Copper iodide nanoparticles as a hole transport layer to CdTe photovoltaics: 5.5 % efficient back-illuminated bifacial CdTe solar cells
We report the role of copper iodide (CuI) nanoparticles (NPs) as a hole transport layer (HTL) in cadmium sulfide/cadmium telluride (CdS/CdTe) photovoltaics. These CuI NPs were prepared using solution processing at room temperature and used to fabricate monofacial and bifacial CdTe solar cells with d...
Saved in:
Published in | Solar energy materials and solar cells Vol. 235; no. C; p. 111451 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.01.2022
Elsevier BV Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We report the role of copper iodide (CuI) nanoparticles (NPs) as a hole transport layer (HTL) in cadmium sulfide/cadmium telluride (CdS/CdTe) photovoltaics. These CuI NPs were prepared using solution processing at room temperature and used to fabricate monofacial and bifacial CdTe solar cells with different back contacts. Using CuI/Au as the back contact, the device efficiency reached to 14.8% with outstanding fill factor (FF) of 79.2%. Replacing the gold (Au) electrode with sputtered transparent indium tin oxide (ITO), a CuI/ITO back contact yielded photoconversion efficiencies (PCEs) of 11.6% and 5.5% under front and back illumination respectively. Bifacial devices (CdTe/ITO) without the CuI NP HTL have an efficiency of 7.0% and 1.0% for front and back illumination, respectively. For CuI/ITO, a current collection of 12.0 mAcm−2 was observed upon back illumination which significantly improved over an ITO-only back contact (5.0 mAcm−2). The PCE obtained from back illumination was enhanced when using CuI NPs as the HTL due to the reduced back barrier height, and improved back interface as determined by temperature dependent current vs. voltage characteristics and impedance spectroscopy analysis. The improvement in device performance of the bifacial configuration is a significant step forward toward realizing thin film photovoltaic modules which harvest energy incident on the rear of the module.
[Display omitted]
•Investigated CuI Nanoparticles (NPs) as Hole Transport Layer (HTL) for Monofacial and Bifacial CdS/CdTe devices.•CuI NPs helps to improve photo conversion efficiency by significant improvement in open-circuit voltage (Voc) and fill factor (FF) of the devices.•Bifacial devices with absorber layer thickness (3.3 μm) showed excellent short circuit current density (Jsc = 12.0 mAcm−2) with back illumination reaching the device efficiency of 5.5% (bifaciality of 0.47). |
---|---|
AbstractList | We report the role of copper iodide (CuI) nanoparticles (NPs) as a hole transport layer (HTL) in cadmium sulfide/cadmium telluride (CdS/CdTe) photovoltaics. These CuI NPs were prepared using solution processing at room temperature and used to fabricate monofacial and bifacial CdTe solar cells with different back contacts. Using CuI/Au as the back contact, the device efficiency reached to 14.8% with outstanding fill factor (FF) of 79.2%. Replacing the gold (Au) electrode with sputtered transparent indium tin oxide (ITO), a CuI/ITO back contact yielded photoconversion efficiencies (PCEs) of 11.6% and 5.5% under front and back illumination respectively. Bifacial devices (CdTe/ITO) without the CuI NP HTL have an efficiency of 7.0% and 1.0% for front and back illumination, respectively. For CuI/ITO, a current collection of 12.0 mAcm−2 was observed upon back illumination which significantly improved over an ITO-only back contact (5.0 mAcm−2). The PCE obtained from back illumination was enhanced when using CuI NPs as the HTL due to the reduced back barrier height, and improved back interface as determined by temperature dependent current vs. voltage characteristics and impedance spectroscopy analysis. The improvement in device performance of the bifacial configuration is a significant step forward toward realizing thin film photovoltaic modules which harvest energy incident on the rear of the module. We report the role of copper iodide (CuI) nanoparticles (NPs) as a hole transport layer (HTL) in cadmium sulfide/cadmium telluride (CdS/CdTe) photovoltaics. These CuI NPs were prepared using solution processing at room temperature and used to fabricate monofacial and bifacial CdTe solar cells with different back contacts. Using CuI/Au as the back contact, the device efficiency reached to 14.8% with outstanding fill factor (FF) of 79.2%. Replacing the gold (Au) electrode with sputtered transparent indium tin oxide (ITO), a CuI/ITO back contact yielded photoconversion efficiencies (PCEs) of 11.6% and 5.5% under front and back illumination respectively. Bifacial devices (CdTe/ITO) without the CuI NP HTL have an efficiency of 7.0% and 