Optimal reactive power dispatch with uncertainties in load demand and renewable energy sources adopting scenario-based approach

Optimizing reactive power flow in electrical network is an important aspect of system study as the reactive power supports network voltage which needs to be maintained within desirable limits for system reliability. A network consisting of only conventional thermal generators has been extensively st...

Full description

Saved in:
Bibliographic Details
Published inApplied soft computing Vol. 75; pp. 616 - 632
Main Authors Biswas, Partha P., Suganthan, P.N., Mallipeddi, R., Amaratunga, Gehan A.J.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.02.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Optimizing reactive power flow in electrical network is an important aspect of system study as the reactive power supports network voltage which needs to be maintained within desirable limits for system reliability. A network consisting of only conventional thermal generators has been extensively studied for optimal active and reactive power dispatch. However, increasing penetration of renewable sources into the grid necessitates power flow studies incorporating these sources. This paper presents a formulation and solution procedure for stochastic optimal reactive power dispatch (ORPD) problem with uncertainties in load demand, wind and solar power. Appropriate probability density functions (PDFs) are considered to model the stochastic load demand and the power generated from the renewable energy sources. Numerous scenarios are created running Monte-Carlo simulation and scenario reduction technique is implemented to deal with reduced number of scenarios. Real power loss and steady state voltage deviation of load buses in the network are set as the objectives of optimization. Success history based adaptive differential evolution (SHADE) is adopted as the basic search algorithm. SHADE has been successfully integrated with a constraint handling technique, called epsilon constraint (EC) handling, to handle constraints in ORPD problem. The effectiveness of a proper constraint handling technique is substantiated with case studies for deterministic ORPD on base configurations of IEEE 30-bus and 57-bus systems using SHADE-EC algorithm. The single-objective and multi-objective stochastic ORPD cases are also solved using the SHADE-EC algorithm. The results are discussed, compared and critically analyzed in this study. [Display omitted] •Deterministic and stochastic optimal reactive power dispatch (ORPD) are studied.•Stochastic ORPD incorporates a wind generator and a photovoltaic.•Uncertainties in load demand, wind and solar power are appropriately modeled.•Scenario generation and scenario reduction techniques are implemented.•Adaptive differential evolution with epsilon constraint handling method is applied.
AbstractList Optimizing reactive power flow in electrical network is an important aspect of system study as the reactive power supports network voltage which needs to be maintained within desirable limits for system reliability. A network consisting of only conventional thermal generators has been extensively studied for optimal active and reactive power dispatch. However, increasing penetration of renewable sources into the grid necessitates power flow studies incorporating these sources. This paper presents a formulation and solution procedure for stochastic optimal reactive power dispatch (ORPD) problem with uncertainties in load demand, wind and solar power. Appropriate probability density functions (PDFs) are considered to model the stochastic load demand and the power generated from the renewable energy sources. Numerous scenarios are created running Monte-Carlo simulation and scenario reduction technique is implemented to deal with reduced number of scenarios. Real power loss and steady state voltage deviation of load buses in the network are set as the objectives of optimization. Success history based adaptive differential evolution (SHADE) is adopted as the basic search algorithm. SHADE has been successfully integrated with a constraint handling technique, called epsilon constraint (EC) handling, to handle constraints in ORPD problem. The effectiveness of a proper constraint handling technique is substantiated with case studies for deterministic ORPD on base configurations of IEEE 30-bus and 57-bus systems using SHADE-EC algorithm. The single-objective and multi-objective stochastic ORPD cases are also solved using the SHADE-EC algorithm. The results are discussed, compared and critically analyzed in this study. [Display omitted] •Deterministic and stochastic optimal reactive power dispatch (ORPD) are studied.•Stochastic ORPD incorporates a wind generator and a photovoltaic.•Uncertainties in load demand, wind and solar power are appropriately modeled.•Scenario generation and scenario reduction techniques are implemented.•Adaptive differential evolution with epsilon constraint handling method is applied.
Author Suganthan, P.N.
Mallipeddi, R.
Amaratunga, Gehan A.J.
Biswas, Partha P.
Author_xml – sequence: 1
  givenname: Partha P.
  orcidid: 0000-0001-5982-4176
  surname: Biswas
  fullname: Biswas, Partha P.
  email: parthapr001@e.ntu.edu.sg
  organization: School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore
– sequence: 2
  givenname: P.N.
  orcidid: 0000-0003-0901-5105
  surname: Suganthan
  fullname: Suganthan, P.N.
  email: epnsugan@ntu.edu.sg
  organization: School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore
– sequence: 3
  givenname: R.
  orcidid: 0000-0001-9071-1145
  surname: Mallipeddi
  fullname: Mallipeddi, R.
  email: mallipeddi.ram@gmail.com
  organization: Kyungpook National University, Daegu, South Korea
– sequence: 4
  givenname: Gehan A.J.
  surname: Amaratunga
  fullname: Amaratunga, Gehan A.J.
