Evolutionary rate analyses of orthologs and paralogs from 12 Drosophila genomes
The newly sequenced genome sequences of 11 Drosophila species provide the first opportunity to investigate variations in evolutionary rates across a clade of closely related species. Protein-coding genes were predicted using established Drosophila melanogaster genes as templates, with recovery rates...
Saved in:
Published in | Genome Research Vol. 17; no. 12; pp. 1837 - 1849 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Cold Spring Harbor Laboratory Press
01.12.2007
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The newly sequenced genome sequences of 11
Drosophila
species provide the first opportunity to investigate variations in evolutionary rates across a clade of closely related species. Protein-coding genes were predicted using established
Drosophila melanogaster
genes as templates, with recovery rates ranging from 81%–97% depending on species divergence and on genome assembly quality. Orthology and paralogy assignments were shown to be self-consistent among the different
Drosophila
species and to be consistent with regions of conserved gene order (synteny blocks). Next, we investigated the rates of diversification among these species’ gene repertoires with respect to amino acid substitutions and to gene duplications. Constraints on amino acid sequences appear to have been most pronounced on
D. ananassae
and least pronounced on
D. simulans
and
D. erecta
terminal lineages. Codons predicted to have been subject to positive selection were found to be significantly over-represented among genes with roles in immune response and RNA metabolism, with the latter category including each subunit of the Dicer-2/r2d2 heterodimer. The vast majority of gene duplications (96.5%) and synteny rearrangements were found to occur, as expected, within single Müller elements. We show that the rate of ancient gene duplications was relatively uniform. However, gene duplications in terminal lineages are strongly skewed toward very recent events, consistent with either a rapid-birth and rapid-death model or the presence of large proportions of copy number variable genes in these
Drosophila
populations. Duplications were significantly more frequent among trypsin-like proteases and DM8 putative lipid-binding domain proteins. |
---|---|
AbstractList | The newly sequenced genome sequences of 11 Drosophila species provide the first opportunity to investigate variations in evolutionary rates across a clade of closely related species. Protein-coding genes were predicted using established Drosophila melanogaster genes as templates, with recovery rates ranging from 81%-97% depending on species divergence and on genome assembly quality. Orthology and paralogy assignments were shown to be self-consistent among the different Drosophila species and to be consistent with regions of conserved gene order (synteny blocks). Next, we investigated the rates of diversification among these species' gene repertoires with respect to amino acid substitutions and to gene duplications. Constraints on amino acid sequences appear to have been most pronounced on D. ananassae and least pronounced on D. simulans and D. erecta terminal lineages. Codons predicted to have been subject to positive selection were found to be significantly over-represented among genes with roles in immune response and RNA metabolism, with the latter category including each subunit of the Dicer-2/r2d2 heterodimer. The vast majority of gene duplications (96.5%) and synteny rearrangements were found to occur, as expected, within single Müller elements. We show that the rate of ancient