1.0% for front and back illumination, respectively. For CuI/ITO, a current collection of 12.0 mAcm−2 was observed upon back illumination which significantly improved over an ITO-only back contact (5.0 mAcm−2). The PCE obtained from back illumination was enhanced when using CuI NPs as the HTL due to the reduced back barrier height, and improved back interface as determined by temperature dependent current vs. voltage characteristics and impedance spectroscopy analysis. The improvement in device performance of the bifacial configuration is a significant step forward toward realizing thin film photovoltaic modules which harvest energy incident on the rear of the module. [Display omitted] •Investigated CuI Nanoparticles (NPs) as Hole Transport Layer (HTL) for Monofacial and Bifacial CdS/CdTe devices.•CuI NPs helps to improve photo conversion efficiency by significant improvement in open-circuit voltage (Voc) and fill factor (FF) of the devices.•Bifacial devices with absorber layer thickness (3.3 μm) showed excellent short circuit current density (Jsc = 12.0 mAcm−2) with back illumination reaching the device efficiency of 5.5% (bifaciality of 0.47). |
ArticleNumber | 111451 |
Author | Bastola, Ebin Khanal Subedi, Kamala Ellingson, Randy J. Heben, Michael J. Jamarkattel, Manoj K. Rijal, Suman Pokhrel, Dipendra Phillips, Adam B. Awni, Rasha A. Yan, Yanfa |
Author_xml | – sequence: 1 givenname: Dipendra orcidid: 0000-0002-7698-1795 surname: Pokhrel fullname: Pokhrel, Dipendra – sequence: 2 givenname: Ebin surname: Bastola fullname: Bastola, Ebin – sequence: 3 givenname: Kamala surname: Khanal Subedi fullname: Khanal Subedi, Kamala – sequence: 4 givenname: Suman orcidid: 0000-0002-7738-4917 surname: Rijal fullname: Rijal, Suman – sequence: 5 givenname: Manoj K. orcidid: 0000-0003-2767-5705 surname: Jamarkattel fullname: Jamarkattel, Manoj K. – sequence: 6 givenname: Rasha A. surname: Awni fullname: Awni, Rasha A. – sequence: 7 givenname: Adam B. surname: Phillips fullname: Phillips, Adam B. – sequence: 8 givenname: Yanfa surname: Yan fullname: Yan, Yanfa – sequence: 9 givenname: Michael J. surname: Heben fullname: Heben, Michael J. – sequence: 10 givenname: Randy J. orcidid: 0000-0001-9520-6586 surname: Ellingson fullname: Ellingson, Randy J. email: Randy.Ellingson@utoledo.edu |
BackLink | https://www.osti.gov/biblio/1868732$$D View this record in Osti.gov |
BookMark | eNqFkUuLHCEUhSXMQHoe_yALSciyKj7KsmoWgdDkBQPZzKzF1ittx9aK2gPzC-Zvx6ayyiIB4W7Odz33nCt0EVMEhN5Q0lNCxw-HvqRw1LVnhNGeUjoI-gpt6CTnjvN5ukAbMjPZETZMr9FVKQdCCBv5sEEv27QskLFP1lvAUce06Fy9CVCwbg_vUwBcs45lSbnioJ-bvCa8tQ-Al32q6SmFqr0pd1j0Ar_H4Jw3HmLFO21-dj6E09FHXcHinXfaeB1WurnWGRsIodygS6dDgds_8xo9fvn8sP3W3f_4-n376b4zA5G1G0brjLN2HN2s2SQZm5gWgjs37iQnRJid0ESKgUJLRg5sMlKCsAN3fBYj8Gv0dt2bSvWqGF_B7E2KEUxVdBonyVkTvVtFS06_TlCqOqRTjs2XYmP7krKZ86YaVpXJqZQMTi3ZH3V-VpSocy_qoNZe1LkXtfbSsLu_sGZCV59iC9mH_8EfVxhaRk8e8vkEiAasz-cLbPL_XvAbsVutPw |
CitedBy_id | crossref_primary_10_1007_s12596_025_02656_0 crossref_primary_10_1016_j_surfin_2024_104971 crossref_primary_10_1016_j_optmat_2022_113003 crossref_primary_10_1109_JPHOTOV_2022_3200252 crossref_primary_10_1002_solr_202300545 crossref_primary_10_1016_j_enbuild_2024_114867 crossref_primary_10_1002_adma_202303936 crossref_primary_10_3390_coatings12050589 crossref_primary_10_1016_j_rser_2024_114996 crossref_primary_10_1109_JPHOTOV_2024_3483249 crossref_primary_10_1002_solr_202201009 crossref_primary_10_1016_j_solmat_2023_112312 crossref_primary_10_1088_1361_648X_ad294d crossref_primary_10_1021_acsenergylett_4c00156 crossref_primary_10_1051_e3sconf_202458802009 crossref_primary_10_1016_j_solmat_2023_112289 crossref_primary_10_1002_solr_202200501 crossref_primary_10_1016_j_ceramint_2024_07_075 crossref_primary_10_1016_j_solmat_2024_113260 crossref_primary_10_3390_en17246363 crossref_primary_10_1002_ente_202401542 |
Cites_doi | 10.1039/C6NR04288K 10.1109/JPHOTOV.2018.2870139 10.3390/ma12091406 10.1016/j.matlet.2012.03.114 10.1016/j.solmat.2014.11.004 10.1016/j.nanoen.2021.105827 10.1021/acsaem.0c00851 10.1016/j.solmat.2007.04.025 10.1021/cg100270d 10.1016/j.solmat.2018.06.025 10.1016/j.physb.2019.08.021 10.1007/s10854-015-3035-y 10.1016/j.solmat.2017.02.030 10.1364/OE.26.000A30 10.1002/ente.201700422 10.1016/j.solmat.2020.110764 10.1002/pip.525 10.1107/S0021889878012844 10.1002/pip.3192 10.1016/j.phpro.2012.03.571 10.1364/OE.26.023594 10.1016/j.solmat.2015.07.003 10.1246/cl.2005.1158 10.1063/5.0021781 10.1557/JMR.1998.0376 10.1016/0040-6090(96)08607-5 10.1063/1.363946 10.1063/1.5063799 10.1021/am3017653 10.1002/pssa.201329349 10.1016/j.solener.2019.04.082 10.1039/D0MA00394H 10.1021/acs.nanolett.5b05124 10.1016/j.solmat.2016.09.025 10.1016/j.solmat.2007.03.010 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. Copyright Elsevier BV Jan 2022 |
Copyright_xml | – notice: 2021 Elsevier B.V. – notice: Copyright Elsevier BV Jan 2022 |
DBID | AAYXX CITATION 7SP 7ST 7TB 7U5 8FD C1K FR3 L7M SOI OTOTI |
DOI | 10.1016/j.solmat.2021.111451 |
DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Advanced Technologies Database with Aerospace Environment Abstracts OSTI.GOV |
DatabaseTitle | CrossRef Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-3398 |
ExternalDocumentID | 1868732 10_1016_j_solmat_2021_111451 S0927024821004918 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 6OB 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AARLI AAXUO ABFNM ABMAC ABNUV ABXDB ABXRA ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADECG ADEWK ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRAH AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHIDL AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JARJE KOM LY6 LY7 M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG RNS ROL RPZ SAC SCB SDF SDG SDP SES SET SEW SMS SPC SPCBC SPD SSG SSK SSM SSR SSZ T5K TWZ WH7 WUQ XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SP 7ST 7TB 7U5 8FD C1K EFKBS FR3 L7M SOI 08R AALMO AAPBV ABPIF ABPTK OTOTI |
ID | FETCH-LOGICAL-c407t-46dfcfdd66f9a2872282a553ff6b73005cb5a07541e1017428c77e5d43f3956e3 |
IEDL.DBID | .~1 |
ISSN | 0927-0248 |
IngestDate | Fri May 19 02:26:32 EDT 2023 Wed Aug 13 11:21:14 EDT 2025 Thu Apr 24 23:07:05 EDT 2025 Tue Jul 01 01:20:10 EDT 2025 Fri Feb 23 02:41:58 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | C |
Keywords | Cadmium telluride Hole transport layer Bifacial Back contact Copper iodide (CuI) |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c407t-46dfcfdd66f9a2872282a553ff6b73005cb5a07541e1017428c77e5d43f3956e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 USDOE Office of Energy Efficiency and Renewable Energy (EERE) EE0008974 |
ORCID | 0000-0002-7698-1795 0000-0001-9520-6586 0000-0003-2767-5705 0000-0002-7738-4917 0000000195206586 0000000277384917 0000000327675705 0000000276981795 |
OpenAccessLink | https://www.sciencedirect.com/science/article/am/pii/S0927024821004918 |
PQID | 2622812933 |
PQPubID | 2045398 |
ParticipantIDs | osti_scitechconnect_1868732 proquest_journals_2622812933 crossref_primary_10_1016_j_solmat_2021_111451 crossref_citationtrail_10_1016_j_solmat_2021_111451 elsevier_sciencedirect_doi_10_1016_j_solmat_2021_111451 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2022 2022-01-00 20220101 2022-01-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: January 2022 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam – name: Netherlands |
PublicationTitle | Solar energy materials and solar cells |
PublicationYear | 2022 |
Publisher | Elsevier B.V Elsevier BV Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV – name: Elsevier |
References | Perkins, Ablekim, Barnes, Kuciauskas, Lynn, Nemeth, Reese, Swain, Metzger (bib10) 2018; 8 Wang, Yu, Jiang, Li, Cai, Yang, Sun (bib20) 2017; 5 Kwon, Seo, Kang, Kim, Kim (bib38) 2018; 26 Phillips, Subedi, Liyanage, Alfadhili, Ellingson, Heben (bib9) 2020; 3 Li, Xiao, Wu, Wang, Wang, Wang (bib23) 2019; 185 Sun, Ye, Rao, Li, Liu, Xiao, Chen, Bian, Huang (bib12) 2016; 8 Tanaka, Kawabata, Hirose (bib16) 1996; 281 Tiwari, Khrypunov, Kurdzesau, Bätzner, Romeo, Zogg (bib7) 2004; 12 Langford, Wilson (bib26) 1978; 11 Subedi, Bastola, Subedi, Bista, Rijal, Jamarkattel, Awni, Philips, Yan, Heben (bib35) 2020; 218 Pokhrel, Bastola, Subedi, Phillips, Heben, Ellingson (bib31) 2020 Subedi, Phillips, Shrestha, Alfadhili, Osella, Subedi, Awni, Bastola, Song, Li (bib11) 2021 McCandless, Sites (bib2) 2011; 600 Bührer, Hälg (bib13) 1977 Grundmann, Schein, Lorenz, Böntgen, Lenzner, von Wenckstern (bib14) 2013; 210 Saranin, Gostischev, Tatarinov, Ermanova, Mazov, Muratov, Tameev, Kuznetsov, Didenko, Di Carlo (bib29) 2019; 12 Pang, Cai, He, Wang, Jiang, He, Yu, Liu, Zhang, Sun (bib4) 2012; 32 Subedi, Bastola, Subedi, Song, Bhandari, Phillips, Podraza, Heben, Ellingson (bib5) 2018; 186 Niemegeers, Burgelman (bib39) 1997; 81 Yang, Liu, Kimura (bib24) 2005; 34 Bastola, Phillips, Barros-King, Jamarkattel, Li, Quader, Pokhrel, Gibbs, Yan, Ellingson, Heben (bib33) 2021 Awni, Li, Song, Bista, Razooqi, Grice, Chen, Liyanage, Li, Phillips, Heben, Ellingson, Li, Yan (bib40) 2019; 27 Mohamed, Gasiorowski, Hingerl, Zahn, Scharber, Obayya, El-Mansy, Sariciftci, Egbe, Stadler (bib21) 2015; 143 Storm, Bar, Benndorf, Selle, Yang, von Wenckstern, Grundmann, Lorenz (bib37) 2020; 8 Byun, Seo, Kim, Kim (bib34) 2018; 26 Das, Choi, Alford (bib22) 2015; 133 Chen, Wang, Lin, Huang, Chen, Pan, Huang (bib17) 2010; 10 Shao, Liu, Zhang, Zhang, Xie, Geng, Wang (bib19) 2012; 4 