regression, artificial neural networks, support vector machines, and convolutional neural networks
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2021.e07258
– volume: 70
  start-page: 1
  year: 2021
  ident: 10.1016/j.cmpb.2023.107683_bib0023
  article-title: DeprNet: a deep convolution neural network framework for detecting depression using EEG
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2021.3053999
– volume: 17
  issue: 3
  year: 2020
  ident: 10.1016/j.cmpb.2023.107683_bib0062
  article-title: Resting-state EEG signal classification of amnestic mild cognitive impairment with type 2 diabetes mellitus based on multispectral image and convolutional neural network
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ab8b7b
– volume: 102
  start-page: 667
  issue: 2
  year: 2020
  ident: 10.1016/j.cmpb.2023.107683_bib0047
  article-title: Multilayer brain network combined with deep convolutional neural network for detecting major depressive disorder
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-020-05665-9
– volume: 124
  start-page: 1122
  issue: 6
  year: 2013
  ident: 10.1016/j.cmpb.2023.107683_bib0091
  article-title: Global organization of functional brain connectivity in methamphetamine abusers
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2012.12.003
– year: 2021
  ident: 10.1016/j.cmpb.2023.107683_bib0068
  article-title: Classification of first-episode schizophrenia, chronic schizophrenia and healthy control based on brain network of mismatch negativity by graph neural network
– volume: 99
  year: 2019
  ident: 10.1016/j.cmpb.2023.107683_bib0044
  article-title: Depression recognition using machine learning methods with different feature generation strategies
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2019.07.004
– volume: 38
  start-page: 5391
  issue: 11
  year: 2017
  ident: 10.1016/j.cmpb.2023.107683_bib0008
  article-title: Deep learning with convolutional neural networks for EEG decoding and visualization
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.23730
– volume: 361
  year: 2021
  ident: 10.1016/j.cmpb.2023.107683_bib0078
  article-title: A convolutional-recurrent neural network approach to resting-state EEG classification in Parkinson's disease
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2021.109282
– volume: 9
  start-page: 24946
  year: 2021
  ident: 10.1016/j.cmpb.2023.107683_bib0030
  article-title: Convolutional neural network utilizing error-correcting output codes support vector machine for classification of non-severe traumatic brain injury from electroencephalogram signal
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3056724
– volume: 4
  start-page: 204
  issue: 3
  year: 2013
  ident: 10.1016/j.cmpb.2023.107683_bib0090
  article-title: EEG based detection of conductive and sensorineural hearing loss using artificial neural networks
  publication-title: J. Next Gener. Inf. Technol.
– volume: 9
  start-page: 17341
  issue: 1
  year: 2019
  ident: 10.1016/j.cmpb.2023.107683_bib0019
  article-title: Neurophysiological correlates of concussion: deep learning for clinical assessment
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-53751-9
– volume: 2021
  year: 2021
  ident: 10.1016/j.cmpb.2023.107683_bib0035
  article-title: Diagnosis of Alzheimer's disease by time-dependent power spectrum descriptors and convolutional neural network using EEG signal
  publication-title: Comput. Math. Methods Med.
  doi: 10.1155/2021/5511922
– volume: 21
  issue: 16
  year: 2021
  ident: 10.1016/j.cmpb.2023.107683_bib0029
  article-title: Deep convolutional neural network regularization for alcoholism detection using EEG signals
  publication-title: Sensors
  doi: 10.3390/s21165456
– volume: 14
  start-page: 365
  year: 2020
  ident: 10.1016/j.cmpb.2023.107683_bib0037
  article-title: Bi-dimensional approach based on transfer learning for alcoholism pre-disposition classification via EEG signals
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2020.00365
– volume: 356
  start-page: 83
  year: 2019
  ident: 10.1016/j.cmpb.2023.107683_bib0073
  article-title: A deep learning framework for identifying children with ADHD using an EEG-based brain network
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.04.058
– volume: 66
  start-page: 275
  issue: 3
  year: 2021
  ident: 10.1016/j.cmpb.2023.107683_bib0011
  article-title: Prediction of salivary cortisol level by electroencephalography features
  publication-title: Biomed. Tech.
