dipm: an R package implementing the Depth Importance in Precision Medicine (DIPM) tree and Forest-based method

Summary The Depth Importance in Precision Medicine (DIPM) method is a classification tree designed for the identification of subgroups relevant to the precision medicine setting. In this setting, a relevant subgroup is a subgroup in which subjects perform either especially well or poorly with a part...

Full description

Saved in:
Bibliographic Details
Published inBioinformatics advances Vol. 2; no. 1; p. vbac041
Main Authors Chen, Victoria, Li, Cai, Zhang, Heping
Format Journal Article
LanguageEnglish
Published England Oxford University Press 2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary The Depth Importance in Precision Medicine (DIPM) method is a classification tree designed for the identification of subgroups relevant to the precision medicine setting. In this setting, a relevant subgroup is a subgroup in which subjects perform either especially well or poorly with a particular treatment assignment. Herein, we introduce, dipm, a novel R package that implements the DIPM method using R code that calls a program in C. Availability and implementation dipm is available under a GPL-3 licence on CRAN https://cran.r-project.org/web/packages/dipm/index.html and at https://ysph.yale.edu/c2s2/software/dipm. It is continuously being developed at https://github.com/chenvict/dipm. Supplementary information Supplementary data are available at Bioinformatics Advances online.
AbstractList Summary The Depth Importance in Precision Medicine (DIPM) method is a classification tree designed for the identification of subgroups relevant to the precision medicine setting. In this setting, a relevant subgroup is a subgroup in which subjects perform either especially well or poorly with a particular treatment assignment. Herein, we introduce, dipm, a novel R package that implements the DIPM method using R code that calls a program in C. Availability and implementation dipm is available under a GPL-3 licence on CRAN https://cran.r-project.org/web/packages/dipm/index.html and at https://ysph.yale.edu/c2s2/software/dipm. It is continuously being developed at https://github.com/chenvict/dipm. Supplementary information Supplementary data are available at Bioinformatics Advances online.
The Depth Importance in Precision Medicine (DIPM) method is a classification tree designed for the identification of subgroups relevant to the precision medicine setting. In this setting, a relevant subgroup is a subgroup in which subjects perform either especially well or poorly with a particular treatment assignment. Herein, we introduce, dipm, a novel R package that implements the DIPM method using R code that calls a program in C. dipm is available under a GPL-3 licence on CRAN https://cran.r-project.org/web/packages/dipm/index.html and at https://ysph.yale.edu/c2s2/software/dipm. It is continuously being developed at https://github.com/chenvict/dipm. Supplementary data are available at online.
The Depth Importance in Precision Medicine (DIPM) method is a classification tree designed for the identification of subgroups relevant to the precision medicine setting. In this setting, a relevant subgroup is a subgroup in which subjects perform either especially well or poorly with a particular treatment assignment. Herein, we introduce, dipm, a novel R package that implements the DIPM method using R code that calls a program in C.SummaryThe Depth Importance in Precision Medicine (DIPM) method is a classification tree designed for the identification of subgroups relevant to the precision medicine setting. In this setting, a relevant subgroup is a subgroup in which subjects perform either especially well or poorly with a particular treatment assignment. Herein, we introduce, dipm, a novel R package that implements the DIPM method using R code that calls a program in C.dipm is available under a GPL-3 licence on CRAN https://cran.r-project.org/web/packages/dipm/index.html and at https://ysph.yale.edu/c2s2/software/dipm. It is continuously being developed at https://github.com/chenvict/dipm.Availability and implementationdipm is available under a GPL-3 licence on CRAN https://cran.r-project.org/web/packages/dipm/index.html and at https://ysph.yale.edu/c2s2/software/dipm. It is continuously being developed at https://github.com/chenvict/dipm.Supplementary data are available at Bioinformatics Advances online.Supplementary informationSupplementary data are available at Bioinformatics Advances online.
Summary The Depth Importance in Precision Medicine (DIPM) method is a classification tree designed for the identification of subgroups relevant to the precision medicine setting. In this setting, a relevant subgroup is a subgroup in which subjects perform either especially well or poorly with a particular treatment assignment. Herein, we introduce, dipm, a novel R package that implements the DIPM method using R code that calls a program in C. Availability and implementation dipm is available under a GPL-3 licence on CRAN https://cran.r-project.org/web/packages/dipm/index.html and at https://ysph.yale.edu/c2s2/software/dipm. It is continuously being developed at https://github.com/chenvict/dipm. Supplementary information Supplementary data are available at Bioinformatics Advances online.
Author Li, Cai
Chen, Victoria
Zhang, Heping
Author_xml – sequence: 1
  givenname: Victoria
  surname: Chen
  fullname: Chen, Victoria
– sequence: 2
  givenname: Cai
  surname: Li
  fullname: Li, Cai
– sequence: 3
  givenname: Heping
  orcidid: 0000-0002-0688-4076
  surname: Zhang
  fullname: Zhang, Heping
  email: heping.zhang@yale.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35785020$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9LHDEUx0OxVN167VECXvQwmknmR-KhUPzRLiiV0p5DNnnZjc4kYzKz4H9vZFexvfSSPHif93jf73cf7fjgAaEvJTktiWBnCxeUWZ-tF0qTqvyA9mjD6oLkeuddvYsOUronhNC2bcqKfUK7rG55TSjZQ964oT_HyuNfeFD6QS0Bu37ooAc_Or_E4wrwJQzjCs_7IcRReZ0Jj-8iaJdc8PgWjNPOAz6-nN_dnuAxAuSFBl-HCGksFiqBwT2Mq2A-o49WdQkOtv8M_bm--n3xo7j5-X1-8e2m0BVpx4JxA2AJb4Fzy8qKa8Mr0QgiLCmp4IJrzWvTctPa2lJrhKGKaWohP1BrNkNfN3uHadGD0VlMVJ0coutVfJJBOfl3x7uVXIa1FLSqm2zdDB1vF8TwOGUZsndJQ9cpD2FKkjbZQEazqRk9-ge9D1P0WZ5kpaC0ailhmTp8f9HbKa9RZOB0A-gYUopg35CSyJe45SZuuY07D5xsBsI0_I99BpzsrSw
Cites_doi 10.1073/pnas.0709868104
10.1186/s13073-016-0388-7
10.1007/978-3-030-46161-4_16
10.1111/biom.12593
10.1093/biostatistics/kxaa021
10.1200/JCO.2000.18.1.94
10.1038/nrg.2016.86
ContentType Journal Article
Copyright The Author(s) 2022. Published by Oxford University Press. 2022
The Author(s) 2022. Published by Oxford University Press.
The Author(s) 2022. Published by Oxford University Press. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022. Published by Oxford University Press. 2022
– notice: The Author(s) 2022. Published by Oxford University Press.
– notice: The Author(s) 2022. Published by Oxford University Press. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID TOX
AAYXX
CITATION
NPM
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1093/bioadv/vbac041
DatabaseName Oxford Journals Open Access Collection
CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
ProQuest SciTech Premium Collection
Biological Sciences
Biological science database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2635-0041
ExternalDocumentID PMC9245626
35785020
10_1093_bioadv_vbac041
10.1093/bioadv/vbac041
Genre Journal Article
Report
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: R01 MH116527
– fundername: ;
  grantid: R01HG010171; R01MH116527
– fundername: ;
  grantid: DMS1722544; DMS2112711
GroupedDBID 0R~
ABDBF
ABEJV
ABXVV
ALMA_UNASSIGNED_HOLDINGS
AMNDL
GROUPED_DOAJ
M~E
OK1
RPM
TOX
ZCN
AAYXX
ABGNP
AFKRA
BBNVY
BENPR
BHPHI
CCPQU
CITATION
HCIFZ
M7P
PHGZM
PHGZT
PIMPY
NPM
8FE
8FH
ABUWG
AZQEC
DWQXO
GNUQQ
LK8
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c407t-38deef087e88f3148cd8496909f0129898cc85d78d7f5f2fd9d2a3c2fe3c2e5c3
IEDL.DBID BENPR
ISSN 2635-0041
IngestDate Thu Aug 21 13:50:24 EDT 2025
Fri Jul 11 04:26:44 EDT 2025
Fri Jul 25 11:41:46 EDT 2025
Wed Feb 19 02:26:06 EST 2025
Tue Jul 01 01:54:13 EDT 2025
Wed Jan 22 08:16:46 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
The Author(s) 2022. Published by Oxford University Press.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c407t-38deef087e88f3148cd8496909f0129898cc85d78d7f5f2fd9d2a3c2fe3c2e5c3
Notes SourceType-Scholarly Journals-1
content type line 14
ObjectType-Report-1
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Victoria Chen and Cai Li wish it to be known that, in their opinion, the first two authors should be regarded as Joint First Authors.
ORCID 0000-0002-0688-4076
OpenAccessLink https://www.proquest.com/docview/3192247203?pq-origsite=%requestingapplication%
PMID 35785020
PQID 3192247203
PQPubID 7215308
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9245626
proquest_miscellaneous_2685032002
proquest_journals_3192247203
pubmed_primary_35785020
crossref_primary_10_1093_bioadv_vbac041
oup_primary_10_1093_bioadv_vbac041
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-00-00
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 2022-00-00
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Bioinformatics advances
PublicationTitleAlternate Bioinform Adv
PublicationYear 2022
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Beckmann (2022111617500417500_vbac041-B2) 2016; 8
Hothorn (2022111617500417500_vbac041-B6) 2015; 16
Sauerbrei (2022111617500417500_vbac041-B7) 2000; 18
Chen (2022111617500417500_vbac041-B3) 2020
Chen (2022111617500417500_vbac041-B5) 2007; 104
Chen (2022111617500417500_vbac041-B4) 2022; 23
Zhu (2022111617500417500_vbac041-B10) 2017; 73
Therneau (2022111617500417500_vbac041-B8) 2018
Ashley (2022111617500417500_vbac041-B1) 2016; 17
Venables (2022111617500417500_vbac041-B9) 2013
References_xml – volume: 104
  start-page: 19199
  year: 2007
  ident: 2022111617500417500_vbac041-B5
  article-title: A Forest-based approach to identifying gene and gene-gene interactions
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0709868104
– volume: 8
  start-page: 1
  year: 2016
  ident: 2022111617500417500_vbac041-B2
  article-title: Reconciling evidence-based medicine and precision medicine in the era of big data: challenges and opportunities
  publication-title: Genome Med
  doi: 10.1186/s13073-016-0388-7
– start-page: 243
  volume-title: Contemporary Experimental Design, Multivariate Analysis and Data Mining
  year: 2020
  ident: 2022111617500417500_vbac041-B3
  doi: 10.1007/978-3-030-46161-4_16
– volume: 73
  start-page: 391
  year: 2017
  ident: 2022111617500417500_vbac041-B10
  article-title: Greedy outcome weighted tree learning of optimal personalized treatment rules
  publication-title: Biometrics
  doi: 10.1111/biom.12593
– volume: 16
  start-page: 3905
  year: 2015
  ident: 2022111617500417500_vbac041-B6
  article-title: Partykit: a modular toolkit for recursive partytioning in R
  publication-title: J. Mach. Learn. Res
– year: 2018
  ident: 2022111617500417500_vbac041-B8
– volume: 23
  start-page: 157
  year: 2022
  ident: 2022111617500417500_vbac041-B4
  article-title: Depth importance in precision medicine (dipm): a tree-and Forest-based method for right-censored survival outcomes
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxaa021
– volume: 18
  start-page: 94
  year: 2000
  ident: 2022111617500417500_vbac041-B7
  article-title: Randomized 2× 2 trial evaluating hormonal treatment and the duration of chemotherapy in node-positive breast cancer patients: an update based on 10 years’ follow-up
  publication-title: J. Clin. Oncol
  doi: 10.1200/JCO.2000.18.1.94
– volume-title: Modern Applied Statistics with S-PLUS
  year: 2013
  ident: 2022111617500417500_vbac041-B9
– volume: 17
  start-page: 507
  year: 2016
  ident: 2022111617500417500_vbac041-B1
  article-title: Towards precision medicine
  publication-title: Nat. Rev. Genet
  doi: 10.1038/nrg.2016.86
SSID ssj0002776143
Score 2.1689186
Snippet Summary The Depth Importance in Precision Medicine (DIPM) method is a classification tree designed for the identification of subgroups relevant to the...
The Depth Importance in Precision Medicine (DIPM) method is a classification tree designed for the identification of subgroups relevant to the precision...
Summary The Depth Importance in Precision Medicine (DIPM) method is a classification tree designed for the identification of subgroups relevant to the...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage vbac041
SubjectTerms Application Note
Bioinformatics
Precision medicine
Title dipm: an R package implementing the Depth Importance in Precision Medicine (DIPM) tree and Forest-based method
URI https://www.ncbi.nlm.nih.gov/pubmed/35785020
https://www.proquest.com/docview/3192247203
https://www.proquest.com/docview/2685032002
https://pubmed.ncbi.nlm.nih.gov/PMC9245626
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NT9swFLcYaNIu08Y-yMYqgyZtO0Rt_JE4u0xsgGBSWYVA6i1y_GwRTU07GpD23-85cQPdAS6-2HKi9-z37fcj5KOSkotcQSx9cZgQehSXjgMOoFG_JCBa5LnxWXpyKX5O5TQE3JahrHIlE1tBDXPjY-RDPCqobXzS8NviT-xRo3x2NUBoPCFbKIIVOl9b34_OJud9lIVl6KYL3ndr5MOymmu4Hd6W2oxEsqaN1l643TM0_6-XvKeAjl-Q58FypAcdq1-SDVtvk6cdluTfV6SGajH7SnVNzyn6wb9RTtBqFqrDUT9RtPTooV00V_R01hrdyG5a1XRyHWB26Djk2ennw9PJ-Av1CWvcEKjH71w2sdd4QDvM6dfk8vjo4sdJHMAUYoM-WxNzBda6kcqsUo6jE2RAiRx949z5WJTKlTFKQqYgc9IxBzkwzQ1zFgcrDX9DNut5bXcIFS7lqZGKWcaFzBINSZbkUBoDZcq0jsinFVGLRdczo-hy3bzoyF8E8kdkH2n-6KLdFUuKcMGWxd1xiMheP41Xw-c7dG3nN8uCpUp6fPgRi8jbjoP9p9omP2gqRyRb422_wLfdXp-pq6u2_Xbuc8Usfffwb70nz5h_KdFGa3bJZnN9Yz-g_dKUg3BIB63_P2gDTDhe_Jr-A0409ms
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRC9IN4EChgEAg7RbvxIHCSEgG21S7urVdVKvQXHdtSo2uzSTYv6p_iNjPOiywFOvfhiy4lmxp6n5wN4LYVgPJbGF644jHM18NOMGRyMQv0SGF4hz02m4eiIfzsWxxvwq30L48oq2zuxuqjNQrsYeR9FBbWNSxp-Wv7wHWqUy662EBq1WOzZy5_osq0-jofI3zeU7u4cfh35DaqAr9F5KX0mjbXZQEZWyoyhN6CN5DE6iXHmgjIyllpLYSJpokxkNDOxoYppmlkcrNAM970Bm5yhK9ODzS8709lBF9WhUYT6jnXdIVk_zRfKXPQvUqUHPFjTfmsv6q4Ytn_XZ15ReLt34HZjqZLPtWjdhQ1b3IObNXbl5X0oTL6cfyCqIAcE_e5TvJdIPm-q0VEfErQsydAuyxMynldGPooXyQsyO2tgfcikyeuTd8PxbPKeuAQ5bmiIwwtdlb7TsIbUGNcP4OhayPwQesWisI-B8CxkoRaSWsq4iAJlgiiITaq1SUOqlAdvW6Imy7pHR1Ln1llSkz9pyO_BK6T5fxdttyxJmgO9Sv6Inwcvu2k8ii6_ogq7OF8lNJTC4dEPqAePag52n6qaCqFp7kG0xttugWvzvT5T5CdVu-_Y5aZp-OTfv_UCbo0OJ_vJ_ni69xS2qHulUUWKtqFXnp3bZ2g7lenzRmAJfL_uM_IbCrowzA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=dipm%3A+an+R+package+implementing+the+Depth+Importance+in+Precision+Medicine+%28DIPM%29+tree+and+Forest-based+method&rft.jtitle=Bioinformatics+advances&rft.au=Chen%2C+Victoria&rft.au=Li%2C+Cai&rft.au=Zhang%2C+Heping&rft.date=2022&rft.eissn=2635-0041&rft.volume=2&rft.issue=1&rft.spage=vbac041&rft_id=info:doi/10.1093%2Fbioadv%2Fvbac041&rft_id=info%3Apmid%2F35785020&rft.externalDocID=35785020
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2635-0041&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2635-0041&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2635-0041&client=summon