Xia, Gu, Liu, Liu, Huang, Ni (bib27) 2015; 26 Wang, Bai, Wei, Li, Jia, Zhu, Wang, Wu (bib15) 2012; 79 Pokhrel, Bastola, Phillips, Heben, Ellingson (bib30) 2020; 1 Bonnet, Meyers (bib1) 1998; 13 Duenow, Metzger (bib3) 2019; 125 Bastola, Bordovalos, LeBlanc, Shrestha, Reese, Ellingson (bib25) 2019 Swanson, Sites, Sampath (bib32) 2017; 159 Romeo, Khrypunov, Galassini, Zogg, Tiwari (bib8) 2007; 91 Wang, Wei, Wu, Yang, Han, Juan, Chen, Xu, Cao (bib18) 2019; 573 Kaushik, Selvaraj, Ramu, Subrahmanyam (bib28) 2017; 165 Marsillac, Parikh, Compaan (bib36) 2007; 91 Xu, Bullock, Schelhas, Stutz, Fonseca, Hettick, Pool, Tai, Toney, Fang (bib6) 2016; 16 Li (10.1016/j.solmat.2021.111451_bib23) 2019; 185 Tanaka (10.1016/j.solmat.2021.111451_bib16) 1996; 281 Wang (10.1016/j.solmat.2021.111451_bib18) 2019; 573 Grundmann (10.1016/j.solmat.2021.111451_bib14) 2013; 210 Chen (10.1016/j.solmat.2021.111451_bib17) 2010; 10 Saranin (10.1016/j.solmat.2021.111451_bib29) 2019; 12 Xu (10.1016/j.solmat.2021.111451_bib6) 2016; 16 Bastola (10.1016/j.solmat.2021.111451_bib25) 2019 Mohamed (10.1016/j.solmat.2021.111451_bib21) 2015; 143 Marsillac (10.1016/j.solmat.2021.111451_bib36) 2007; 91 Yang (10.1016/j.solmat.2021.111451_bib24) 2005; 34 Langford (10.1016/j.solmat.2021.111451_bib26) 1978; 11 Wang (10.1016/j.solmat.2021.111451_bib20) 2017; 5 Tiwari (10.1016/j.solmat.2021.111451_bib7) 2004; 12 Pang (10.1016/j.solmat.2021.111451_bib4) 2012; 32 Romeo (10.1016/j.solmat.2021.111451_bib8) 2007; 91 Sun (10.1016/j.solmat.2021.111451_bib12) 2016; 8 Pokhrel (10.1016/j.solmat.2021.111451_bib31) 2020 Pokhrel (10.1016/j.solmat.2021.111451_bib30) 2020; 1 Bonnet (10.1016/j.solmat.2021.111451_bib1) 1998; 13 Wang (10.1016/j.solmat.2021.111451_bib15) 2012; 79 Storm (10.1016/j.solmat.2021.111451_bib37) 2020; 8 McCandless (10.1016/j.solmat.2021.111451_bib2) 2011; 600 Perkins (10.1016/j.solmat.2021.111451_bib10) 2018; 8 Bührer (10.1016/j.solmat.2021.111451_bib13) 1977 Byun (10.1016/j.solmat.2021.111451_bib34) 2018; 26 Subedi (10.1016/j.solmat.2021.111451_bib5) 2018; 186 Duenow (10.1016/j.solmat.2021.111451_bib3) 2019; 125 Niemegeers (10.1016/j.solmat.2021.111451_bib39) 1997; 81 Kwon (10.1016/j.solmat.2021.111451_bib38) 2018; 26 Das (10.1016/j.solmat.2021.111451_bib22) 2015; 133 Subedi (10.1016/j.solmat.2021.111451_bib11) 2021 Shao (10.1016/j.solmat.2021.111451_bib19) 2012; 4 Xia (10.1016/j.solmat.2021.111451_bib27) 2015; 26 Kaushik (10.1016/j.solmat.2021.111451_bib28) 2017; 165 Swanson (10.1016/j.solmat.2021.111451_bib32) 2017; 159 Awni (10.1016/j.solmat.2021.111451_bib40) 2019; 27 Subedi (10.1016/j.solmat.2021.111451_bib35) 2020; 218 Phillips (10.1016/j.solmat.2021.111451_bib9) 2020; 3 Bastola (10.1016/j.solmat.2021.111451_bib33) 2021 |
References_xml | – volume: 159 start-page: 389 year: 2017 ident: bib32 article-title: Co-sublimation of CdSexTe1− x layers for CdTe solar cells publication-title: Sol. Energy Mater. Sol. Cell. – volume: 8 year: 2020 ident: bib37 article-title: High mobility, highly transparent, smooth, p-type CuI thin films grown by pulsed laser deposition publication-title: Apl. Mater. – volume: 91 start-page: 1388 year: 2007 ident: bib8 article-title: Bifacial configurations for CdTe solar cells publication-title: Sol. Energy Mater. Solar Cells – volume: 573 start-page: 45 year: 2019 ident: bib18 article-title: Highly transparent and conductive γ-CuI films grown by simply dipping copper films into iodine solution publication-title: Phys. B Condens. Matter – volume: 1 start-page: 2721 year: 2020 ident: bib30 article-title: Aspect ratio controlled synthesis of tellurium nanowires for photovoltaic applications publication-title: Mater. Adv. – volume: 91 start-page: 1398 year: 2007 ident: bib36 article-title: Ultra-thin bifacial CdTe solar cell publication-title: Sol. Energy Mater. Solar Cells – volume: 26 start-page: 23594 year: 2018 ident: bib34 article-title: Bifacial CdS/CdTe thin-film solar cells with copper nanowires as a transparent back contact publication-title: Opt Express – volume: 600 year: 2011 ident: bib2 article-title: Cadmium telluride solar cells publication-title: Handbk Photovolt. Sci. Eng. – volume: 210 start-page: 1671 year: 2013 ident: bib14 article-title: Cuprous iodide–ap‐type transparent semiconductor: history and novel applications publication-title: Phys. Status Solidi – volume: 32 start-page: 372 year: 2012 ident: bib4 article-title: Preparation and characteristics of MoSe2 interlayer in bifacial Cu (In, Ga) Se2 solar cells publication-title: Phys. Procedia – volume: 218 start-page: 110764 year: 2020 ident: bib35 article-title: Semi-transparent p-type barium copper sulfide as a back contact interface layer for cadmium telluride solar cells publication-title: Sol. Energy Mater. Sol. Cell. – volume: 26 start-page: A30 year: 2018 ident: bib38 article-title: Bifacial CdS/CdTe thin-film solar cells using a transparent silver nanowire/indium tin oxide back contact publication-title: Opt Express – volume: 8 start-page: 15954 year: 2016 ident: bib12 article-title: Room-temperature and solution-processed copper iodide as the hole transport layer for inverted planar perovskite solar cells publication-title: Nanoscale – start-page: 105827 year: 2021 ident: bib11 article-title: Enabling bifacial thin film devices by developing a back surface field using CuxAlOy publication-title: Nano Energy – volume: 12 start-page: 33 year: 2004 ident: bib7 article-title: CdTe solar cell in a novel configuration publication-title: Prog. Photovoltaics Res. Appl. – volume: 186 start-page: 227 year: 2018 ident: bib5 article-title: Nanocomposite (CuS) publication-title: Sol. Energy Mater. Sol. Cell. – volume: 26 start-page: 5092 year: 2015 ident: bib27 article-title: Luminescence characteristics of CuI film by iodine annealing publication-title: J. Mater. Sci. Mater. Electron. – volume: 27 start-page: 1115 year: 2019 ident: bib40 article-title: Influences of buffer material and fabrication atmosphere on the electrical properties of CdTe solar cells publication-title: Prog. Photovoltaics Res. Appl. – volume: 79 start-page: 106 year: 2012 ident: bib15 article-title: Preparation of CuI particles and their applications in carbon nanotube-Si heterojunction solar cells publication-title: Mater. Lett. – volume: 8 start-page: 1858 year: 2018 ident: bib10 article-title: Interfaces between CdTe and ALD Al publication-title: IEEE J. Photovolt. – volume: 34 start-page: 1158 year: 2005 ident: bib24 article-title: Synthesis of well-dispersed CuI nanoparticles from an available solution precursor publication-title: Chem. Lett. – volume: 3 start-page: 6072 year: 2020 ident: bib9 article-title: Understanding and advancing bifacial thin film solar cells" publication-title: ACS Appl. Energy Mater. – volume: 81 start-page: 2881 year: 1997 ident: bib39 article-title: Effects of the Au/CdTe back contact on IV and CV characteristics of Au/CdTe/CdS/TCO solar cells" publication-title: J. Appl. Phys. – volume: 165 start-page: 52 year: 2017 ident: bib28 article-title: Thermal evaporated copper iodide (CuI) thin films: a note on the disorder evaluated through the temperature dependent electrical properties publication-title: Sol. Energy Mater. Sol. Cell. – volume: 13 start-page: 2740 year: 1998 ident: bib1 article-title: Cadmium-telluride—material for thin film solar cells" publication-title: J. Mater. Res. – year: 1977 ident: bib13 article-title: Crystal structure of high-temperature cuprous iodide and cuprous bromide publication-title: Presented at the International Symposium on Solid Ionic and Ionic-Electronic Conductors – volume: 10 start-page: 2057 year: 2010 ident: bib17 article-title: Growth strategy and physical properties of the high mobility p-type CuI crystal publication-title: Cryst. Growth Des. – volume: 4 start-page: 5704 year: 2012 ident: bib19 article-title: Interface-induced crystalline ordering and favorable morphology for efficient annealing-free poly (3-hexylthiophene): fullerene derivative solar cells" publication-title: ACS Appl. Mater. Interfaces – volume: 143 start-page: 369 year: 2015 ident: bib21 article-title: CuI as versatile hole-selective contact for organic solar cell based on anthracene-containing PPE–PPV publication-title: Sol. Energy Mater. Sol. Cell. – volume: 5 start-page: 1836 year: 2017 ident: bib20 article-title: Efficient and stable inverted planar perovskite solar cells employing CuI as hole‐transporting layer prepared by solid–gas transformation publication-title: Energy Technol. – volume: 11 start-page: 102 year: 1978 ident: bib26 article-title: Scherrer after sixty years: a survey and some new results in the determination of crystallite size publication-title: J. Appl. Crystallogr. – volume: 133 start-page: 255 year: 2015 ident: bib22 article-title: P3HT: PC61BM based solar cells employing solution processed copper iodide as the hole transport layer publication-title: Sol. Energy Mater. Sol. Cell. – volume: 281 start-page: 179 year: 1996 ident: bib16 article-title: Transparent, conductive CuI films prepared by rf-dc coupled magnetron sputtering publication-title: Thin Solid Films – volume: 12 start-page: 1406 year: 2019 ident: bib29 article-title: Copper iodide interlayer for improved charge extraction and stability of inverted perovskite solar cells publication-title: Materials – start-page: 1 year: 2021 end-page: 5 ident: bib33 article-title: Understanding the interplay between CdSe thickness and Cu doping temperature in CdSe/CdTe devices publication-title: IEEE J. Photovolt – volume: 185 start-page: 324 year: 2019 ident: bib23 article-title: CdTe thin film solar cells with copper iodide as a back contact buffer layer publication-title: Sol. Energy – start-page: 1846 year: 2019 ident: bib25 article-title: Doping of CdTe using CuCl publication-title: 2019 IEEE 46th Photovoltaic Specialists Conference – volume: 16 start-page: 1925 year: 2016 ident: bib6 article-title: Chemical bath deposition of p-type transparent, highly conducting (CuS) publication-title: Nano Lett. – start-page: 2561 year: 2020 end-page: 2563 ident: bib31 article-title: Solution-processed copper telluride nanowire thin film as a back-buffer layer to cadmium telluride solar cells publication-title: 2020 47th IEEE Photovoltaic Specialists Conference – volume: 125 year: 2019 ident: bib3 article-title: Back-surface recombination, electron reflectors, and paths to 28% efficiency for thin-film photovoltaics: a CdTe case study publication-title: J. Appl. Phys. – volume: 8 start-page: 15954 issue: 35 year: 2016 ident: 10.1016/j.solmat.2021.111451_bib12 article-title: Room-temperature and solution-processed copper iodide as the hole transport layer for inverted planar perovskite solar cells publication-title: Nanoscale doi: 10.1039/C6NR04288K – volume: 8 start-page: 1858 issue: 6 year: 2018 ident: 10.1016/j.solmat.2021.111451_bib10 article-title: Interfaces between CdTe and ALD Al2O3 publication-title: IEEE J. Photovolt. doi: 10.1109/JPHOTOV.2018.2870139 – volume: 12 start-page: 1406 issue: 9 year: 2019 ident: 10.1016/j.solmat.2021.111451_bib29 article-title: Copper iodide interlayer for improved charge extraction and stability of inverted perovskite solar cells publication-title: Materials doi: 10.3390/ma12091406 – volume: 79 start-page: 106 year: 2012 ident: 10.1016/j.solmat.2021.111451_bib15 article-title: Preparation of CuI particles and their applications in carbon nanotube-Si heterojunction solar cells publication-title: Mater. Lett. doi: 10.1016/j.matlet.2012.03.114 – volume: 133 start-page: 255 year: 2015 ident: 10.1016/j.solmat.2021.111451_bib22 article-title: P3HT: PC61BM based solar cells employing solution processed copper iodide as the hole transport layer publication-title: Sol. Energy Mater. Sol. Cell. doi: 10.1016/j.solmat.2014.11.004 – start-page: 105827 year: 2021 ident: 10.1016/j.solmat.2021.111451_bib11 article-title: Enabling bifacial thin film devices by developing a back surface field using CuxAlOy publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.105827 – start-page: 1 year: 2021 ident: 10.1016/j.solmat.2021.111451_bib33 article-title: Understanding the interplay between CdSe thickness and Cu doping temperature in CdSe/CdTe devices publication-title: IEEE J. Photovolt – volume: 3 start-page: 6072 issue: 7 year: 2020 ident: 10.1016/j.solmat.2021.111451_bib9 article-title: Understanding and advancing bifacial thin film solar cells" publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.0c00851 – volume: 91 start-page: 1398 issue: 15–16 year: 2007 ident: 10.1016/j.solmat.2021.111451_bib36 article-title: Ultra-thin bifacial CdTe solar cell publication-title: Sol. Energy Mater. Solar Cells doi: 10.1016/j.solmat.2007.04.025 – volume: 10 start-page: 2057 issue: 5 year: 2010 ident: 10.1016/j.solmat.2021.111451_bib17 article-title: Growth strategy and physical properties of the high mobility p-type CuI crystal publication-title: Cryst. Growth Des. doi: 10.1021/cg100270d – start-page: 2561 year: 2020 ident: 10.1016/j.solmat.2021.111451_bib31 article-title: Solution-processed copper telluride nanowire thin film as a back-buffer layer to cadmium telluride solar cells – volume: 186 start-page: 227 year: 2018 ident: 10.1016/j.solmat.2021.111451_bib5 article-title: Nanocomposite (CuS)x (ZnS)1-x thin film back contact for CdTe solar cells: toward a bifacial device publication-title: Sol. Energy Mater. Sol. Cell. doi: 10.1016/j.solmat.2018.06.025 – volume: 573 start-page: 45 year: 2019 ident: 10.1016/j.solmat.2021.111451_bib18 article-title: Highly transparent and conductive γ-CuI films grown by simply dipping copper films into iodine solution publication-title: Phys. B Condens. Matter doi: 10.1016/j.physb.2019.08.021 – volume: 26 start-page: 5092 issue: 7 year: 2015 ident: 10.1016/j.solmat.2021.111451_bib27 article-title: Luminescence characteristics of CuI film by iodine annealing publication-title: J. Mater. Sci. Mater. Electron. doi: 10.1007/s10854-015-3035-y – volume: 165 start-page: 52 year: 2017 ident: 10.1016/j.solmat.2021.111451_bib28 article-title: Thermal evaporated copper iodide (CuI) thin films: a note on the disorder evaluated through the temperature dependent electrical properties publication-title: Sol. Energy Mater. Sol. Cell. doi: 10.1016/j.solmat.2017.02.030 – volume: 26 start-page: A30 issue: 2 year: 2018 ident: 10.1016/j.solmat.2021.111451_bib38 article-title: Bifacial CdS/CdTe thin-film solar cells using a transparent silver nanowire/indium tin oxide back contact publication-title: Opt Express doi: 10.1364/OE.26.000A30 – volume: 5 start-page: 1836 issue: 10 year: 2017 ident: 10.1016/j.solmat.2021.111451_bib20 article-title: Efficient and stable inverted planar perovskite solar cells employing CuI as hole‐transporting layer prepared by solid–gas transformation publication-title: Energy Technol. doi: 10.1002/ente.201700422 – volume: 218 start-page: 110764 year: 2020 ident: 10.1016/j.solmat.2021.111451_bib35 article-title: Semi-transparent p-type barium copper sulfide as a back contact interface layer for cadmium telluride solar cells publication-title: Sol. Energy Mater. Sol. Cell. doi: 10.1016/j.solmat.2020.110764 – volume: 12 start-page: 33 issue: 1 year: 2004 ident: 10.1016/j.solmat.2021.111451_bib7 article-title: CdTe solar cell in a novel configuration publication-title: Prog. Photovoltaics Res. Appl. doi: 10.1002/pip.525 – volume: 11 start-page: 102 issue: 2 year: 1978 ident: 10.1016/j.solmat.2021.111451_bib26 article-title: Scherrer after sixty years: a survey and some new results in the determination of crystallite size publication-title: J. Appl. Crystallogr. doi: 10.1107/S0021889878012844 – volume: 27 start-page: 1115 issue: 11 year: 2019 ident: 10.1016/j.solmat.2021.111451_bib40 article-title: Influences of buffer material and fabrication atmosphere on the electrical properties of CdTe solar cells publication-title: Prog. Photovoltaics Res. Appl. doi: 10.1002/pip.3192 – volume: 32 start-page: 372 year: 2012 ident: 10.1016/j.solmat.2021.111451_bib4 article-title: Preparation and characteristics of MoSe2 interlayer in bifacial Cu (In, Ga) Se2 solar cells publication-title: Phys. Procedia doi: 10.1016/j.phpro.2012.03.571 – volume: 26 start-page: 23594 issue: 18 year: 2018 ident: 10.1016/j.solmat.2021.111451_bib34 article-title: Bifacial CdS/CdTe thin-film solar cells with copper nanowires as a transparent back contact publication-title: Opt Express doi: 10.1364/OE.26.023594 – volume: 600 year: 2011 ident: 10.1016/j.solmat.2021.111451_bib2 article-title: Cadmium telluride solar cells publication-title: Handbk Photovolt. Sci. Eng. – volume: 143 start-page: 369 year: 2015 ident: 10.1016/j.solmat.2021.111451_bib21 article-title: CuI as versatile hole-selective contact for organic solar cell based on anthracene-containing PPE–PPV publication-title: Sol. Energy Mater. Sol. Cell. doi: 10.1016/j.solmat.2015.07.003 – volume: 34 start-page: 1158 issue: 8 year: 2005 ident: 10.1016/j.solmat.2021.111451_bib24 article-title: Synthesis of well-dispersed CuI nanoparticles from an available solution precursor publication-title: Chem. Lett. doi: 10.1246/cl.2005.1158 – volume: 8 issue: 9 year: 2020 ident: 10.1016/j.solmat.2021.111451_bib37 article-title: High mobility, highly transparent, smooth, p-type CuI thin films grown by pulsed laser deposition publication-title: Apl. Mater. doi: 10.1063/5.0021781 – volume: 13 start-page: 2740 issue: 10 year: 1998 ident: 10.1016/j.solmat.2021.111451_bib1 article-title: Cadmium-telluride—material for thin film solar cells" publication-title: J. Mater. Res. doi: 10.1557/JMR.1998.0376 – volume: 281 start-page: 179 year: 1996 ident: 10.1016/j.solmat.2021.111451_bib16 article-title: Transparent, conductive CuI films prepared by rf-dc coupled magnetron sputtering publication-title: Thin Solid Films doi: 10.1016/0040-6090(96)08607-5 – start-page: 1846 year: 2019 ident: 10.1016/j.solmat.2021.111451_bib25 article-title: Doping of CdTe using CuCl2 solution for highly efficient photovoltaic devices – volume: 81 start-page: 2881 issue: 6 year: 1997 ident: 10.1016/j.solmat.2021.111451_bib39 article-title: Effects of the Au/CdTe back contact on IV and CV characteristics of Au/CdTe/CdS/TCO solar cells" publication-title: J. Appl. Phys. doi: 10.1063/1.363946 – volume: 125 issue: 5 year: 2019 ident: 10.1016/j.solmat.2021.111451_bib3 article-title: Back-surface recombination, electron reflectors, and paths to 28% efficiency for thin-film photovoltaics: a CdTe case study publication-title: J. Appl. Phys. doi: 10.1063/1.5063799 – year: 1977 ident: 10.1016/j.solmat.2021.111451_bib13 article-title: Crystal structure of high-temperature cuprous iodide and cuprous bromide – volume: 4 start-page: 5704 issue: 10 year: 2012 ident: 10.1016/j.solmat.2021.111451_bib19 article-title: Interface-induced crystalline ordering and favorable morphology for efficient annealing-free poly (3-hexylthiophene): fullerene derivative solar cells" publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am3017653 – volume: 210 start-page: 1671 issue: 9 year: 2013 ident: 10.1016/j.solmat.2021.111451_bib14 article-title: Cuprous iodide–ap‐type transparent semiconductor: history and novel applications publication-title: Phys. Status Solidi doi: 10.1002/pssa.201329349 – volume: 185 start-page: 324 year: 2019 ident: 10.1016/j.solmat.2021.111451_bib23 article-title: CdTe thin film solar cells with copper iodide as a back contact buffer layer publication-title: Sol. Energy doi: 10.1016/j.solener.2019.04.082 – volume: 1 start-page: 2721 issue: 8 year: 2020 ident: 10.1016/j.solmat.2021.111451_bib30 article-title: Aspect ratio controlled synthesis of tellurium nanowires for photovoltaic applications publication-title: Mater. Adv. doi: 10.1039/D0MA00394H – volume: 16 start-page: 1925 issue: 3 year: 2016 ident: 10.1016/j.solmat.2021.111451_bib6 article-title: Chemical bath deposition of p-type transparent, highly conducting (CuS)x:(ZnS)1–x nanocomposite thin films and fabrication of Si heterojunction solar cells publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b05124 – volume: 159 start-page: 389 year: 2017 ident: 10.1016/j.solmat.2021.111451_bib32 article-title: Co-sublimation of CdSexTe1− x layers for CdTe solar cells publication-title: Sol. Energy Mater. Sol. Cell. doi: 10.1016/j.solmat.2016.09.025 – volume: 91 start-page: 1388 issue: 15–16 year: 2007 ident: 10.1016/j.solmat.2021.111451_bib8 article-title: Bifacial configurations for CdTe solar cells publication-title: Sol. Energy Mater. Solar Cells doi: 10.1016/j.solmat.2007.03.010 |
SSID | ssj0002634 |
Score | 2.49093 |
Snippet | We report the role of copper iodide (CuI) nanoparticles (NPs) as a hole transport layer (HTL) in cadmium sulfide/cadmium telluride (CdS/CdTe) photovoltaics.... |
SourceID | osti proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 111451 |
SubjectTerms | Back contact Bifacial Cadmium Cadmium sulfide Cadmium telluride Cadmium tellurides Copper Copper iodide (CuI) Energy harvesting Hole transport layer Illumination Indium tin oxides Iodides Modules Nanoparticles Photovoltaic cells Photovoltaics Quantum efficiency Room temperature Solar cells Spectroscopy Temperature dependence Thin films |
Title | Copper iodide nanoparticles as a hole transport layer to CdTe photovoltaics: 5.5 % efficient back-illuminated bifacial CdTe solar cells |
URI | https://dx.doi.org/10.1016/j.solmat.2021.111451 https://www.proquest.com/docview/2622812933 https://www.osti.gov/biblio/1868732 |
Volume | 235 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS91AEF_k9VIPYm3F5xdzaI_rS7K7yYs3eVReLfVSBW_LfgWjkgRfvHr133YmH21FRCjkFHZI2PnenfkNY19zmweqTuQijQKXPp5z61AflXQqErm1_czIX-fp8lKeXamrNbYYe2GorHKw_b1N76z18GY27OasKcvZ7yinXio5Twj0LI-p4VfKjKT86PFvmUeSdjfLtJjT6rF9rqvxQvZiXIhZYhKT7ZAqfss9TWrUuFf2unNCp5tsY4ge4aT_wU9sLVRbbP0fTMHP7GlRN024h7L2pQ9QmQrT4qH6DQw-QBNxoR1BzeHOYNQNbQ0LfxGgua7bGk1Wa0q3OgZ1pOAbhA5nAt0TWONueUnTkcsKo1QPtiwMnbr31CtKlIEuA1Zf2OXp94vFkg_TFrjDpK7lMvWFK7xP0yI3mEclyEKjlCiK1Hag9s4qgwGGjAOpMaYtLsuC8lIUApOsILbZpKqrsMMAt9zYfG6czSIZW5-bKDZZEhnhYuGVnTIxbrJ2AxQ5TcS402PN2Y3uWaOJNbpnzZTxP1RND8Xxzvps5J9-IVIavcU7lHvEbqIiJF1HJUdIRpMFMpFM2f4oBXpQ-JVOUtwvip3E7n9_do99TKi5ojvg2WeT9v4hHGDI09rDTqYP2YeTHz-X58-tD_92 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtRAEG2F4QAcUNjEZIE-kKMzdi_2GCmHaCCakOXCRMqt6c2KIbKt2BHiwpUP4gepstssQigSUiSfLJfdqqqupf2qipBXuck9ohMjnsY-Ei6ZR8bCfpTCypjnxgwzI09O0-WZeHcuz9fI97EWBmGVwfYPNr231uHOLHBz1pTl7H2cYy2VmDNsepYn84CsPPJfPkPe1u4dvgEh7zB28Ha1WEZhtEBkIYPpIpG6whbOpWmRa0gaGKxXS8mLIjV9B3drpAZvKhKPOgsxus0yL53gBYeMwnN47x1yV4C5wLEJu19_4UpY2v_KxtVFuLyxXq8HlYE-QSAKaSlL0FgJmfzLH05q2OJ_OYje6x2sk4chXKX7A0cekTVfPSYPfmti-IR8W9RN469oWbvSeVrpCvLwALejGi6KI3hpN3ZRp5cawnza1XThVp42F3VXg43sdGnb11TuSrpDfd_YAvwhNdp-ikocx1xWEBY7aspC4zH_QN1iZk7x70P7lJzdigyekUlVV_45ocBybfK5tiaLRWJcruNEZyzW3CbcSTMlfGSysqH3OY7guFQjyO2jGkSjUDRqEM2URD-pmqH3xw3PZ6P81B86rMA93UC5ieJGKmzdaxHjBGQ4yiDjbEq2Ri1QwcK0iqXALwzW-MZ_f_YlubdcnRyr48PTo01yn2FlR3-6tEUm3dW134Z4qzMvev2m5MNtb6gfIo054Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Copper+iodide+nanoparticles+as+a+hole+transport+layer+to+CdTe+photovoltaics%3A+5.5+%25+efficient+back-illuminated+bifacial+CdTe+solar+cells&rft.jtitle=Solar+energy+materials+and+solar+cells&rft.au=Pokhrel%2C+Dipendra&rft.au=Bastola%2C+Ebin&rft.au=Khanal+Subedi%2C+Kamala&rft.au=Rijal%2C+Suman&rft.date=2022-01-01&rft.issn=0927-0248&rft.volume=235&rft.spage=111451&rft_id=info:doi/10.1016%2Fj.solmat.2021.111451&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_solmat_2021_111451 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-0248&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-0248&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-0248&client=summon |