Copper iodide nanoparticles as a hole transport layer to CdTe photovoltaics: 5.5 % efficient back-illuminated bifacial CdTe solar cells

We report the role of copper iodide (CuI) nanoparticles (NPs) as a hole transport layer (HTL) in cadmium sulfide/cadmium telluride (CdS/CdTe) photovoltaics. These CuI NPs were prepared using solution processing at room temperature and used to fabricate monofacial and bifacial CdTe solar cells with d...

Full description

Saved in:
Bibliographic Details
Published inSolar energy materials and solar cells Vol. 235; no. C; p. 111451
Main Authors Pokhrel, Dipendra, Bastola, Ebin, Khanal Subedi, Kamala, Rijal, Suman, Jamarkattel, Manoj K., Awni, Rasha A., Phillips, Adam B., Yan, Yanfa, Heben, Michael J., Ellingson, Randy J.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.01.2022
Elsevier BV
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We report the role of copper iodide (CuI) nanoparticles (NPs) as a hole transport layer (HTL) in cadmium sulfide/cadmium telluride (CdS/CdTe) photovoltaics. These CuI NPs were prepared using solution processing at room temperature and used to fabricate monofacial and bifacial CdTe solar cells with different back contacts. Using CuI/Au as the back contact, the device efficiency reached to 14.8% with outstanding fill factor (FF) of 79.2%. Replacing the gold (Au) electrode with sputtered transparent indium tin oxide (ITO), a CuI/ITO back contact yielded photoconversion efficiencies (PCEs) of 11.6% and 5.5% under front and back illumination respectively. Bifacial devices (CdTe/ITO) without the CuI NP HTL have an efficiency of 7.0% and 1.0% for front and back illumination, respectively. For CuI/ITO, a current collection of 12.0 mAcm−2 was observed upon back illumination which significantly improved over an ITO-only back contact (5.0 mAcm−2). The PCE obtained from back illumination was enhanced when using CuI NPs as the HTL due to the reduced back barrier height, and improved back interface as determined by temperature dependent current vs. voltage characteristics and impedance spectroscopy analysis. The improvement in device performance of the bifacial configuration is a significant step forward toward realizing thin film photovoltaic modules which harvest energy incident on the rear of the module. [Display omitted] •Investigated CuI Nanoparticles (NPs) as Hole Transport Layer (HTL) for Monofacial and Bifacial CdS/CdTe devices.•CuI NPs helps to improve photo conversion efficiency by significant improvement in open-circuit voltage (Voc) and fill factor (FF) of the devices.•Bifacial devices with absorber layer thickness (3.3 μm) showed excellent short circuit current density (Jsc = 12.0 mAcm−2) with back illumination reaching the device efficiency of 5.5% (bifaciality of 0.47).
AbstractList We report the role of copper iodide (CuI) nanoparticles (NPs) as a hole transport layer (HTL) in cadmium sulfide/cadmium telluride (CdS/CdTe) photovoltaics. These CuI NPs were prepared using solution processing at room temperature and used to fabricate monofacial and bifacial CdTe solar cells with different back contacts. Using CuI/Au as the back contact, the device efficiency reached to 14.8% with outstanding fill factor (FF) of 79.2%. Replacing the gold (Au) electrode with sputtered transparent indium tin oxide (ITO), a CuI/ITO back contact yielded photoconversion efficiencies (PCEs) of 11.6% and 5.5% under front and back illumination respectively. Bifacial devices (CdTe/ITO) without the CuI NP HTL have an efficiency of 7.0% and 1.0% for front and back illumination, respectively. For CuI/ITO, a current collection of 12.0 mAcm−2 was observed upon back illumination which significantly improved over an ITO-only back contact (5.0 mAcm−2). The PCE obtained from back illumination was enhanced when using CuI NPs as the HTL due to the reduced back barrier height, and improved back interface as determined by temperature dependent current vs. voltage characteristics and impedance spectroscopy analysis. The improvement in device performance of the bifacial configuration is a significant step forward toward realizing thin film photovoltaic modules which harvest energy incident on the rear of the module.
We report the role of copper iodide (CuI) nanoparticles (NPs) as a hole transport layer (HTL) in cadmium sulfide/cadmium telluride (CdS/CdTe) photovoltaics. These CuI NPs were prepared using solution processing at room temperature and used to fabricate monofacial and bifacial CdTe solar cells with different back contacts. Using CuI/Au as the back contact, the device efficiency reached to 14.8% with outstanding fill factor (FF) of 79.2%. Replacing the gold (Au) electrode with sputtered transparent indium tin oxide (ITO), a CuI/ITO back contact yielded photoconversion efficiencies (PCEs) of 11.6% and 5.5% under front and back illumination respectively. Bifacial devices (CdTe/ITO) without the CuI NP HTL have an efficiency of 7.0% and 1.0% for front and back illumination, respectively. For CuI/ITO, a current collection of 12.0 mAcm−2 was observed upon back illumination which significantly improved over an ITO-only back contact (5.0 mAcm−2). The PCE obtained from back illumination was enhanced when using CuI NPs as the HTL due to the reduced back barrier height, and improved back interface as determined by temperature dependent current vs. voltage characteristics and impedance spectroscopy analysis. The improvement in device performance of the bifacial configuration is a significant step forward toward realizing thin film photovoltaic modules which harvest energy incident on the rear of the module. [Display omitted] •Investigated CuI Nanoparticles (NPs) as Hole Transport Layer (HTL) for Monofacial and Bifacial CdS/CdTe devices.•CuI NPs helps to improve photo conversion efficiency by significant improvement in open-circuit voltage (Voc) and fill factor (FF) of the devices.•Bifacial devices with absorber layer thickness (3.3 μm) showed excellent short circuit current density (Jsc = 12.0 mAcm−2) with back illumination reaching the device efficiency of 5.5% (bifaciality of 0.47).
