Optimal reactive power dispatch with uncertainties in load demand and renewable energy sources adopting scenario-based approach
Optimizing reactive power flow in electrical network is an important aspect of system study as the reactive power supports network voltage which needs to be maintained within desirable limits for system reliability. A network consisting of only conventional thermal generators has been extensively st...
Saved in:
Published in | Applied soft computing Vol. 75; pp. 616 - 632 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.02.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Optimizing reactive power flow in electrical network is an important aspect of system study as the reactive power supports network voltage which needs to be maintained within desirable limits for system reliability. A network consisting of only conventional thermal generators has been extensively studied for optimal active and reactive power dispatch. However, increasing penetration of renewable sources into the grid necessitates power flow studies incorporating these sources. This paper presents a formulation and solution procedure for stochastic optimal reactive power dispatch (ORPD) problem with uncertainties in load demand, wind and solar power. Appropriate probability density functions (PDFs) are considered to model the stochastic load demand and the power generated from the renewable energy sources. Numerous scenarios are created running Monte-Carlo simulation and scenario reduction technique is implemented to deal with reduced number of scenarios. Real power loss and steady state voltage deviation of load buses in the network are set as the objectives of optimization. Success history based adaptive differential evolution (SHADE) is adopted as the basic search algorithm. SHADE has been successfully integrated with a constraint handling technique, called epsilon constraint (EC) handling, to handle constraints in ORPD problem. The effectiveness of a proper constraint handling technique is substantiated with case studies for deterministic ORPD on base configurations of IEEE 30-bus and 57-bus systems using SHADE-EC algorithm. The single-objective and multi-objective stochastic ORPD cases are also solved using the SHADE-EC algorithm. The results are discussed, compared and critically analyzed in this study.
[Display omitted]
•Deterministic and stochastic optimal reactive power dispatch (ORPD) are studied.•Stochastic ORPD incorporates a wind generator and a photovoltaic.•Uncertainties in load demand, wind and solar power are appropriately modeled.•Scenario generation and scenario reduction techniques are implemented.•Adaptive differential evolution with epsilon constraint handling method is applied. |
---|---|
AbstractList | Optimizing reactive power flow in electrical network is an important aspect of system study as the reactive power supports network voltage which needs to be maintained within desirable limits for system reliability. A network consisting of only conventional thermal generators has been extensively studied for optimal active and reactive power dispatch. However, increasing penetration of renewable sources into the grid necessitates power flow studies incorporating these sources. This paper presents a formulation and solution procedure for stochastic optimal reactive power dispatch (ORPD) problem with uncertainties in load demand, wind and solar power. Appropriate probability density functions (PDFs) are considered to model the stochastic load demand and the power generated from the renewable energy sources. Numerous scenarios are created running Monte-Carlo simulation and scenario reduction technique is implemented to deal with reduced number of scenarios. Real power loss and steady state voltage deviation of load buses in the network are set as the objectives of optimization. Success history based adaptive differential evolution (SHADE) is adopted as the basic search algorithm. SHADE has been successfully integrated with a constraint handling technique, called epsilon constraint (EC) handling, to handle constraints in ORPD problem. The effectiveness of a proper constraint handling technique is substantiated with case studies for deterministic ORPD on base configurations of IEEE 30-bus and 57-bus systems using SHADE-EC algorithm. The single-objective and multi-objective stochastic ORPD cases are also solved using the SHADE-EC algorithm. The results are discussed, compared and critically analyzed in this study.
[Display omitted]
•Deterministic and stochastic optimal reactive power dispatch (ORPD) are studied.•Stochastic ORPD incorporates a wind generator and a photovoltaic.•Uncertainties in load demand, wind and solar power are appropriately modeled.•Scenario generation and scenario reduction techniques are implemented.•Adaptive differential evolution with epsilon constraint handling method is applied. |
Author | Suganthan, P.N. Mallipeddi, R. Amaratunga, Gehan A.J. Biswas, Partha P. |