  doi: 10.1515/bmt-2020-0005
– volume: 39
  start-page: 603
  issue: 2
  year: 2021
  ident: 10.1016/j.cmpb.2023.107683_bib0085
  article-title: EEG-based pathology detection for home health monitoring
  publication-title: IEEE J. Sel. Areas Commun.
  doi: 10.1109/JSAC.2020.3020654
– volume: 7
  start-page: 10745
  year: 2019
  ident: 10.1016/j.cmpb.2023.107683_bib0087
  article-title: Cognitive smart healthcare for pathology detection and monitoring
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2891390
– volume: 15
  start-page: 239
  issue: 2
  year: 2021
  ident: 10.1016/j.cmpb.2023.107683_bib0053
  article-title: Major depressive disorder diagnosis based on effective connectivity in EEG signals: a convolutional neural network and long short-term memory approach
  publication-title: Cogn. Neurodyn.
  doi: 10.1007/s11571-020-09619-0
– volume: 17
  issue: 1
  year: 2017
  ident: 10.1016/j.cmpb.2023.107683_bib0026
  article-title: Half-wave segment feature extraction of EEG signals of patients with depression and performance evaluation of neural network classifiers
  publication-title: J. Mech. Med. Biol.
  doi: 10.1142/S0219519417500063
– volume: 132
  year: 2019
  ident: 10.1016/j.cmpb.2023.107683_bib0049
  article-title: A deep learning framework for automatic diagnosis of unipolar depression
  publication-title: Int. J. Med. Inform.
  doi: 10.1016/j.ijmedinf.2019.103983
– volume: 18
  issue: 4
  year: 2021
  ident: 10.1016/j.cmpb.2023.107683_bib0058
  article-title: Deep learning of resting-state electroencephalogram signals for three-class classification of Alzheimer's disease, mild cognitive impairment and healthy ageing
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ac05d8
– volume: 19
  start-page: 2634
  issue: 7
  year: 2019
  ident: 10.1016/j.cmpb.2023.107683_bib0009
  article-title: EEG-based age and gender prediction using deep BLSTM-LSTM network model
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2018.2885582
– volume: 211
  start-page: 203
  issue: 2
  year: 2012
  ident: 10.1016/j.cmpb.2023.107683_bib0082
  article-title: Fuzzy synchronization likelihood-wavelet methodology for diagnosis of autism spectrum disorder
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2012.08.020
– volume: 8
  start-page: 213078
  year: 2020
  ident: 10.1016/j.cmpb.2023.107683_bib0071
  article-title: Biomarkers for prediction of schizophrenia: insights from resting-state EEG microstates
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3037658
– volume: 161
  start-page: 103
  year: 2018
  ident: 10.1016/j.cmpb.2023.107683_bib0036
  article-title: Automated EEG-based screening of depression using deep convolutional neural network
  publication-title: Comput. Methods Prog. Biomed.
  doi: 10.1016/j.cmpb.2018.04.012
– volume: 8
  issue: 7
  year: 2019
  ident: 10.1016/j.cmpb.2023.107683_bib0024
  article-title: Deep learning based on event-related EEG differentiates children with ADHD from healthy controls
  publication-title: J. Clin. Med.
  doi: 10.3390/jcm8071055
– volume: 21
  start-page: 3552
  issue: 3
  year: 2021
  ident: 10.1016/j.cmpb.2023.107683_bib0081
  article-title: Classification of alcoholic EEG signals using a deep learning method
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2020.3026830
– volume: 118
  start-page: 2765
  issue: 12
  year: 2007
  ident: 10.1016/j.cmpb.2023.107683_bib0012
  article-title: EEG differences between eyes-closed and eyes-open resting conditions
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2007.07.028
– volume: 70
  year: 2021
  ident: 10.1016/j.cmpb.2023.107683_bib0059
  article-title: Diagnosis of mild Alzheimer's disease by EEG and ERP signals using linear and nonlinear classifiers
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2021.103049
– volume: 29
  start-page: 796
  year: 2021
  ident: 10.1016/j.cmpb.2023.107683_bib0015
  article-title: Effective connectivity in default mode network for alcoholism diagnosis
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2021.3075737
– volume: 2
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.cmpb.2023.107683_bib0041
  article-title: Detecting the impact of subject characteristics on machine learning-based diagnostic applications
  publication-title: Npj Digit. Med.
