EEG-based classification of individuals with neuropsychiatric disorders using deep neural networks: A systematic review of current status and future directions
•Comprehensive review of deep learning studies using EEG signals for neuropsychiatric disorder classification.•Analysis of factors impacting classification performance and guidelines for EEG-based diagnostic tool design.•Emphasis on EEG feature extraction for improved classification and need for fur...
Saved in:
Published in | Computer methods and programs in biomedicine Vol. 240; p. 107683 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Ireland
Elsevier B.V
01.10.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0169-2607 1872-7565 1872-7565 |
DOI | 10.1016/j.cmpb.2023.107683 |
Cover
Loading…
Abstract | •Comprehensive review of deep learning studies using EEG signals for neuropsychiatric disorder classification.•Analysis of factors impacting classification performance and guidelines for EEG-based diagnostic tool design.•Emphasis on EEG feature extraction for improved classification and need for further research on interpretable features.•Potential of deep neural networks for accurate neuropsychiatric disorder diagnosis using EEG signals.
The use of deep neural networks for electroencephalogram (EEG) classification has rapidly progressed and gained popularity in recent years, but automatic feature extraction from EEG signals remains a challenging task. The classification of neuropsychiatric disorders demands the extraction of neuro-markers for use in automated EEG classification. Numerous advanced deep learning algorithms can be used for this purpose. In this article, we present a comprehensive review of the main factors and parameters that affect the performance of deep neural networks in classifying different neuropsychiatric disorders using EEG signals. We also analyze the EEG features used for improving classification performance. Our analysis includes 82 scientific journal papers that applied deep neural networks for subject-wise classification based on EEG signals. We extracted information on the EEG dataset and types of disorders, deep neural network structures, performance, and hyperparameters. The results show that most studies have focused on clinical classification, achieving an average accuracy of 91.83 ± 7.34, with convolutional neural networks (CNNs) being the most frequently used network architecture and resting-state EEG signals being the most commonly used data type. Additionally, the review reveals that depression (N = 18), Alzheimer's (N = 11), and schizophrenia (N = 11) were studied more frequently than other types of neuropsychiatric disorders. Our review provides insight into the performance of deep neural networks in EEG classification and highlights the importance of EEG feature extraction in improving classification accuracy. By identifying the main factors and parameters that affect deep neural network performance in EEG classification, our review can guide future research in this area. We hope that our findings will encourage further exploration of deep learning methods for EEG classification and contribute to the development of more accurate and effective methods for diagnosing and monitoring neuropsychiatric disorders using EEG signals. |
---|---|
AbstractList | The use of deep neural networks for electroencephalogram (EEG) classification has rapidly progressed and gained popularity in recent years, but automatic feature extraction from EEG signals remains a challenging task. The classification of neuropsychiatric disorders demands the extraction of neuro-markers for use in automated EEG classification. Numerous advanced deep learning algorithms can be used for this purpose. In this article, we present a comprehensive review of the main factors and parameters that affect the performance of deep neural networks in classifying different neuropsychiatric disorders using EEG signals. We also analyze the EEG features used for improving classification performance. Our analysis includes 82 scientific journal papers that applied deep neural networks for subject-wise classification based on EEG signals. We extracted information on the EEG dataset and types of disorders, deep neural network structures, performance, and hyperparameters. The results show that most studies have focused on clinical classification, achieving an average accuracy of 91.83 ± 7.34, with convolutional neural networks (CNNs) being the most frequently used network architecture and resting-state EEG signals being the most commonly used data type. Additionally, the review reveals that depression (N = 18), Alzheimer's (N = 11), and schizophrenia (N = 11) were studied more frequently than other types of neuropsychiatric disorders. Our review provides insight into the performance of deep neural networks in EEG classification and highlights the importance of EEG feature extraction in improving classification accuracy. By identifying the main factors and parameters that affect deep neural network performance in EEG classification, our review can guide future research in this area. We hope that our findings will encourage further exploration of deep learning methods for EEG classification and contribute to the development of more accurate and effective methods for diagnosing and monitoring neuropsychiatric disorders using EEG signals.The use of deep neural networks for electroencephalogram (EEG) classification has rapidly progressed and gained popularity in recent years, but automatic feature extraction from EEG signals remains a challenging task. The classification of neuropsychiatric disorders demands the extraction of neuro-markers for use in automated EEG classification. Numerous advanced deep learning algorithms can be used for this purpose. In this article, we present a comprehensive review of the main factors and parameters that affect the performance of deep neural networks in classifying different neuropsychiatric disorders using EEG signals. We also analyze the EEG features used for improving classification performance. Our analysis includes 82 scientific journal papers that applied deep neural networks for subject-wise classification based on EEG signals. We extracted information on the EEG dataset and types of disorders, deep neural network structures, performance, and hyperparameters. The results show that most studies have focused on clinical classification, achieving an average accuracy of 91.83 ± 7.34, with convolutional neural networks (CNNs) being the most frequently used network architecture and resting-state EEG signals being the most commonly used data type. Additionally, the review reveals that depression (N = 18), Alzheimer's (N = 11), and schizophrenia (N = 11) were studied more frequently than other types of neuropsychiatric disorders. Our review provides insight into the performance of deep neural networks in EEG classification and highlights the importance of EEG feature extraction in improving classification accuracy. By identifying the main factors and parameters that affect deep neural network performance in EEG classification, our review can guide future research in this area. We hope that our findings will encourage further exploration of deep learning methods for EEG classification and contribute to the development of more accurate and effective methods for diagnosing and monitoring neuropsychiatric disorders using EEG signals. The use of deep neural networks for electroencephalogram (EEG) classification has rapidly progressed and gained popularity in recent years, but automatic feature extraction from EEG signals remains a challenging task. The classification of neuropsychiatric disorders demands the extraction of neuro-markers for use in automated EEG classification. Numerous advanced deep learning algorithms can be used for this purpose. In this article, we present a comprehensive review of the main factors and parameters that affect the performance of deep neural networks in classifying different neuropsychiatric disorders using EEG signals. We also analyze the EEG features used for improving classification performance. Our analysis includes 82 scientific journal papers that applied deep neural networks for subject-wise classification based on EEG signals. We extracted information on the EEG dataset and types of disorders, deep neural network structures, performance, and hyperparameters. The results show that most studies have focused on clinical classification, achieving an average accuracy of 91.83 ± 7.34, with convolutional neural networks (CNNs) being the most frequently used network architecture and resting-state EEG signals being the most commonly used data type. Additionally, the review reveals that depression (N = 18), Alzheimer's (N = 11), and schizophrenia (N = 11) were studied more frequently than other types of neuropsychiatric disorders. Our review provides insight into the performance of deep neural networks in EEG classification and highlights the importance of EEG feature extraction in improving classification accuracy. By identifying the main factors and parameters that affect deep neural network performance in EEG classification, our review can guide future research in this area. We hope that our findings will encourage further exploration of deep learning methods for EEG classification and contribute to the development of more accurate and effective methods for diagnosing and monitoring neuropsychiatric disorders using EEG signals. •Comprehensive review of deep learning studies using EEG signals for neuropsychiatric disorder classification.