Author_xml | – sequence: 1 givenname: Partha P. orcidid: 0000-0001-5982-4176 surname: Biswas fullname: Biswas, Partha P. email: parthapr001@e.ntu.edu.sg organization: School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore – sequence: 2 givenname: P.N. orcidid: 0000-0003-0901-5105 surname: Suganthan fullname: Suganthan, P.N. email: epnsugan@ntu.edu.sg organization: School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore – sequence: 3 givenname: R. orcidid: 0000-0001-9071-1145 surname: Mallipeddi fullname: Mallipeddi, R. email: mallipeddi.ram@gmail.com organization: Kyungpook National University, Daegu, South Korea – sequence: 4 givenname: Gehan A.J. surname: Amaratunga fullname: Amaratunga, Gehan A.J. email: gaja1@hermes.cam.ac.uk organization: Department of Engineering, University of Cambridge, UK |
BookMark | eNp9kM1qHDEMgE1IIJufF8jJLzAT2zPj8UIuIbRpIbCX9mw0spL1MmsPtpNlT331eklPPeQgJIQ-CX1X7DzEQIzdSdFKIfX9roUcsVVCmlbKVvTqjK2kGVWz1kae13rQpunXvb5kVznvRIXWyqzYn81S_B5mngiw-A_iSzxQ4s7nBQpu-cGXLX8PSKmAD8VT5j7wOYLjjvYQHD9FokAHmGbitUhvR57je8I6Cy7WA-GNZ6QAycdmgkwVWpYUAbc37OIV5ky3__I1-_3926-nH83L5vnn0-NLg70YS9Np0U1r5YwjAUrrXoHESQ9mMsJNUk2mNjWO_dgNgzCj7t2oR8RBdU4OI3bXzHzuxRRzTvRq0RcoPoaSwM9WCnsSaXf2JNKeRFopbRVZUfUfuqSqLB2_hh4-IapPfXhKNqOnqtH5RFisi_4r_C-bhpFn |
CitedBy_id | crossref_primary_10_1109_ACCESS_2022_3224744 crossref_primary_10_3390_en15062299 crossref_primary_10_1016_j_ijepes_2022_108832 crossref_primary_10_1016_j_swevo_2019_06_009 crossref_primary_10_1016_j_est_2024_111868 crossref_primary_10_1007_s00202_023_02199_2 crossref_primary_10_1109_ACCESS_2021_3069456 crossref_primary_10_21923_jesd_832187 crossref_primary_10_1063_5_0231114 crossref_primary_10_1016_j_est_2024_114057 crossref_primary_10_1016_j_egyr_2020_07_030 crossref_primary_10_1038_s41598_020_79838_2 crossref_primary_10_1016_j_rineng_2024_102351 crossref_primary_10_1109_ACCESS_2022_3144065 crossref_primary_10_1109_ACCESS_2021_3056423 crossref_primary_10_1038_s41598_025_91778_3 crossref_primary_10_3390_math9212771 crossref_primary_10_1007_s42835_022_01233_w crossref_primary_10_1016_j_epsr_2019_105989 crossref_primary_10_1109_ACCESS_2022_3203999 crossref_primary_10_1016_j_asoc_2021_107315 crossref_primary_10_1007_s00521_020_05453_x crossref_primary_10_1002_ente_202301694 crossref_primary_10_1016_j_engappai_2021_104231 crossref_primary_10_1007_s00202_024_02789_8 crossref_primary_10_1109_ACCESS_2020_3039571 crossref_primary_10_1016_j_solener_2023_112200 crossref_primary_10_1016_j_rineng_2024_103703 crossref_primary_10_1155_2023_6678942 crossref_primary_10_1002_oca_2902 crossref_primary_10_3390_en16155600 crossref_primary_10_1098_rsta_2019_0431 crossref_primary_10_1109_ACCESS_2019_2909561 crossref_primary_10_1109_TSTE_2021_3104656 crossref_primary_10_3390_su152416707 crossref_primary_10_3390_smartcities6040082 crossref_primary_10_1007_s11356_021_16072_x crossref_primary_10_3390_math10122106 crossref_primary_10_1007_s13198_022_01828_6 crossref_primary_10_1049_gtd2_12555 crossref_primary_10_3390_su12187253 crossref_primary_10_3390_electronics10233035 crossref_primary_10_1016_j_swevo_2020_100808 crossref_primary_10_1016_j_rser_2021_111072 crossref_primary_10_1016_j_rineng_2025_104304 crossref_primary_10_3389_fenrg_2023_1170570 crossref_primary_10_1016_j_egyr_2024_05_018 crossref_primary_10_1088_2631_8695_ad6af1 crossref_primary_10_3390_pr10122590 crossref_primary_10_1007_s00202_023_01749_y crossref_primary_10_3390_en13174316 crossref_primary_10_1016_j_epsr_2021_107722 crossref_primary_10_1016_j_energy_2021_120028 crossref_primary_10_1038_s41598_024_65867_8 crossref_primary_10_3390_en16134896 crossref_primary_10_1109_ACCESS_2024_3430862 crossref_primary_10_1016_j_asoc_2021_107531 crossref_primary_10_1016_j_rineng_2025_104392 crossref_primary_10_1002_2050_7038_12205 crossref_primary_10_1109_ACCESS_2020_2987765 crossref_primary_10_1109_ACCESS_2022_3170547 crossref_primary_10_1016_j_asej_2022_102092 crossref_primary_10_1016_j_asoc_2021_107813 crossref_primary_10_1007_s00202_020_01033_3 crossref_primary_10_1016_j_asej_2022_101726 crossref_primary_10_3390_su14052998 crossref_primary_10_1002_er_6997 crossref_primary_10_1109_ACCESS_2019_2947308 crossref_primary_10_1002_cjce_24298 crossref_primary_10_1016_j_renene_2022_02_054 crossref_primary_10_3390_math11051236 crossref_primary_10_3390_en18020294 crossref_primary_10_1016_j_egyr_2024_03_060 crossref_primary_10_1016_j_aei_2023_101908 crossref_primary_10_1007_s00521_022_07526_5 crossref_primary_10_1109_ACCESS_2022_3203728 crossref_primary_10_1049_rpg2_12841 crossref_primary_10_1371_journal_pone_0305329 crossref_primary_10_3390_en16166038 crossref_primary_10_1016_j_compeleceng_2021_107658 crossref_primary_10_1016_j_egyr_2024_12_020 crossref_primary_10_1002_2050_7038_13060 crossref_primary_10_1016_j_est_2025_115639 crossref_primary_10_1016_j_est_2024_113562 crossref_primary_10_1016_j_rser_2021_110967 crossref_primary_10_1016_j_asoc_2023_110479 crossref_primary_10_1080_0305215X_2020_1839443 crossref_primary_10_1002_2050_7038_12374 crossref_primary_10_2139_ssrn_3924287 crossref_primary_10_1002_ese3_944 crossref_primary_10_1016_j_ijepes_2023_109284 