gene duplications was relatively uniform. However, gene duplications in terminal lineages are strongly skewed toward very recent events, consistent with either a rapid-birth and rapid-death model or the presence of large proportions of copy number variable genes in these Drosophila populations. Duplications were significantly more frequent among trypsin-like proteases and DM8 putative lipid-binding domain proteins. The newly sequenced genome sequences of 11 Drosophila species provide the first opportunity to investigate variations in evolutionary rates across a clade of closely related species. Protein-coding genes were predicted using established Drosophila melanogaster genes as templates, with recovery rates ranging from 81%-97% depending on species divergence and on genome assembly quality. Orthology and paralogy assignments were shown to be self-consistent among the different Drosophila species and to be consistent with regions of conserved gene order (synteny blocks). Next, we investigated the rates of diversification among these species' gene repertoires with respect to amino acid substitutions and to gene duplications. Constraints on amino acid sequences appear to have been most pronounced on D. ananassae and least pronounced on D. simulans and D. erecta terminal lineages. Codons predicted to have been subject to positive selection were found to be significantly over-represented among genes with roles in immune response and RNA metabolism, with the latter category including each subunit of the Dicer-2/r2d2 heterodimer. The vast majority of gene duplications (96.5%) and synteny rearrangements were found to occur, as expected, within single Müller elements. We show that the rate of ancient gene duplications was relatively uniform. However, gene duplications in terminal lineages are strongly skewed toward very recent events, consistent with either a rapid-birth and rapid-death model or the presence of large proportions of copy number variable genes in these Drosophila populations. Duplications were significantly more frequent among trypsin-like proteases and DM8 putative lipid-binding domain proteins.The newly sequenced genome sequences of 11 Drosophila species provide the first opportunity to investigate variations in evolutionary rates across a clade of closely related species. Protein-coding genes were predicted using established Drosophila melanogaster genes as templates, with recovery rates ranging from 81%-97% depending on species divergence and on genome assembly quality. Orthology and paralogy assignments were shown to be self-consistent among the different Drosophila species and to be consistent with regions of conserved gene order (synteny blocks). Next, we investigated the rates of diversification among these species' gene repertoires with respect to amino acid substitutions and to gene duplications. Constraints on amino acid sequences appear to have been most pronounced on D. ananassae and least pronounced on D. simulans and D. erecta terminal lineages. Codons predicted to have been subject to positive selection were found to be significantly over-represented among genes with roles in immune response and RNA metabolism, with the latter category including each subunit of the Dicer-2/r2d2 heterodimer. The vast majority of gene duplications (96.5%) and synteny rearrangements were found to occur, as expected, within single Müller elements. We show that the rate of ancient gene duplications was relatively uniform. However, gene duplications in terminal lineages are strongly skewed toward very recent events, consistent with either a rapid-birth and rapid-death model or the presence of large proportions of copy number variable genes in these Drosophila populations. Duplications were significantly more frequent among trypsin-like proteases and DM8 putative lipid-binding domain proteins. The newly sequenced genome sequences of 11 Drosophila species provide the first opportunity to investigate variations in evolutionary rates across a clade of closely related species. Protein-coding genes were predicted using established Drosophila melanogaster genes as templates, with recovery rates ranging from 81%–97% depending on species divergence and on genome assembly quality. Orthology and paralogy assignments were shown to be self-consistent among the different Drosophila species and to be consistent with regions of conserved gene order (synteny blocks). Next, we investigated the rates of diversification among these species’ gene repertoires with respect to amino acid substitutions and to gene duplications. Constraints on amino acid sequences appear to have been most pronounced on D. ananassae and least pronounced on D. simulans and D. erecta terminal lineages. Codons predicted to have been subject to positive selection were found to be significantly over-represented among genes with roles in immune response and RNA metabolism, with the latter category including each subunit of the Dicer-2/r2d2 heterodimer. The vast majority of gene duplications (96.5%) and synteny rearrangements were found to occur, as expected, within single Müller elements. We show that the rate of ancient gene duplications was relatively uniform. However, gene duplications in terminal lineages are strongly skewed toward very recent events, consistent with either a rapid-birth and rapid-death model or the presence of large proportions of copy number variable genes in these Drosophila populations. Duplications were significantly more frequent among trypsin-like proteases and DM8 putative lipid-binding domain proteins. The newly sequenced genome sequences of 11 Drosophila species provide the first opportunity to investigate variations in evolutionary rates across a clade of closely related species. Protein-coding genes were predicted using established Drosophila melanogaster genes as templates, with recovery rates ranging from 81%-97% depending on species divergence and on genome assembly quality. Orthology and paralogy assignments were shown to be self-consistent among the different Drosophila species and to be consistent with regions of conserved gene order (synteny blocks). Next, we investigated the rates of diversification among these species' gene repertoires with respect to amino acid substitutions and to gene duplications. Constraints on amino acid sequences appear to have been most pronounced on D. ananassae and least pronounced on D. simulans and D. erecta terminal lineages. Codons predicted to have been subject to positive selection were found to be significantly over-represented among genes with roles in immune response and RNA metabolism, with the latter category including each subunit of the Dicer-2/r2d2 heterodimer. The vast majority of gene duplications (96.5%) and synteny rearrangements were found to occur, as expected, within single Mueller elements. We show that the rate of ancient gene duplications was relatively uniform. However, gene duplications in terminal lineages are strongly skewed toward very recent events, consistent with either a rapid-birth and rapid-death model or the presence of large proportions of copy number variable genes in these Drosophila populations. Duplications were significantly more frequent among trypsin-like proteases and DM8 putative lipid-binding domain proteins. |
Author | Heger, Andreas Ponting, Chris P. |
AuthorAffiliation | MRC Functional Genetics Unit, University of Oxford, Department of Physiology, Anatomy and Genetics, Oxford OX1 3QX, United Kingdom |
AuthorAffiliation_xml | – name: MRC Functional Genetics Unit, University of Oxford, Department of Physiology, Anatomy and Genetics, Oxford OX1 3QX, United Kingdom |
Author_xml | – sequence: 1 givenname: Andreas surname: Heger fullname: Heger, Andreas – sequence: 2 givenname: Chris P. surname: Ponting fullname: Ponting, Chris P. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/17989258$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctOwzAQRS1URB-w4QNQViyQAuM4ie0NEoLykJC6gbU1Se00KImLnSLx97i0VDwWrDz2nLm6vjMmg852mpBjCueUAr2o3HmepJID3yMjmqUyztJcDkINQsQSMjokY-9fAIClQhyQIeVSyCQTIzKbvtlm1de2Q_ceOex1hB027177yJrIun5hG1v58DqPlujw82KcbSOaRDfOertc1A1Gle5sq_0h2TfYeH20PSfk-Xb6dH0fP87uHq6vHuMyBd7HDBLOC2NKyQrBUFNmOAqAUlCZU4lMpCYxAgRCPk9R51Ag18IAlhSLgrIJudzoLldFq-el7vrgTS1d3YaPKIu1-tnp6oWq7JtKQMpMJkHgdCvg7OtK-161tS9102Cn7cqrXELKM8b-BakUQoLgATz5bmnn5SvsAMAGKENs3mmjyrrHdfbBYd0oCmq9T1U5td1nGDn7NbJT_Qt_AN3DofI |
CitedBy_id | crossref_primary_10_1186_gb_2010_11_6_r68 crossref_primary_10_3390_insects10100368 crossref_primary_10_1093_jhered_esy041 crossref_primary_10_1093_gbe_evz212 crossref_primary_10_1101_gr_076588_108 crossref_primary_10_3389_fevo_2018_00063 crossref_primary_10_1093_molbev_msz203 crossref_primary_10_1111_jeb_12331 crossref_primary_10_1186_1471_2164_10_62 crossref_primary_10_1080_22221751_2019_1657785 crossref_primary_10_12688_f1000research_135250_2 crossref_primary_10_12688_f1000research_135250_1 crossref_primary_10_1093_molbev_mss133 crossref_primary_10_1186_1741_7007_8_26 crossref_primary_10_1016_j_sbi_2008_02_007 crossref_primary_10_1093_jhered_esu003 crossref_primary_10_1093_bioinformatics_btab735 crossref_primary_10_1016_j_ydbio_2012_09_014 crossref_primary_10_1093_molbev_msp039 crossref_primary_10_1186_1471_2164_14_95 crossref_primary_10_1093_gbe_evt060 crossref_primary_10_1534_genetics_117_300567 crossref_primary_10_1371_journal_pone_0237744 crossref_primary_10_1093_molbev_msq080 crossref_primary_10_7717_peerj_17482 crossref_primary_10_1038_s41598_022_19565_y crossref_primary_10_1038_hdy_2008_49 crossref_primary_10_1534_genetics_112_145714 crossref_primary_10_1093_molbev_mss263 crossref_primary_10_3390_genes2010131 crossref_primary_10_1186_gb_2013_14_3_r28 crossref_primary_10_1002_ajpa_21439 crossref_primary_10_1093_molbev_msr304 crossref_primary_10_1016_j_meegid_2010_04_002 crossref_primary_10_1101_gr_115949_110 crossref_primary_10_1093_gbe_evy183 crossref_primary_10_1534_genetics_109_101386 crossref_primary_10_1093_gbe_evu026 crossref_primary_10_1111_evo_12129 crossref_primary_10_1111_j_1365_294X_2008_03954_x crossref_primary_10_1093_nar_gkaa1026 crossref_primary_10_1098_rstb_2008_0168 crossref_primary_10_1371_journal_pgen_1000698 crossref_primary_10_1159_000370099 crossref_primary_10_1093_gbe_evq069 crossref_primary_10_1002_jez_b_22453 crossref_primary_10_1016_j_celrep_2014_12_008 crossref_primary_10_1371_journal_pgen_1000330 crossref_primary_10_1186_gb_2009_10_7_r75 crossref_primary_10_1007_s00438_017_1339_8 crossref_primary_10_1007_s00239_009_9236_3 crossref_primary_10_1186_s12864_015_1870_0 crossref_primary_10_1016_j_margen_2011_02_001 crossref_primary_10_1111_evo_14319 crossref_primary_10_1098_rsob_130063 crossref_primary_10_1093_molbev_msp107 crossref_primary_10_5713_ajas_14_0767 crossref_primary_10_1093_bioinformatics_bts661 crossref_primary_10_1186_1471_2164_13_207 crossref_primary_10_1098_rspb_2014_2050 crossref_primary_10_1371_journal_pgen_1001255 crossref_primary_10_1016_j_tig_2020_07_008 crossref_primary_10_1186_1756_0500_4_305 crossref_primary_10_1098_rspb_2012_0776 crossref_primary_10_1371_journal_pntd_0004421 crossref_primary_10_1093_g3journal_jkaf017 crossref_primary_10_1534_g3_115_021402 crossref_primary_10_1093_g3journal_jkab333 crossref_primary_10_1093_gbe_evv219 crossref_primary_10_3389_fcell_2022_1088055 crossref_primary_10_1371_journal_pone_0178643 crossref_primary_10_1016_j_ijbiomac_2016_04_023 crossref_primary_10_1038_nature06936 crossref_primary_10_1111_j_1365_2583_2009_00976_x crossref_primary_10_1093_molbev_msq280 crossref_primary_10_1371_journal_pgen_1010598 crossref_primary_10_1093_gbe_evr086 crossref_primary_10_1093_gbe_evt021 crossref_primary_10_1093_gbe_evt023 crossref_primary_10_1007_s00239_009_9254_1 crossref_primary_10_1371_journal_pcbi_1002275 crossref_primary_10_1098_rstb_2009_0318 crossref_primary_10_1093_gbe_evaa094 crossref_primary_10_1093_jhered_esp047 crossref_primary_10_1093_bioinformatics_btr592 crossref_primary_10_1098_rspb_2011_2571 crossref_primary_10_1371_journal_pgen_1000305 crossref_primary_10_1038_nature09634 crossref_primary_10_1186_1471_2164_13_70 crossref_primary_10_1093_gbe_evz191 crossref_primary_10_1093_gbe_evr072 crossref_primary_10_1093_gbe_evr074 crossref_primary_10_1093_molbev_msx168 crossref_primary_10_1111_evo_12978 crossref_primary_10_1016_j_ympev_2017_04_023 crossref_primary_10_1534_genetics_117_300583 crossref_primary_10_1007_s00360_008_0263_y crossref_primary_10_1093_gbe_evz185 crossref_primary_10_1038_nrg2413 crossref_primary_10_1186_1471_2148_11_258 crossref_primary_10_1093_molbev_msp295 |
Cites_doi | 10.1093/genetics/144.3.1297 10.1093/genetics/157.1.245 10.1038/246096a0 10.1101/gr.1865504 10.1371/journal.pgen.0020173 10.1101/gr.6093907 10.1126/science.287.5461.2216 10.1101/gr.3059305 10.1534/genetics.105.049676 10.1534/genetics.107.070466 10.1186/gb-2002-3-12-research0086 10.1038/nature01262 10.1101/gr.198701 10.1126/science.290.5494.1151 10.1016/j.molimm.2006.12.024 10.1101/gr.3726705 10.1371/journal.pcbi.0020133 10.1038/384346a0 10.1093/oxfordjournals.molbev.a004148 10.1016/S0965-1748(98)00123-4 10.1126/science.1088710 10.1093/nar/gkj133 10.1093/molbev/msl090 10.1073/pnas.0506461102 10.1016/j.cub.2006.01.065 10.1038/nature02426 10.1186/1471-2105-6-31 10.1038/nature03001 10.1007/s00239-001-0044-7 10.1534/genetics.104.032144 10.1371/journal.pgen.0030007 10.1073/pnas.0630561100 10.1007/s00441-002-0524-0 10.1073/pnas.97.21.11427 10.1038/nrg733 10.1534/genetics.105.045435 10.1093/genetics/119.4.875 10.1101/gr.162901 10.1093/nar/gkj068 10.1007/s00239-003-2510-x 10.1093/nar/25.17.3389 10.1093/hmg/ddg078 10.1101/gr.1940604 10.1016/S0378-1119(02)01187-3 10.1016/S0968-0004(02)02084-4 10.1038/nrg928 10.1038/nature06341 10.1038/75556 |
ContentType | Journal Article |
Copyright | Copyright © 2007, Cold Spring Harbor Laboratory Press 2007 |
Copyright_xml | – notice: Copyright © 2007, Cold Spring Harbor Laboratory Press 2007 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SS 7TM 8FD FR3 P64 RC3 7X8 5PM |
DOI | 10.1101/gr.6249707 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Entomology Abstracts (Full archive) Nucleic Acids Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Entomology Abstracts Genetics Abstracts Engineering Research Database Technology Research Database Nucleic Acids Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef Entomology Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry Biology |
DocumentTitleAlternate | Evolutionary rates from 12 Drosophila genomes |
EISSN | 1549-5469 1549-5477 |
EndPage | 1849 |
ExternalDocumentID | PMC2099592 17989258 10_1101_gr_6249707 |
Genre | Validation Study Comparative Study Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Medical Research Council grantid: MC_U137761446 |
GroupedDBID | --- .GJ 18M 29H 2WC 39C 4.4 53G 5GY 5RE 5VS AAFWJ AAYOK AAYXX AAZTW ABDIX ABDNZ ACGFO ACLKE ACYGS ADBBV ADNWM AEILP AENEX AHPUY AI. ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW C1A CITATION CS3 DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HYE IH2 K-O KQ8 MV1 R.V RCX RHI RNS RPM RXW SJN TAE TR2 VH1 W8F WOQ YKV ZCG ZGI ZXP CGR CUY CVF ECM EIF NPM 7SS 7TM 8FD FR3 P64 RC3 7X8 -DZ -~X .-4 .55 0VX 5PM 85S ABCQX ACNCT ADIYS ADXHL AETEA AFFNX H~9 L7B MVM N9A OK1 P2P TN5 UHB WH7 X7M XJT XSW YBU YHG YSK ZY4 |
ID | FETCH-LOGICAL-c407t-30277bffc93b83ae13f7a800c819619a384f2f808a06d4ae60ba7e8f0ac1abb13 |
ISSN | 1088-9051 |
IngestDate | Thu Aug 21 18:45:43 EDT 2025 Fri Jul 11 08:27:33 EDT 2025 Fri Jul 11 05:27:33 EDT 2025 Mon Jul 21 05:44:42 EDT 2025 Tue Jul 01 02:20:32 EDT 2025 Thu Apr 24 22:53:40 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | Freely available online through the Genome Research Open Access option. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c407t-30277bffc93b83ae13f7a800c819619a384f2f808a06d4ae60ba7e8f0ac1abb13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 ObjectType-Undefined-3 |
OpenAccessLink | https://genome.cshlp.org/content/17/12/1837.full.pdf |
PMID | 17989258 |
PQID | 19889087 |
PQPubID | 23462 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2099592 proquest_miscellaneous_69047533 proquest_miscellaneous_19889087 pubmed_primary_17989258 crossref_citationtrail_10_1101_gr_6249707 crossref_primary_10_1101_gr_6249707 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2007-12-00 2007-Dec 20071201 |
PublicationDateYYYYMMDD | 2007-12-01 |
PublicationDate_xml | – month: 12 year: 2007 text: 2007-12-00 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Genome Research |
PublicationTitleAlternate | Genome Res |
PublicationYear | 2007 |
Publisher | Cold Spring Harbor Laboratory Press |
Publisher_xml | – name: Cold Spring Harbor Laboratory Press |
References | 2021111811034595000_17.12.1837.20 2021111811034595000_17.12.1837.21 2021111811034595000_17.12.1837.22 2021111811034595000_17.12.1837.23 2021111811034595000_17.12.1837.24 2021111811034595000_17.12.1837.25 2021111811034595000_17.12.1837.26 2021111811034595000_17.12.1837.27 2021111811034595000_17.12.1837.28 2021111811034595000_17.12.1837.29 2021111811034595000_17.12.1837.10 2021111811034595000_17.12.1837.11 2021111811034595000_17.12.1837.12 2021111811034595000_17.12.1837.13 2021111811034595000_17.12.1837.14 2021111811034595000_17.12.1837.15 2021111811034595000_17.12.1837.50 2021111811034595000_17.12.1837.16 2021111811034595000_17.12.1837.18 2021111811034595000_17.12.1837.19 Felsenstein (2021111811034595000_17.12.1837.17) 1989; 5 2021111811034595000_17.12.1837.9 2021111811034595000_17.12.1837.41 2021111811034595000_17.12.1837.42 2021111811034595000_17.12.1837.7 2021111811034595000_17.12.1837.43 2021111811034595000_17.12.1837.8 Akashi (2021111811034595000_17.12.1837.1) 1996; 144 2021111811034595000_17.12.1837.45 2021111811034595000_17.12.1837.6 2021111811034595000_17.12.1837.46 2021111811034595000_17.12.1837.3 2021111811034595000_17.12.1837.47 2021111811034595000_17.12.1837.4 2021111811034595000_17.12.1837.48 2021111811034595000_17.12.1837.2 2021111811034595000_17.12.1837.40 Russo (2021111811034595000_17.12.1837.44) 1995; 12 2021111811034595000_17.12.1837.49 McVean (2021111811034595000_17.12.1837.32) 2001; 157 2021111811034595000_17.12.1837.30 2021111811034595000_17.12.1837.31 2021111811034595000_17.12.1837.33 2021111811034595000_17.12.1837.34 2021111811034595000_17.12.1837.35 2021111811034595000_17.12.1837.36 2021111811034595000_17.12.1837.37 Aquadro (2021111811034595000_17.12.1837.5) 1988; 119 2021111811034595000_17.12.1837.38 2021111811034595000_17.12.1837.39 |
References_xml | – volume: 144 start-page: 1297 year: 1996 ident: 2021111811034595000_17.12.1837.1 article-title: Molecular evolution between Drosophila melanogaster and D. simulans: Reduced codon bias, faster rates of amino acid substitution, and larger proteins in D. melanogaster publication-title: Genetics doi: 10.1093/genetics/144.3.1297 – volume: 157 start-page: 245 year: 2001 ident: 2021111811034595000_17.12.1837.32 article-title: Inferring parameters of mutation, selection and demography from patterns of synonymous site evolution in Drosophila publication-title: Genetics doi: 10.1093/genetics/157.1.245 – ident: 2021111811034595000_17.12.1837.35 doi: 10.1038/246096a0 – ident: 2021111811034595000_17.12.1837.11 doi: 10.1101/gr.1865504 – ident: 2021111811034595000_17.12.1837.37 doi: 10.1371/journal.pgen.0020173 – ident: 2021111811034595000_17.12.1837.20 doi: 10.1101/gr.6093907 – ident: 2021111811034595000_17.12.1837.43 doi: 10.1126/science.287.5461.2216 – ident: 2021111811034595000_17.12.1837.41 doi: 10.1101/gr.3059305 – ident: 2021111811034595000_17.12.1837.2 doi: 10.1534/genetics.105.049676 – ident: 2021111811034595000_17.12.1837.22 doi: 10.1534/genetics.107.070466 – ident: 2021111811034595000_17.12.1837.8 doi: 10.1186/gb-2002-3-12-research0086 – ident: 2021111811034595000_17.12.1837.48 doi: 10.1038/nature01262 – ident: 2021111811034595000_17.12.1837.38 doi: 10.1101/gr.198701 – ident: 2021111811034595000_17.12.1837.30 doi: 10.1126/science.290.5494.1151 – ident: 2021111811034595000_17.12.1837.4 doi: 10.1016/j.molimm.2006.12.024 – ident: 2021111811034595000_17.12.1837.6 doi: 10.1101/gr.3726705 – ident: 2021111811034595000_17.12.1837.19 doi: 10.1371/journal.pcbi.0020133 – ident: 2021111811034595000_17.12.1837.36 doi: 10.1038/384346a0 – ident: 2021111811034595000_17.12.1837.50 doi: 10.1093/oxfordjournals.molbev.a004148 – ident: 2021111811034595000_17.12.1837.47 doi: 10.1016/S0965-1748(98)00123-4 – ident: 2021111811034595000_17.12.1837.29 doi: 10.1126/science.1088710 – ident: 2021111811034595000_17.12.1837.12 doi: 10.1093/nar/gkj133 – ident: 2021111811034595000_17.12.1837.9 doi: 10.1093/molbev/msl090 – ident: 2021111811034595000_17.12.1837.13 doi: 10.1073/pnas.0506461102 – ident: 2021111811034595000_17.12.1837.34 doi: 10.1016/j.cub.2006.01.065 – ident: 2021111811034595000_17.12.1837.18 doi: 10.1038/nature02426 – ident: 2021111811034595000_17.12.1837.45 doi: 10.1186/1471-2105-6-31 – ident: 2021111811034595000_17.12.1837.25 doi: 10.1038/nature03001 – ident: 2021111811034595000_17.12.1837.10 doi: 10.1007/s00239-001-0044-7 – ident: 2021111811034595000_17.12.1837.31 doi: 10.1534/genetics.104.032144 – ident: 2021111811034595000_17.12.1837.23 doi: 10.1371/journal.pgen.0030007 – ident: 2021111811034595000_17.12.1837.33 doi: 10.1073/pnas.0630561100 – ident: 2021111811034595000_17.12.1837.49 doi: 10.1007/s00441-002-0524-0 – ident: 2021111811034595000_17.12.1837.28 doi: 10.1073/pnas.97.21.11427 – ident: 2021111811034595000_17.12.1837.46 doi: 10.1038/nrg733 – ident: 2021111811034595000_17.12.1837.26 doi: 10.1534/genetics.105.045435 – volume: 12 start-page: 391 year: 1995 ident: 2021111811034595000_17.12.1837.44 article-title: Molecular phylogeny and divergence times of drosophilid species publication-title: Mol. Biol. Evol. – volume: 119 start-page: 875 year: 1988 ident: 2021111811034595000_17.12.1837.5 article-title: The rosy region of Drosophila melanogaster and Drosophila simulans. I. Contrasting levels of naturally occurring DNA restriction map variation and divergence publication-title: Genetics doi: 10.1093/genetics/119.4.875 – ident: 2021111811034595000_17.12.1837.40 doi: 10.1101/gr.162901 – ident: 2021111811034595000_17.12.1837.21 doi: 10.1093/nar/gkj068 – ident: 2021111811034595000_17.12.1837.27 doi: 10.1007/s00239-003-2510-x – ident: 2021111811034595000_17.12.1837.3 doi: 10.1093/nar/25.17.3389 – ident: 2021111811034595000_17.12.1837.15 doi: 10.1093/hmg/ddg078 – volume: 5 start-page: 164 year: 1989 ident: 2021111811034595000_17.12.1837.17 article-title: PHYLIP—Phylogeny inference package (version 3.2) publication-title: Cladistics – ident: 2021111811034595000_17.12.1837.16 doi: 10.1101/gr.1940604 – ident: 2021111811034595000_17.12.1837.42 doi: 10.1016/S0378-1119(02)01187-3 – ident: 2021111811034595000_17.12.1837.24 doi: 10.1016/S0968-0004(02)02084-4 – ident: 2021111811034595000_17.12.1837.39 doi: 10.1038/nrg928 – ident: 2021111811034595000_17.12.1837.14 doi: 10.1038/nature06341 – ident: 2021111811034595000_17.12.1837.7 doi: 10.1038/75556 |
SSID | ssj0003488 ssj0006066 |
Score | 2.2693596 |
Snippet | The newly sequenced genome sequences of 11
Drosophila
species provide the first opportunity to investigate variations in evolutionary rates across a clade of... The newly sequenced genome sequences of 11 Drosophila species provide the first opportunity to investigate variations in evolutionary rates across a clade of... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1837 |
SubjectTerms | Animals Conserved Sequence Drosophila melanogaster Drosophila melanogaster - genetics Drosophila melanogaster - metabolism Drosophila Proteins - genetics Drosophila simulans Evolution, Molecular Genetic Variation Genome, Insect Genomes/Letter Sequence Homology, Nucleic Acid Synteny - genetics |
Title | Evolutionary rate analyses of orthologs and paralogs from 12 Drosophila genomes |
URI | https://www.ncbi.nlm.nih.gov/pubmed/17989258 https://www.proquest.com/docview/19889087 https://www.proquest.com/docview/69047533 https://pubmed.ncbi.nlm.nih.gov/PMC2099592 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3rb9MwELfQEIIvCDYeZTwsgZBQlc6Jncb-OMpgAgZF2qR9i5zEKZO6ZOo6JPjrubOdR0uFYF-ixHXzul_Od_bd7wh5VeZMaUBOoMH9CIQ2PNBRYQKlkVsdlAOzVSKOvowPT8TH0_i0Cyuy2SXLbJT_2phXch2pQhvIFbNk_0Oy7UmhAfZBvrAFCcP2n2R88MOfHkPfkPNhqC3HiCOSxRUZVG2OhRk5vu2BTSgJo-G7hS1hcDbXWEa5bjJBvKH6wTa1gXndlOnMl7_GQEjdGuTT2lacaOkKhtPRynxCshabMannYOjaSUXMIwIgDj87OOKafz8uBNUl6KgAGb7caOJVqFBBLHxxlkbHJn0sRT2NCSol6Y2-4HCqzZrdVhSYLUZjcBgTVym3J-KLcytjpF9TkSODX-PRnh5NME04VjBg34zAqcB6F5--ddzyXMjuAP06l5vhHtAz28Jd7HX3gIyz_oKrZs0fvsp6yG3Phjm-R-5654PuOyTdJzdMtU129it46-c_6Wtqw4HtOss2ufW22bs9aYoC7pCvfchRhBxtIEfrkraQg9aCNpCjCDkaRrSDHPWQe0BO3h8cTw4DX5MjyMH1Xwa4zJ1kZZkrnkmuTcjLRIPTkYNlCb645lKUUSmZ1GxcwKc_ZplOjCyZzkOdZSF_SLaqujKPCUXTPi6YKUXBhQ7B1SiipBC8iDJZmCQekDfNK01zT1iPdVPmqXVcWZjOFqmXxIC8bPteOJqWjb1eNJJJ4b3h0piuTH11mYZKSsXkX3qMFRPg2vMBeeQk2V3HQ2BAkhUZtx2QwX31l-rsu2Vy94B8cu1_7pI73Tf8lGwtF1fmGVjJy-y5BfdvEYW_Lg |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolutionary+rate+analyses+of+orthologs+and+paralogs+from+12+Drosophila+genomes&rft.jtitle=Genome+Research&rft.au=Heger%2C+Andreas&rft.au=Ponting%2C+Chris+P.&rft.date=2007-12-01&rft.pub=Cold+Spring+Harbor+Laboratory+Press&rft.issn=1088-9051&rft.eissn=1549-5477&rft.volume=17&rft.issue=12&rft.spage=1837&rft.epage=1849&rft_id=info:doi/10.1101%2Fgr.6249707&rft_id=info%3Apmid%2F17989258&rft.externalDocID=PMC2099592 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1088-9051&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1088-9051&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1088-9051&client=summon |