•Analysis of factors impacting classification performance and guidelines for EEG-based diagnostic tool design.•Emphasis on EEG feature extraction for improved classification and need for further research on interpretable features.•Potential of deep neural networks for accurate neuropsychiatric disorder diagnosis using EEG signals. The use of deep neural networks for electroencephalogram (EEG) classification has rapidly progressed and gained popularity in recent years, but automatic feature extraction from EEG signals remains a challenging task. The classification of neuropsychiatric disorders demands the extraction of neuro-markers for use in automated EEG classification. Numerous advanced deep learning algorithms can be used for this purpose. In this article, we present a comprehensive review of the main factors and parameters that affect the performance of deep neural networks in classifying different neuropsychiatric disorders using EEG signals. We also analyze the EEG features used for improving classification performance. Our analysis includes 82 scientific journal papers that applied deep neural networks for subject-wise classification based on EEG signals. We extracted information on the EEG dataset and types of disorders, deep neural network structures, performance, and hyperparameters. The results show that most studies have focused on clinical classification, achieving an average accuracy of 91.83 ± 7.34, with convolutional neural networks (CNNs) being the most frequently used network architecture and resting-state EEG signals being the most commonly used data type. Additionally, the review reveals that depression (N = 18), Alzheimer's (N = 11), and schizophrenia (N = 11) were studied more frequently than other types of neuropsychiatric disorders. Our review provides insight into the performance of deep neural networks in EEG classification and highlights the importance of EEG feature extraction in improving classification accuracy. By identifying the main factors and parameters that affect deep neural network performance in EEG classification, our review can guide future research in this area. We hope that our findings will encourage further exploration of deep learning methods for EEG classification and contribute to the development of more accurate and effective methods for diagnosing and monitoring neuropsychiatric disorders using EEG signals. |
ArticleNumber | 107683 |
Author | Rostami, Reza Vaezi, Hadi Vahabie, Abdol-Hossein Rostami, Hana Rad, Habib Yousefi Setarehdan, Seyed Kamaledin Parsa, Mohsen Hossein-Zadeh, Gholam-Ali |
Author_xml | – sequence: 1 givenname: Mohsen surname: Parsa fullname: Parsa, Mohsen organization: School of Electrical and Computer Engineering, College of Engineering, University of Tehran, North Kargar St., P.O. Box 14395/515, Tehran, Iran – sequence: 2 givenname: Habib Yousefi surname: Rad fullname: Rad, Habib Yousefi organization: School of Electrical and Computer Engineering, College of Engineering, University of Tehran, North Kargar St., P.O. Box 14395/515, Tehran, Iran – sequence: 3 givenname: Hadi surname: Vaezi fullname: Vaezi, Hadi organization: School of Electrical and Computer Engineering, College of Engineering, University of Tehran, North Kargar St., P.O. Box 14395/515, Tehran, Iran – sequence: 4 givenname: Gholam-Ali surname: Hossein-Zadeh fullname: Hossein-Zadeh, Gholam-Ali organization: Control and Intelligent Processing Center of Excellence, Faculty of Electrical and Computer Engineering, University of Tehran, North Kargar St., P.O. Box 14395/515, Tehran, Iran – sequence: 5 givenname: Seyed Kamaledin surname: Setarehdan fullname: Setarehdan, Seyed Kamaledin organization: Control and Intelligent Processing Center of Excellence, Faculty of Electrical and Computer Engineering, University of Tehran, North Kargar St., P.O. Box 14395/515, Tehran, Iran – sequence: 6 givenname: Reza surname: Rostami fullname: Rostami, Reza organization: Faculty of Psychology and Education, University of Tehran, Jalal-Al-e-Ahmed, P.O. Box 14155-6456, Tehran, Iran – sequence: 7 givenname: Hana surname: Rostami fullname: Rostami, Hana organization: ACNC, Atieh Clinical Neuroscience Center, Valiasr St., P.O. Box 19697-13663, Tehran, Iran – sequence: 8 givenname: Abdol-Hossein surname: Vahabie fullname: Vahabie, Abdol-Hossein email: h.vahabie@ut.ac.ir organization: Faculty of Psychology and Education, University of Tehran, Jalal-Al-e-Ahmed, P.O. Box 14155-6456, Tehran, Iran |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37406421$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks1u1DAUhS1URKeFF2CBvGSTIbbzW7GpqqEgVWIDa8uxb6iniRN87Y7mafqqOE1h0UXx5krWd46vzvEZOXGTA0Les3zLclZ92m_1OHdbnnORLuqqEa_IhjU1z-qyKk_IJkFtxqu8PiVniPs8z3lZVm_IqaiLvCo425CH3e466xSCoXpQiLa3WgU7OTr11Dpj762JakB6sOGWOoh-mvGob60K3mpqLE7egEca0bpf1ADMj5Qa0giHyd_hBb2keMQAYzLW1MO9hcNir6P34ALFoEJEqpyhfQzRQ7L1oJct8C153afn4d3TPCc_v-x-XH3Nbr5ff7u6vMl0kdchKypoOOiiLkrdsrJivGDK1E3ZQVNqDlwJ0wLvOO8L0_SVgKbrWmNUqUXLVCXOycfVd_bT7wgY5GhRwzAoB1NEyRsh2nQKkdAPT2jsRjBy9nZU_ij_hpoAvgLaT4ge-n8Iy-XSnNzLpTm5NCfX5pKoeSbSNjw2Ebyyw8vSz6sUUkApXC9RW3Aa1hilmezL8otncj1Yl77BcAfH_4n_AFnwy1k |
CitedBy_id | crossref_primary_10_1016_j_molstruc_2024_137628 crossref_primary_10_4108_eetpht_10_5432 crossref_primary_10_1016_j_bbr_2024_115325 crossref_primary_10_1109_JBHI_2024_3405941 crossref_primary_10_1016_j_bspc_2024_106985 crossref_primary_10_1016_j_ocecoaman_2024_107167 crossref_primary_10_1177_20552076251324456 crossref_primary_10_1016_j_measurement_2023_113948 crossref_primary_10_30629_2618_6667_2024_22_3_91_99 |
Cites_doi | 10.1109/JSEN.2021.3080135 10.1016/j.neunet.2019.02.005 10.1016/j.cmpb.2020.105738 10.1038/s41598-021-99717-8 10.3390/app9142870 10.21037/atm-20-5100 10.1088/1741-2552/ab3a0a 10.1038/s41598-021-83350-6 10.3390/electronics10141740 10.1142/S0129065720500379 10.1016/0013-4694(93)90169-V 10.1007/s13534-016-0218-2 10.1142/S012906572050029X 10.3389/fnhum.2020.00284 10.1109/JBHI.2019.2941222 10.1109/ACCESS.2019.2901672 10.1038/s41598-021-91614-4 10.1155/2020/8923906 10.1016/j.heliyon.2021.e07258 10.1109/TIM.2021.3053999 10.1088/1741-2552/ab8b7b 10.1007/s11071-020-05665-9 10.1016/j.clinph.2012.12.003 10.1016/j.artmed.2019.07.004 10.1002/hbm.23730 10.1016/j.jneumeth.2021.109282 10.1109/ACCESS.2021.3056724 10.1038/s41598-019-53751-9 10.1155/2021/5511922 10.3390/s21165456 10.3389/fnhum.2020.00365 10.1016/j.neucom.2019.04.058 10.1515/bmt-2020-0005 10.1109/JSAC.2020.3020654 10.1109/ACCESS.2019.2891390 10.1007/s11571-020-09619-0 10.1142/S0219519417500063 10.1016/j.ijmedinf.2019.103983 10.1088/1741-2552/ac05d8 10.1109/JSEN.2018.2885582 10.1016/j.jneumeth.2012.08.020 10.1109/ACCESS.2020.3037658 10.1016/j.cmpb.2018.04.012 10.3390/jcm8071055 10.1109/JSEN.2020.3026830 10.1016/j.clinph.2007.07.028 10.1016/j.bspc.2021.103049 10.1109/TNSRE.2021.3075737 10.1038/s41746-019-0178-x 10.1109/TIM.2021.3070608 10.1109/JBHI.2017.2650199 10.1109/ACCESS.2021.3054670 10.1177/15500594211018545 10.1016/j.neucom.2018.09.071 10.1142/S0129065716500398 10.1049/htl.2016.0022 10.1016/j.ridd.2013.01.016 10.1111/exsy.12773 10.1177/0954411920966937 10.1109/JBHI.2020.2984238 10.1016/j.jneumeth.2011.01.027 10.1038/s41598-018-21495-7 10.18280/ts.370209 10.3389/fnins.2020.00192 10.1016/j.artmed.2019.07.006 10.1007/s13246-020-00938-4 10.1016/j.cmpb.2021.106116 10.1109/TSC.2019.2962673 10.1007/s10916-019-1345-y 10.1371/journal.pone.0253094 10.1109/ACCESS.2021.3049427 10.1007/s13246-020-00925-9 10.1007/s13246-021-01018-x 10.3389/fnins.2020.00251 10.1109/ACCESS.2020.2971656 10.1109/ACCESS.2020.3011185 10.11591/eei.v9i5.2005 10.1109/ACCESS.2021.3089358 10.1016/j.neunet.2014.09.003 10.1016/j.ijpsycho.2012.05.001 10.1007/s00521-018-3689-5 10.1016/j.asoc.2016.04.041 10.1016/j.jneumeth.2019.04.013 10.1007/s11633-020-1231-6 |
ContentType | Journal Article |
Copyright | 2023 Elsevier B.V. Copyright © 2023 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2023 Elsevier B.V. – notice: Copyright © 2023 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.cmpb.2023.107683 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1872-7565 |
ExternalDocumentID | 37406421 10_1016_j_cmpb_2023_107683 S0169260723003486 |
Genre | Systematic Review Journal Article |
GroupedDBID | --- --K --M -~X .1- .DC .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACNNM ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HMK HMO HVGLF HZ~ IHE J1W KOM LG9 M29 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SBC SDF SDG SEL SES SEW SPC SPCBC SSH SSV SSZ T5K UHS WUQ XPP Z5R ZGI ZY4 ~G- AACTN ABTAH AFCTW AFKWA AJOXV AMFUW RIG AAYXX AGRNS CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c407t-46e82ec4745c91561241ad785be85c2e2a3d9e2b22f4d8f63e8bb9dda5c391a63 |
IEDL.DBID | .~1 |
ISSN | 0169-2607 1872-7565 |
IngestDate | Wed Jul 30 10:51:30 EDT 2025 Mon Jul 21 05:57:42 EDT 2025 Thu Apr 24 23:02:30 EDT 2025 Tue Jul 01 02:41:29 EDT 2025 Sat Aug 03 15:33:21 EDT 2024 Tue Aug 26 19:05:08 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Neuro-markers Recurrent neural network Brain activity Conventional neural network Electroencephalography Neural network |
Language | English |
License | Copyright © 2023 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c407t-46e82ec4745c91561241ad785be85c2e2a3d9e2b22f4d8f63e8bb9dda5c391a63 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Undefined-1 ObjectType-Feature-3 ObjectType-Review-4 content type line 23 |
PMID | 37406421 |
PQID | 2833999943 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2833999943 pubmed_primary_37406421 crossref_primary_10_1016_j_cmpb_2023_107683 crossref_citationtrail_10_1016_j_cmpb_2023_107683 elsevier_sciencedirect_doi_10_1016_j_cmpb_2023_107683 elsevier_clinicalkey_doi_10_1016_j_cmpb_2023_107683 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2023 2023-10-00 2023-Oct 20231001 |