crossref_primary_10_1109_ACCESS_2023_3286930 crossref_primary_10_3390_su13063566 crossref_primary_10_1002_oca_2790 crossref_primary_10_1016_j_est_2021_103230 crossref_primary_10_1016_j_ijepes_2023_109314 crossref_primary_10_1016_j_ijepes_2021_107934 crossref_primary_10_3390_en13143671 crossref_primary_10_1016_j_ecmx_2024_100766 crossref_primary_10_1109_ACCESS_2020_2974961 crossref_primary_10_1016_j_compchemeng_2020_107060 crossref_primary_10_3390_en16041595 crossref_primary_10_1109_ACCESS_2024_3496123 crossref_primary_10_1007_s11356_022_23591_8 crossref_primary_10_1109_ACCESS_2022_3167395 crossref_primary_10_3390_en16083501 crossref_primary_10_3390_math10030361 crossref_primary_10_1016_j_rser_2022_112285 crossref_primary_10_1016_j_apenergy_2021_118416 crossref_primary_10_1007_s00202_024_02382_z crossref_primary_10_1007_s00500_020_05133_x crossref_primary_10_1109_ACCESS_2020_3022846 crossref_primary_10_1007_s44196_024_00727_x crossref_primary_10_1109_ACCESS_2023_3308067 crossref_primary_10_1109_ACCESS_2024_3425754 crossref_primary_10_1016_j_seta_2023_103235 crossref_primary_10_3390_math11112591 crossref_primary_10_1007_s00202_023_02093_x crossref_primary_10_1007_s42979_023_02315_w crossref_primary_10_1007_s00500_021_05764_8 crossref_primary_10_1016_j_epsr_2022_107849 crossref_primary_10_1109_ACCESS_2023_3328958 crossref_primary_10_1049_rpg2_13167 crossref_primary_10_38016_jista_1079554 crossref_primary_10_1016_j_egyr_2024_07_050 crossref_primary_10_3390_math9010026 crossref_primary_10_1016_j_est_2024_115082 crossref_primary_10_1016_j_asoc_2020_107059 crossref_primary_10_3390_en16031270 crossref_primary_10_1016_j_asej_2024_102762 crossref_primary_10_1016_j_apenergy_2020_115992 crossref_primary_10_1007_s40031_021_00537_1 crossref_primary_10_1016_j_energy_2025_134567 crossref_primary_10_1002_er_7928 crossref_primary_10_1016_j_est_2025_115782 crossref_primary_10_1016_j_egyr_2023_03_036 crossref_primary_10_1016_j_suscom_2022_100688 crossref_primary_10_1016_j_energy_2022_123740 crossref_primary_10_1016_j_ijepes_2023_109250 crossref_primary_10_3390_systems11010023 crossref_primary_10_1002_ente_202300618 crossref_primary_10_3390_en13226066 crossref_primary_10_3390_su13115831 |
Cites_doi | 10.1016/j.ijepes.2014.10.041 10.1016/j.renene.2015.07.021 10.1016/j.energy.2018.03.002 10.1016/j.swevo.2012.03.001 10.1109/TEVC.2009.2014613 10.1109/59.736232 10.1016/j.epsr.2010.10.005 10.1016/S0045-7825(99)00389-8 10.1109/59.99399 10.1016/j.ijepes.2013.04.011 10.1016/j.asoc.2017.04.048 10.1016/j.asoc.2016.02.041 10.1016/j.asoc.2010.04.024 10.1016/j.engappai.2017.10.019 10.1016/j.ijepes.2015.11.067 10.1016/j.asoc.2014.05.006 10.1016/j.renene.2016.02.064 10.1049/ip-gtd:20041150 10.1016/j.ijepes.2016.03.039 10.1016/j.ijepes.2014.09.008 10.1016/j.ijepes.2013.08.010 10.1016/j.enconman.2017.06.071 10.1016/j.ijepes.2015.08.009 10.1049/iet-gtd.2016.1545 10.1162/evco.1994.2.3.221 10.1016/j.renene.2018.07.152 10.1016/j.eswa.2017.06.009 10.1109/TPAS.1974.293972 10.1016/j.asoc.2017.01.012 10.1016/j.asoc.2016.11.008 10.1108/COMPEL-02-2015-0030 10.1016/j.asoc.2017.08.031 10.1016/j.asoc.2017.05.057 |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. |
Copyright_xml | – notice: 2018 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.asoc.2018.11.042 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-9681 |
EndPage | 632 |
ExternalDocumentID | 10_1016_j_asoc_2018_11_042 S1568494618306744 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c407t-3603b92d8de0a26642a1cb658b80db12b82666c74735508764d767cc523d157c3 |
IEDL.DBID | .~1 |
ISSN | 1568-4946 |
IngestDate | Thu Apr 24 23:01:07 EDT 2025 Tue Jul 01 01:50:02 EDT 2025 Fri Feb 23 02:24:50 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Solar power Optimal reactive power dispatch Scenario-based approach Wind power Success history based adaptive differential evolution Epsilon constraint handling |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c407t-3603b92d8de0a26642a1cb658b80db12b82666c74735508764d767cc523d157c3 |
ORCID | 0000-0001-5982-4176 0000-0003-0901-5105 0000-0001-9071-1145 |
OpenAccessLink | https://ars.els-cdn.com/content/image/1-s2.0-S1568494618306744-fx1_lrg.jpg |
PageCount | 17 |
ParticipantIDs | crossref_citationtrail_10_1016_j_asoc_2018_11_042 crossref_primary_10_1016_j_asoc_2018_11_042 elsevier_sciencedirect_doi_10_1016_j_asoc_2018_11_042 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-02-01 |
PublicationDateYYYYMMDD | 2019-02-01 |