ArticleNumber 111451
Author Bastola, Ebin
Khanal Subedi, Kamala
Ellingson, Randy J.
Heben, Michael J.
Jamarkattel, Manoj K.
Rijal, Suman
Pokhrel, Dipendra
Phillips, Adam B.
Awni, Rasha A.
Yan, Yanfa
Author_xml – sequence: 1
  givenname: Dipendra
  orcidid: 0000-0002-7698-1795
  surname: Pokhrel
  fullname: Pokhrel, Dipendra
– sequence: 2
  givenname: Ebin
  surname: Bastola
  fullname: Bastola, Ebin
– sequence: 3
  givenname: Kamala
  surname: Khanal Subedi
  fullname: Khanal Subedi, Kamala
– sequence: 4
  givenname: Suman
  orcidid: 0000-0002-7738-4917
  surname: Rijal
  fullname: Rijal, Suman
– sequence: 5
  givenname: Manoj K.
  orcidid: 0000-0003-2767-5705
  surname: Jamarkattel
  fullname: Jamarkattel, Manoj K.
– sequence: 6
  givenname: Rasha A.
  surname: Awni
  fullname: Awni, Rasha A.
– sequence: 7
  givenname: Adam B.
  surname: Phillips
  fullname: Phillips, Adam B.
– sequence: 8
  givenname: Yanfa
  surname: Yan
  fullname: Yan, Yanfa
– sequence: 9
  givenname: Michael J.
  surname: Heben
  fullname: Heben, Michael J.
– sequence: 10
  givenname: Randy J.
  orcidid: 0000-0001-9520-6586
  surname: Ellingson
  fullname: Ellingson, Randy J.
  email: Randy.Ellingson@utoledo.edu
BackLink https://www.osti.gov/biblio/1868732$$D View this record in Osti.gov
BookMark eNqFkUuLHCEUhSXMQHoe_yALSciyKj7KsmoWgdDkBQPZzKzF1ittx9aK2gPzC-Zvx6ayyiIB4W7Odz33nCt0EVMEhN5Q0lNCxw-HvqRw1LVnhNGeUjoI-gpt6CTnjvN5ukAbMjPZETZMr9FVKQdCCBv5sEEv27QskLFP1lvAUce06Fy9CVCwbg_vUwBcs45lSbnioJ-bvCa8tQ-Al32q6SmFqr0pd1j0Ar_H4Jw3HmLFO21-dj6E09FHXcHinXfaeB1WurnWGRsIodygS6dDgds_8xo9fvn8sP3W3f_4-n376b4zA5G1G0brjLN2HN2s2SQZm5gWgjs37iQnRJid0ESKgUJLRg5sMlKCsAN3fBYj8Gv0dt2bSvWqGF_B7E2KEUxVdBonyVkTvVtFS06_TlCqOqRTjs2XYmP7krKZ86YaVpXJqZQMTi3ZH3V-VpSocy_qoNZe1LkXtfbSsLu_sGZCV59iC9mH_8EfVxhaRk8e8vkEiAasz-cLbPL_XvAbsVutPw
CitedBy_id crossref_primary_10_1007_s12596_025_02656_0
crossref_primary_10_1016_j_surfin_2024_104971
crossref_primary_10_1016_j_optmat_2022_113003
crossref_primary_10_1109_JPHOTOV_2022_3200252
crossref_primary_10_1002_solr_202300545
crossref_primary_10_1016_j_enbuild_2024_114867
crossref_primary_10_1002_adma_202303936
crossref_primary_10_3390_coatings12050589
crossref_primary_10_1016_j_rser_2024_114996
crossref_primary_10_1109_JPHOTOV_2024_3483249
crossref_primary_10_1002_solr_202201009
crossref_primary_10_1016_j_solmat_2023_112312
crossref_primary_10_1088_1361_648X_ad294d
crossref_primary_10_1021_acsenergylett_4c00156
crossref_primary_10_1051_e3sconf_202458802009
crossref_primary_10_1016_j_solmat_2023_112289
crossref_primary_10_1002_solr_202200501
crossref_primary_10_1016_j_ceramint_2024_07_075
crossref_primary_10_1016_j_solmat_2024_113260
crossref_primary_10_3390_en17246363
crossref_primary_10_1002_ente_202401542
Cites_doi 10.1039/C6NR04288K
10.1109/JPHOTOV.2018.2870139
10.3390/ma12091406
10.1016/j.matlet.2012.03.114
10.1016/j.solmat.2014.11.004
10.1016/j.nanoen.2021.105827
10.1021/acsaem.0c00851
10.1016/j.solmat.2007.04.025
10.1021/cg100270d
10.1016/j.solmat.2018.06.025
10.1016/j.physb.2019.08.021
10.1007/s10854-015-3035-y
10.1016/j.solmat.2017.02.030
10.1364/OE.26.000A30
10.1002/ente.201700422
10.1016/j.solmat.2020.110764
10.1002/pip.525
10.1107/S0021889878012844
10.1002/pip.3192
10.1016/j.phpro.2012.03.571
10.1364/OE.26.023594
10.1016/j.solmat.2015.07.003
10.1246/cl.2005.1158
10.1063/5.0021781
10.1557/JMR.1998.0376
10.1016/0040-6090(96)08607-5
10.1063/1.363946
10.1063/1.5063799
10.1021/am3017653
10.1002/pssa.201329349
10.1016/j.solener.2019.04.082
10.1039/D0MA00394H
10.1021/acs.nanolett.5b05124
10.1016/j.solmat.2016.09.025
10.1016/j.solmat.2007.03.010
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright Elsevier BV Jan 2022
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright Elsevier BV Jan 2022
DBID AAYXX
CITATION
7SP
7ST
7TB
7U5
8FD
C1K
FR3
L7M
SOI
OTOTI
DOI 10.1016/j.solmat.2021.111451
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
OSTI.GOV
DatabaseTitle CrossRef
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-3398
ExternalDocumentID 1868732
10_1016_j_solmat_2021_111451
S0927024821004918
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
6OB
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AARLI
AAXUO
ABFNM
ABMAC
ABNUV
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRAH
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
KOM
LY6
LY7
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SCB
SDF
SDG
SDP
SES
SET
SEW
SMS
SPC
SPCBC
SPD
SSG
SSK
SSM
SSR
SSZ
T5K
TWZ
WH7
WUQ
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SP
7ST
7TB
7U5
8FD
C1K
EFKBS
FR3
L7M
SOI
08R
AALMO
AAPBV
ABPIF
ABPTK
OTOTI
ID FETCH-LOGICAL-c407t-46dfcfdd66f9a2872282a553ff6b73005cb5a07541e1017428c77e5d43f3956e3
IEDL.DBID .~1
ISSN 0927-0248
IngestDate Fri May 19 02:26:32 EDT 2023
Wed Aug 13 11:21:14 EDT 2025
Thu Apr 24 23:07:05 EDT 2025
Tue Jul 01 01:20:10 EDT 2025
Fri Feb 23 02:41:58 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue C
Keywords Cadmium telluride
Hole transport layer
Bifacial
Back contact
Copper iodide (CuI)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c407t-46dfcfdd66f9a2872282a553ff6b73005cb5a07541e1017428c77e5d43f3956e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
EE0008974
ORCID 0000-0002-7698-1795
0000-0001-9520-6586
0000-0003-2767-5705
0000-0002-7738-4917
0000000195206586
0000000277384917
0000000327675705
0000000276981795
OpenAccessLink https://www.sciencedirect.com/science/article/am/pii/S0927024821004918
PQID 2622812933
PQPubID 2045398
ParticipantIDs osti_scitechconnect_1868732
proquest_journals_2622812933
crossref_primary_10_1016_j_solmat_2021_111451
crossref_citationtrail_10_1016_j_solmat_2021_111451
elsevier_sciencedirect_doi_10_1016_j_solmat_2021_111451
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2022
2022-01-00
20220101
2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: January 2022
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
– name: Netherlands
PublicationTitle Solar energy materials and solar cells
PublicationYear 2022
Publisher Elsevier B.V
Elsevier BV
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
– name: Elsevier
References Perkins, Ablekim, Barnes, Kuciauskas, Lynn, Nemeth, Reese, Swain, Metzger (bib10) 2018; 8
Wang, Yu, Jiang, Li, Cai, Yang, Sun (bib20) 2017; 5
Kwon, Seo, Kang, Kim, Kim (bib38) 2018; 26
Phillips, Subedi, Liyanage, Alfadhili, Ellingson, Heben (bib9) 2020; 3
Li, Xiao, Wu, Wang, Wang, Wang (bib23) 2019; 185
Sun, Ye, Rao, Li, Liu, Xiao, Chen, Bian, Huang (bib12) 2016; 8
Tanaka, Kawabata, Hirose (bib16) 1996; 281
Tiwari, Khrypunov, Kurdzesau, Bätzner, Romeo, Zogg (bib7) 2004; 12
Langford, Wilson (bib26) 1978; 11
Subedi, Bastola, Subedi, Bista, Rijal, Jamarkattel, Awni, Philips, Yan, Heben (bib35) 2020; 218
Pokhrel, Bastola, Subedi, Phillips, Heben, Ellingson (bib31) 2020
Subedi, Phillips, Shrestha, Alfadhili, Osella, Subedi, Awni, Bastola, Song, Li (bib11) 2021
McCandless, Sites (bib2) 2011; 600
Bührer, Hälg (bib13) 1977
Grundmann, Schein, Lorenz, Böntgen, Lenzner, von Wenckstern (bib14) 2013; 210
Saranin, Gostischev, Tatarinov, Ermanova, Mazov, Muratov, Tameev, Kuznetsov, Didenko, Di Carlo (bib29) 2019; 12
Pang, Cai, He, Wang, Jiang, He, Yu, Liu, Zhang, Sun (bib4) 2012; 32
Subedi, Bastola, Subedi, Song, Bhandari, Phillips, Podraza, Heben, Ellingson (bib5) 2018; 186
Niemegeers, Burgelman (bib39) 1997; 81
Yang, Liu, Kimura (bib24) 2005; 34
Bastola, Phillips, Barros-King, Jamarkattel, Li, Quader, Pokhrel, Gibbs, Yan, Ellingson, Heben (bib33) 2021
Awni, Li, Song, Bista, Razooqi, Grice, Chen, Liyanage, Li, Phillips, Heben, Ellingson, Li, Yan (bib40) 2019; 27
Mohamed, Gasiorowski, Hingerl, Zahn, Scharber, Obayya, El-Mansy, Sariciftci, Egbe, Stadler (bib21) 2015; 143
Storm, Bar, Benndorf, Selle, Yang, von Wenckstern, Grundmann, Lorenz (bib37) 2020; 8
Byun, Seo, Kim, Kim (bib34) 2018; 26
Das, Choi, Alford (bib22) 2015; 133
Chen, Wang, Lin, Huang, Chen, Pan, Huang (bib17) 2010; 10
Shao, Liu, Zhang, Zhang, Xie, Geng, Wang (bib19) 2012; 4
Xia, Gu, Liu, Liu, Huang, Ni (bib27) 2015; 26
Wang, Bai, Wei, Li, Jia, Zhu, Wang, Wu (bib15) 2012; 79
Pokhrel, Bastola, Phillips, Heben, Ellingson (bib30) 2020; 1
Bonnet, Meyers (bib1) 1998; 13
Duenow, Metzger (bib3) 2019; 125
Bastola, Bordovalos, LeBlanc, Shrestha, Reese, Ellingson (bib25) 2019
Swanson, Sites, Sampath (bib32) 2017; 159
Romeo, Khrypunov, Galassini, Zogg, Tiwari (bib8) 2007; 91
Wang, Wei, Wu, Yang, Han, Juan, Chen, Xu, Cao (bib18) 2019; 573
Kaushik, Selvaraj, Ramu, Subrahmanyam (bib28) 2017; 165
Marsillac, Parikh, Compaan (bib36) 2007; 91
Xu, Bullock, Schelhas, Stutz, Fonseca, Hettick, Pool, Tai, Toney, Fang (bib6) 2016; 16
Li (10.1016/j.solmat.2021.111451_bib23) 2019; 185
Tanaka (10.1016/j.solmat.2021.111451_bib16) 1996; 281
Wang (10.1016/j.solmat.2021.111451_bib18) 2019; 573
Grundmann (10.1016/j.solmat.2021.111451_bib14) 2013; 210
Chen (10.1016/j.solmat.2021.111451_bib17) 2010; 10
Saranin (10.1016/j.solmat.2021.111451_bib29) 2019; 12
Xu (10.1016/j.solmat.2021.111451_bib6) 2016; 16
Bastola (10.1016/j.solmat.2021.111451_bib25) 2019
Mohamed (10.1016/j.solmat.2021.111451_bib21) 2015; 143
Marsillac (10.1016/j.solmat.2021.111451_bib36) 2007; 91
Yang (10.1016/j.solmat.2021.111451_bib24) 2005; 34
Langford (10.1016/j.solmat.2021.111451_bib26) 1978; 11
Wang (10.1016/j.solmat.2021.111451_bib20) 2017; 5
Tiwari (10.1016/j.solmat.2021.111451_bib7) 2004; 12
Pang (10.1016/j.solmat.2021.111451_bib4) 2012; 32
Romeo (10.1016/j.solmat.2021.111451_bib8) 2007; 91
Sun (10.1016/j.solmat.2021.111451_bib12) 2016; 8
Pokhrel (10.1016/j.solmat.2021.111451_bib31) 2020
Pokhrel (10.1016/j.solmat.2021.111451_bib30) 2020; 1
Bonnet (10.1016/j.solmat.2021.111451_bib1) 1998; 13
Wang (10.1016/j.solmat.2021.111451_bib15) 2012; 79
Storm (10.1016/j.solmat.2021.111451_bib37) 2020; 8
McCandless (10.1016/j.solmat.2021.111451_bib2) 2011; 600
Perkins (10.1016/j.solmat.2021.111451_bib10) 2018; 8
Bührer (10.1016/j.solmat.2021.111451_bib13) 1977
Byun (10.1016/j.solmat.2021.111451_bib34) 2018; 26
Subedi (10.1016/j.solmat.2021.111451_bib5) 2018; 186
Duenow (10.1016/j.solmat.2021.111451_bib3) 2019; 125
Niemegeers (10.1016/j.solmat.2021.111451_bib39) 1997; 81
Kwon (10.1016/j.solmat.2021.111451_bib38) 2018; 26
Das (10.1016/j.solmat.2021.111451_bib22) 2015; 133
Subedi (10.1016/j.solmat.2021.111451_bib11) 2021
Shao (10.1016/j.solmat.2021.111451_bib19) 2012; 4
Xia (10.1016/j.solmat.2021.111451_bib27) 2015; 26
Kaushik (10.1016/j.solmat.2021.111451_bib28) 2017; 165
Swanson (10.1016/j.solmat.2021.111451_bib32) 2017; 159
Awni (10.1016/j.solmat.2021.111451_bib40) 2019; 27
Subedi (10.1016/j.solmat.2021.111451_bib35) 2020; 218
Phillips (10.1016/j.solmat.2021.111451_bib9) 2020; 3
Bastola (10.1016/j.solmat.2021.111451_bib33) 2021
References_xml – volume: 159
  start-page: 389
  year: 2017
  ident: bib32
  article-title: Co-sublimation of CdSexTe1− x layers for CdTe solar cells
  publication-title: Sol. Energy Mater. Sol. Cell.
– volume: 8
  year: 2020
  ident: bib37
  article-title: High mobility, highly transparent, smooth, p-type CuI thin films grown by pulsed laser deposition
  publication-title: Apl. Mater.
– volume: 91
  start-page: 1388
  year: 2007
  ident: bib8
  article-title: Bifacial configurations for CdTe solar cells
  publication-title: Sol. Energy Mater. Solar Cells
– volume: 573
  start-page: 45
  year: 2019
  ident: bib18
  article-title: Highly transparent and conductive γ-CuI films grown by simply dipping copper films into iodine solution
  publication-title: Phys. B Condens. Matter
– volume: 1
  start-page: 2721
  year: 2020
  ident: bib30
  article-title: Aspect ratio controlled synthesis of tellurium nanowires for photovoltaic applications
  publication-title: Mater. Adv.
– volume: 91
  start-page: 1398
  year: 2007
  ident: bib36
  article-title: Ultra-thin bifacial CdTe solar cell
  publication-title: Sol. Energy Mater. Solar Cells
– volume: 26
  start-page: 23594
  year: 2018
  ident: bib34
  article-title: Bifacial CdS/CdTe thin-film solar cells with copper nanowires as a transparent back contact
  publication-title: Opt Express
– volume: 600
  year: 2011
  ident: bib2
  article-title: Cadmium telluride solar cells
  publication-title: Handbk Photovolt. Sci. Eng.
– volume: 210
  start-page: 1671
  year: 2013
  ident: bib14
  article-title: Cuprous iodide–ap‐type transparent semiconductor: history and novel applications
  publication-title: Phys. Status Solidi
– volume: 32
  start-page: 372
  year: 2012
  ident: bib4
  article-title: Preparation and characteristics of MoSe2 interlayer in bifacial Cu (In, Ga) Se2 solar cells
  publication-title: Phys. Procedia
– volume: 218
  start-page: 110764
  year: 2020
  ident: bib35
  article-title: Semi-transparent p-type barium copper sulfide as a back contact interface layer for cadmium telluride solar cells
  publication-title: Sol. Energy Mater. Sol. Cell.