PublicationDateYYYYMMDD | 2023-10-01 |
PublicationDate_xml | – month: 10 year: 2023 text: October 2023 |
PublicationDecade | 2020 |
PublicationPlace | Ireland |
PublicationPlace_xml | – name: Ireland |
PublicationTitle | Computer methods and programs in biomedicine |
PublicationTitleAlternate | Comput Methods Programs Biomed |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Tosun (bib0075) 2021; 44 Shen, McFadden, McIntosh (bib0005) 2021; 11 Mumtaz, Qayyum (bib0049) 2019; 132 Ieracitano, Mammone, Bramanti, Hussain, Morabito (bib0032) 2019; 323 Oh, Hagiwara, Raghavendra, Yuvaraj, Arunkumar, Murugappan, Acharya (bib0077) 2020; 32 Mukhtar, Qaisar, Zaguia (bib0029) 2021; 21 Loh, Ooi, Aydemir, Tuncer, Dogan, Rajendra Acharya (bib0045) 2022; 39 Farsi, Siuly, Kabir, Wang (bib0081) 2021; 21 Acharya, Oh, Hagiwara, Tan, Adeli, Subha (bib0036) 2018; 161 Bertè, Lamponi, Calabrò, Bramanti (bib0055) 2014; 29 Guerrero, Parada, Espitia (bib0084) 2021; 7 Thoduparambil, Dominic, Varghese (bib0054) 2020; 43 Chen, Song, Li (bib0020) 2019; 16 Djamal, Ramadhan, Mandasari, Djajasasmita (bib0093) 2020; 9 Ahmadlou, Adeli, Adeli (bib0028) 2012; 85 Ahmadlou, Ahmadi, Rezazade, Azad-Marzabadi (bib0091) 2013; 124 Ke, Chen, Shi, Zhang, Liu, Zhang, Li (bib0046) 2020; 13 Dubreuil-Vall, Ruffini, Camprodon (bib0022) 2020; 14 Dominic, Aswathy, Surekha (bib0050) 2019; 8 Amezquita-Sanchez, Mammone, Morabito, Marino, Adeli (bib0056) 2019; 322 Khan, Yahya, Kamel, Faye (bib0014) 2021; 9 Puthankattil, Joseph (bib0026) 2017; 17 Sankari, Adeli (bib0040) 2011; 197 Aslan, Akin (bib0021) 2020; 37 Singh, Singh, Malhotra (bib0064) 2021; 235 Ay, Yildirim, Talo, Baloglu, Aydin, Puthankattil, Rajendra Acharya (bib0027) 2019; 43 Mokatren, Ansari, Cetin, Leow, Ajilore, Klumpp, Vural (bib0042) 2021; 9 Moghaddari, Zolfy Lighvan, Danishvar (bib0074) 2020; 197 Ortiz, Martinez-Murcia, Luque, Giménez, Morales-Ortega, Ortega (bib0017) 2020; 30 Chen, Song, Li (bib0073) 2019; 356 Huggins, Escudero, Parra, Scally, Anghinah, Vitória Lacerda De Araújo, Basile, Abasolo (bib0058) 2021; 18 Savareh, Bashiri, Hatef, Hatef (bib0011) 2021; 66 Li, La, Wang, Hu, Zhang (bib0048) 2020; 14 Klonowski, Elzbieta Olejarczyk, Stepien (bib0003) 2002; 622 Alhussein, Muhammad, Hossain (bib0092) 2019; 7 Ahmedt-Aristizabal, Fernando, Denman, Robinson, Sridharan, Johnston, Laurens, Fookes (bib0034) 2021; 25 Khare, Bajaj, Rajendra Acharya (bib0039) 2021; 21 Sun, Cao, Zhou, Hussain, Wang, Xue, Xiang (bib0070) 2021; 11 Luo, Tian, Wang, Zhang, Wang, Zhang (bib0071) 2020; 8 Sajedi, Ahmadlou, Vameghi, Gharib, Hemmati (bib0089) 2013; 34 Tudor, Tudor, Tudor (bib0001) 2005; 59 Wikswo, Gevins, Williamson (bib0002) 1993; 87 Lai, Ibrahim, Abdullah, Azman, Abdullah (bib0030) 2021; 9 Khan, Yahya, Kamel, Faye (bib0015) 2021; 29 Schirrmeister, Springenberg, Fiederer, Glasstetter, Eggensperger, Tangermann, Hutter, Burgard, Ball (bib0008) 2017; 38 Mazrooei Rad, Azarnoosh, Ghoshuni, Khalilzadeh (bib0059) 2021; 70 Schmidhuber (bib0007) 2015; 61 Şeker, Özbek, Yener, Özerdem (bib0013) 2021; 206 Vahid, Bluschke, Roessner, Stober, Beste (bib0024) 2019; 8 Ahmadlou, Adeli, Adeli (bib0082) 2012; 211 Haputhanthri, Brihadiswaran, Gunathilaka, Meedeniya, Jayarathna, Jaime, Harshaw (bib0038) 2020; 17 Tawhid, Siuly, Wang, Whittaker, Wang, Zhang (bib0031) 2021; 16 Morabito, Campolo, Mammone, Versaci, Franceschetti, Tagliavini, Sofia, Fatuzzo, Gambardella, Labate, Mumoli, Tripodi, Gasparini, Cianci, Sueri, Ferlazzo, Aguglia (bib0016) 2017; 27 Amini, Pedram, Moradi, Ouchani (bib0035) 2021; 2021 Boshra, Ruiter, DeMatteo, Reilly, Connolly (bib0019) 2019; 9 Chaibub Neto, Pratap, Perumal, Tummalacherla, Snyder, Bot, Trister, Friend, Mangravite, Omberg (bib0041) 2019; 2 Duan, Duan, Qiao, Sha, Qi, Zhang, Huang, Huang, Wang (bib0052) 2020; 14 Padma Shri, Sriraam (bib0080) 2016; 46 Oh, Vicnesh, Ciaccio, Yuvaraj, Rajendra Acharya (bib0069) 2019; 9 Saloni Dattani, Lucas Rodés-Guirao, Hannah Ritchie and Max Roser (2021) - “Mental Health”. Published online at OurWorldInData.org. Retrieved from Paulraj, Subramaniam, Yaccob, Hamid, Hema (bib0090) 2013; 4 Van Putten, Olbrich, Arns (bib0010) 2018; 8 Al-Ezzi, Yahya, Kamel, Faye, Alsaih, Gunaseli (bib0083) 2021; 9 Barry, Clarke, Johnstone, Magee, Rushby (bib0012) 2007; 118 Bi, Wang (bib0061) 2019; 114 Muhammad, Hossain, Kumar (bib0085) 2021; 39 Khare, Bajaj, Rajendra Acharya (bib0065) 2021; 70 Lee, Hussein, Ward, Wang, McKeown (bib0078) 2021; 361 Li, Zhang, Zhu, Mao, Sun, Wang, Xia, Hu (bib0044) 2019; 99 Saeedi, Saeedi, Maghsoudi, Shalbaf (bib0053) 2021; 15 Wan, Huang, Zhang, Zhou, Yang, Zhong (bib0025) 2020; 8 Zhang, Silva, Ohata, Medeiros, Filho (bib0037) 2020; 14 Holzinger, Kieseberg, Weippl, Tjoa (bib0006) 2018 [Online Resource]. Martinez-Murcia, Ortiz, Gorriz, Ramirez, Lopez-Abarejo, Lopez-Zamora, Luque (bib0018) 2020; 30 Triggiani, Bevilacqua, Brunetti, Lizio, Tattoli, Cassano, Soricelli, Ferri, Nobili, Gesualdo, Barulli, Tortelli, Cardinali, Giannini, Spagnolo, Armenise, Stocchi, Buenza, Scianatico, Logroscino, Lacidogna, Orzi, Buttinelli, Giubilei, Del Percio, Frisoni, Babiloni (bib0057) 2017; 10 Lai, Ibrahim, Hamid, Abdullah, Azman, Abdullah (bib0033) 2020; 2020 Dang, Gao, Sun, Li, Cai, Grebogi (bib0047) 2020; 102 Wen, Wen, Zhou, Zhou, Li, Li, Zhang, Zhang, Li, Li, Wang, Li, Bian, Yin, Xu, Xu (bib0062) 2020; 17 Mohammadi, Khaleghi, Nasrabadi, Rafieivand, Begol, Zarafshan (bib0072) 2016; 6 Kaushik, Gupta, Roy, Dogra (bib0009) 2019; 19 Xu, Wang, Sun, Zhang, Wu, Yang, Xue, Cheng (bib0076) 2020; 8 Seal, Bajpai, Agnihotri, Yazidi, Herrera-Viedma, Krejcar (bib0023) 2021; 70 Shalbaf, Bagherzadeh, Maghsoudi (bib0066) 2020; 43 Fawaz, Sim, Tan (bib0043) 2020; 8 Thanjavur, Babul, Foran, Bielecki, Gilchrist, Hristopulos, Brucar, Virji-Babul (bib0086) 2021; 11 Shahin, Ahmed, Hamida, Mulaffer, Glos, Penzel (bib0088) 2017; 21 Uyulan, Salle, Erguzel, Lynn, Blier, Knott, Adamson, Zelka, Tarhan (bib0051) 2022; 53 Phang, Noman, Hussain, Ting, Ombao (bib0063) 2020; 24 Loh, Ooi, Palmer, Barua, Dogan, Tuncer, Baygin, Rajendra Acharya (bib0079) 2021; 10 Jahmunah, Oh, Rajinikanth, Ciaccio, Cheong, Arunkumar, Rajendra Acharya (bib0067) 2019; 100 Chang, Li, Tian, Bo, Zhang, Xiong, Wang (bib0068) 2021 Lazar, Jayapathy, Torrents-Barrena, Mol, Mohanalin, Puig (bib0060) 2016; 3 Amin, Hossain, Muhammad, Alhussein, Rahman (bib0087) 2019; 7 Schmidhuber (10.1016/j.cmpb.2023.107683_bib0007) 2015; 61 Thoduparambil (10.1016/j.cmpb.2023.107683_bib0054) 2020; 43 Mazrooei Rad (10.1016/j.cmpb.2023.107683_bib0059) 2021; 70 Ke (10.1016/j.cmpb.2023.107683_bib0046) 2020; 13 Mukhtar (10.1016/j.cmpb.2023.107683_bib0029) 2021; 21 Moghaddari (10.1016/j.cmpb.2023.107683_bib0074) 2020; 197 Shen (10.1016/j.cmpb.2023.107683_bib0005) 2021; 11 Phang (10.1016/j.cmpb.2023.107683_bib0063) 2020; 24 Muhammad (10.1016/j.cmpb.2023.107683_bib0085) 2021; 39 Khare (10.1016/j.cmpb.2023.107683_bib0065) 2021; 70 Dubreuil-Vall (10.1016/j.cmpb.2023.107683_bib0022) 2020; 14 Loh (10.1016/j.cmpb.2023.107683_bib0045) 2022; 39 Wen (10.1016/j.cmpb.2023.107683_bib0062) 2020; 17 Al-Ezzi (10.1016/j.cmpb.2023.107683_bib0083) 2021; 9 Amin (10.1016/j.cmpb.2023.107683_bib0087) 2019; 7 Haputhanthri (10.1016/j.cmpb.2023.107683_bib0038) 2020; 17 Kaushik (10.1016/j.cmpb.2023.107683_bib0009) 2019; 19 Uyulan (10.1016/j.cmpb.2023.107683_bib0051) 2022; 53 Huggins (10.1016/j.cmpb.2023.107683_bib0058) 2021; 18 Lee (10.1016/j.cmpb.2023.107683_bib0078) 2021; 361 Mumtaz (10.1016/j.cmpb.2023.107683_bib0049) 2019; 132 Ieracitano (10.1016/j.cmpb.2023.107683_bib0032) 2019; 323 Dang (10.1016/j.cmpb.2023.107683_bib0047) 2020; 102 Shahin (10.1016/j.cmpb.2023.107683_bib0088) 2017; 21 Holzinger (10.1016/j.cmpb.2023.107683_bib0006) 2018 Morabito (10.1016/j.cmpb.2023.107683_bib0016) 2017; 27 Aslan (10.1016/j.cmpb.2023.107683_bib0021) 2020; 37 Lazar (10.1016/j.cmpb.2023.107683_bib0060) 2016; 3 Li (10.1016/j.cmpb.2023.107683_bib0044) 2019; 99 Zhang (10.1016/j.cmpb.2023.107683_bib0037) 2020; 14 Farsi (10.1016/j.cmpb.2023.107683_bib0081) 2021; 21 Schirrmeister (10.1016/j.cmpb.2023.107683_bib0008) 2017; 38 Ahmadlou (10.1016/j.cmpb.2023.107683_bib0082) 2012; 211 Tawhid (10.1016/j.cmpb.2023.107683_bib0031) 2021; 16 Dominic (10.1016/j.cmpb.2023.107683_bib0050) 2019; 8 Seal (10.1016/j.cmpb.2023.107683_bib0023) 2021; 70 Mokatren (10.1016/j.cmpb.2023.107683_bib0042) 2021; 9 Wan (10.1016/j.cmpb.2023.107683_bib0025) 2020; 8 Chen (10.1016/j.cmpb.2023.107683_bib0073) 2019; 356 Djamal (10.1016/j.cmpb.2023.107683_bib0093) 2020; 9 Barry (10.1016/j.cmpb.2023.107683_bib0012) 2007; 118 Tosun (10.1016/j.cmpb.2023.107683_bib0075) 2021; 44 Khan (10.1016/j.cmpb.2023.107683_bib0015) 2021; 29 Lai (10.1016/j.cmpb.2023.107683_bib0033) 2020; 2020 Chang (10.1016/j.cmpb.2023.107683_bib0068) 2021 Paulraj (10.1016/j.cmpb.2023.107683_bib0090) 2013; 4 Sajedi (10.1016/j.cmpb.2023.107683_bib0089) 2013; 34 Amini (10.1016/j.cmpb.2023.107683_bib0035) 2021; 2021 Khare (10.1016/j.cmpb.2023.107683_bib0039) 2021; 21 Ay (10.1016/j.cmpb.2023.107683_bib0027) 2019; 43 Fawaz (10.1016/j.cmpb.2023.107683_bib0043) 2020; 8 Amezquita-Sanchez (10.1016/j.cmpb.2023.107683_bib0056) 2019; 322 Ahmedt-Aristizabal (10.1016/j.cmpb.2023.107683_bib0034) 2021; 25 Duan (10.1016/j.cmpb.2023.107683_bib0052) 2020; 14 Bertè (10.1016/j.cmpb.2023.107683_bib0055) 2014; 29 Mohammadi (10.1016/j.cmpb.2023.107683_bib0072) 2016; 6 Xu (10.1016/j.cmpb.2023.107683_bib0076) 2020; 8 Ortiz (10.1016/j.cmpb.2023.107683_bib0017) 2020; 30 Shalbaf (10.1016/j.cmpb.2023.107683_bib0066) 2020; 43 Bi (10.1016/j.cmpb.2023.107683_bib0061) 2019; 114 Luo (10.1016/j.cmpb.2023.107683_bib0071) 2020; 8 Oh (10.1016/j.cmpb.2023.107683_bib0077) 2020; 32 Triggiani (10.1016/j.cmpb.2023.107683_bib0057) 2017; 10 Alhussein (10.1016/j.cmpb.2023.107683_bib0092) 2019; 7 Padma Shri (10.1016/j.cmpb.2023.107683_bib0080) 2016; 46 Vahid (10.1016/j.cmpb.2023.107683_bib0024) 2019; 8 Acharya (10.1016/j.cmpb.2023.107683_bib0036) 2018; 161 Sun (10.1016/j.cmpb.2023.107683_bib0070) 2021; 11 Van Putten (10.1016/j.cmpb.2023.107683_bib0010) 2018; 8 Jahmunah (10.1016/j.cmpb.2023.107683_bib0067) 2019; 100 Lai (10.1016/j.cmpb.2023.107683_bib0030) 2021; 9 Wikswo (10.1016/j.cmpb.2023.107683_bib0002) 1993; 87 10.1016/j.cmpb.2023.107683_bib0004 Chen (10.1016/j.cmpb.2023.107683_bib0020) 2019; 16 Chaibub Neto (10.1016/j.cmpb.2023.107683_bib0041) 2019; 2 Puthankattil (10.1016/j.cmpb.2023.107683_bib0026) 2017; 17 Savareh (10.1016/j.cmpb.2023.107683_bib0011) 2021; 66 Loh (10.1016/j.cmpb.2023.107683_bib0079) 2021; 10 Martinez-Murcia (10.1016/j.cmpb.2023.107683_bib0018) 2020; 30 Tudor (10.1016/j.cmpb.2023.107683_bib0001) 2005; 59 Ahmadlou (10.1016/j.cmpb.2023.107683_bib0028) 2012; 85 Saeedi (10.1016/j.cmpb.2023.107683_bib0053) 2021; 15 Oh (10.1016/j.cmpb.2023.107683_bib0069) 2019; 9 Boshra (10.1016/j.cmpb.2023.107683_bib0019) 2019; 9 Khan (10.1016/j.cmpb.2023.107683_bib0014) 2021; 9 Li (10.1016/j.cmpb.2023.107683_bib0048) 2020; 14 Singh (10.1016/j.cmpb.2023.107683_bib0064) 2021; 235 Şeker (10.1016/j.cmpb.2023.107683_bib0013) 2021; 206 Klonowski (10.1016/j.cmpb.2023.107683_bib0003) 2002; 622 Thanjavur (10.1016/j.cmpb.2023.107683_bib0086) 2021; 11 Guerrero (10.1016/j.cmpb.2023.107683_bib0084) 2021; 7 Ahmadlou (10.1016/j.cmpb.2023.107683_bib0091) 2013; 124 Sankari (10.1016/j.cmpb.2023.107683_bib0040) 2011; 197 |
References_xml | – volume: 206 year: 2021 ident: bib0013 article-title: Complexity of EEG dynamics for early diagnosis of Alzheimer's disease using permutation entropy neuromarker publication-title: Comput. Methods Prog. Biomed. – volume: 9 start-page: 17341 year: 2019 ident: bib0019 article-title: Neurophysiological correlates of concussion: deep learning for clinical assessment publication-title: Sci. Rep. – volume: 361 year: 2021 ident: bib0078 article-title: A convolutional-recurrent neural network approach to resting-state EEG classification in Parkinson's disease publication-title: J. Neurosci. Methods – volume: 9 start-page: 8835 year: 2021 end-page: 8846 ident: bib0014 article-title: Automated diagnosis of major depressive disorder using brain effective connectivity and 3d convolutional neural network publication-title: IEEE Access – volume: 59 start-page: 307 year: 2005 end-page: 313 ident: bib0001 article-title: [H publication-title: Acta Med. Croat. Cas. Hravatske Akad. Med. Znan. – volume: 30 year: 2020 ident: bib0018 article-title: EEG connectivity analysis using denoising autoencoders for the detection of dyslexia publication-title: Int. J. Neural Syst. – volume: 17 year: 2020 ident: bib0062 article-title: Resting-state EEG signal classification of amnestic mild cognitive impairment with type 2 diabetes mellitus based on multispectral image and convolutional neural network publication-title: J. Neural Eng. – volume: 14 year: 2020 ident: bib0052 article-title: Machine learning approaches for MDD detection and emotion decoding using EEG signals publication-title: Front. Hum. Neurosci. – volume: 323 start-page: 96 year: 2019 end-page: 107 ident: bib0032 article-title: A convolutional neural network approach for classification of dementia stages based on 2D-spectral representation of EEG recordings publication-title: Neurocomputing – volume: 8 year: 2019 ident: bib0024 article-title: Deep learning based on event-related EEG differentiates children with ADHD from healthy controls publication-title: J. Clin. Med. – volume: 197 year: 2020 ident: bib0074 article-title: Diagnose ADHD disorder in children using convolutional neural network based on continuous mental task EEG publication-title: Comput. Methods Prog. Biomed. – volume: 197 start-page: 165 year: 2011 end-page: 170 ident: bib0040 article-title: Probabilistic neural networks for diagnosis of Alzheimer's disease using conventional and wavelet coherence publication-title: J. Neurosci. Methods – volume: 24 start-page: 1333 year: 2020 end-page: 1343 ident: bib0063 article-title: A multi-domain connectome convolutional neural network for identifying schizophrenia from EEG connectivity patterns publication-title: IEEE J. Biomed. Health Inform. – volume: 622 start-page: 155 year: 2002 end-page: 162 ident: bib0003 publication-title: Complexity of EEG‐signal in Time Domain‐Possible Biomedical Application – volume: 61 start-page: 85 year: 2015 end-page: 117 ident: bib0007 article-title: Deep learning in neural networks: an overview publication-title: Neural. Netw. – volume: 132 year: 2019 ident: bib0049 article-title: A deep learning framework for automatic diagnosis of unipolar depression publication-title: Int. J. Med. Inform. – volume: 235 start-page: 167 year: 2021 end-page: 184 ident: bib0064 article-title: Spectral features based convolutional neural network for accurate and prompt identification of schizophrenic patients publication-title: Proc. Inst. Mech. Eng. Part H J. Eng. Med. – volume: 6 start-page: 66 year: 2016 end-page: 73 ident: bib0072 article-title: EEG classification of ADHD and normal children using non-linear features and neural network publication-title: Biomed. Eng. Lett. – reference: Saloni Dattani, Lucas Rodés-Guirao, Hannah Ritchie and Max Roser (2021) - “Mental Health”. Published online at OurWorldInData.org. Retrieved from: – volume: 11 start-page: 12353 year: 2021 ident: bib0086 article-title: Recurrent neural network-based acute concussion classifier using raw resting state EEG data publication-title: Sci. Rep. – volume: 43 start-page: 1349 year: 2020 end-page: 1360 ident: bib0054 article-title: EEG-based deep learning model for the automatic detection of clinical depression publication-title: Phys. Eng. Sci. Med. – volume: 2021 year: 2021 ident: bib0035 article-title: Diagnosis of Alzheimer's disease by time-dependent power spectrum descriptors and convolutional neural network using EEG signal publication-title: Comput. Math. Methods Med. – volume: 14 start-page: 192 year: 2020 ident: bib0048 article-title: A deep learning approach for mild depression recognition based on functional connectivity using electroencephalography publication-title: Front. Neurosci. – volume: 11 start-page: 4706 year: 2021 ident: bib0070 article-title: A hybrid deep neural network for classification of schizophrenia using EEG data publication-title: Sci. Rep. – volume: 25 start-page: 69 year: 2021 end-page: 76 ident: bib0034 article-title: Identification of children at risk of schizophrenia via deep learning and EEG responses publication-title: IEEE J. Biomed. Health Inform. – volume: 3 start-page: 230 year: 2016 end-page: 238 ident: bib0060 article-title: Fuzzy-entropy threshold based on a complex wavelet denoising technique to diagnose Alzheimer disease publication-title: Healthc. Technol. Lett. – volume: 16 year: 2021 ident: bib0031 article-title: A spectrogram image based intelligent technique for automatic detection of autism spectrum disorder from EEG publication-title: PLoS One – volume: 39 year: 2022 ident: bib0045 article-title: Decision support system for major depression detection using spectrogram and convolution neural network with EEG signals publication-title: Expert Syst. – volume: 21 start-page: 3552 year: 2021 end-page: 3560 ident: bib0081 article-title: Classification of alcoholic EEG signals using a deep learning method publication-title: IEEE Sens. J. – volume: 9 start-page: 86899 year: 2021 end-page: 86913 ident: bib0083 article-title: Severity assessment of social anxiety disorder using deep learning models on brain effective connectivity publication-title: IEEE Access – year: 2018 ident: bib0006 article-title: Current Advances, Trends and Challenges of Machine Learning and Knowledge Extraction: From Machine Learning to Explainable AI – volume: 29 start-page: 796 year: 2021 end-page: 808 ident: bib0015 article-title: Effective connectivity in default mode network for alcoholism diagnosis publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 356 start-page: 83 year: 2019 end-page: 96 ident: bib0073 article-title: A deep learning framework for identifying children with ADHD using an EEG-based brain network publication-title: Neurocomputing – volume: 30 year: 2020 ident: bib0017 article-title: Dyslexia diagnosis by EEG temporal and spectral descriptors: an anomaly detection approach publication-title: Int. J. Neural Syst. – volume: 53 start-page: 24 year: 2022 end-page: 36 ident: bib0051 article-title: Depression diagnosis modeling with advanced computational methods: frequency-domain EMVAR and deep learning publication-title: Clin. EEG Neurosci. – volume: 100 year: 2019 ident: bib0067 article-title: Automated detection of schizophrenia using nonlinear signal processing methods publication-title: Artif. Intell. Med. – volume: 9 year: 2019 ident: bib0069 article-title: Deep convolutional neural network model for automated diagnosis of schizophrenia using EEG signals publication-title: Appl. Sci. – volume: 9 start-page: 1890 year: 2020 end-page: 1898 ident: bib0093 article-title: Identification of post-stroke EEG signal using wavelet and convolutional neural networks publication-title: Bull. Electr. Eng. Inform. – volume: 21 start-page: 17017 year: 2021 end-page: 17024 ident: bib0039 article-title: PDCNNet: an automatic framework for the detection of Parkinson's disease using EEG signals publication-title: IEEE Sens J – volume: 124 start-page: 1122 year: 2013 end-page: 1131 ident: bib0091 article-title: Global organization of functional brain connectivity in methamphetamine abusers publication-title: Clin. Neurophysiol. – volume: 14 start-page: 365 year: 2020 ident: bib0037 article-title: Bi-dimensional approach based on transfer learning for alcoholism pre-disposition classification via EEG signals publication-title: Front. Hum. Neurosci. – volume: 8 year: 2018 ident: bib0010 article-title: Predicting sex from brain rhythms with deep learning publication-title: Sci. Rep. – reference: . [Online Resource]. – volume: 8 start-page: 30332 year: 2020 end-page: 30342 ident: bib0025 article-title: HybridEEGNet: a convolutional neural network for EEG feature learning and depression discrimination publication-title: IEEE Access – volume: 8 start-page: 874 year: 2020 ident: bib0076 article-title: Using a deep recurrent neural network with EEG signal to detect Parkinson's disease publication-title: Ann. Transl. Med. – volume: 46 start-page: 441 year: 2016 end-page: 451 ident: bib0080 article-title: Spectral entropy feature subset selection using SEPCOR to detect alcoholic impact on gamma sub band visual event related potentials of multichannel electroencephalograms (EEG) publication-title: Appl. Soft Comput. J. – volume: 322 start-page: 88 year: 2019 end-page: 95 ident: bib0056 article-title: A novel methodology for automated differential diagnosis of mild cognitive impairment and the Alzheimer's disease using EEG signals publication-title: J. Neurosci. Methods – volume: 17 start-page: 837 year: 2020 end-page: 854 ident: bib0038 article-title: Integration of facial thermography in EEG-based classification of ASD publication-title: Int. J. Autom. Comput. – volume: 13 start-page: 696 year: 2020 end-page: 708 ident: bib0046 article-title: Improving brain E-health services via high-performance EEG classification with grouping bayesian optimization publication-title: IEEE Trans. Serv. Comput. – volume: 2020 year: 2020 ident: bib0033 article-title: Detection of moderate traumatic brain injury from resting-state eye-closed electroencephalography publication-title: Comput. Intell. Neurosci. – volume: 19 start-page: 2634 year: 2019 end-page: 2641 ident: bib0009 article-title: EEG-based age and gender prediction using deep BLSTM-LSTM network model publication-title: IEEE Sens. J. – volume: 15 start-page: 239 year: 2021 end-page: 252 ident: bib0053 article-title: Major depressive disorder diagnosis based on effective connectivity in EEG signals: a convolutional neural network and long short-term memory approach publication-title: Cogn. Neurodyn. – volume: 70 start-page: 1 year: 2021 end-page: 13 ident: bib0023 article-title: DeprNet: a deep convolution neural network framework for detecting depression using EEG publication-title: IEEE Trans. Instrum. Meas. – volume: 2 start-page: 1 year: 2019 end-page: 6 ident: bib0041 article-title: Detecting the impact of subject characteristics on machine learning-based diagnostic applications publication-title: Npj Digit. Med. – volume: 9 start-page: 24946 year: 2021 end-page: 24964 ident: bib0030 article-title: Convolutional neural network utilizing error-correcting output codes support vector machine for classification of non-severe traumatic brain injury from electroencephalogram signal publication-title: IEEE Access – volume: 27 year: 2017 ident: bib0016 article-title: Deep learning representation from electroencephalography of early-stage Creutzfeldt-Jakob disease and features for differentiation from rapidly progressive dementia publication-title: Int. J. Neural Syst. – volume: 8 start-page: 464 year: 2019 end-page: 468 ident: bib0050 article-title: Deep learning in computer-aided diagnosis of MDD publication-title: Int. J. Innovat. Technol. Explor. Eng. – volume: 21 start-page: 1546 year: 2017 end-page: 1553 ident: bib0088 article-title: Deep learning and insomnia: assisting clinicians with their diagnosis publication-title: IEEE J. Biomed. Health Inform. – volume: 43 start-page: 1229 year: 2020 end-page: 1239 ident: bib0066 article-title: Transfer learning with deep convolutional neural network for automated detection of schizophrenia from EEG signals publication-title: Phys. Eng. Sci. Med. – volume: 34 start-page: 1388 year: 2013 end-page: 1396 ident: bib0089 article-title: Linear and nonlinear analysis of brain dynamics in children with cerebral palsy publication-title: Res. Dev. Disabil. – volume: 4 start-page: 204 year: 2013 end-page: 212 ident: bib0090 article-title: EEG based detection of conductive and sensorineural hearing loss using artificial neural networks publication-title: J. Next Gener. Inf. Technol. – volume: 11 start-page: 1 year: 2021 end-page: 9 ident: bib0005 article-title: Signal complexity indicators of health status in clinical EEG publication-title: Sci. Rep. – volume: 14 year: 2020 ident: bib0022 article-title: Deep learning convolutional neural networks discriminate adult ADHD from healthy individuals on the basis of event-related spectral EEG publication-title: Front. Neurosci. – volume: 70 year: 2021 ident: bib0065 article-title: SPWVD-CNN for automated detection of schizophrenia patients using EEG signals publication-title: IEEE Trans. Instrum. Meas. – volume: 114 start-page: 119 year: 2019 end-page: 135 ident: bib0061 article-title: Early Alzheimer's disease diagnosis based on EEG spectral images using deep learning publication-title: Neural Netw. – volume: 7 year: 2021 ident: bib0084 article-title: EEG signal analysis using classification techniques: logistic regression, artificial neural networks, support vector machines, and convolutional neural networks publication-title: Heliyon – volume: 7 start-page: 10745 year: 2019 end-page: 10753 ident: bib0087 article-title: Cognitive smart healthcare for pathology detection and monitoring publication-title: IEEE Access – year: 2021 ident: bib0068 article-title: Classification of first-episode schizophrenia, chronic schizophrenia and healthy control based on brain network of mismatch negativity by graph neural network publication-title: Proceedings of the IEEE Transactions on Neural Systems and Rehabilitation Engineering : A Publication of the IEEE Engineering in Medicine and Biology Society – volume: 44 start-page: 693 year: 2021 end-page: 702 ident: bib0075 article-title: Effects of spectral features of EEG signals recorded with different channels and recording statuses on ADHD classification with deep learning publication-title: Phys. Eng. Sci. Med. – volume: 161 start-page: 103 year: 2018 end-page: 113 ident: bib0036 article-title: Automated EEG-based screening of depression using deep convolutional neural network publication-title: Comput. Methods Prog. Biomed. – volume: 21 year: 2021 ident: bib0029 article-title: Deep convolutional neural network regularization for alcoholism detection using EEG signals publication-title: Sensors – volume: 37 start-page: 235 year: 2020 end-page: 244 ident: bib0021 article-title: Automatic detection of schizophrenia by applying deep learning over spectrogram images of EEG signals publication-title: Trait. Du Signal – volume: 18 year: 2021 ident: bib0058 article-title: Deep learning of resting-state electroencephalogram signals for three-class classification of Alzheimer's disease, mild cognitive impairment and healthy ageing publication-title: J. Neural Eng. – volume: 7 start-page: 27781 year: 2019 end-page: 27788 ident: bib0092 article-title: EEG pathology detection based on deep learning publication-title: IEEE Access – volume: 66 start-page: 275 year: 2021 end-page: 284 ident: bib0011 article-title: Prediction of salivary cortisol level by electroencephalography features publication-title: Biomed. Tech. – volume: 29 start-page: 57 year: 2014 end-page: 65 ident: bib0055 article-title: Elman neural network for the early identification of cognitive impairment in Alzheimer's disease publication-title: Funct. Neurol. – volume: 39 start-page: 603 year: 2021 end-page: 610 ident: bib0085 article-title: EEG-based pathology detection for home health monitoring publication-title: IEEE J. Sel. Areas Commun. – volume: 10 year: 2021 ident: bib0079 article-title: Gaborpdnet: gabor transformation and deep neural network for Parkinson's disease detection using EEG signals publication-title: Electronics – volume: 8 start-page: 135811 year: 2020 end-page: 135820 ident: bib0043 article-title: Encoding rich frequencies for classification of stroke patients EEG signals publication-title: IEEE Access – volume: 32 start-page: 10927 year: 2020 end-page: 10933 ident: bib0077 article-title: A deep learning approach for Parkinson's disease diagnosis from EEG signals publication-title: Neural Comput. Appl. – volume: 38 start-page: 5391 year: 2017 end-page: 5420 ident: bib0008 article-title: Deep learning with convolutional neural networks for EEG decoding and visualization publication-title: Hum. Brain Mapp. – volume: 43 year: 2019 ident: bib0027 article-title: Automated depression detection using deep representation and sequence learning with EEG signals publication-title: J. Med. Syst. – volume: 211 start-page: 203 year: 2012 end-page: 209 ident: bib0082 article-title: Fuzzy synchronization likelihood-wavelet methodology for diagnosis of autism spectrum disorder publication-title: J. Neurosci. Methods – volume: 87 start-page: 1 year: 1993 end-page: 9 ident: bib0002 article-title: The future of the EEG and MEG publication-title: Electroencephalogr. Clin. Neurophysiol. – volume: 8 start-page: 213078 year: 2020 end-page: 213093 ident: bib0071 article-title: Biomarkers for prediction of schizophrenia: insights from resting-state EEG microstates publication-title: IEEE Access – volume: 118 start-page: 2765 year: 2007 end-page: 2773 ident: bib0012 article-title: EEG differences between eyes-closed and eyes-open resting conditions publication-title: Clin. Neurophysiol. – volume: 70 year: 2021 ident: bib0059 article-title: Diagnosis of mild Alzheimer's disease by EEG and ERP signals using linear and nonlinear classifiers publication-title: Biomed. Signal Process. Control – volume: 99 year: 2019 ident: bib0044 article-title: Depression recognition using machine learning methods with different feature generation strategies publication-title: Artif. Intell. Med. – volume: 17 year: 2017 ident: bib0026 article-title: Half-wave segment feature extraction of EEG signals of patients with depression and performance evaluation of neural network classifiers publication-title: J. Mech. Med. Biol. – volume: 9 start-page: 19053 year: 2021 end-page: 19065 ident: bib0042 article-title: EEG classification by factoring in sensor spatial configuration publication-title: IEEE Access – volume: 10 year: 2017 ident: bib0057 article-title: Classification of healthy subjects and Alzheimer's disease patients with dementia from cortical sources of resting state EEG rhythms: a study using artificial neural networks publication-title: Front. Neurosci. – volume: 16 year: 2019 ident: bib0020 article-title: Use of deep learning to detect personalized spatial-frequency abnormalities in EEGs of children with ADHD publication-title: J. Neural Eng. – volume: 85 start-page: 206 year: 2012 end-page: 211 ident: bib0028 article-title: Fractality analysis of frontal brain in major depressive disorder publication-title: Int. J. Psychophysiol. – volume: 102 start-page: 667 year: 2020 end-page: 677 ident: bib0047 article-title: Multilayer brain network combined with deep convolutional neural network for detecting major depressive disorder publication-title: Nonlinear Dyn. – volume: 21 start-page: 17017 issue: 15 year: 2021 ident: 10.1016/j.cmpb.2023.107683_bib0039 article-title: PDCNNet: an automatic framework for the detection of Parkinson's disease using EEG signals publication-title: IEEE Sens J doi: 10.1109/JSEN.2021.3080135 – volume: 114 start-page: 119 year: 2019 ident: 10.1016/j.cmpb.2023.107683_bib0061 article-title: Early Alzheimer's disease diagnosis based on EEG spectral images using deep learning publication-title: Neural Netw. doi: 10.1016/j.neunet.2019.02.005 – volume: 197 year: 2020 ident: 10.1016/j.cmpb.2023.107683_bib0074 article-title: Diagnose ADHD disorder in children using convolutional neural network based on continuous mental task EEG publication-title: Comput. Methods Prog. Biomed. doi: 10.1016/j.cmpb.2020.105738 – volume: 11 start-page: 1 issue: 1 year: 2021 ident: 10.1016/j.cmpb.2023.107683_bib0005 article-title: Signal complexity indicators of health status in clinical EEG publication-title: Sci. Rep. doi: 10.1038/s41598-021-99717-8 – volume: 9 issue: 14 year: 2019 ident: 10.1016/j.cmpb.2023.107683_bib0069 article-title: Deep convolutional neural network model for automated diagnosis of schizophrenia using EEG signals publication-title: Appl. Sci. doi: 10.3390/app9142870 – volume: 622 start-page: 155 year: 2002 ident: 10.1016/j.cmpb.2023.107683_bib0003 – volume: 8 start-page: 874 issue: 14 year: 2020 ident: 10.1016/j.cmpb.2023.107683_bib0076 article-title: Using a deep recurrent neural network with EEG signal to detect Parkinson's disease publication-title: Ann. Transl. Med. doi: 10.21037/atm-20-5100 – volume: 16 issue: 6 year: 2019 ident: 10.1016/j.cmpb.2023.107683_bib0020 article-title: Use of deep learning to detect personalized spatial-frequency abnormalities in EEGs of children with ADHD publication-title: J. Neural Eng. doi: 10.1088/1741-2552/ab3a0a – volume: 11 start-page: 4706 issue: 1 year: 2021 ident: 10.1016/j.cmpb.2023.107683_bib0070 article-title: A hybrid deep neural network for classification of schizophrenia using EEG data publication-title: Sci. Rep. doi: 10.1038/s41598-021-83350-6 – volume: 10 issue: 14 year: 2021 ident: 10.1016/j.cmpb.2023.107683_bib0079 article-title: Gaborpdnet: gabor transformation and deep neural network for Parkinson's disease detection using EEG signals publication-title: Electronics doi: 10.3390/electronics10141740 – volume: 30 issue: 7 year: 2020 ident: 10.1016/j.cmpb.2023.107683_bib0018 article-title: EEG connectivity analysis using denoising autoencoders for the detection of dyslexia publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065720500379 – volume: 87 start-page: 1 issue: 1 year: 1993 ident: 10.1016/j.cmpb.2023.107683_bib0002 article-title: The future of the EEG and MEG publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/0013-4694(93)90169-V – volume: 6 start-page: 66 issue: 2 year: 2016 ident: 10.1016/j.cmpb.2023.107683_bib0072 article-title: EEG classification of ADHD and normal children using non-linear features and neural network publication-title: Biomed. Eng. Lett. doi: 10.1007/s13534-016-0218-2 – volume: 30 issue: 7 year: 2020 ident: 10.1016/j.cmpb.2023.107683_bib0017 article-title: Dyslexia diagnosis by EEG temporal and spectral descriptors: an anomaly detection approach publication-title: Int. J. Neural Syst. doi: 10.1142/S012906572050029X – volume: 14 year: 2020 ident: 10.1016/j.cmpb.2023.107683_bib0052 article-title: Machine learning approaches for MDD detection and emotion decoding using EEG signals publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2020.00284 – volume: 24 start-page: 1333 issue: 5 year: 2020 ident: 10.1016/j.cmpb.2023.107683_bib0063 article-title: A multi-domain connectome convolutional neural network for identifying schizophrenia from EEG connectivity patterns publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2019.2941222 – volume: 7 start-page: 27781 year: 2019 ident: 10.1016/j.cmpb.2023.107683_bib0092 article-title: EEG pathology detection based on deep learning publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2901672 – volume: 11 start-page: 12353 issue: 1 year: 2021 ident: 10.1016/j.cmpb.2023.107683_bib0086 article-title: Recurrent neural network-based acute concussion classifier using raw resting state EEG data publication-title: Sci. Rep. doi: 10.1038/s41598-021-91614-4 – volume: 2020 year: 2020 ident: 10.1016/j.cmpb.2023.107683_bib0033 article-title: Detection of moderate traumatic brain injury from resting-state eye-closed electroencephalography publication-title: Comput. Intell. Neurosci. doi: 10.1155/2020/8923906 – volume: 7 issue: 6 year: 2021 ident: 10.1016/j.cmpb.2023.107683_bib0084 article-title: EEG signal analysis using classification techniques: logistic regression, artificial neural networks, support vector machines, and convolutional neural networks publication-title: Heliyon doi: 10.1016/j.heliyon.2021.e07258 – volume: 70 start-page: 1 year: 2021 ident: 10.1016/j.cmpb.2023.107683_bib0023 article-title: DeprNet: a deep convolution neural network framework for detecting depression using EEG publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2021.3053999 – volume: 17 issue: 3 year: 2020 ident: 10.1016/j.cmpb.2023.107683_bib0062 article-title: Resting-state EEG signal classification of amnestic mild cognitive impairment with type 2 diabetes mellitus based on multispectral image and convolutional neural network publication-title: J. Neural Eng. doi: 10.1088/1741-2552/ab8b7b – volume: 102 start-page: 667 issue: 2 year: 2020 ident: 10.1016/j.cmpb.2023.107683_bib0047 article-title: Multilayer brain network combined with deep convolutional neural network for detecting major depressive disorder publication-title: Nonlinear Dyn. doi: 10.1007/s11071-020-05665-9 – volume: 124 start-page: 1122 issue: 6 year: 2013 ident: 10.1016/j.cmpb.2023.107683_bib0091 article-title: Global organization of functional brain connectivity in methamphetamine abusers publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2012.12.003 – year: 2021 ident: 10.1016/j.cmpb.2023.107683_bib0068 article-title: Classification of first-episode schizophrenia, chronic schizophrenia and healthy control based on brain network of mismatch negativity by graph neural network – volume: 99 year: 2019 ident: 10.1016/j.cmpb.2023.107683_bib0044 article-title: Depression recognition using machine learning methods with different feature generation strategies publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2019.07.004 – volume: 38 start-page: 5391 issue: 11 year: 2017 ident: 10.1016/j.cmpb.2023.107683_bib0008 article-title: Deep learning with convolutional neural networks for EEG decoding and visualization publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.23730 – volume: 361 year: 2021 ident: 10.1016/j.cmpb.2023.107683_bib0078 article-title: A convolutional-recurrent neural network approach to resting-state EEG classification in Parkinson's disease publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2021.109282 – volume: 9 start-page: 24946 year: 2021 ident: 10.1016/j.cmpb.2023.107683_bib0030 article-title: Convolutional neural network utilizing error-correcting output codes support vector machine for classification of non-severe traumatic brain injury from electroencephalogram signal publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3056724 – volume: 4 start-page: 204 issue: 3 year: 2013 ident: 10.1016/j.cmpb.2023.107683_bib0090 article-title: EEG based detection of conductive and sensorineural hearing loss using artificial neural networks publication-title: J. Next Gener. Inf. Technol. – volume: 9 start-page: 17341 issue: 1 year: 2019 ident: 10.1016/j.cmpb.2023.107683_bib0019 article-title: Neurophysiological correlates of concussion: deep learning for clinical assessment publication-title: Sci. Rep. doi: 10.1038/s41598-019-53751-9 – volume: 2021 year: 2021 ident: 10.1016/j.cmpb.2023.107683_bib0035 article-title: Diagnosis of Alzheimer's disease by time-dependent power spectrum descriptors and convolutional neural network using EEG signal publication-title: Comput. Math. Methods Med. doi: 10.1155/2021/5511922 – volume: 21 issue: 16 year: 2021 ident: 10.1016/j.cmpb.2023.107683_bib0029 article-title: Deep convolutional neural network regularization for alcoholism detection using EEG signals publication-title: Sensors doi: 10.3390/s21165456 – volume: 14 start-page: 365 year: 2020 ident: 10.1016/j.cmpb.2023.107683_bib0037 article-title: Bi-dimensional approach based on transfer learning for alcoholism pre-disposition classification via EEG signals publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2020.00365 – volume: 356 start-page: 83 year: 2019 ident: 10.1016/j.cmpb.2023.107683_bib0073 article-title: A deep learning framework for identifying children with ADHD using an EEG-based brain network publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.04.058 – volume: 66 start-page: 275 issue: 3 year: 2021 ident: 10.1016/j.cmpb.2023.107683_bib0011 article-title: Prediction of salivary cortisol level by electroencephalography features publication-title: Biomed. Tech. doi: 10.1515/bmt-2020-0005 – volume: 39 start-page: 603 issue: 2 year: 2021 ident: 10.1016/j.cmpb.2023.107683_bib0085 article-title: EEG-based pathology detection for home health monitoring publication-title: IEEE J. Sel. Areas Commun. doi: 10.1109/JSAC.2020.3020654 – volume: 7 start-page: 10745 year: 2019 ident: 10.1016/j.cmpb.2023.107683_bib0087 article-title: Cognitive smart healthcare for pathology detection and monitoring publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2891390 – volume: 15 start-page: 239 issue: 2 year: 2021 ident: 10.1016/j.cmpb.2023.107683_bib0053 article-title: Major depressive disorder diagnosis based on effective connectivity in EEG signals: a convolutional neural network and long short-term memory approach publication-title: Cogn. Neurodyn. doi: 10.1007/s11571-020-09619-0 – volume: 17 issue: 1 year: 2017 ident: 10.1016/j.cmpb.2023.107683_bib0026 article-title: Half-wave segment feature extraction of EEG signals of patients with depression and performance evaluation of neural network classifiers publication-title: J. Mech. Med. Biol. doi: 10.1142/S0219519417500063 – volume: 132 year: 2019 ident: 10.1016/j.cmpb.2023.107683_bib0049 article-title: A deep learning framework for automatic diagnosis of unipolar depression publication-title: Int. J. Med. Inform. doi: 10.1016/j.ijmedinf.2019.103983 – volume: 18 issue: 4 year: 2021 ident: 10.1016/j.cmpb.2023.107683_bib0058 article-title: Deep learning of resting-state electroencephalogram signals for three-class classification of Alzheimer's disease, mild cognitive impairment and healthy ageing publication-title: J. Neural Eng. doi: 10.1088/1741-2552/ac05d8 – volume: 19 start-page: 2634 issue: 7 year: 2019 ident: 10.1016/j.cmpb.2023.107683_bib0009 article-title: EEG-based age and gender prediction using deep BLSTM-LSTM network model publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2018.2885582 – volume: 211 start-page: 203 issue: 2 year: 2012 ident: 10.1016/j.cmpb.2023.107683_bib0082 article-title: Fuzzy synchronization likelihood-wavelet methodology for diagnosis of autism spectrum disorder publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2012.08.020 – volume: 8 start-page: 213078 year: 2020 ident: 10.1016/j.cmpb.2023.107683_bib0071 article-title: Biomarkers for prediction of schizophrenia: insights from resting-state EEG microstates publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3037658 – volume: 161 start-page: 103 year: 2018 ident: 10.1016/j.cmpb.2023.107683_bib0036 article-title: Automated EEG-based screening of depression using deep convolutional neural network publication-title: Comput. Methods Prog. Biomed. doi: 10.1016/j.cmpb.2018.04.012 – volume: 8 issue: 7 year: 2019 ident: 10.1016/j.cmpb.2023.107683_bib0024 article-title: Deep learning based on event-related EEG differentiates children with ADHD from healthy controls publication-title: J. Clin. Med. doi: 10.3390/jcm8071055 – volume: 21 start-page: 3552 issue: 3 year: 2021 ident: 10.1016/j.cmpb.2023.107683_bib0081 article-title: Classification of alcoholic EEG signals using a deep learning method publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2020.3026830 – volume: 118 start-page: 2765 issue: 12 year: 2007 ident: 10.1016/j.cmpb.2023.107683_bib0012 article-title: EEG differences between eyes-closed and eyes-open resting conditions publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2007.07.028 – volume: 70 year: 2021 ident: 10.1016/j.cmpb.2023.107683_bib0059 article-title: Diagnosis of mild Alzheimer's disease by EEG and ERP signals using linear and nonlinear classifiers publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2021.103049 – volume: 29 start-page: 796 year: 2021 ident: 10.1016/j.cmpb.2023.107683_bib0015 article-title: Effective connectivity in default mode network for alcoholism diagnosis publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2021.3075737 – volume: 2 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.cmpb.2023.107683_bib0041 article-title: Detecting the impact of subject characteristics on machine learning-based diagnostic applications publication-title: Npj Digit. Med. doi: 10.1038/s41746-019-0178-x – volume: 70 year: 2021 ident: 10.1016/j.cmpb.2023.107683_bib0065 article-title: SPWVD-CNN for automated detection of schizophrenia patients using EEG signals publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2021.3070608 – volume: 21 start-page: 1546 issue: 6 year: 2017 ident: 10.1016/j.cmpb.2023.107683_bib0088 article-title: Deep learning and insomnia: assisting clinicians with their diagnosis publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2017.2650199 – volume: 9 start-page: 19053 year: 2021 ident: 10.1016/j.cmpb.2023.107683_bib0042 article-title: EEG classification by factoring in sensor spatial configuration publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3054670 – volume: 53 start-page: 24 issue: 1 year: 2022 ident: 10.1016/j.cmpb.2023.107683_bib0051 article-title: Depression diagnosis modeling with advanced computational methods: frequency-domain EMVAR and deep learning publication-title: Clin. EEG Neurosci. doi: 10.1177/15500594211018545 – volume: 323 start-page: 96 year: 2019 ident: 10.1016/j.cmpb.2023.107683_bib0032 article-title: A convolutional neural network approach for classification of dementia stages based on 2D-spectral representation of EEG recordings publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.09.071 – volume: 27 issue: 2 year: 2017 ident: 10.1016/j.cmpb.2023.107683_bib0016 article-title: Deep learning representation from electroencephalography of early-stage Creutzfeldt-Jakob disease and features for differentiation from rapidly progressive dementia publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065716500398 – volume: 3 start-page: 230 issue: 3 year: 2016 ident: 10.1016/j.cmpb.2023.107683_bib0060 article-title: Fuzzy-entropy threshold based on a complex wavelet denoising technique to diagnose Alzheimer disease publication-title: Healthc. Technol. Lett. doi: 10.1049/htl.2016.0022 – volume: 34 start-page: 1388 issue: 5 year: 2013 ident: 10.1016/j.cmpb.2023.107683_bib0089 article-title: Linear and nonlinear analysis of brain dynamics in children with cerebral palsy publication-title: Res. Dev. Disabil. doi: 10.1016/j.ridd.2013.01.016 – volume: 39 issue: 3 year: 2022 ident: 10.1016/j.cmpb.2023.107683_bib0045 article-title: Decision support system for major depression detection using spectrogram and convolution neural network with EEG signals publication-title: Expert Syst. doi: 10.1111/exsy.12773 – volume: 235 start-page: 167 issue: 2 year: 2021 ident: 10.1016/j.cmpb.2023.107683_bib0064 article-title: Spectral features based convolutional neural network for accurate and prompt identification of schizophrenic patients publication-title: Proc. Inst. Mech. Eng. Part H J. Eng. Med. doi: 10.1177/0954411920966937 – volume: 25 start-page: 69 issue: 1 year: 2021 ident: 10.1016/j.cmpb.2023.107683_bib0034 article-title: Identification of children at risk of schizophrenia via deep learning and EEG responses publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2020.2984238 – volume: 197 start-page: 165 issue: 1 year: 2011 ident: 10.1016/j.cmpb.2023.107683_bib0040 article-title: Probabilistic neural networks for diagnosis of Alzheimer's disease using conventional and wavelet coherence publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2011.01.027 – volume: 8 issue: 1 year: 2018 ident: 10.1016/j.cmpb.2023.107683_bib0010 article-title: Predicting sex from brain rhythms with deep learning publication-title: Sci. Rep. doi: 10.1038/s41598-018-21495-7 – volume: 10 issue: JAN year: 2017 ident: 10.1016/j.cmpb.2023.107683_bib0057 article-title: Classification of healthy subjects and Alzheimer's disease patients with dementia from cortical sources of resting state EEG rhythms: a study using artificial neural networks publication-title: Front. Neurosci. – volume: 37 start-page: 235 issue: 2 year: 2020 ident: 10.1016/j.cmpb.2023.107683_bib0021 article-title: Automatic detection of schizophrenia by applying deep learning over spectrogram images of EEG signals publication-title: Trait. Du Signal doi: 10.18280/ts.370209 – volume: 14 start-page: 192 year: 2020 ident: 10.1016/j.cmpb.2023.107683_bib0048 article-title: A deep learning approach for mild depression recognition based on functional connectivity using electroencephalography publication-title: Front. Neurosci. doi: 10.3389/fnins.2020.00192 – volume: 100 year: 2019 ident: 10.1016/j.cmpb.2023.107683_bib0067 article-title: Automated detection of schizophrenia using nonlinear signal processing methods publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2019.07.006 – volume: 43 start-page: 1349 issue: 4 year: 2020 ident: 10.1016/j.cmpb.2023.107683_bib0054 article-title: EEG-based deep learning model for the automatic detection of clinical depression publication-title: Phys. Eng. Sci. Med. doi: 10.1007/s13246-020-00938-4 – volume: 206 year: 2021 ident: 10.1016/j.cmpb.2023.107683_bib0013 article-title: Complexity of EEG dynamics for early diagnosis of Alzheimer's disease using permutation entropy neuromarker publication-title: Comput. Methods Prog. Biomed. doi: 10.1016/j.cmpb.2021.106116 – volume: 13 start-page: 696 issue: 4 year: 2020 ident: 10.1016/j.cmpb.2023.107683_bib0046 article-title: Improving brain E-health services via high-performance EEG classification with grouping bayesian optimization publication-title: IEEE Trans. Serv. Comput. doi: 10.1109/TSC.2019.2962673 – year: 2018 ident: 10.1016/j.cmpb.2023.107683_bib0006 – volume: 43 issue: 7 year: 2019 ident: 10.1016/j.cmpb.2023.107683_bib0027 article-title: Automated depression detection using deep representation and sequence learning with EEG signals publication-title: J. Med. Syst. doi: 10.1007/s10916-019-1345-y – volume: 16 issue: 6 year: 2021 ident: 10.1016/j.cmpb.2023.107683_bib0031 article-title: A spectrogram image based intelligent technique for automatic detection of autism spectrum disorder from EEG publication-title: PLoS One doi: 10.1371/journal.pone.0253094 – volume: 8 start-page: 464 issue: 6 year: 2019 ident: 10.1016/j.cmpb.2023.107683_bib0050 article-title: Deep learning in computer-aided diagnosis of MDD publication-title: Int. J. Innovat. Technol. Explor. Eng. – volume: 9 start-page: 8835 year: 2021 ident: 10.1016/j.cmpb.2023.107683_bib0014 article-title: Automated diagnosis of major depressive disorder using brain effective connectivity and 3d convolutional neural network publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3049427 – volume: 43 start-page: 1229 issue: 4 year: 2020 ident: 10.1016/j.cmpb.2023.107683_bib0066 article-title: Transfer learning with deep convolutional neural network for automated detection of schizophrenia from EEG signals publication-title: Phys. Eng. Sci. Med. doi: 10.1007/s13246-020-00925-9 – volume: 44 start-page: 693 issue: 3 year: 2021 ident: 10.1016/j.cmpb.2023.107683_bib0075 article-title: Effects of spectral features of EEG signals recorded with different channels and recording statuses on ADHD classification with deep learning publication-title: Phys. Eng. Sci. Med. doi: 10.1007/s13246-021-01018-x – volume: 29 start-page: 57 issue: 1 year: 2014 ident: 10.1016/j.cmpb.2023.107683_bib0055 article-title: Elman neural network for the early identification of cognitive impairment in Alzheimer's disease publication-title: Funct. Neurol. – volume: 14 year: 2020 ident: 10.1016/j.cmpb.2023.107683_bib0022 article-title: Deep learning convolutional neural networks discriminate adult ADHD from healthy individuals on the basis of event-related spectral EEG publication-title: Front. Neurosci. doi: 10.3389/fnins.2020.00251 – volume: 8 start-page: 30332 year: 2020 ident: 10.1016/j.cmpb.2023.107683_bib0025 article-title: HybridEEGNet: a convolutional neural network for EEG feature learning and depression discrimination publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2971656 – volume: 8 start-page: 135811 year: 2020 ident: 10.1016/j.cmpb.2023.107683_bib0043 article-title: Encoding rich frequencies for classification of stroke patients EEG signals publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3011185 – volume: 9 start-page: 1890 issue: 5 year: 2020 ident: 10.1016/j.cmpb.2023.107683_bib0093 article-title: Identification of post-stroke EEG signal using wavelet and convolutional neural networks publication-title: Bull. Electr. Eng. Inform. doi: 10.11591/eei.v9i5.2005 – volume: 9 start-page: 86899 year: 2021 ident: 10.1016/j.cmpb.2023.107683_bib0083 article-title: Severity assessment of social anxiety disorder using deep learning models on brain effective connectivity publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3089358 – volume: 61 start-page: 85 year: 2015 ident: 10.1016/j.cmpb.2023.107683_bib0007 article-title: Deep learning in neural networks: an overview publication-title: Neural. Netw. doi: 10.1016/j.neunet.2014.09.003 – volume: 85 start-page: 206 issue: 2 year: 2012 ident: 10.1016/j.cmpb.2023.107683_bib0028 article-title: Fractality analysis of frontal brain in major depressive disorder publication-title: Int. J. Psychophysiol. doi: 10.1016/j.ijpsycho.2012.05.001 – volume: 32 start-page: 10927 issue: 15 year: 2020 ident: 10.1016/j.cmpb.2023.107683_bib0077 article-title: A deep learning approach for Parkinson's disease diagnosis from EEG signals publication-title: Neural Comput. Appl. doi: 10.1007/s00521-018-3689-5 – volume: 46 start-page: 441 year: 2016 ident: 10.1016/j.cmpb.2023.107683_bib0080 article-title: Spectral entropy feature subset selection using SEPCOR to detect alcoholic impact on gamma sub band visual event related potentials of multichannel electroencephalograms (EEG) publication-title: Appl. Soft Comput. J. doi: 10.1016/j.asoc.2016.04.041 – volume: 322 start-page: 88 year: 2019 ident: 10.1016/j.cmpb.2023.107683_bib0056 article-title: A novel methodology for automated differential diagnosis of mild cognitive impairment and the Alzheimer's disease using EEG signals publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2019.04.013 – ident: 10.1016/j.cmpb.2023.107683_bib0004 – volume: 17 start-page: 837 issue: 6 year: 2020 ident: 10.1016/j.cmpb.2023.107683_bib0038 article-title: Integration of facial thermography in EEG-based classification of ASD publication-title: Int. J. Autom. Comput. doi: 10.1007/s11633-020-1231-6 – volume: 59 start-page: 307 issue: 4 year: 2005 ident: 10.1016/j.cmpb.2023.107683_bib0001 article-title: [Hans Berger (1873-1941)–the history of electroencephalography] publication-title: Acta Med. Croat. Cas. Hravatske Akad. Med. Znan. |
SSID | ssj0002556 |
Score | 2.4340217 |
SecondaryResourceType | review_article |
Snippet | •Comprehensive review of deep learning studies using EEG signals for neuropsychiatric disorder classification.•Analysis of factors impacting classification... The use of deep neural networks for electroencephalogram (EEG) classification has rapidly progressed and gained popularity in recent years, but automatic... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 107683 |
SubjectTerms | Algorithms Brain activity Conventional neural network Deep learning Electroencephalography Electroencephalography - methods Humans Neural network Neural Networks, Computer Neuro-markers Recurrent neural network |
Title | EEG-based classification of individuals with neuropsychiatric disorders using deep neural networks: A systematic review of current status and future directions |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0169260723003486 https://dx.doi.org/10.1016/j.cmpb.2023.107683 https://www.ncbi.nlm.nih.gov/pubmed/37406421 https://www.proquest.com/docview/2833999943 |
Volume | 240 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQlVAvFS2lpQ80SL1VZjex83BvK7R0WwSXgsTN8murRZBdNbtX_kr_amdiJ6gHqNRjLE8SzfjxJf7mG8Y-lWOX23lWcyuD4dKEjCuTGZ7bvFR-7Kuqq7F0flHOruT36-J6i530uTBEq0xrf1zTu9U6tYySN0erxWL0g3REEI1XCKLHQtYkuy1lRfr5x_cPNA-S2Ir63opT75Q4Ezle7m5lj6mAODYg7haPbU6Pgc9uEzrdZS8SeoRJfMGXbCs0r9jOeTof32O_p9OvnDYmD45gMfGAOtfDcg6LIfeqBfr9Cp2W5UB3XjjwSYqzBaLD_wQfwqrrhc9sIl-8_QITeJB_hpj6Qrd3UekJKEVp04JpPETBEogupvH9ml2dTi9PZjyVYOAOv_TWXJahzoNDtxZOZVRJU2bGV3VhQ124PORGeBUwsPlc-npeilBbq7w3hRMqM6XYZ9vNsglvGQjSNixdISqlpDcWv4xLG4IhBTs0Vwcs632vXdInpzIZt7onot1oipemeOkYrwP2ebBZRXWOJ3uLPqS6zzvFlVLj5vGkVTFY_TUy_2l31I8ajVOWzmFME5abViOiQ1iIXsA-b-JwGt5eVLLLPX73n099z57TVaQbfmDb61-b8BFh09oedvPikD2bfDubXfwBecMY8A |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBa6Fth2GfZut27VgN4GLbEly9ZuQZE2fSSXtkBvgl4ZMqxOMCe_Z391pCW72KEd0KstWgZJU58s8iMhh3LocjvPKmZFMEyYkDFlMsNym0vlh74s2x5L05mcXIuzm-Jmixx1tTCYVplif4zpbbROVwZJm4PVYjG4RB4RQOMlgOghF5V8QnaQnQqcfWd0ej6Z9QEZWbYixbdiKJBqZ2Kal7td2W_YQxwuAPTm961P9-HPdh06fkleJABJR_EdX5GtUL8mT6fpiPwN-TMenzBcmzx1iIwxFajVPl3O6aIvv2oo_oGlLZ1ln_G8cNQnNs6GYkb8D-pDWLWjYM46pow33-mI3jFA01j9go93keyJYpXSpqGm9jRyltCoZXTxt-T6eHx1NGGpCwNzsNlbMyFDlQcnSlE4lWEzTZEZX1aFDVXh8pAb7lUA2-Zz4au55KGyVnlvCsdVZiR_R7brZR12CeVIbyhdwUulhDcWNsfShmCQxA7E1R7JOt1rlyjKsVPGL93lov3UaC-N9tLRXnvkay-zigQdD47mnUl1V3oKwVLD-vGgVNFL_eOc_5X70nmNhq8Wj2JMHZabRgOoA2QIWoAx76M79W_PS9GWH3945KwH5NnkanqhL05n5x_Jc7wTsw_3yfb69yZ8AhS1tp_TV_IXBdEboQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EEG-based+classification+of+individuals+with+neuropsychiatric+disorders+using+deep+neural+networks%3A+A+systematic+review+of+current+status+and+future+directions&rft.jtitle=Computer+methods+and+programs+in+biomedicine&rft.au=Parsa%2C+Mohsen&rft.au=Rad%2C+Habib+Yousefi&rft.au=Vaezi%2C+Hadi&rft.au=Hossein-Zadeh%2C+Gholam-Ali&rft.date=2023-10-01&rft.issn=1872-7565&rft.eissn=1872-7565&rft.volume=240&rft.spage=107683&rft_id=info:doi/10.1016%2Fj.cmpb.2023.107683&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-2607&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-2607&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-2607&client=summon |