PublicationDate_xml | – month: 02 year: 2019 text: 2019-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Applied soft computing |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Rajan, Malakar (b7) 2016; 43 Chang (b24) 2010; 8 Tanabe, Fukunaga (b27) 2014 Grudinin (b1) 1998; 13 Heidari, Abbaspour, Jordehi (b14) 2017; 57 Growe-Kuska, Heitsch, Romisch (b36) 2003 Mei, Sulaiman, Mustaffa, Daniyal (b6) 2017; 59 Shargh, Mohammadi-ivatloo, Seyedi, Abapour (b17) 2016; 94 Biswas, Suganthan, Mallipeddi, Amaratunga (b41) 2018; 68 Mohseni-Bonab, Rabiee (b21) 2017; 11 Biswas, Suganthan, Amaratunga (b23) 2017; 148 Shaw, Mukherjee, Ghoshal (b9) 2014; 55 R.D. Zimmerman, C.E. Murillo-Sánchez, R.J. Thomas, Matpower (Available at:) Biswas, Suganthan, Wu, Amaratunga (b30) 2018; 132 Deb (b40) 2000; 186 Ghasemi, Ghavidel, Ghanbarian, Habibi (b12) 2014; 22 Mehdinejad, Mohammadi-Ivatloo, Dadashzadeh-Bonab, Zare (b10) 2016; 83 Mandal, Roy (b5) 2013; 53 Zhang, Sanderson (b39) 2009; 13 Biswas, Suganthan, Qu, Amaratunga (b25) 2018; 150 Basu (b4) 2016; 78 Mohseni-Bonab, Rabiee, Mohammadi-Ivatloo (b22) 2017 Ramos, Exposito, Quintana (b2) 2005; 152 Tanabe, Fukunaga (b26) 2013 El Ela, Abido, Spea (b3) 2011; 81 Chen, Liu, Guo, Huang (b16) 2016; 35 Chen, Liu, Zhang, Huang (b8) 2017; 50 . Srinivas, Deb (b42) 1994; 2 Naderi, Narimani, Fathi, Narimani (b13) 2017; 53 Mallipeddi, Jeyadevi, Suganthan, Baskar (b32) 2012; 5 Liang, Wang, Chen, Tseng (b19) 2015; 64 Awad, Ali, Liang, Qu, Suganthan (b28) 2016 Bjelogrlic, Calovic, Ristanovic, Babic (b33) 1990; 5 Biswas, Suganthan, Amaratunga (b29) 2017 Mallipeddi, Suganthan, Pan, Tasgetiren (b38) 2011; 11 Takahama, Sakai (b37) 2010 Nuaekaew, Artrit, Pholdee, Bureerat (b15) 2017 Biswas, Suganthan, Amaratunga (b31) 2017; 61 Rajan, Malakar (b11) 2015; 66 Mohseni-Bonab, Rabiee, Mohammadi-Ivatloo, Jalilzadeh, Nojavan (b18) 2016; 75 Mohseni-Bonab, Rabiee, Mohammadi-Ivatloo (b20) 2016; 85 Alsac, Stott (b35) 1974 Biswas (10.1016/j.asoc.2018.11.042_b25) 2018; 150 Naderi (10.1016/j.asoc.2018.11.042_b13) 2017; 53 Chen (10.1016/j.asoc.2018.11.042_b8) 2017; 50 Mehdinejad (10.1016/j.asoc.2018.11.042_b10) 2016; 83 Rajan (10.1016/j.asoc.2018.11.042_b11) 2015; 66 Biswas (10.1016/j.asoc.2018.11.042_b31) 2017; 61 Mohseni-Bonab (10.1016/j.asoc.2018.11.042_b22) 2017 Biswas (10.1016/j.asoc.2018.11.042_b29) 2017 Mallipeddi (10.1016/j.asoc.2018.11.042_b38) 2011; 11 Zhang (10.1016/j.asoc.2018.11.042_b39) 2009; 13 Mandal (10.1016/j.asoc.2018.11.042_b5) 2013; 53 Takahama (10.1016/j.asoc.2018.11.042_b37) 2010 Shaw (10.1016/j.asoc.2018.11.042_b9) 2014; 55 Mohseni-Bonab (10.1016/j.asoc.2018.11.042_b21) 2017; 11 Growe-Kuska (10.1016/j.asoc.2018.11.042_b36) 2003 10.1016/j.asoc.2018.11.042_b34 Tanabe (10.1016/j.asoc.2018.11.042_b27) 2014 Basu (10.1016/j.asoc.2018.11.042_b4) 2016; 78 Ramos (10.1016/j.asoc.2018.11.042_b2) 2005; 152 Heidari (10.1016/j.asoc.2018.11.042_b14) 2017; 57 Rajan (10.1016/j.asoc.2018.11.042_b7) 2016; 43 Biswas (10.1016/j.asoc.2018.11.042_b30) 2018; 132 Bjelogrlic (10.1016/j.asoc.2018.11.042_b33) 1990; 5 Biswas (10.1016/j.asoc.2018.11.042_b41) 2018; 68 Mei (10.1016/j.asoc.2018.11.042_b6) 2017; 59 Grudinin (10.1016/j.asoc.2018.11.042_b1) 1998; 13 Deb (10.1016/j.asoc.2018.11.042_b40) 2000; 186 Nuaekaew (10.1016/j.asoc.2018.11.042_b15) 2017 Srinivas (10.1016/j.asoc.2018.11.042_b42) 1994; 2 Chen (10.1016/j.asoc.2018.11.042_b16) 2016; 35 Shargh (10.1016/j.asoc.2018.11.042_b17) 2016; 94 Biswas (10.1016/j.asoc.2018.11.042_b23) 2017; 148 Chang (10.1016/j.asoc.2018.11.042_b24) 2010; 8 El Ela (10.1016/j.asoc.2018.11.042_b3) 2011; 81 Mohseni-Bonab (10.1016/j.asoc.2018.11.042_b18) 2016; 75 Mohseni-Bonab (10.1016/j.asoc.2018.11.042_b20) 2016; 85 Awad (10.1016/j.asoc.2018.11.042_b28) 2016 Mallipeddi (10.1016/j.asoc.2018.11.042_b32) 2012; 5 Alsac (10.1016/j.asoc.2018.11.042_b35) 1974 Liang (10.1016/j.asoc.2018.11.042_b19) 2015; 64 Ghasemi (10.1016/j.asoc.2018.11.042_b12) 2014; 22 Tanabe (10.1016/j.asoc.2018.11.042_b26) 2013 |
References_xml | – volume: 5 start-page: 1447 year: 1990 end-page: 1454 ident: b33 article-title: Application of Newton’s optimal power flow in voltage/reactive power control publication-title: IEEE Trans. Power Syst – start-page: 1 year: 2010 end-page: 9 ident: b37 article-title: Constrained optimization by the publication-title: Evolutionary Computation (CEC), 2010 IEEE Congress on – year: 2017 ident: b15 article-title: Optimal reactive power dispatch problem using a two-archive multi-objective Grey Wolf optimizer publication-title: Expert Syst. Appl. – volume: 50 start-page: 58 year: 2017 end-page: 70 ident: b8 article-title: Optimal reactive power dispatch by improved GSA-based algorithm with the novel strategies to handle constraints publication-title: Appl. Soft Comput. – start-page: 83 year: 2017 end-page: 88 ident: b29 article-title: Optimal placement of wind turbines in a windfarm using L-SHADE algorithm publication-title: Evolutionary Computation (CEC), 2017 IEEE Congress on – volume: 78 start-page: 29 year: 2016 end-page: 40 ident: b4 article-title: Quasi-oppositional differential evolution for optimal reactive power dispatch publication-title: Int. J. Electr. Power Energy Syst. – volume: 55 start-page: 29 year: 2014 end-page: 40 ident: b9 article-title: Solution of reactive power dispatch of power systems by an opposition-based gravitational search algorithm publication-title: Int. J. Electr. Power Energy Syst. – start-page: 745 year: 1974 end-page: 751 ident: b35 article-title: Optimal load flow with steady-state security publication-title: IEEE Trans. Power Appar. Syst. – volume: 68 start-page: 81 year: 2018 end-page: 100 