  doi: 10.1038/s41746-019-0178-x
– volume: 70
  year: 2021
  ident: 10.1016/j.cmpb.2023.107683_bib0065
  article-title: SPWVD-CNN for automated detection of schizophrenia patients using EEG signals
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2021.3070608
– volume: 21
  start-page: 1546
  issue: 6
  year: 2017
  ident: 10.1016/j.cmpb.2023.107683_bib0088
  article-title: Deep learning and insomnia: assisting clinicians with their diagnosis
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2017.2650199
– volume: 9
  start-page: 19053
  year: 2021
  ident: 10.1016/j.cmpb.2023.107683_bib0042
  article-title: EEG classification by factoring in sensor spatial configuration
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3054670
– volume: 53
  start-page: 24
  issue: 1
  year: 2022
  ident: 10.1016/j.cmpb.2023.107683_bib0051
  article-title: Depression diagnosis modeling with advanced computational methods: frequency-domain EMVAR and deep learning
  publication-title: Clin. EEG Neurosci.
  doi: 10.1177/15500594211018545
– volume: 323
  start-page: 96
  year: 2019
  ident: 10.1016/j.cmpb.2023.107683_bib0032
  article-title: A convolutional neural network approach for classification of dementia stages based on 2D-spectral representation of EEG recordings
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.09.071
– volume: 27
  issue: 2
  year: 2017
  ident: 10.1016/j.cmpb.2023.107683_bib0016
  article-title: Deep learning representation from electroencephalography of early-stage Creutzfeldt-Jakob disease and features for differentiation from rapidly progressive dementia
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065716500398
– volume: 3
  start-page: 230
  issue: 3
  year: 2016
  ident: 10.1016/j.cmpb.2023.107683_bib0060
  article-title: Fuzzy-entropy threshold based on a complex wavelet denoising technique to diagnose Alzheimer disease
  publication-title: Healthc. Technol. Lett.
  doi: 10.1049/htl.2016.0022
– volume: 34
  start-page: 1388
  issue: 5
  year: 2013
  ident: 10.1016/j.cmpb.2023.107683_bib0089
  article-title: Linear and nonlinear analysis of brain dynamics in children with cerebral palsy
  publication-title: Res. Dev. Disabil.
  doi: 10.1016/j.ridd.2013.01.016
– volume: 39
  issue: 3
  year: 2022
  ident: 10.1016/j.cmpb.2023.107683_bib0045
  article-title: Decision support system for major depression detection using spectrogram and convolution neural network with EEG signals
  publication-title: Expert Syst.
  doi: 10.1111/exsy.12773
– volume: 235
  start-page: 167
  issue: 2
  year: 2021
  ident: 10.1016/j.cmpb.2023.107683_bib0064
  article-title: Spectral features based convolutional neural network for accurate and prompt identification of schizophrenic patients
  publication-title: Proc. Inst. Mech. Eng. Part H J. Eng. Med.
  doi: 10.1177/0954411920966937
– volume: 25
  start-page: 69
  issue: 1
  year: 2021
  ident: 10.1016/j.cmpb.2023.107683_bib0034
  article-title: Identification of children at risk of schizophrenia via deep learning and EEG responses
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2020.2984238
– volume: 197
  start-page: 165
  issue: 1
  year: 2011
  ident: 10.1016/j.cmpb.2023.107683_bib0040
  article-title: Probabilistic neural networks for diagnosis of Alzheimer's disease using conventional and wavelet coherence
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2011.01.027
– volume: 8
  issue: 1
  year: 2018
  ident: 10.1016/j.cmpb.2023.107683_bib0010
  article-title: Predicting sex from brain rhythms with deep learning
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-21495-7
– volume: 10
  issue: JAN
  year: 2017
  ident: 10.1016/j.cmpb.2023.107683_bib0057
  article-title: Classification of healthy subjects and Alzheimer's disease patients with dementia from cortical sources of resting state EEG rhythms: a study using artificial neural networks
  publication-title: Front. Neurosci.
– volume: 37
  start-page: 235
  issue: 2
  year: 2020
  ident: 10.1016/j.cmpb.2023.107683_bib0021
  article-title: Automatic detection of schizophrenia by applying deep learning over spectrogram images of EEG signals
  publication-title: Trait. Du Signal
  doi: 10.18280/ts.370209
– volume: 14
  start-page: 192
  year: 2020
  ident: 10.1016/j.cmpb.2023.107683_bib0048
  article-title: A deep learning approach for mild depression recognition based on functional connectivity using electroencephalography
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2020.00192
– volume: 100
  year: 2019
  ident: 10.1016/j.cmpb.2023.107683_bib0067
  article-title: Automated detection of schizophrenia using nonlinear signal processing methods
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2019.07.006
– volume: 43
  start-page: 1349
  issue: 4
  year: 2020
  ident: 10.1016/j.cmpb.2023.107683_bib0054
  article-title: EEG-based deep learning model for the automatic detection of clinical depression
  publication-title: Phys. Eng. Sci. Med.
  doi: 10.1007/s13246-020-00938-4
– volume: 206
  year: 2021
  ident: 10.1016/j.cmpb.2023.107683_bib0013
  article-title: Complexity of EEG dynamics for early diagnosis of Alzheimer's disease using permutation entropy neuromarker
  publication-title: Comput. Methods Prog. Biomed.
  doi: 10.1016/j.cmpb.2021.106116
– volume: 13
  start-page: 696
  issue: 4
  year: 2020
  ident: 10.1016/j.cmpb.2023.107683_bib0046
  article-title: Improving brain E-health services via high-performance EEG classification with grouping bayesian optimization
  publication-title: IEEE Trans. Serv. Comput.
  doi: 10.1109/TSC.2019.2962673
– year: 2018
  ident: 10.1016/j.cmpb.2023.107683_bib0006
– volume: 43
  issue: 7
  year: 2019
  ident: 10.1016/j.cmpb.2023.107683_bib0027
  article-title: Automated depression detection using deep representation and sequence learning with EEG signals
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-019-1345-y
– volume: 16
  issue: 6
  year: 2021
  ident: 10.1016/j.cmpb.2023.107683_bib0031
  article-title: A spectrogram image based intelligent technique for automatic detection of autism spectrum disorder from EEG
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0253094
– volume: 8
  start-page: 464
  issue: 6
  year: 2019
  ident: 10.1016/j.cmpb.2023.107683_bib0050
  article-title: Deep learning in computer-aided diagnosis of MDD
  publication-title: Int. J. Innovat. Technol. Explor. Eng.
– volume: 9
  start-page: 8835
  year: 2021
  ident: 10.1016/j.cmpb.2023.107683_bib0014
  article-title: Automated diagnosis of major depressive disorder using brain effective connectivity and 3d convolutional neural network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3049427
– volume: 43
  start-page: 1229
  issue: 4
  year: 2020
  ident: 10.1016/j.cmpb.2023.107683_bib0066
  article-title: Transfer learning with deep convolutional neural network for automated detection of schizophrenia from EEG signals
  publication-title: Phys. Eng. Sci. Med.
  doi: 10.1007/s13246-020-00925-9
– volume: 44
  start-page: 693
  issue: 3
  year: 2021
  ident: 10.1016/j.cmpb.2023.107683_bib0075
  article-title: Effects of spectral features of EEG signals recorded with different channels and recording statuses on ADHD classification with deep learning
  publication-title: Phys. Eng. Sci. Med.
  doi: 10.1007/s13246-021-01018-x
– volume: 29
  start-page: 57
  issue: 1
  year: 2014
  ident: 10.1016/j.cmpb.2023.107683_bib0055
  article-title: Elman neural network for the early identification of cognitive impairment in Alzheimer's disease
  publication-title: Funct. Neurol.
– volume: 14
  year: 2020
  ident: 10.1016/j.cmpb.2023.107683_bib0022
  article-title: Deep learning convolutional neural networks discriminate adult ADHD from healthy individuals on the basis of event-related spectral EEG
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2020.00251
– volume: 8
  start-page: 30332
  year: 2020
  ident: 10.1016/j.cmpb.2023.107683_bib0025
  article-title: HybridEEGNet: a convolutional neural network for EEG feature learning and depression discrimination
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2971656
– volume: 8
  start-page: 135811
  year: 2020
  ident: 10.1016/j.cmpb.2023.107683_bib0043
  article-title: Encoding rich frequencies for classification of stroke patients EEG signals
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3011185
– volume: 9
  start-page: 1890
  issue: 5
  year: 2020
  ident: 10.1016/j.cmpb.2023.107683_bib0093
  article-title: Identification of post-stroke EEG signal using wavelet and convolutional neural networks
  publication-title: Bull. Electr. Eng. Inform.
  doi: 10.11591/eei.v9i5.2005
– volume: 9
  start-page: 86899
  year: 2021
  ident: 10.1016/j.cmpb.2023.107683_bib0083
  article-title: Severity assessment of social anxiety disorder using deep learning models on brain effective connectivity
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3089358
– volume: 61
  start-page: 85
  year: 2015
  ident: 10.1016/j.cmpb.2023.107683_bib0007
  article-title: Deep learning in neural networks: an overview
  publication-title: Neural. Netw.
  doi: 10.1016/j.neunet.2014.09.003
– volume: 85
  start-page: 206
  issue: 2
  year: 2012
  ident: 10.1016/j.cmpb.2023.107683_bib0028
  article-title: Fractality analysis of frontal brain in major depressive disorder
  publication-title: Int. J. Psychophysiol.
  doi: 10.1016/j.ijpsycho.2012.05.001
– volume: 32
  start-page: 10927
  issue: 15
  year: 2020
  ident: 10.1016/j.cmpb.2023.107683_bib0077
  article-title: A deep learning approach for Parkinson's disease diagnosis from EEG signals
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-018-3689-5
– volume: 46
  start-page: 441
  year: 2016
  ident: 10.1016/j.cmpb.2023.107683_bib0080
  article-title: Spectral entropy feature subset selection using SEPCOR to detect alcoholic impact on gamma sub band visual event related potentials of multichannel electroencephalograms (EEG)
  publication-title: Appl. Soft Comput. J.
  doi: 10.1016/j.asoc.2016.04.041
– volume: 322
  start-page: 88
  year: 2019
  ident: 10.1016/j.cmpb.2023.107683_bib0056
  article-title: A novel methodology for automated differential diagnosis of mild cognitive impairment and the Alzheimer's disease using EEG signals
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2019.04.013
– ident: 10.1016/j.cmpb.2023.107683_bib0004
– volume: 17
  start-page: 837
  issue: 6
  year: 2020
  ident: 10.1016/j.cmpb.2023.107683_bib0038
  article-title: Integration of facial thermography in EEG-based classification of ASD
  publication-title: Int. J. Autom. Comput.
  doi: 10.1007/s11633-020-1231-6
– volume: 59
  start-page: 307
  issue: 4
  year: 2005
  ident: 10.1016/j.cmpb.2023.107683_bib0001
  article-title: [Hans Berger (1873-1941)–the history of electroencephalography]
  publication-title: Acta Med. Croat. Cas. Hravatske Akad. Med. Znan.
SSID ssj0002556
Score 2.4340217
SecondaryResourceType review_article
Snippet •Comprehensive review of deep learning studies using EEG signals for neuropsychiatric disorder classification.•Analysis of factors impacting classification...
The use of deep neural networks for electroencephalogram (EEG) classification has rapidly progressed and gained popularity in recent years, but automatic...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 107683
SubjectTerms Algorithms
Brain activity
Conventional neural network
Deep learning
Electroencephalography
Electroencephalography - methods
Humans
Neural network
Neural Networks, Computer
Neuro-markers
Recurrent neural network
Title EEG-based classification of individuals with neuropsychiatric disorders using deep neural networks: A systematic review of current status and future directions
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0169260723003486
https://dx.doi.org/10.1016/j.cmpb.2023.107683
https://www.ncbi.nlm.nih.gov/pubmed/37406421
https://www.proquest.com/docview/2833999943
Volume 240
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQlVAvFS2lpQ80SL1VZjex83BvK7R0WwSXgsTN8murRZBdNbtX_kr_amdiJ6gHqNRjLE8SzfjxJf7mG8Y-lWOX23lWcyuD4dKEjCuTGZ7bvFR-7Kuqq7F0flHOruT36-J6i530uTBEq0xrf1zTu9U6tYySN0erxWL0g3REEI1XCKLHQtYkuy1lRfr5x_cPNA-S2Ir63opT75Q4Ezle7m5lj6mAODYg7haPbU6Pgc9uEzrdZS8SeoRJfMGXbCs0r9jOeTof32O_p9OvnDYmD45gMfGAOtfDcg6LIfeqBfr9Cp2W5UB3XjjwSYqzBaLD_wQfwqrrhc9sIl-8_QITeJB_hpj6Qrd3UekJKEVp04JpPETBEogupvH9ml2dTi9PZjyVYOAOv_TWXJahzoNDtxZOZVRJU2bGV3VhQ124PORGeBUwsPlc-npeilBbq7w3hRMqM6XYZ9vNsglvGQjSNixdISqlpDcWv4xLG4IhBTs0Vwcs632vXdInpzIZt7onot1oipemeOkYrwP2ebBZRXWOJ3uLPqS6zzvFlVLj5vGkVTFY_TUy_2l31I8ajVOWzmFME5abViOiQ1iIXsA-b-JwGt5eVLLLPX73n099z57TVaQbfmDb61-b8BFh09oedvPikD2bfDubXfwBecMY8A
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBa6Fth2GfZut27VgN4GLbEly9ZuQZE2fSSXtkBvgl4ZMqxOMCe_Z391pCW72KEd0KstWgZJU58s8iMhh3LocjvPKmZFMEyYkDFlMsNym0vlh74s2x5L05mcXIuzm-Jmixx1tTCYVplif4zpbbROVwZJm4PVYjG4RB4RQOMlgOghF5V8QnaQnQqcfWd0ej6Z9QEZWbYixbdiKJBqZ2Kal7td2W_YQxwuAPTm961P9-HPdh06fkleJABJR_EdX5GtUL8mT6fpiPwN-TMenzBcmzx1iIwxFajVPl3O6aIvv2oo_oGlLZ1ln_G8cNQnNs6GYkb8D-pDWLWjYM46pow33-mI3jFA01j9go93keyJYpXSpqGm9jRyltCoZXTxt-T6eHx1NGGpCwNzsNlbMyFDlQcnSlE4lWEzTZEZX1aFDVXh8pAb7lUA2-Zz4au55KGyVnlvCsdVZiR_R7brZR12CeVIbyhdwUulhDcWNsfShmCQxA7E1R7JOt1rlyjKsVPGL93lov3UaC-N9tLRXnvkay-zigQdD47mnUl1V3oKwVLD-vGgVNFL_eOc_5X70nmNhq8Wj2JMHZabRgOoA2QIWoAx76M79W_PS9GWH3945KwH5NnkanqhL05n5x_Jc7wTsw_3yfb69yZ8AhS1tp_TV_IXBdEboQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EEG-based+classification+of+individuals+with+neuropsychiatric+disorders+using+deep+neural+networks%3A+A+systematic+review+of+current+status+and+future+directions&rft.jtitle=Computer+methods+and+programs+in+biomedicine&rft.au=Parsa%2C+Mohsen&rft.au=Rad%2C+Habib+Yousefi&rft.au=Vaezi%2C+Hadi&rft.au=Hossein-Zadeh%2C+Gholam-Ali&rft.date=2023-10-01&rft.issn=1872-7565&rft.eissn=1872-7565&rft.volume=240&rft.spage=107683&rft_id=info:doi/10.1016%2Fj.cmpb.2023.107683&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-2607&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-2607&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-2607&client=summon