– volume: 26
  start-page: A30
  year: 2018
  ident: bib38
  article-title: Bifacial CdS/CdTe thin-film solar cells using a transparent silver nanowire/indium tin oxide back contact
  publication-title: Opt Express
– volume: 8
  start-page: 15954
  year: 2016
  ident: bib12
  article-title: Room-temperature and solution-processed copper iodide as the hole transport layer for inverted planar perovskite solar cells
  publication-title: Nanoscale
– start-page: 105827
  year: 2021
  ident: bib11
  article-title: Enabling bifacial thin film devices by developing a back surface field using CuxAlOy
  publication-title: Nano Energy
– volume: 12
  start-page: 33
  year: 2004
  ident: bib7
  article-title: CdTe solar cell in a novel configuration
  publication-title: Prog. Photovoltaics Res. Appl.
– volume: 186
  start-page: 227
  year: 2018
  ident: bib5
  article-title: Nanocomposite (CuS)
  publication-title: Sol. Energy Mater. Sol. Cell.
– volume: 26
  start-page: 5092
  year: 2015
  ident: bib27
  article-title: Luminescence characteristics of CuI film by iodine annealing
  publication-title: J. Mater. Sci. Mater. Electron.
– volume: 27
  start-page: 1115
  year: 2019
  ident: bib40
  article-title: Influences of buffer material and fabrication atmosphere on the electrical properties of CdTe solar cells
  publication-title: Prog. Photovoltaics Res. Appl.
– volume: 79
  start-page: 106
  year: 2012
  ident: bib15
  article-title: Preparation of CuI particles and their applications in carbon nanotube-Si heterojunction solar cells
  publication-title: Mater. Lett.
– volume: 8
  start-page: 1858
  year: 2018
  ident: bib10
  article-title: Interfaces between CdTe and ALD Al
  publication-title: IEEE J. Photovolt.
– volume: 34
  start-page: 1158
  year: 2005
  ident: bib24
  article-title: Synthesis of well-dispersed CuI nanoparticles from an available solution precursor
  publication-title: Chem. Lett.
– volume: 3
  start-page: 6072
  year: 2020
  ident: bib9
  article-title: Understanding and advancing bifacial thin film solar cells"
  publication-title: ACS Appl. Energy Mater.
– volume: 81
  start-page: 2881
  year: 1997
  ident: bib39
  article-title: Effects of the Au/CdTe back contact on IV and CV characteristics of Au/CdTe/CdS/TCO solar cells"
  publication-title: J. Appl. Phys.
– volume: 165
  start-page: 52
  year: 2017
  ident: bib28
  article-title: Thermal evaporated copper iodide (CuI) thin films: a note on the disorder evaluated through the temperature dependent electrical properties
  publication-title: Sol. Energy Mater. Sol. Cell.
– volume: 13
  start-page: 2740
  year: 1998
  ident: bib1
  article-title: Cadmium-telluride—material for thin film solar cells"
  publication-title: J. Mater. Res.
– year: 1977
  ident: bib13
  article-title: Crystal structure of high-temperature cuprous iodide and cuprous bromide
  publication-title: Presented at the International Symposium on Solid Ionic and Ionic-Electronic Conductors
– volume: 10
  start-page: 2057
  year: 2010
  ident: bib17
  article-title: Growth strategy and physical properties of the high mobility p-type CuI crystal
  publication-title: Cryst. Growth Des.
– volume: 4
  start-page: 5704
  year: 2012
  ident: bib19
  article-title: Interface-induced crystalline ordering and favorable morphology for efficient annealing-free poly (3-hexylthiophene): fullerene derivative solar cells"
  publication-title: ACS Appl. Mater. Interfaces
– volume: 143
  start-page: 369
  year: 2015
  ident: bib21
  article-title: CuI as versatile hole-selective contact for organic solar cell based on anthracene-containing PPE–PPV
  publication-title: Sol. Energy Mater. Sol. Cell.
– volume: 5
  start-page: 1836
  year: 2017
  ident: bib20
  article-title: Efficient and stable inverted planar perovskite solar cells employing CuI as hole‐transporting layer prepared by solid–gas transformation
  publication-title: Energy Technol.
– volume: 11
  start-page: 102
  year: 1978
  ident: bib26
  article-title: Scherrer after sixty years: a survey and some new results in the determination of crystallite size
  publication-title: J. Appl. Crystallogr.
– volume: 133
  start-page: 255
  year: 2015
  ident: bib22
  article-title: P3HT: PC61BM based solar cells employing solution processed copper iodide as the hole transport layer
  publication-title: Sol. Energy Mater. Sol. Cell.
– volume: 281
  start-page: 179
  year: 1996
  ident: bib16
  article-title: Transparent, conductive CuI films prepared by rf-dc coupled magnetron sputtering
  publication-title: Thin Solid Films
– volume: 12
  start-page: 1406
  year: 2019
  ident: bib29
  article-title: Copper iodide interlayer for improved charge extraction and stability of inverted perovskite solar cells
  publication-title: Materials
– start-page: 1
  year: 2021
  end-page: 5
  ident: bib33
  article-title: Understanding the interplay between CdSe thickness and Cu doping temperature in CdSe/CdTe devices
  publication-title: IEEE J. Photovolt
– volume: 185
  start-page: 324
  year: 2019
  ident: bib23
  article-title: CdTe thin film solar cells with copper iodide as a back contact buffer layer
  publication-title: Sol. Energy
– start-page: 1846
  year: 2019
  ident: bib25
  article-title: Doping of CdTe using CuCl
  publication-title: 2019 IEEE 46th Photovoltaic Specialists Conference
– volume: 16
  start-page: 1925
  year: 2016
  ident: bib6
  article-title: Chemical bath deposition of p-type transparent, highly conducting (CuS)
  publication-title: Nano Lett.
– start-page: 2561
  year: 2020
  end-page: 2563
  ident: bib31
  article-title: Solution-processed copper telluride nanowire thin film as a back-buffer layer to cadmium telluride solar cells
  publication-title: 2020 47th IEEE Photovoltaic Specialists Conference
– volume: 125
  year: 2019
  ident: bib3
  article-title: Back-surface recombination, electron reflectors, and paths to 28% efficiency for thin-film photovoltaics: a CdTe case study
  publication-title: J. Appl. Phys.
– volume: 8
  start-page: 15954
  issue: 35
  year: 2016
  ident: 10.1016/j.solmat.2021.111451_bib12
  article-title: Room-temperature and solution-processed copper iodide as the hole transport layer for inverted planar perovskite solar cells
  publication-title: Nanoscale
  doi: 10.1039/C6NR04288K
– volume: 8
  start-page: 1858
  issue: 6
  year: 2018
  ident: 10.1016/j.solmat.2021.111451_bib10
  article-title: Interfaces between CdTe and ALD Al2O3
  publication-title: IEEE J. Photovolt.
  doi: 10.1109/JPHOTOV.2018.2870139
– volume: 12
  start-page: 1406
  issue: 9
  year: 2019
  ident: 10.1016/j.solmat.2021.111451_bib29
  article-title: Copper iodide interlayer for improved charge extraction and stability of inverted perovskite solar cells
  publication-title: Materials
  doi: 10.3390/ma12091406
– volume: 79
  start-page: 106
  year: 2012
  ident: 10.1016/j.solmat.2021.111451_bib15
  article-title: Preparation of CuI particles and their applications in carbon nanotube-Si heterojunction solar cells
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2012.03.114
– volume: 133
  start-page: 255
  year: 2015
  ident: 10.1016/j.solmat.2021.111451_bib22
  article-title: P3HT: PC61BM based solar cells employing solution processed copper iodide as the hole transport layer
  publication-title: Sol. Energy Mater. Sol. Cell.
  doi: 10.1016/j.solmat.2014.11.004
– start-page: 105827
  year: 2021
  ident: 10.1016/j.solmat.2021.111451_bib11
  article-title: Enabling bifacial thin film devices by developing a back surface field using CuxAlOy
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.105827
– start-page: 1
  year: 2021
  ident: 10.1016/j.solmat.2021.111451_bib33
  article-title: Understanding the interplay between CdSe thickness and Cu doping temperature in CdSe/CdTe devices
  publication-title: IEEE J. Photovolt
– volume: 3
  start-page: 6072
  issue: 7
  year: 2020
  ident: 10.1016/j.solmat.2021.111451_bib9
  article-title: Understanding and advancing bifacial thin film solar cells"
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.0c00851
– volume: 91
  start-page: 1398
  issue: 15–16
  year: 2007
  ident: 10.1016/j.solmat.2021.111451_bib36
  article-title: Ultra-thin bifacial CdTe solar cell
  publication-title: Sol. Energy Mater. Solar Cells
  doi: 10.1016/j.solmat.2007.04.025
– volume: 10
  start-page: 2057
  issue: 5
  year: 2010
  ident: 10.1016/j.solmat.2021.111451_bib17
  article-title: Growth strategy and physical properties of the high mobility p-type CuI crystal
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg100270d
– start-page: 2561
  year: 2020
  ident: 10.1016/j.solmat.2021.111451_bib31
  article-title: Solution-processed copper telluride nanowire thin film as a back-buffer layer to cadmium telluride solar cells
– volume: 186
  start-page: 227
  year: 2018
  ident: 10.1016/j.solmat.2021.111451_bib5
  article-title: Nanocomposite (CuS)x (ZnS)1-x thin film back contact for CdTe solar cells: toward a bifacial device
  publication-title: Sol. Energy Mater. Sol. Cell.
  doi: 10.1016/j.solmat.2018.06.025
– volume: 573
  start-page: 45
  year: 2019
  ident: 10.1016/j.solmat.2021.111451_bib18
  article-title: Highly transparent and conductive γ-CuI films grown by simply dipping copper films into iodine solution
  publication-title: Phys. B Condens. Matter
  doi: 10.1016/j.physb.2019.08.021
– volume: 26
  start-page: 5092
  issue: 7
  year: 2015
  ident: 10.1016/j.solmat.2021.111451_bib27
  article-title: Luminescence characteristics of CuI film by iodine annealing
  publication-title: J. Mater. Sci. Mater. Electron.
  doi: 10.1007/s10854-015-3035-y
– volume: 165
  start-page: 52
  year: 2017
  ident: 10.1016/j.solmat.2021.111451_bib28
  article-title: Thermal evaporated copper iodide (CuI) thin films: a note on the disorder evaluated through the temperature dependent electrical properties
  publication-title: Sol. Energy Mater. Sol. Cell.
  doi: 10.1016/j.solmat.2017.02.030
– volume: 26
  start-page: A30
  issue: 2
  year: 2018
  ident: 10.1016/j.solmat.2021.111451_bib38
  article-title: Bifacial CdS/CdTe thin-film solar cells using a transparent silver nanowire/indium tin oxide back contact
  publication-title: Opt Express
  doi: 10.1364/OE.26.000A30
– volume: 5
  start-page: 1836
  issue: 10
  year: 2017
  ident: 10.1016/j.solmat.2021.111451_bib20
  article-title: Efficient and stable inverted planar perovskite solar cells employing CuI as hole‐transporting layer prepared by solid–gas transformation
  publication-title: Energy Technol.
  doi: 10.1002/ente.201700422
– volume: 218
  start-page: 110764
  year: 2020
  ident: 10.1016/j.solmat.2021.111451_bib35
  article-title: Semi-transparent p-type barium copper sulfide as a back contact interface layer for cadmium telluride solar cells
  publication-title: Sol. Energy Mater. Sol. Cell.
  doi: 10.1016/j.solmat.2020.110764
– volume: 12
  start-page: 33
  issue: 1
  year: 2004
  ident: 10.1016/j.solmat.2021.111451_bib7
  article-title: CdTe solar cell in a novel configuration
  publication-title: Prog. Photovoltaics Res. Appl.
  doi: 10.1002/pip.525
– volume: 11
  start-page: 102
  issue: 2
  year: 1978
  ident: 10.1016/j.solmat.2021.111451_bib26
  article-title: Scherrer after sixty years: a survey and some new results in the determination of crystallite size
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S0021889878012844
– volume: 27
  start-page: 1115
  issue: 11
  year: 2019
  ident: 10.1016/j.solmat.2021.111451_bib40
  article-title: Influences of buffer material and fabrication atmosphere on the electrical properties of CdTe solar cells
  publication-title: Prog. Photovoltaics Res. Appl.
  doi: 10.1002/pip.3192
– volume: 32
  start-page: 372
  year: 2012
  ident: 10.1016/j.solmat.2021.111451_bib4
  article-title: Preparation and characteristics of MoSe2 interlayer in bifacial Cu (In, Ga) Se2 solar cells
  publication-title: Phys. Procedia
  doi: 10.1016/j.phpro.2012.03.571
– volume: 26
  start-page: 23594
  issue: 18
  year: 2018
  ident: 10.1016/j.solmat.2021.111451_bib34
  article-title: Bifacial CdS/CdTe thin-film solar cells with copper nanowires as a transparent back contact
  publication-title: Opt Express
  doi: 10.1364/OE.26.023594
– volume: 600
  year: 2011
  ident: 10.1016/j.solmat.2021.111451_bib2
  article-title: Cadmium telluride solar cells
  publication-title: Handbk Photovolt. Sci. Eng.
– volume: 143
  start-page: 369
  year: 2015
  ident: 10.1016/j.solmat.2021.111451_bib21
  article-title: CuI as versatile hole-selective contact for organic solar cell based on anthracene-containing PPE–PPV
  publication-title: Sol. Energy Mater. Sol. Cell.
  doi: 10.1016/j.solmat.2015.07.003
– volume: 34
  start-page: 1158
  issue: 8
  year: 2005
  ident: 10.1016/j.solmat.2021.111451_bib24
  article-title: Synthesis of well-dispersed CuI nanoparticles from an available solution precursor
  publication-title: Chem. Lett.
  doi: 10.1246/cl.2005.1158
– volume: 8
  issue: 9
  year: 2020
  ident: 10.1016/j.solmat.2021.111451_bib37
  article-title: High mobility, highly transparent, smooth, p-type CuI thin films grown by pulsed laser deposition
  publication-title: Apl. Mater.
  doi: 10.1063/5.0021781
– volume: 13
  start-page: 2740
  issue: 10
  year: 1998
  ident: 10.1016/j.solmat.2021.111451_bib1
  article-title: Cadmium-telluride—material for thin film solar cells"
  publication-title: J. Mater. Res.
  doi: 10.1557/JMR.1998.0376
– volume: 281
  start-page: 179
  year: 1996
  ident: 10.1016/j.solmat.2021.111451_bib16
  article-title: Transparent, conductive CuI films prepared by rf-dc coupled magnetron sputtering
  publication-title: Thin Solid Films
  doi: 10.1016/0040-6090(96)08607-5
– start-page: 1846
  year: 2019
  ident: 10.1016/j.solmat.2021.111451_bib25
  article-title: Doping of CdTe using CuCl2 solution for highly efficient photovoltaic devices
– volume: 81
  start-page: 2881
  issue: 6
  year: 1997
  ident: 10.1016/j.solmat.2021.111451_bib39
  article-title: Effects of the Au/CdTe back contact on IV and CV characteristics of Au/CdTe/CdS/TCO solar cells"
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.363946
– volume: 125
  issue: 5
  year: 2019
  ident: 10.1016/j.solmat.2021.111451_bib3
  article-title: Back-surface recombination, electron reflectors, and paths to 28% efficiency for thin-film photovoltaics: a CdTe case study
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.5063799
– year: 1977
  ident: 10.1016/j.solmat.2021.111451_bib13
  article-title: Crystal structure of high-temperature cuprous iodide and cuprous bromide
– volume: 4
  start-page: 5704
  issue: 10
  year: 2012
  ident: 10.1016/j.solmat.2021.111451_bib19
  article-title: Interface-induced crystalline ordering and favorable morphology for efficient annealing-free poly (3-hexylthiophene): fullerene derivative solar cells"
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am3017653
– volume: 210
  start-page: 1671
  issue: 9
  year: 2013
  ident: 10.1016/j.solmat.2021.111451_bib14
  article-title: Cuprous iodide–ap‐type transparent semiconductor: history and novel applications
  publication-title: Phys. Status Solidi
  doi: 10.1002/pssa.201329349
– volume: 185
  start-page: 324
  year: 2019
  ident: 10.1016/j.solmat.2021.111451_bib23
  article-title: CdTe thin film solar cells with copper iodide as a back contact buffer layer
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2019.04.082
– volume: 1
  start-page: 2721
  issue: 8
  year: 2020
  ident: 10.1016/j.solmat.2021.111451_bib30
  article-title: Aspect ratio controlled synthesis of tellurium nanowires for photovoltaic applications
  publication-title: Mater. Adv.
  doi: 10.1039/D0MA00394H
– volume: 16
  start-page: 1925
  issue: 3
  year: 2016
  ident: 10.1016/j.solmat.2021.111451_bib6
  article-title: Chemical bath deposition of p-type transparent, highly conducting (CuS)x:(ZnS)1–x nanocomposite thin films and fabrication of Si heterojunction solar cells
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b05124
– volume: 159
  start-page: 389
  year: 2017
  ident: 10.1016/j.solmat.2021.111451_bib32
  article-title: Co-sublimation of CdSexTe1− x layers for CdTe solar cells
  publication-title: Sol. Energy Mater. Sol. Cell.
  doi: 10.1016/j.solmat.2016.09.025
– volume: 91
  start-page: 1388
  issue: 15–16
  year: 2007
  ident: 10.1016/j.solmat.2021.111451_bib8
  article-title: Bifacial configurations for CdTe solar cells
  publication-title: Sol. Energy Mater. Solar Cells
  doi: 10.1016/j.solmat.2007.03.010
SSID ssj0002634
Score 2.49093
Snippet We report the role of copper iodide (CuI) nanoparticles (NPs) as a hole transport layer (HTL) in cadmium sulfide/cadmium telluride (CdS/CdTe) photovoltaics....
SourceID osti
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 111451
SubjectTerms Back contact
Bifacial
Cadmium
Cadmium sulfide
Cadmium telluride
Cadmium tellurides
Copper
Copper iodide (CuI)
Energy harvesting
Hole transport layer
Illumination
Indium tin oxides
Iodides
Modules
Nanoparticles
Photovoltaic cells
Photovoltaics
Quantum efficiency
Room temperature
Solar cells
Spectroscopy
Temperature dependence
Thin films
Title Copper iodide nanoparticles as a hole transport layer to CdTe photovoltaics: 5.5 % efficient back-illuminated bifacial CdTe solar cells
URI https://dx.doi.org/10.1016/j.solmat.2021.111451
https://www.proquest.com/docview/2622812933
https://www.osti.gov/biblio/1868732
Volume 235
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS91AEF_k9VIPYm3F5xdzaI_rS7K7yYs3eVReLfVSBW_LfgWjkgRfvHr133YmH21FRCjkFHZI2PnenfkNY19zmweqTuQijQKXPp5z61AflXQqErm1_czIX-fp8lKeXamrNbYYe2GorHKw_b1N76z18GY27OasKcvZ7yinXio5Twj0LI-p4VfKjKT86PFvmUeSdjfLtJjT6rF9rqvxQvZiXIhZYhKT7ZAqfss9TWrUuFf2unNCp5tsY4ge4aT_wU9sLVRbbP0fTMHP7GlRN024h7L2pQ9QmQrT4qH6DQw-QBNxoR1BzeHOYNQNbQ0LfxGgua7bGk1Wa0q3OgZ1pOAbhA5nAt0TWONueUnTkcsKo1QPtiwMnbr31CtKlIEuA1Zf2OXp94vFkg_TFrjDpK7lMvWFK7xP0yI3mEclyEKjlCiK1Hag9s4qgwGGjAOpMaYtLsuC8lIUApOsILbZpKqrsMMAt9zYfG6czSIZW5-bKDZZEhnhYuGVnTIxbrJ2AxQ5TcS402PN2Y3uWaOJNbpnzZTxP1RND8Xxzvps5J9-IVIavcU7lHvEbqIiJF1HJUdIRpMFMpFM2f4oBXpQ-JVOUtwvip3E7n9_do99TKi5ojvg2WeT9v4hHGDI09rDTqYP2YeTHz-X58-tD_92
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtRAEG2F4QAcUNjEZIE-kKMzdi_2GCmHaCCakOXCRMqt6c2KIbKt2BHiwpUP4gepstssQigSUiSfLJfdqqqupf2qipBXuck9ohMjnsY-Ei6ZR8bCfpTCypjnxgwzI09O0-WZeHcuz9fI97EWBmGVwfYPNr231uHOLHBz1pTl7H2cYy2VmDNsepYn84CsPPJfPkPe1u4dvgEh7zB28Ha1WEZhtEBkIYPpIpG6whbOpWmRa0gaGKxXS8mLIjV9B3drpAZvKhKPOgsxus0yL53gBYeMwnN47x1yV4C5wLEJu19_4UpY2v_KxtVFuLyxXq8HlYE-QSAKaSlL0FgJmfzLH05q2OJ_OYje6x2sk4chXKX7A0cekTVfPSYPfmti-IR8W9RN469oWbvSeVrpCvLwALejGi6KI3hpN3ZRp5cawnza1XThVp42F3VXg43sdGnb11TuSrpDfd_YAvwhNdp-ikocx1xWEBY7aspC4zH_QN1iZk7x70P7lJzdigyekUlVV_45ocBybfK5tiaLRWJcruNEZyzW3CbcSTMlfGSysqH3OY7guFQjyO2jGkSjUDRqEM2URD-pmqH3xw3PZ6P81B86rMA93UC5ieJGKmzdaxHjBGQ4yiDjbEq2Ri1QwcK0iqXALwzW-MZ_f_YlubdcnRyr48PTo01yn2FlR3-6tEUm3dW134Z4qzMvev2m5MNtb6gfIo054Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Copper+iodide+nanoparticles+as+a+hole+transport+layer+to+CdTe+photovoltaics%3A+5.5+%25+efficient+back-illuminated+bifacial+CdTe+solar+cells&rft.jtitle=Solar+energy+materials+and+solar+cells&rft.au=Pokhrel%2C+Dipendra&rft.au=Bastola%2C+Ebin&rft.au=Khanal+Subedi%2C+Kamala&rft.au=Rijal%2C+Suman&rft.date=2022-01-01&rft.issn=0927-0248&rft.volume=235&rft.spage=111451&rft_id=info:doi/10.1016%2Fj.solmat.2021.111451&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_solmat_2021_111451
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-0248&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-0248&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-0248&client=summon