ident: b41 article-title: Optimal power flow solutions using differential evolution algorithm integrated with effective constraint handling techniques publication-title: Eng. Appl. Artif. Intell. – volume: 53 start-page: 441 year: 2017 end-page: 456 ident: b13 article-title: A novel fuzzy adaptive configuration of particle swarm optimization to solve large-scale optimal reactive power dispatch publication-title: Appl. Soft Comput. – volume: 53 start-page: 123 year: 2013 end-page: 134 ident: b5 article-title: Optimal reactive power dispatch using quasi-oppositional teaching learning based optimization publication-title: Int. J. Electr. Power Energy Syst. – year: 2003 ident: b36 article-title: Scenario reduction and scenario tree construction for power management problems publication-title: Power Tech Conference Proceedings, 2003 IEEE Bologna, Vol. 3 – volume: 152 start-page: 90 year: 2005 end-page: 98 ident: b2 article-title: Transmission power loss reduction by interior-point methods: implementation issues and practical experience publication-title: IEE Proc., Gener. Transm. Distrib. – volume: 57 start-page: 657 year: 2017 end-page: 671 ident: b14 article-title: Gaussian bare-bones water cycle algorithm for optimal reactive power dispatch in electrical power systems publication-title: Appl. Soft Comput. – volume: 61 start-page: 486 year: 2017 end-page: 496 ident: b31 article-title: Minimizing harmonic distortion in power system with optimal design of hybrid active power filter using differential evolution publication-title: Appl. Soft Comput. – volume: 64 start-page: 1088 year: 2015 end-page: 1097 ident: b19 article-title: An enhanced firefly algorithm to multi-objective optimal active/reactive power dispatch with uncertainties consideration publication-title: Int. J. Electr. Power Energy Syst. – volume: 83 start-page: 104 year: 2016 end-page: 116 ident: b10 article-title: Solution of optimal reactive power dispatch of power systems using hybrid particle swarm optimization and imperialist competitive algorithms publication-title: Int. J. Electr. Power Energy Syst. – volume: 150 start-page: 1039 year: 2018 end-page: 1057 ident: b25 article-title: Multiobjective economic-environmental power dispatch with stochastic wind-solar-small hydro power publication-title: Energy – volume: 186 start-page: 311 year: 2000 end-page: 338 ident: b40 article-title: An efficient constraint handling method for genetic algorithms publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 8 start-page: 99 year: 2010 end-page: 107 ident: b24 article-title: Investigation on frequency distribution of global radiation using different probability density functions publication-title: Int. J. Appl. Sci. Eng. – volume: 94 start-page: 10 year: 2016 end-page: 21 ident: b17 article-title: Probabilistic multi-objective optimal power flow considering correlated wind power and load uncertainties publication-title: Renew. Energy – start-page: 475 year: 2017 end-page: 513 ident: b22 article-title: Multi-objective optimal reactive power dispatch considering uncertainties in the wind integrated power systems publication-title: Reactive Power Control in AC Power Systems – volume: 2 start-page: 221 year: 1994 end-page: 248 ident: b42 article-title: Muiltiobjective optimization using nondominated sorting in genetic algorithms publication-title: Evol. Comput. – volume: 22 start-page: 126 year: 2014 end-page: 140 ident: b12 article-title: A new hybrid algorithm for optimal reactive power dispatch problem with discrete and continuous control variables publication-title: Appl. Soft Comput. – volume: 85 start-page: 598 year: 2016 end-page: 609 ident: b20 article-title: Voltage stability constrained multi-objective optimal reactive power dispatch under load and wind power uncertainties: A stochastic approach publication-title: Renew. Energy – volume: 132 start-page: 425 year: 2018 end-page: 438 ident: b30 article-title: Parameter estimation of solar cells using datasheet information with the application of an adaptive differential evolution algorithm publication-title: Renew. Energy – volume: 13 start-page: 945 year: 2009 end-page: 958 ident: b39 article-title: JADE: adaptive differential evolution with optional external archive publication-title: IEEE Trans. Evol. Comput. – volume: 81 start-page: 458 year: 2011 end-page: 464 ident: b3 article-title: Differential evolution algorithm for optimal reactive power dispatch publication-title: Electr. Power Syst. Res. – volume: 43 start-page: 320 year: 2016 end-page: 336 ident: b7 article-title: Exchange market algorithm based optimum reactive power dispatch publication-title: Appl. Soft Comput. – volume: 11 start-page: 815 year: 2017 end-page: 829 ident: b21 article-title: Optimal reactive power dispatch: a review, and a new stochastic voltage stability constrained multi-objective model at the presence of uncertain wind power generation publication-title: IET Gener. Transm. Distrib. – volume: 5 start-page: 28 year: 2012 end-page: 36 ident: b32 article-title: Efficient constraint