  email: gaja1@hermes.cam.ac.uk
  organization: Department of Engineering, University of Cambridge, UK
BookMark eNp9kM1qHDEMgE1IIJufF8jJLzAT2zPj8UIuIbRpIbCX9mw0spL1MmsPtpNlT331eklPPeQgJIQ-CX1X7DzEQIzdSdFKIfX9roUcsVVCmlbKVvTqjK2kGVWz1kae13rQpunXvb5kVznvRIXWyqzYn81S_B5mngiw-A_iSzxQ4s7nBQpu-cGXLX8PSKmAD8VT5j7wOYLjjvYQHD9FokAHmGbitUhvR57je8I6Cy7WA-GNZ6QAycdmgkwVWpYUAbc37OIV5ky3__I1-_3926-nH83L5vnn0-NLg70YS9Np0U1r5YwjAUrrXoHESQ9mMsJNUk2mNjWO_dgNgzCj7t2oR8RBdU4OI3bXzHzuxRRzTvRq0RcoPoaSwM9WCnsSaXf2JNKeRFopbRVZUfUfuqSqLB2_hh4-IapPfXhKNqOnqtH5RFisi_4r_C-bhpFn
CitedBy_id crossref_primary_10_1109_ACCESS_2022_3224744
crossref_primary_10_3390_en15062299
crossref_primary_10_1016_j_ijepes_2022_108832
crossref_primary_10_1016_j_swevo_2019_06_009
crossref_primary_10_1016_j_est_2024_111868
crossref_primary_10_1007_s00202_023_02199_2
crossref_primary_10_1109_ACCESS_2021_3069456
crossref_primary_10_21923_jesd_832187
crossref_primary_10_1063_5_0231114
crossref_primary_10_1016_j_est_2024_114057
crossref_primary_10_1016_j_egyr_2020_07_030
crossref_primary_10_1038_s41598_020_79838_2
crossref_primary_10_1016_j_rineng_2024_102351
crossref_primary_10_1109_ACCESS_2022_3144065
crossref_primary_10_1109_ACCESS_2021_3056423
crossref_primary_10_1038_s41598_025_91778_3
crossref_primary_10_3390_math9212771
crossref_primary_10_1007_s42835_022_01233_w
crossref_primary_10_1016_j_epsr_2019_105989
crossref_primary_10_1109_ACCESS_2022_3203999
crossref_primary_10_1016_j_asoc_2021_107315
crossref_primary_10_1007_s00521_020_05453_x
crossref_primary_10_1002_ente_202301694
crossref_primary_10_1016_j_engappai_2021_104231
crossref_primary_10_1007_s00202_024_02789_8
crossref_primary_10_1109_ACCESS_2020_3039571
crossref_primary_10_1016_j_solener_2023_112200
crossref_primary_10_1016_j_rineng_2024_103703
crossref_primary_10_1155_2023_6678942
crossref_primary_10_1002_oca_2902
crossref_primary_10_3390_en16155600
crossref_primary_10_1098_rsta_2019_0431
crossref_primary_10_1109_ACCESS_2019_2909561
crossref_primary_10_1109_TSTE_2021_3104656
crossref_primary_10_3390_su152416707
crossref_primary_10_3390_smartcities6040082
crossref_primary_10_1007_s11356_021_16072_x
crossref_primary_10_3390_math10122106
crossref_primary_10_1007_s13198_022_01828_6
crossref_primary_10_1049_gtd2_12555
crossref_primary_10_3390_su12187253
crossref_primary_10_3390_electronics10233035
crossref_primary_10_1016_j_swevo_2020_100808
crossref_primary_10_1016_j_rser_2021_111072
crossref_primary_10_1016_j_rineng_2025_104304
crossref_primary_10_3389_fenrg_2023_1170570
crossref_primary_10_1016_j_egyr_2024_05_018
crossref_primary_10_1088_2631_8695_ad6af1
crossref_primary_10_3390_pr10122590
crossref_primary_10_1007_s00202_023_01749_y
crossref_primary_10_3390_en13174316
crossref_primary_10_1016_j_epsr_2021_107722
crossref_primary_10_1016_j_energy_2021_120028
crossref_primary_10_1038_s41598_024_65867_8
crossref_primary_10_3390_en16134896
crossref_primary_10_1109_ACCESS_2024_3430862
crossref_primary_10_1016_j_asoc_2021_107531
crossref_primary_10_1016_j_rineng_2025_104392
crossref_primary_10_1002_2050_7038_12205
crossref_primary_10_1109_ACCESS_2020_2987765
crossref_primary_10_1109_ACCESS_2022_3170547
crossref_primary_10_1016_j_asej_2022_102092
crossref_primary_10_1016_j_asoc_2021_107813
crossref_primary_10_1007_s00202_020_01033_3
crossref_primary_10_1016_j_asej_2022_101726
crossref_primary_10_3390_su14052998
crossref_primary_10_1002_er_6997
crossref_primary_10_1109_ACCESS_2019_2947308
crossref_primary_10_1002_cjce_24298
crossref_primary_10_1016_j_renene_2022_02_054
crossref_primary_10_3390_math11051236
crossref_primary_10_3390_en18020294
crossref_primary_10_1016_j_egyr_2024_03_060
crossref_primary_10_1016_j_aei_2023_101908
crossref_primary_10_1007_s00521_022_07526_5
crossref_primary_10_1109_ACCESS_2022_3203728
crossref_primary_10_1049_rpg2_12841
crossref_primary_10_1371_journal_pone_0305329
crossref_primary_10_3390_en16166038
crossref_primary_10_1016_j_compeleceng_2021_107658
crossref_primary_10_1016_j_egyr_2024_12_020
crossref_primary_10_1002_2050_7038_13060
crossref_primary_10_1016_j_est_2025_115639
crossref_primary_10_1016_j_est_2024_113562
crossref_primary_10_1016_j_rser_2021_110967
crossref_primary_10_1016_j_asoc_2023_110479
crossref_primary_10_1080_0305215X_2020_1839443
crossref_primary_10_1002_2050_7038_12374
crossref_primary_10_2139_ssrn_3924287
crossref_primary_10_1002_ese3_944
crossref_primary_10_1016_j_ijepes_2023_109284
crossref_primary_10_1109_ACCESS_2023_3286930
crossref_primary_10_3390_su13063566
crossref_primary_10_1002_oca_2790
crossref_primary_10_1016_j_est_2021_103230
crossref_primary_10_1016_j_ijepes_2023_109314
crossref_primary_10_1016_j_ijepes_2021_107934
crossref_primary_10_3390_en13143671
crossref_primary_10_1016_j_ecmx_2024_100766
crossref_primary_10_1109_ACCESS_2020_2974961
crossref_primary_10_1016_j_compchemeng_2020_107060
crossref_primary_10_3390_en16041595
crossref_primary_10_1109_ACCESS_2024_3496123
crossref_primary_10_1007_s11356_022_23591_8
crossref_primary_10_1109_ACCESS_2022_3167395
crossref_primary_10_3390_en16083501
crossref_primary_10_3390_math10030361
crossref_primary_10_1016_j_rser_2022_112285
crossref_primary_10_1016_j_apenergy_2021_118416
crossref_primary_10_1007_s00202_024_02382_z
crossref_primary_10_1007_s00500_020_05133_x
crossref_primary_10_1109_ACCESS_2020_3022846
crossref_primary_10_1007_s44196_024_00727_x
crossref_primary_10_1109_ACCESS_2023_3308067
crossref_primary_10_1109_ACCESS_2024_3425754
crossref_primary_10_1016_j_seta_2023_103235
crossref_primary_10_3390_math11112591
crossref_primary_10_1007_s00202_023_02093_x
crossref_primary_10_1007_s42979_023_02315_w
crossref_primary_10_1007_s00500_021_05764_8
crossref_primary_10_1016_j_epsr_2022_107849
crossref_primary_10_1109_ACCESS_2023_3328958
crossref_primary_10_1049_rpg2_13167
crossref_primary_10_38016_jista_1079554
crossref_primary_10_1016_j_egyr_2024_07_050
crossref_primary_10_3390_math9010026
crossref_primary_10_1016_j_est_2024_115082
crossref_primary_10_1016_j_asoc_2020_107059
crossref_primary_10_3390_en16031270
crossref_primary_10_1016_j_asej_2024_102762
crossref_primary_10_1016_j_apenergy_2020_115992
crossref_primary_10_1007_s40031_021_00537_1
crossref_primary_10_1016_j_energy_2025_134567
crossref_primary_10_1002_er_7928
crossref_primary_10_1016_j_est_2025_115782
crossref_primary_10_1016_j_egyr_2023_03_036
crossref_primary_10_1016_j_suscom_2022_100688
crossref_primary_10_1016_j_energy_2022_123740
crossref_primary_10_1016_j_ijepes_2023_109250
crossref_primary_10_3390_systems11010023
crossref_primary_10_1002_ente_202300618
crossref_primary_10_3390_en13226066
crossref_primary_10_3390_su13115831
Cites_doi 10.1016/j.ijepes.2014.10.041
10.1016/j.renene.2015.07.021
10.1016/j.energy.2018.03.002
10.1016/j.swevo.2012.03.001
10.1109/TEVC.2009.2014613
10.1109/59.736232
10.1016/j.epsr.2010.10.005
10.1016/S0045-7825(99)00389-8
10.1109/59.99399
10.1016/j.ijepes.2013.04.011
10.1016/j.asoc.2017.04.048
10.1016/j.asoc.2016.02.041
10.1016/j.asoc.2010.04.024
10.1016/j.engappai.2017.10.019
10.1016/j.ijepes.2015.11.067
10.1016/j.asoc.2014.05.006
10.1016/j.renene.2016.02.064
10.1049/ip-gtd:20041150
10.1016/j.ijepes.2016.03.039
10.1016/j.ijepes.2014.09.008
10.1016/j.ijepes.2013.08.010
10.1016/j.enconman.2017.06.071
10.1016/j.ijepes.2015.08.009
10.1049/iet-gtd.2016.1545
10.1162/evco.1994.2.3.221
10.1016/j.renene.2018.07.152
10.1016/j.eswa.2017.06.009
10.1109/TPAS.1974.293972
10.1016/j.asoc.2017.01.012
10.1016/j.asoc.2016.11.008
10.1108/COMPEL-02-2015-0030
10.1016/j.asoc.2017.08.031
10.1016/j.asoc.2017.05.057
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright_xml – notice: 2018 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2018.11.042
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
EndPage 632
ExternalDocumentID 10_1016_j_asoc_2018_11_042
S1568494618306744
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c407t-3603b92d8de0a26642a1cb658b80db12b82666c74735508764d767cc523d157c3
IEDL.DBID .~1
ISSN 1568-4946
IngestDate Thu Apr 24 23:01:07 EDT 2025
Tue Jul 01 01:50:02 EDT 2025
Fri Feb 23 02:24:50 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Solar power
Optimal reactive power dispatch
Scenario-based approach
Wind power
Success history based adaptive differential evolution
Epsilon constraint handling
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c407t-3603b92d8de0a26642a1cb658b80db12b82666c74735508764d767cc523d157c3
ORCID 0000-0001-5982-4176
0000-0003-0901-5105
0000-0001-9071-1145
OpenAccessLink https://ars.els-cdn.com/content/image/1-s2.0-S1568494618306744-fx1_lrg.jpg
PageCount 17
ParticipantIDs crossref_citationtrail_10_1016_j_asoc_2018_11_042
crossref_primary_10_1016_j_asoc_2018_11_042
elsevier_sciencedirect_doi_10_1016_j_asoc_2018_11_042
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-02-01
PublicationDateYYYYMMDD 2019-02-01
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-01
  day: 01
PublicationDecade 2010
PublicationTitle Applied soft computing
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Rajan, Malakar (b7) 2016; 43
Chang (b24) 2010; 8
Tanabe, Fukunaga (b27) 2014
Grudinin (b1) 1998; 13
Heidari, Abbaspour, Jordehi (b14) 2017; 57
Growe-Kuska, Heitsch, Romisch (b36) 2003
Mei, Sulaiman, Mustaffa, Daniyal (b6) 2017; 59
Shargh, Mohammadi-ivatloo, Seyedi, Abapour (b17) 2016; 94
Biswas, Suganthan, Mallipeddi, Amaratunga (b41) 2018; 68
Mohseni-Bonab, Rabiee (b21) 2017; 11
Biswas, Suganthan, Amaratunga (b23) 2017; 148
Shaw, Mukherjee, Ghoshal (b9) 2014; 55
R.D. Zimmerman, C.E. Murillo-Sánchez, R.J. Thomas, Matpower (Available at:)
Biswas, Suganthan, Wu, Amaratunga (b30) 2018; 132
Deb (b40) 2000; 186
Ghasemi, Ghavidel, Ghanbarian, Habibi (b12) 2014; 22
Mehdinejad, Mohammadi-Ivatloo, Dadashzadeh-Bonab, Zare (b10) 2016; 83
Mandal, Roy (b5) 2013; 53
Zhang, Sanderson (b39) 2009; 13
Biswas, Suganthan, Qu, Amaratunga (b25) 2018; 150
Basu (b4) 2016; 78
Mohseni-Bonab, Rabiee, Mohammadi-Ivatloo (b22) 2017
Ramos, Exposito, Quintana (b2) 2005; 152
Tanabe, Fukunaga (b26) 2013
El Ela, Abido, Spea (b3) 2011; 81
Chen, Liu, Guo, Huang (b16) 2016; 35
Chen, Liu, Zhang, Huang (b8) 2017; 50
.
Srinivas, Deb (b42) 1994; 2
Naderi, Narimani, Fathi, Narimani (b13) 2017; 53
Mallipeddi, Jeyadevi, Suganthan, Baskar (b32) 2012; 5
Liang, Wang, Chen, Tseng (b19) 2015; 64
Awad, Ali, Liang, Qu, Suganthan (b28) 2016
Bjelogrlic, Calovic, Ristanovic, Babic (b33) 1990; 5
Biswas, Suganthan, Amaratunga (b29) 2017
Mallipeddi, Suganthan, Pan, Tasgetiren (b38) 2011; 11
Takahama, Sakai (b37) 2010
Nuaekaew, Artrit, Pholdee, Bureerat (b15) 2017
Biswas, Suganthan, Amaratunga (b31) 2017; 61
Rajan, Malakar (b11) 2015; 66
Mohseni-Bonab, Rabiee, Mohammadi-Ivatloo, Jalilzadeh, Nojavan (b18) 2016; 75
Mohseni-Bonab, Rabiee, Mohammadi-Ivatloo (b20) 2016; 85
Alsac, Stott (b35) 1974
Biswas (10.1016/j.asoc.2018.11.042_b25) 2018; 150
Naderi (10.1016/j.asoc.2018.11.042_b13) 2017; 53
Chen (10.1016/j.asoc.2018.11.042_b8) 2017; 50
Mehdinejad (10.1016/j.asoc.2018.11.042_b10) 2016; 83
Rajan (10.1016/j.asoc.2018.11.042_b11) 2015; 66
Biswas (10.1016/j.asoc.2018.11.042_b31) 2017; 61
Mohseni-Bonab (10.1016/j.asoc.2018.11.042_b22) 2017
Biswas (10.1016/j.asoc.2018.11.042_b29) 2017
Mallipeddi (10.1016/j.asoc.2018.11.042_b38) 2011; 11
Zhang (10.1016/j.asoc.2018.11.042_b39) 2009; 13
Mandal (10.1016/j.asoc.2018.11.042_b5) 2013; 53
Takahama (10.1016/j.asoc.2018.11.042_b37) 2010
Shaw (10.1016/j.asoc.2018.11.042_b9) 2014; 55
Mohseni-Bonab (10.1016/j.asoc.2018.11.042_b21) 2017; 11
Growe-Kuska (10.1016/j.asoc.2018.11.042_b36) 2003
10.1016/j.asoc.2018.11.042_b34
Tanabe (10.1016/j.asoc.2018.11.042_b27) 2014
Basu (10.1016/j.asoc.2018.11.042_b4) 2016; 78
Ramos (10.1016/j.asoc.2018.11.042_b2) 2005; 152
Heidari (10.1016/j.asoc.2018.11.042_b14) 2017; 57
Rajan (10.1016/j.asoc.2018.11.042_b7) 2016; 43
Biswas (10.1016/j.asoc.2018.11.042_b30) 2018; 132
Bjelogrlic (10.1016/j.asoc.2018.11.042_b33) 1990; 5
Biswas (10.1016/j.asoc.2018.11.042_b41) 2018; 68
Mei (10.1016/j.asoc.2018.11.042_b6) 2017; 59
Grudinin (10.1016/j.asoc.2018.11.042_b1) 1998; 13
Deb (10.1016/j.asoc.2018.11.042_b40) 2000; 186
Nuaekaew (10.1016/j.asoc.2018.11.042_b15) 2017
Srinivas (10.1016/j.asoc.2018.11.042_b42) 1994; 2
Chen (10.1016/j.asoc.2018.11.042_b16) 2016; 35
Shargh (10.1016/j.asoc.2018.11.042_b17) 2016; 94
Biswas (10.1016/j.asoc.2018.11.042_b23) 2017; 148
Chang (10.1016/j.asoc.2018.11.042_b24) 2010; 8
El Ela (10.1016/j.asoc.2018.11.042_b3) 2011; 81
Mohseni-Bonab (10.1016/j.asoc.2018.11.042_b18) 2016; 75
Mohseni-Bonab (10.1016/j.asoc.2018.11.042_b20) 2016; 85
Awad (10.1016/j.asoc.2018.11.042_b28) 2016
Mallipeddi (10.1016/j.asoc.2018.11.042_b32) 2012; 5
Alsac (10.1016/j.asoc.2018.11.042_b35) 1974
Liang (10.1016/j.asoc.2018.11.042_b19) 2015; 64
Ghasemi (10.1016/j.asoc.2018.11.042_b12) 2014; 22
Tanabe (10.1016/j.asoc.2018.11.042_b26) 2013
References_xml – volume: 5
  start-page: 1447
  year: 1990
  end-page: 1454
  ident: b33
  article-title: Application of Newton’s optimal power flow in voltage/reactive power control
  publication-title: IEEE Trans. Power Syst
– start-page: 1
  year: 2010
  end-page: 9
  ident: b37
  article-title: Constrained optimization by the
  publication-title: Evolutionary Computation (CEC), 2010 IEEE Congress on
– year: 2017
  ident: b15
  article-title: Optimal reactive power dispatch problem using a two-archive multi-objective Grey Wolf optimizer
  publication-title: Expert Syst. Appl.
– volume: 50
  start-page: 58
  year: 2017
  end-page: 70
  ident: b8
  article-title: Optimal reactive power dispatch by improved GSA-based algorithm with the novel strategies to handle constraints
  publication-title: Appl. Soft Comput.
– start-page: 83
  year: 2017
  end-page: 88
  ident: b29
  article-title: Optimal placement of wind turbines in a windfarm using L-SHADE algorithm
  publication-title: Evolutionary Computation (CEC), 2017 IEEE Congress on
– volume: 78
  start-page: 29
  year: 2016
  end-page: 40
  ident: b4
  article-title: Quasi-oppositional differential evolution for optimal reactive power dispatch
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 55
  start-page: 29
  year: 2014
  end-page: 40
  ident: b9
  article-title: Solution of reactive power dispatch of power systems by an opposition-based gravitational search algorithm
  publication-title: Int. J. Electr. Power Energy Syst.
– start-page: 745
  year: 1974
  end-page: 751
  ident: b35
  article-title: Optimal load flow with steady-state security
  publication-title: IEEE Trans. Power Appar. Syst.
– volume: 68
  start-page: 81
  year: 2018
  end-page: 100
  ident: b41
  article-title: Optimal power flow solutions using differential evolution algorithm integrated with effective constraint handling techniques
  publication-title: Eng. Appl. Artif. Intell.
– volume: 53
  start-page: 441
  year: 2017
  end-page: 456
  ident: b13
  article-title: A novel fuzzy adaptive configuration of particle swarm optimization to solve large-scale optimal reactive power dispatch
  publication-title: Appl. Soft Comput.
– volume: 53
  start-page: 123
  year: 2013
  end-page: 134
  ident: b5
  article-title: Optimal reactive power dispatch using quasi-oppositional teaching learning based optimization
  publication-title: Int. J. Electr. Power Energy Syst.
– year: 2003
  ident: b36
  article-title: Scenario reduction and scenario tree construction for power management problems
  publication-title: Power Tech Conference Proceedings, 2003 IEEE Bologna, Vol. 3
– volume: 152
  start-page: 90
  year: 2005
  end-page: 98
  ident: b2
  article-title: Transmission power loss reduction by interior-point methods: implementation issues and practical experience
  publication-title: IEE Proc., Gener. Transm. Distrib.
– volume: 57
  start-page: 657
  year: 2017
  end-page: 671
  ident: b14
  article-title: Gaussian bare-bones water cycle algorithm for optimal reactive power dispatch in electrical power systems
  publication-title: Appl. Soft Comput.
– volume: 61
  start-page: 486
  year: 2017
  end-page: 496
  ident: b31
  article-title: Minimizing harmonic distortion in power system with optimal design of hybrid active power filter using differential evolution
  publication-title: Appl. Soft Comput.
– volume: 64
  start-page: 1088
  year: 2015
  end-page: 1097
  ident: b19
  article-title: An enhanced firefly algorithm to multi-objective optimal active/reactive power dispatch with uncertainties consideration
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 83
  start-page: 104
  year: 2016
  end-page: 116
  ident: b10
  article-title: Solution of optimal reactive power dispatch of power systems using hybrid particle swarm optimization and imperialist competitive algorithms
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 150
  start-page: 1039
  year: 2018
  end-page: 1057
  ident: b25
  article-title: Multiobjective economic-environmental power dispatch with stochastic wind-solar-small hydro power
  publication-title: Energy
– volume: 186
  start-page: 311
  year: 2000
  end-page: 338
  ident: b40
  article-title: An efficient constraint handling method for genetic algorithms
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 8
  start-page: 99
  year: 2010
  end-page: 107
  ident: b24
  article-title: Investigation on frequency distribution of global radiation using different probability density functions
  publication-title: Int. J. Appl. Sci. Eng.
– volume: 94
  start-page: 10
  year: 2016
  end-page: 21
  ident: b17
  article-title: Probabilistic multi-objective optimal power flow considering correlated wind power and load uncertainties
  publication-title: Renew. Energy
– start-page: 475
  year: 2017
  end-page: 513
  ident: b22
  article-title: Multi-objective optimal reactive power dispatch considering uncertainties in the wind integrated power systems
  publication-title: Reactive Power Control in AC Power Systems
– volume: 2
  start-page: 221
  year: 1994
  end-page: 248
  ident: b42
  article-title: Muiltiobjective optimization using nondominated sorting in genetic algorithms
  publication-title: Evol. Comput.
– volume: 22
  start-page: 126
  year: 2014
  end-page: 140
  ident: b12
  article-title: A new hybrid algorithm for optimal reactive power dispatch problem with discrete and continuous control variables
  publication-title: Appl. Soft Comput.
– volume: 85
  start-page: 598
  year: 2016
  end-page: 609
  ident: b20
  article-title: Voltage stability constrained multi-objective optimal reactive power dispatch under load and wind power uncertainties: A stochastic approach
  publication-title: Renew. Energy
– volume: 132
  start-page: 425
  year: 2018
  end-page: 438
  ident: b30
  article-title: Parameter estimation of solar cells using datasheet information with the application of an adaptive differential evolution algorithm
  publication-title: Renew. Energy
– volume: 13
  start-page: 945
  year: 2009
  end-page: 958
  ident: b39
  article-title: JADE: adaptive differential evolution with optional external archive
  publication-title: IEEE Trans. Evol. Comput.
– volume: 81
  start-page: 458
  year: 2011
  end-page: 464
  ident: b3
  article-title: Differential evolution algorithm for optimal reactive power dispatch
  publication-title: Electr. Power Syst. Res.
– volume: 43
  start-page: 320
  year: 2016
  end-page: 336
  ident: b7
  article-title: Exchange market algorithm based optimum reactive power dispatch
  publication-title: Appl. Soft Comput.
– volume: 11
  start-page: 815
  year: 2017
  end-page: 829
  ident: b21
  article-title: Optimal reactive power dispatch: a review, and a new stochastic voltage stability constrained multi-objective model at the presence of uncertain wind power generation
  publication-title: IET Gener. Transm. Distrib.
– volume: 5
  start-page: 28
  year: 2012
  end-page: 36
  ident: b32
  article-title: Efficient constraint handling for optimal reactive power dispatch problems
  publication-title: Swarm Evol. Comput.
– volume: 11
  start-page: 1679
  year: 2011
  end-page: 1696
  ident: b38
  article-title: Differential evolution algorithm with ensemble of parameters and mutation strategies
  publication-title: Appl. Soft Comput.
– volume: 13
  start-page: 1219
  year: 1998
  end-page: 1225
  ident: b1
  article-title: Reactive power optimization using successive quadratic programming method
  publication-title: IEEE Trans. Power Syst.
– volume: 59
  start-page: 210
  year: 2017
  end-page: 222
  ident: b6
  article-title: Optimal reactive power dispatch solution by loss minimization using moth-flame optimization technique
  publication-title: Appl. Soft Comput.
– reference: .
– volume: 148
  start-page: 1194
  year: 2017
  end-page: 1207
  ident: b23
  article-title: Optimal power flow solutions incorporating stochastic wind and solar power
  publication-title: Energy Convers. Manage.
– reference: R.D. Zimmerman, C.E. Murillo-Sánchez, R.J. Thomas, Matpower (Available at:)
– volume: 75
  start-page: 194
  year: 2016
  end-page: 204
  ident: b18
  article-title: A two-point estimate method for uncertainty modeling in multi-objective optimal reactive power dispatch problem
  publication-title: Int. J. Electr. Power Energy Syst.
– start-page: 1658
  year: 2014
  end-page: 1665
  ident: b27
  article-title: Improving the search performance of SHADE using linear population size reduction
  publication-title: Evolutionary Computation (CEC), 2014 IEEE Congress on
– volume: 35
  start-page: 350
  year: 2016
  end-page: 372
  ident: b16
  article-title: Multi-objective enhanced PSO algorithm for optimizing power losses and voltage deviation in power systems
  publication-title: COMPEL: Int. J. Comput. Math. Electr. Electron. Eng.
– start-page: 71
  year: 2013
  end-page: 78
  ident: b26
  article-title: Success-history based parameter adaptation for differential evolution
  publication-title: Evolutionary Computation (CEC), 2013 IEEE Congress on
– volume: 66
  start-page: 9
  year: 2015
  end-page: 24
  ident: b11
  article-title: Optimal reactive power dispatch using hybrid Nelder–Mead simplex based firefly algorithm
  publication-title: Int. J. Electr. Power Energy Syst.
– year: 2016
  ident: b28
  article-title: Problem definitions and evaluation criteria for the CEC 2017 special session and competition on single objective bound constrained real-parameter numerical optimization
  publication-title: Technical Report
– volume: 66
  start-page: 9
  year: 2015
  ident: 10.1016/j.asoc.2018.11.042_b11
  article-title: Optimal reactive power dispatch using hybrid Nelder–Mead simplex based firefly algorithm
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2014.10.041
– volume: 85
  start-page: 598
  year: 2016
  ident: 10.1016/j.asoc.2018.11.042_b20
  article-title: Voltage stability constrained multi-objective optimal reactive power dispatch under load and wind power uncertainties: A stochastic approach
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2015.07.021
– volume: 150
  start-page: 1039
  year: 2018
  ident: 10.1016/j.asoc.2018.11.042_b25
  article-title: Multiobjective economic-environmental power dispatch with stochastic wind-solar-small hydro power
  publication-title: Energy
  doi: 10.1016/j.energy.2018.03.002
– volume: 5
  start-page: 28
  year: 2012
  ident: 10.1016/j.asoc.2018.11.042_b32
  article-title: Efficient constraint handling for optimal reactive power dispatch problems
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2012.03.001
– volume: 13
  start-page: 945
  issue: 5
  year: 2009
  ident: 10.1016/j.asoc.2018.11.042_b39
  article-title: JADE: adaptive differential evolution with optional external archive
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2009.2014613
– volume: 13
  start-page: 1219
  issue: 4
  year: 1998
  ident: 10.1016/j.asoc.2018.11.042_b1
  article-title: Reactive power optimization using successive quadratic programming method
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/59.736232
– volume: 81
  start-page: 458
  issue: 2
  year: 2011
  ident: 10.1016/j.asoc.2018.11.042_b3
  article-title: Differential evolution algorithm for optimal reactive power dispatch
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2010.10.005
– volume: 186
  start-page: 311
  issue: 2
  year: 2000
  ident: 10.1016/j.asoc.2018.11.042_b40
  article-title: An efficient constraint handling method for genetic algorithms
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/S0045-7825(99)00389-8
– volume: 5
  start-page: 1447
  issue: 4
  year: 1990
  ident: 10.1016/j.asoc.2018.11.042_b33
  article-title: Application of Newton’s optimal power flow in voltage/reactive power control
  publication-title: IEEE Trans. Power Syst
  doi: 10.1109/59.99399
– volume: 53
  start-page: 123
  year: 2013
  ident: 10.1016/j.asoc.2018.11.042_b5
  article-title: Optimal reactive power dispatch using quasi-oppositional teaching learning based optimization
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2013.04.011
– start-page: 71
  year: 2013
  ident: 10.1016/j.asoc.2018.11.042_b26
  article-title: Success-history based parameter adaptation for differential evolution
– volume: 57
  start-page: 657
  year: 2017
  ident: 10.1016/j.asoc.2018.11.042_b14
  article-title: Gaussian bare-bones water cycle algorithm for optimal reactive power dispatch in electrical power systems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.04.048
– start-page: 1
  year: 2010
  ident: 10.1016/j.asoc.2018.11.042_b37
  article-title: Constrained optimization by the ε constrained differential evolution with an archive and gradient-based mutation
– volume: 8
  start-page: 99
  issue: 2
  year: 2010
  ident: 10.1016/j.asoc.2018.11.042_b24
  article-title: Investigation on frequency distribution of global radiation using different probability density functions
  publication-title: Int. J. Appl. Sci. Eng.
– volume: 43
  start-page: 320
  year: 2016
  ident: 10.1016/j.asoc.2018.11.042_b7
  article-title: Exchange market algorithm based optimum reactive power dispatch
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.02.041
– volume: 11
  start-page: 1679
  issue: 2
  year: 2011
  ident: 10.1016/j.asoc.2018.11.042_b38
  article-title: Differential evolution algorithm with ensemble of parameters and mutation strategies
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2010.04.024
– year: 2003
  ident: 10.1016/j.asoc.2018.11.042_b36
  article-title: Scenario reduction and scenario tree construction for power management problems
– start-page: 1658
  year: 2014
  ident: 10.1016/j.asoc.2018.11.042_b27
  article-title: Improving the search performance of SHADE using linear population size reduction
– volume: 68
  start-page: 81
  year: 2018
  ident: 10.1016/j.asoc.2018.11.042_b41
  article-title: Optimal power flow solutions using differential evolution algorithm integrated with effective constraint handling techniques
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2017.10.019
– volume: 78
  start-page: 29
  year: 2016
  ident: 10.1016/j.asoc.2018.11.042_b4
  article-title: Quasi-oppositional differential evolution for optimal reactive power dispatch
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2015.11.067
– volume: 22
  start-page: 126
  year: 2014
  ident: 10.1016/j.asoc.2018.11.042_b12
  article-title: A new hybrid algorithm for optimal reactive power dispatch problem with discrete and continuous control variables
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2014.05.006
– volume: 94
  start-page: 10
  year: 2016
  ident: 10.1016/j.asoc.2018.11.042_b17
  article-title: Probabilistic multi-objective optimal power flow considering correlated wind power and load uncertainties
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2016.02.064
– volume: 152
  start-page: 90
  issue: 1
  year: 2005
  ident: 10.1016/j.asoc.2018.11.042_b2
  article-title: Transmission power loss reduction by interior-point methods: implementation issues and practical experience
  publication-title: IEE Proc., Gener. Transm. Distrib.
  doi: 10.1049/ip-gtd:20041150
– volume: 83
  start-page: 104
  year: 2016
  ident: 10.1016/j.asoc.2018.11.042_b10
  article-title: Solution of optimal reactive power dispatch of power systems using hybrid particle swarm optimization and imperialist competitive algorithms
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2016.03.039
– ident: 10.1016/j.asoc.2018.11.042_b34
– volume: 64
  start-page: 1088
  year: 2015
  ident: 10.1016/j.asoc.2018.11.042_b19
  article-title: An enhanced firefly algorithm to multi-objective optimal active/reactive power dispatch with uncertainties consideration
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2014.09.008
– volume: 55
  start-page: 29
  year: 2014
  ident: 10.1016/j.asoc.2018.11.042_b9
  article-title: Solution of reactive power dispatch of power systems by an opposition-based gravitational search algorithm
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2013.08.010
– volume: 148
  start-page: 1194
  year: 2017
  ident: 10.1016/j.asoc.2018.11.042_b23
  article-title: Optimal power flow solutions incorporating stochastic wind and solar power
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2017.06.071
– year: 2016
  ident: 10.1016/j.asoc.2018.11.042_b28
  article-title: Problem definitions and evaluation criteria for the CEC 2017 special session and competition on single objective bound constrained real-parameter numerical optimization
– volume: 75
  start-page: 194
  year: 2016
  ident: 10.1016/j.asoc.2018.11.042_b18
  article-title: A two-point estimate method for uncertainty modeling in multi-objective optimal reactive power dispatch problem
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2015.08.009
– volume: 11
  start-page: 815
  issue: 4
  year: 2017
  ident: 10.1016/j.asoc.2018.11.042_b21
  article-title: Optimal reactive power dispatch: a review, and a new stochastic voltage stability constrained multi-objective model at the presence of uncertain wind power generation
  publication-title: IET Gener. Transm. Distrib.
  doi: 10.1049/iet-gtd.2016.1545
– volume: 2
  start-page: 221
  issue: 3
  year: 1994
  ident: 10.1016/j.asoc.2018.11.042_b42
  article-title: Muiltiobjective optimization using nondominated sorting in genetic algorithms
  publication-title: Evol. Comput.
  doi: 10.1162/evco.1994.2.3.221
– start-page: 83
  year: 2017
  ident: 10.1016/j.asoc.2018.11.042_b29
  article-title: Optimal placement of wind turbines in a windfarm using L-SHADE algorithm
– volume: 132
  start-page: 425
  year: 2018
  ident: 10.1016/j.asoc.2018.11.042_b30
  article-title: Parameter estimation of solar cells using datasheet information with the application of an adaptive differential evolution algorithm
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2018.07.152
– year: 2017
  ident: 10.1016/j.asoc.2018.11.042_b15
  article-title: Optimal reactive power dispatch problem using a two-archive multi-objective Grey Wolf optimizer
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.06.009
– start-page: 475
  year: 2017
  ident: 10.1016/j.asoc.2018.11.042_b22
  article-title: Multi-objective optimal reactive power dispatch considering uncertainties in the wind integrated power systems
– start-page: 745
  issue: 3
  year: 1974
  ident: 10.1016/j.asoc.2018.11.042_b35
  article-title: Optimal load flow with steady-state security
  publication-title: IEEE Trans. Power Appar. Syst.
  doi: 10.1109/TPAS.1974.293972
– volume: 53
  start-page: 441
  year: 2017
  ident: 10.1016/j.asoc.2018.11.042_b13
  article-title: A novel fuzzy adaptive configuration of particle swarm optimization to solve large-scale optimal reactive power dispatch
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.01.012
– volume: 50
  start-page: 58
  year: 2017
  ident: 10.1016/j.asoc.2018.11.042_b8
  article-title: Optimal reactive power dispatch by improved GSA-based algorithm with the novel strategies to handle constraints
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.11.008
– volume: 35
  start-page: 350
  issue: 1
  year: 2016
  ident: 10.1016/j.asoc.2018.11.042_b16
  article-title: Multi-objective enhanced PSO algorithm for optimizing power losses and voltage deviation in power systems
  publication-title: COMPEL: Int. J. Comput. Math. Electr. Electron. Eng.
  doi: 10.1108/COMPEL-02-2015-0030
– volume: 61
  start-page: 486
  year: 2017
  ident: 10.1016/j.asoc.2018.11.042_b31
  article-title: Minimizing harmonic distortion in power system with optimal design of hybrid active power filter using differential evolution
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.08.031
– volume: 59
  start-page: 210
  year: 2017
  ident: 10.1016/j.asoc.2018.11.042_b6
  article-title: Optimal reactive power dispatch solution by loss minimization using moth-flame optimization technique
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.05.057
SSID ssj0016928
Score 2.6082423
Snippet Optimizing reactive power flow in electrical network is an important aspect of system study as the reactive power supports network voltage which needs to be...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 616
SubjectTerms Epsilon constraint handling
Optimal reactive power dispatch
Scenario-based approach
Solar power
Success history based adaptive differential evolution
Wind power
Title Optimal reactive power dispatch with uncertainties in load demand and renewable energy sources adopting scenario-based approach
URI https://dx.doi.org/10.1016/j.asoc.2018.11.042
Volume 75
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvXjxLdZH2YM3SZvHZpMcS7HUVxW10FvYVyHSJkUr3vSvO5NsioL04CGEhBkIO7Pz2Mx8Q8i5ZL7hLJKODLlyWGDQDsbKmbo6ETFkPn6IjcJ3Iz4cs-tJOGmQft0Lg2WV1vZXNr201vZN165md5Fl3SfIPGKWMA5KCSaXISYoYxFqeedzVebh8aScr4rEDlLbxpmqxkvACmB5V9xBJE_m_-2cfjicwQ7ZspEi7VUfs0saJt8j2_UUBmo35T75uoddPwdKCP9K40UXOPmM6gyMBciE4lErBfdV_fxHAFWa5XRWCE21mYtcU7wQ2vID-6ioKdsBaXWs_0aFLhZYG00R9wky68JBzwdMFo38gIwHl8_9oWPHKjgKsrelE3A3kImvY21cAf6Z-cJTEiIRGbtaer6EjINzFeFQ4hAR65iOeKQUCE57YaSCQ9LMi9wcEQrxHhfMqNg12MIlIJyLIwkxkVIeD71pi3j1eqbKYo7j6ItZWheXvaQogxRlAMlICjJokYsVz6JC3FhLHdZiSn_pTQouYQ3f8T_5TsgmPCVV3fYpaS5f380ZhCVL2S71rk02ev3H2we8X90MR99eR-Q9
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VdoCFN6I8PbCh0CR1nGSsKlBLHwxQqVvkF1JRm1ZQxMhf565xKpAQA0OWxCdFPvvuO_vuO4ArxUMreKw8FQnt8aYlO5ho79k3qUww8gkjKhQeDEVnxO_H0bgC7bIWhtIqne0vbPrKWrs3DTebjcVk0njEyCPhKRe4KNHkcr4BNWKniqpQa3V7neH6MkGkqxarNN4jAVc7U6R5SZwEyvBKbojMk4e_-6dvPuduF7YdWGSt4n_2oGLzfdgpGzEwty8P4PMBN_4MRyICXNkvtqDmZ8xM0F6gWhidtjL0YMX9P3GosknOpnNpmLEzmRtGD7FbflApFbOrikBWnOy_MWnmC0qPZkT9hMH13CPnh0KOkPwQRne3T-2O5zoreBoDuKXXFH5TpaFJjPUlumgeykArBCMq8Y0KQoVBhxA6pr7EEZHWcROLWGvUnQmiWDePoJrPc3sMDCGfkNzqxLdUxSUR0SWxQlikdSCi4LkOQTmfmXa049T9YpqV-WUvGekgIx1gPJKhDupwvZZZFKQbf46OSjVlP5ZOhl7hD7mTf8pdwmbnadDP-t1h7xS28EtapHGfQXX5-m7PEaUs1YVbhV8NtOVZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+reactive+power+dispatch+with+uncertainties+in+load+demand+and+renewable+energy+sources+adopting+scenario-based+approach&rft.jtitle=Applied+soft+computing&rft.au=Biswas%2C+Partha+P.&rft.au=Suganthan%2C+P.N.&rft.au=Mallipeddi%2C+R.&rft.au=Amaratunga%2C+Gehan+A.J.&rft.date=2019-02-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=75&rft.spage=616&rft.epage=632&rft_id=info:doi/10.1016%2Fj.asoc.2018.11.042&rft.externalDocID=S1568494618306744
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon