Evaluation of Multivariate Visualization on a Multivariate Task

Multivariate visualization techniques have attracted great interest as the dimensionality of data sets grows. One premise of such techniques is that simultaneous visual representation of multiple variables will enable the data analyst to detect patterns amongst multiple variables. Such insights coul...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on visualization and computer graphics Vol. 18; no. 12; pp. 2114 - 2121
Main Authors Livingston, M. A., Decker, J. W., Zhuming Ai
Format Journal Article
LanguageEnglish
Published United States IEEE 01.12.2012
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Multivariate visualization techniques have attracted great interest as the dimensionality of data sets grows. One premise of such techniques is that simultaneous visual representation of multiple variables will enable the data analyst to detect patterns amongst multiple variables. Such insights could lead to development of new techniques for rigorous (numerical) analysis of complex relationships hidden within the data. Two natural questions arise from this premise: Which multivariate visualization techniques are the most effective for high-dimensional data sets? How does the analysis task change this utility ranking? We present a user study with a new task to answer the first question. We provide some insights to the second question based on the results of our study and results available in the literature. Our task led to significant differences in error, response time, and subjective workload ratings amongst four visualization techniques. We implemented three integrated techniques (Data-driven Spots, Oriented Slivers, and Attribute Blocks), as well as a baseline case of separate grayscale images. The baseline case fared poorly on all three measures, whereas Datadriven Spots yielded the best accuracy and was among the best in response time. These results differ from comparisons of similar techniques with other tasks, and we review all the techniques, tasks, and results (from our work and previous work) to understand the reasons for this discrepancy.
AbstractList Multivariate visualization techniques have attracted great interest as the dimensionality of data sets grows. One premise of such techniques is that simultaneous visual representation of multiple variables will enable the data analyst to detect patterns amongst multiple variables. Such insights could lead to development of new techniques for rigorous (numerical) analysis of complex relationships hidden within the data. Two natural questions arise from this premise: Which multivariate visualization techniques are the most effective for high-dimensional data sets? How does the analysis task change this utility ranking? We present a user study with a new task to answer the first question. We provide some insights to the second question based on the results of our study and results available in the literature. Our task led to significant differences in error, response time, and subjective workload ratings amongst four visualization techniques. We implemented three integrated techniques (Data-driven Spots, Oriented Slivers, and Attribute Blocks), as well as a baseline case of separate grayscale images. The baseline case fared poorly on all three measures, whereas Datadriven Spots yielded the best accuracy and was among the best in response time. These results differ from comparisons of similar techniques with other tasks, and we review all the techniques, tasks, and results (from our work and previous work) to understand the reasons for this discrepancy.
Author Livingston, M. A.
Zhuming Ai
Decker, J. W.
Author_xml – sequence: 1
  givenname: M. A.
  surname: Livingston
  fullname: Livingston, M. A.
  email: mark.livingston@nrl.navy.mil
– sequence: 2
  givenname: J. W.
  surname: Decker
  fullname: Decker, J. W.
  email: jonathan.decker@nrl.navy.mil
– sequence: 3
  surname: Zhuming Ai
  fullname: Zhuming Ai
  email: zhuming.ai@nrl.navy.mil
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26357118$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9LwzAUgINM3A89ehJk4MVL53tJmqQnkTGnMPEydw1pm0Jn186mHehfb8rmQC-e8uD7eOTxDUmvrEpLyCXCBBGiu-VqOp9QQDqhlJ2QAUYcAwhB9PwMUgZUUNEnQ-fWAMi5is5InwoWSkQ1IPeznSla0-RVOa6y8UtbNPnO1Llp7HiVu9YU-deBlmPzmy-Nez8np5kpnL04vCPy9jhbTp-Cxev8efqwCBIOsglYwq1hsRBxllqAhAsRGhGnmVEpg1hlMTVUQQaJpxFTqBgXHoWgDFfSsBG53e_d1tVHa12jN7lLbFGY0lat0-jPCVkEiv2vCoksVIDif5VSVJJx2ak3f9R11dalv1kjImU0EoDeCvZWUlfO1TbT2zrfmPpTI-iul-566a6X9r28f33Y2sYbmx7tn0BeuNoLubX2iAWjkvr_fwNyaJg8
CODEN ITVGEA
CitedBy_id crossref_primary_10_1007_s11227_022_04375_w
crossref_primary_10_1109_TVCG_2013_180
crossref_primary_10_1111_cgf_13169
crossref_primary_10_1109_TVCG_2013_126
Cites_doi 10.1109/TVCG.2011.194
10.1109/VISUAL.1990.146387
10.1117/12.872576
10.1145/966131.966135
10.1109/MCG.2007.54
10.1145/1140491.1140541
10.1109/VISUAL.1998.745294
10.1109/TVCG.2005.4
10.3758/BF03201835
10.1071/CH9490149
10.1109/VISUAL.1998.745292
10.1109/MCG.2006.88
10.1109/IV.2006.77
10.1109/VISUAL.1990.146386
10.1201/EBK1420075731
10.1109/VISUAL.1991.175795
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2012
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2012
DBID 97E
RIA
RIE
NPM
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
7X8
DOI 10.1109/TVCG.2012.223
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library Online
PubMed
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Technology Research Database
Technology Research Database

MEDLINE - Academic
PubMed
Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0506
EndPage 2121
ExternalDocumentID 2790199691
10_1109_TVCG_2012_223
26357118
6327216
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AASAJ
AAYOK
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AI.
AIBXA
AKJIK
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIC
RIE
RIG
RNI
RNS
RZB
TN5
VH1
XFK
NPM
AAYXX
AGSQL
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
7X8
ID FETCH-LOGICAL-c407t-3c4ea3b66bfde00c4665a6bdfa8d30b8fb2a280f0ce00938183468d3508a487a3
IEDL.DBID RIE
ISSN 1077-2626
IngestDate Wed Dec 04 08:51:03 EST 2024
Tue Dec 03 06:43:27 EST 2024
Wed Dec 04 01:41:13 EST 2024
Thu Oct 10 16:16:41 EDT 2024
Fri Dec 06 01:37:55 EST 2024
Sun Jul 28 06:52:34 EDT 2024
Wed Jun 26 19:28:52 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c407t-3c4ea3b66bfde00c4665a6bdfa8d30b8fb2a280f0ce00938183468d3508a487a3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMID 26357118
PQID 1112329601
PQPubID 23500
PageCount 8
ParticipantIDs proquest_journals_1112329601
ieee_primary_6327216
pubmed_primary_26357118
proquest_miscellaneous_1221873476
proquest_miscellaneous_1671358016
crossref_primary_10_1109_TVCG_2012_223
proquest_miscellaneous_1711539083
PublicationCentury 2000
PublicationDate 2012-12-01
PublicationDateYYYYMMDD 2012-12-01
PublicationDate_xml – month: 12
  year: 2012
  text: 2012-12-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on visualization and computer graphics
PublicationTitleAbbrev TVCG
PublicationTitleAlternate IEEE Trans Vis Comput Graph
PublicationYear 2012
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References bibttg201212211423
bibttg201212211412
bokinsky (bibttg20121221142) 2003
miller (bibttg201212211417) 2007
bibttg201212211411
bibttg201212211410
bibttg201212211420
hagen (bibttg20121221144) 1994
livingston (bibttg201212211415) 2012
ware (bibttg201212211421) 2004
bibttg20121221141
joshi (bibttg20121221149) 2007
bibttg20121221143
hart (bibttg20121221146) 1988
bibttg20121221145
bibttg201212211416
bibttg20121221147
weigle (bibttg201212211422) 2000
bibttg20121221148
bibttg201212211414
bibttg201212211413
bibttg201212211419
bibttg201212211418
References_xml – ident: bibttg201212211414
  doi: 10.1109/TVCG.2011.194
– ident: bibttg20121221141
  doi: 10.1109/VISUAL.1990.146387
– ident: bibttg201212211416
  doi: 10.1117/12.872576
– ident: bibttg20121221148
  doi: 10.1145/966131.966135
– start-page: 57
  year: 2007
  ident: bibttg201212211417
  article-title: Attribute blocks: Visualizing multiple continuously defined attributes
  publication-title: IEEE Computer Graphics Applications
  doi: 10.1109/MCG.2007.54
  contributor:
    fullname: miller
– start-page: 187
  year: 1994
  ident: bibttg20121221144
  publication-title: Visualization of Large Data Sets
  contributor:
    fullname: hagen
– ident: bibttg20121221145
  doi: 10.1145/1140491.1140541
– ident: bibttg201212211410
  doi: 10.1109/VISUAL.1998.745294
– start-page: 239
  year: 1988
  ident: bibttg20121221146
  publication-title: Human Mental Workload
  contributor:
    fullname: hart
– ident: bibttg201212211411
  doi: 10.1109/TVCG.2005.4
– year: 2007
  ident: bibttg20121221149
  publication-title: Art-inspired techniques for visualizing time-varying data
  contributor:
    fullname: joshi
– start-page: 153
  year: 2000
  ident: bibttg201212211422
  article-title: Effectively visualizing multi-valued flow data using color and texture.
  publication-title: In Graphics Interface
  contributor:
    fullname: weigle
– ident: bibttg201212211418
  doi: 10.3758/BF03201835
– ident: bibttg201212211423
  doi: 10.1071/CH9490149
– year: 2012
  ident: bibttg201212211415
  article-title: Evaluation of multi-variate visualizations: A case study of refinements and user experience.
  publication-title: In SPIE Visualization and Data Analysis
  contributor:
    fullname: livingston
– year: 2004
  ident: bibttg201212211421
  publication-title: Information Visualization Perception for Design
  contributor:
    fullname: ware
– year: 2003
  ident: bibttg20121221142
  publication-title: Multivariate Data Visualization with Data-Driven Spots
  contributor:
    fullname: bokinsky
– ident: bibttg20121221147
  doi: 10.1109/VISUAL.1998.745292
– ident: bibttg201212211420
  doi: 10.1109/MCG.2006.88
– ident: bibttg201212211419
  doi: 10.1109/IV.2006.77
– ident: bibttg201212211412
  doi: 10.1109/VISUAL.1990.146386
– ident: bibttg20121221143
  doi: 10.1201/EBK1420075731
– ident: bibttg201212211413
  doi: 10.1109/VISUAL.1991.175795
SSID ssj0014489
Score 2.1377523
Snippet Multivariate visualization techniques have attracted great interest as the dimensionality of data sets grows. One premise of such techniques is that...
SourceID proquest
crossref
pubmed
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 2114
SubjectTerms Analysis of variance
Data visualization
Gray-scale
Image color analysis
Mathematical analysis
Mathematical models
multivariate visualization
Quantitative evaluation
Response time
Shape analysis
Spots
Studies
Tasks
texture perception
Time factors
visual task design
Visualization
Title Evaluation of Multivariate Visualization on a Multivariate Task
URI https://ieeexplore.ieee.org/document/6327216
https://www.ncbi.nlm.nih.gov/pubmed/26357118
https://www.proquest.com/docview/1112329601
https://search.proquest.com/docview/1221873476
https://search.proquest.com/docview/1671358016
https://search.proquest.com/docview/1711539083
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5sT3rwVR_xRQTxZGKa3e4mJ5FiFaGeqngLu5sNSCEVm3ror3cmSeMDLd4CM5DdnVnmm50XwJkJMm1lZLw0CIzHo0x7sexqDx2fSNtAWB5TcfLwQdw98vvn3vMKXDS1MNbaMvnM-vRZxvLTiZnRU9mlYCH1mmlBS8aiqtVqIgboZsRVfqH0QkTpn_00L0dP_VtK4gp9tIXU_Zd6sHVpzMcXU1TOVvkbZpbmZrABw8VCqyyTsT8rtG_mP3o4_ncnm7Be4073ulKULVix-TasfelG2IGrm6bztzvJ3LI09x1daUSj7tPLlKov5zU1d9V3-khNxzvwOLgZ9e-8er6CZ9CNKzxmuFVMC6Gz1KKouBA9JXSaqShlgUa5hSqMgiwwlh4-0LQzLpCEmE6hn6PYLrTzSW73wdU2zCiejBJWPDQ2jjKWplIyo1XElXTgfHHUyWvVRiMp3Y8gTkg8CYknQfE40KHTapjqg3LgaCGYpL5kU3Je8IfognUdOG3IeD0o5qFyO5khT4gYRjIuxRIeQXMK0VQv40GF6bEYAasDe5ViNGtc6NPB72s_hFXaXZUDcwTt4m1mjxHJFPqkVOEPqWzt2g
link.rule.ids 314,780,784,796,27924,27925,54758
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLYGHIAD70dhQJEQJ7p1TZa2J4QQY8DGaZu4VUmaSgipQ2zjsF-P3XZlIEDcKtlSk9iRP8cvgDPtJsr4gXZi19UODxLlhH5DOej4BMq4wvCQipO7j6Ld5_dPzacKXJS1MMaYLPnM1Ogzi-XHQz2hp7K6YB71mlmApSZHnJtXa5UxA3Q0wjzD0Hc8xOmfHTXrvcH1LaVxeTW0htT_l7qwNWjQx5wxyqar_A40M4PTWofubKl5nslLbTJWNT391sXxv3vZgLUCedpXuapsQsWkW7A6149wGy5vyt7f9jCxs-Lcd3SmEY_ag-cR1V9OC2pqy6_0nhy97EC_ddO7bjvFhAVHoyM3dpjmRjIlhEpig8LiQjSlUHEig5i5CiXnSS9wE1cbevpA4864QBKiOomejmS7sJgOU7MPtjJeQhFllLHknjZhkLA49n2mlQy49C04nx119Jo30ogyB8QNIxJPROKJUDwWbNNplUzFQVlQnQkmKq7ZiNwX_CE6YQ0LTksyXhCKesjUDCfI4yGK8Rn3xR88giYVorH-iwcVpslChKwW7OWKUa5xpk8HP6_9BJbbvW4n6tw9PhzCCu00z4ipwuL4bWKOENeM1XGmzh9VbfEt
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+Multivariate+Visualization+on+a+Multivariate+Task&rft.jtitle=IEEE+transactions+on+visualization+and+computer+graphics&rft.au=Livingston%2C+Mark+A&rft.au=Decker%2C+Jonathan+W&rft.au=Ai%2C+Zhuming&rft.date=2012-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1077-2626&rft.eissn=1941-0506&rft.volume=18&rft.issue=12&rft.spage=2114&rft_id=info:doi/10.1109%2FTVCG.2012.223&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2790199691
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-2626&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-2626&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-2626&client=summon