handling for optimal reactive power dispatch problems publication-title: Swarm Evol. Comput. – volume: 11 start-page: 1679 year: 2011 end-page: 1696 ident: b38 article-title: Differential evolution algorithm with ensemble of parameters and mutation strategies publication-title: Appl. Soft Comput. – volume: 13 start-page: 1219 year: 1998 end-page: 1225 ident: b1 article-title: Reactive power optimization using successive quadratic programming method publication-title: IEEE Trans. Power Syst. – volume: 59 start-page: 210 year: 2017 end-page: 222 ident: b6 article-title: Optimal reactive power dispatch solution by loss minimization using moth-flame optimization technique publication-title: Appl. Soft Comput. – reference: . – volume: 148 start-page: 1194 year: 2017 end-page: 1207 ident: b23 article-title: Optimal power flow solutions incorporating stochastic wind and solar power publication-title: Energy Convers. Manage. – reference: R.D. Zimmerman, C.E. Murillo-Sánchez, R.J. Thomas, Matpower (Available at:) – volume: 75 start-page: 194 year: 2016 end-page: 204 ident: b18 article-title: A two-point estimate method for uncertainty modeling in multi-objective optimal reactive power dispatch problem publication-title: Int. J. Electr. Power Energy Syst. – start-page: 1658 year: 2014 end-page: 1665 ident: b27 article-title: Improving the search performance of SHADE using linear population size reduction publication-title: Evolutionary Computation (CEC), 2014 IEEE Congress on – volume: 35 start-page: 350 year: 2016 end-page: 372 ident: b16 article-title: Multi-objective enhanced PSO algorithm for optimizing power losses and voltage deviation in power systems publication-title: COMPEL: Int. J. Comput. Math. Electr. Electron. Eng. – start-page: 71 year: 2013 end-page: 78 ident: b26 article-title: Success-history based parameter adaptation for differential evolution publication-title: Evolutionary Computation (CEC), 2013 IEEE Congress on – volume: 66 start-page: 9 year: 2015 end-page: 24 ident: b11 article-title: Optimal reactive power dispatch using hybrid Nelder–Mead simplex based firefly algorithm publication-title: Int. J. Electr. Power Energy Syst. – year: 2016 ident: b28 article-title: Problem definitions and evaluation criteria for the CEC 2017 special session and competition on single objective bound constrained real-parameter numerical optimization publication-title: Technical Report – volume: 66 start-page: 9 year: 2015 ident: 10.1016/j.asoc.2018.11.042_b11 article-title: Optimal reactive power dispatch using hybrid Nelder–Mead simplex based firefly algorithm publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2014.10.041 – volume: 85 start-page: 598 year: 2016 ident: 10.1016/j.asoc.2018.11.042_b20 article-title: Voltage stability constrained multi-objective optimal reactive power dispatch under load and wind power uncertainties: A stochastic approach publication-title: Renew. Energy doi: 10.1016/j.renene.2015.07.021 – volume: 150 start-page: 1039 year: 2018 ident: 10.1016/j.asoc.2018.11.042_b25 article-title: Multiobjective economic-environmental power dispatch with stochastic wind-solar-small hydro power publication-title: Energy doi: 10.1016/j.energy.2018.03.002 – volume: 5 start-page: 28 year: 2012 ident: 10.1016/j.asoc.2018.11.042_b32 article-title: Efficient constraint handling for optimal reactive power dispatch problems publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2012.03.001 – volume: 13 start-page: 945 issue: 5 year: 2009 ident: 10.1016/j.asoc.2018.11.042_b39 article-title: JADE: adaptive differential evolution with optional external archive publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2009.2014613 – volume: 13 start-page: 1219 issue: 4 year: 1998 ident: 10.1016/j.asoc.2018.11.042_b1 article-title: Reactive power optimization using successive quadratic programming method publication-title: IEEE Trans. Power Syst. doi: 10.1109/59.736232 – volume: 81 start-page: 458 issue: 2 year: 2011 ident: 10.1016/j.asoc.2018.11.042_b3 article-title: Differential evolution algorithm for optimal reactive power dispatch publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2010.10.005 – volume: 186 start-page: 311 issue: 2 year: 2000 ident: 10.1016/j.asoc.2018.11.042_b40 article-title: An efficient constraint handling method for genetic algorithms publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/S0045-7825(99)00389-8 – volume: 5 start-page: 1447 issue: 4 year: 1990 ident: 10.1016/j.asoc.2018.11.042_b33 article-title: Application of Newton’s optimal power flow in voltage/reactive power control publication-title: IEEE Trans. Power Syst doi: 10.1109/59.99399 – volume: 53 start-page: 123 year: 2013 ident: 10.1016/j.asoc.2018.11.042_b5 article-title: Optimal reactive power dispatch using quasi-oppositional teaching learning based optimization publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2013.04.011 – start-page: 71 year: 2013 ident: 10.1016/j.asoc.2018.11.042_b26 article-title: Success-history based parameter adaptation for differential evolution – volume: 57 start-page: 657 year: 2017 ident: 10.1016/j.asoc.2018.11.042_b14 article-title: Gaussian bare-bones water cycle algorithm for optimal reactive power dispatch in electrical power systems publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.04.048 – start-page: 1 year: 2010 ident: 10.1016/j.asoc.2018.11.042_b37 article-title: Constrained optimization by the ε constrained differential evolution with an archive and gradient-based mutation – volume: 8 start-page: 99 issue: 2 year: 2010 ident: 10.1016/j.asoc.2018.11.042_b24 article-title: Investigation on frequency distribution of global radiation using different probability density functions publication-title: Int. J. Appl. Sci. Eng. – volume: 43 start-page: 320 year: 2016 ident: 10.1016/j.asoc.2018.11.042_b7 article-title: Exchange market algorithm based optimum reactive power dispatch publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2016.02.041 – volume: 11 start-page: 1679 issue: 2 year: 2011 ident: 10.1016/j.asoc.2018.11.042_b38 article-title: Differential evolution algorithm with ensemble of parameters and mutation strategies publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2010.04.024 – year: 2003 ident: 10.1016/j.asoc.2018.11.042_b36 article-title: Scenario reduction and scenario tree construction for power management problems – start-page: 1658 year: 2014 ident: 10.1016/j.asoc.2018.11.042_b27 article-title: Improving the search performance of SHADE using linear population size reduction – volume: 68 start-page: 81 year: 2018 ident: 10.1016/j.asoc.2018.11.042_b41 article-title: Optimal power flow solutions using differential evolution algorithm integrated with effective constraint handling techniques publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2017.10.019 – volume: 78 start-page: 29 year: 2016 ident: 10.1016/j.asoc.2018.11.042_b4 article-title: Quasi-oppositional differential evolution for optimal reactive power dispatch publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2015.11.067 – volume: 22 start-page: 126 year: 2014 ident: 10.1016/j.asoc.2018.11.042_b12 article-title: A new hybrid algorithm for optimal reactive power dispatch problem with discrete and continuous control variables publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2014.05.006 – volume: 94 start-page: 10 year: 2016 ident: 10.1016/j.asoc.2018.11.042_b17 article-title: Probabilistic multi-objective optimal power flow considering correlated wind power and load uncertainties publication-title: Renew. Energy doi: 10.1016/j.renene.2016.02.064 – volume: 152 start-page: 90 issue: 1 year: 2005 ident: 10.1016/j.asoc.2018.11.042_b2 article-title: Transmission power loss reduction by interior-point methods: implementation issues and practical experience publication-title: IEE Proc., Gener. Transm. Distrib. doi: 10.1049/ip-gtd:20041150 – volume: 83 start-page: 104 year: 2016 ident: 10.1016/j.asoc.2018.11.042_b10 article-title: Solution of optimal reactive power dispatch of power systems using hybrid particle swarm optimization and imperialist competitive algorithms publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2016.03.039 – ident: 10.1016/j.asoc.2018.11.042_b34 – volume: 64 start-page: 1088 year: 2015 ident: 10.1016/j.asoc.2018.11.042_b19 article-title: An enhanced firefly algorithm to multi-objective optimal active/reactive power dispatch with uncertainties consideration publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2014.09.008 – volume: 55 start-page: 29 year: 2014 ident: 10.1016/j.asoc.2018.11.042_b9 article-title: Solution of reactive power dispatch of power systems by an opposition-based gravitational search algorithm publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2013.08.010 – volume: 148 start-page: 1194 year: 2017 ident: 10.1016/j.asoc.2018.11.042_b23 article-title: Optimal power flow solutions incorporating stochastic wind and solar power publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2017.06.071 – year: 2016 ident: 10.1016/j.asoc.2018.11.042_b28 article-title: Problem definitions and evaluation criteria for the CEC 2017 special session and competition on single objective bound constrained real-parameter numerical optimization – volume: 75 start-page: 194 year: 2016 ident: 10.1016/j.asoc.2018.11.042_b18 article-title: A two-point estimate method for uncertainty modeling in multi-objective optimal reactive power dispatch problem publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2015.08.009 – volume: 11 start-page: 815 issue: 4 year: 2017 ident: 10.1016/j.asoc.2018.11.042_b21 article-title: Optimal reactive power dispatch: a review, and a new stochastic voltage stability constrained multi-objective model at the presence of uncertain wind power generation publication-title: IET Gener. Transm. Distrib. doi: 10.1049/iet-gtd.2016.1545 – volume: 2 start-page: 221 issue: 3 year: 1994 ident: 10.1016/j.asoc.2018.11.042_b42 article-title: Muiltiobjective optimization using nondominated sorting in genetic algorithms publication-title: Evol. Comput. doi: 10.1162/evco.1994.2.3.221 – start-page: 83 year: 2017 ident: 10.1016/j.asoc.2018.11.042_b29 article-title: Optimal placement of wind turbines in a windfarm using L-SHADE algorithm – volume: 132 start-page: 425 year: 2018 ident: 10.1016/j.asoc.2018.11.042_b30 article-title: Parameter estimation of solar cells using datasheet information with the application of an adaptive differential evolution algorithm publication-title: Renew. Energy doi: 10.1016/j.renene.2018.07.152 – year: 2017 ident: 10.1016/j.asoc.2018.11.042_b15 article-title: Optimal reactive power dispatch problem using a two-archive multi-objective Grey Wolf optimizer publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.06.009 – start-page: 475 year: 2017 ident: 10.1016/j.asoc.2018.11.042_b22 article-title: Multi-objective optimal reactive power dispatch considering uncertainties in the wind integrated power systems – start-page: 745 issue: 3 year: 1974 ident: 10.1016/j.asoc.2018.11.042_b35 article-title: Optimal load flow with steady-state security publication-title: IEEE Trans. Power Appar. Syst. doi: 10.1109/TPAS.1974.293972 – volume: 53 start-page: 441 year: 2017 ident: 10.1016/j.asoc.2018.11.042_b13 article-title: A novel fuzzy adaptive configuration of particle swarm optimization to solve large-scale optimal reactive power dispatch publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.01.012 – volume: 50 start-page: 58 year: 2017 ident: 10.1016/j.asoc.2018.11.042_b8 article-title: Optimal reactive power dispatch by improved GSA-based algorithm with the novel strategies to handle constraints publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2016.11.008 – volume: 35 start-page: 350 issue: 1 year: 2016 ident: 10.1016/j.asoc.2018.11.042_b16 article-title: Multi-objective enhanced PSO algorithm for optimizing power losses and voltage deviation in power systems publication-title: COMPEL: Int. J. Comput. Math. Electr. Electron. Eng. doi: 10.1108/COMPEL-02-2015-0030 – volume: 61 start-page: 486 year: 2017 ident: 10.1016/j.asoc.2018.11.042_b31 article-title: Minimizing harmonic distortion in power system with optimal design of hybrid active power filter using differential evolution publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.08.031 – volume: 59 start-page: 210 year: 2017 ident: 10.1016/j.asoc.2018.11.042_b6 article-title: Optimal reactive power dispatch solution by loss minimization using moth-flame optimization technique publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.05.057 |
SSID | ssj0016928 |
Score | 2.6082423 |
Snippet | Optimizing reactive power flow in electrical network is an important aspect of system study as the reactive power supports network voltage which needs to be... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 616 |
SubjectTerms | Epsilon constraint handling Optimal reactive power dispatch Scenario-based approach Solar power Success history based adaptive differential evolution Wind power |
Title | Optimal reactive power dispatch with uncertainties in load demand and renewable energy sources adopting scenario-based approach |
URI | https://dx.doi.org/10.1016/j.asoc.2018.11.042 |
Volume | 75 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvXjxLdZH2YM3SZvHZpMcS7HUVxW10FvYVyHSJkUr3vSvO5NsioL04CGEhBkIO7Pz2Mx8Q8i5ZL7hLJKODLlyWGDQDsbKmbo6ETFkPn6IjcJ3Iz4cs-tJOGmQft0Lg2WV1vZXNr201vZN165md5Fl3SfIPGKWMA5KCSaXISYoYxFqeedzVebh8aScr4rEDlLbxpmqxkvACmB5V9xBJE_m_-2cfjicwQ7ZspEi7VUfs0saJt8j2_UUBmo35T75uoddPwdKCP9K40UXOPmM6gyMBciE4lErBfdV_fxHAFWa5XRWCE21mYtcU7wQ2vID-6ioKdsBaXWs_0aFLhZYG00R9wky68JBzwdMFo38gIwHl8_9oWPHKjgKsrelE3A3kImvY21cAf6Z-cJTEiIRGbtaer6EjINzFeFQ4hAR65iOeKQUCE57YaSCQ9LMi9wcEQrxHhfMqNg12MIlIJyLIwkxkVIeD71pi3j1eqbKYo7j6ItZWheXvaQogxRlAMlICjJokYsVz6JC3FhLHdZiSn_pTQouYQ3f8T_5TsgmPCVV3fYpaS5f380ZhCVL2S71rk02ev3H2we8X90MR99eR-Q9 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VdoCFN6I8PbCh0CR1nGSsKlBLHwxQqVvkF1JRm1ZQxMhf565xKpAQA0OWxCdFPvvuO_vuO4ArxUMreKw8FQnt8aYlO5ho79k3qUww8gkjKhQeDEVnxO_H0bgC7bIWhtIqne0vbPrKWrs3DTebjcVk0njEyCPhKRe4KNHkcr4BNWKniqpQa3V7neH6MkGkqxarNN4jAVc7U6R5SZwEyvBKbojMk4e_-6dvPuduF7YdWGSt4n_2oGLzfdgpGzEwty8P4PMBN_4MRyICXNkvtqDmZ8xM0F6gWhidtjL0YMX9P3GosknOpnNpmLEzmRtGD7FbflApFbOrikBWnOy_MWnmC0qPZkT9hMH13CPnh0KOkPwQRne3T-2O5zoreBoDuKXXFH5TpaFJjPUlumgeykArBCMq8Y0KQoVBhxA6pr7EEZHWcROLWGvUnQmiWDePoJrPc3sMDCGfkNzqxLdUxSUR0SWxQlikdSCi4LkOQTmfmXa049T9YpqV-WUvGekgIx1gPJKhDupwvZZZFKQbf46OSjVlP5ZOhl7hD7mTf8pdwmbnadDP-t1h7xS28EtapHGfQXX5-m7PEaUs1YVbhV8NtOVZ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+reactive+power+dispatch+with+uncertainties+in+load+demand+and+renewable+energy+sources+adopting+scenario-based+approach&rft.jtitle=Applied+soft+computing&rft.au=Biswas%2C+Partha+P.&rft.au=Suganthan%2C+P.N.&rft.au=Mallipeddi%2C+R.&rft.au=Amaratunga%2C+Gehan+A.J.&rft.date=2019-02-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.eissn=1872-9681&rft.volume=75&rft.spage=616&rft.epage=632&rft_id=info:doi/10.1016%2Fj.asoc.2018.11.042&rft.externalDocID=S1568494618306744 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |