Evolutionary rate analyses of orthologs and paralogs from 12 Drosophila genomes

The newly sequenced genome sequences of 11 Drosophila species provide the first opportunity to investigate variations in evolutionary rates across a clade of closely related species. Protein-coding genes were predicted using established Drosophila melanogaster genes as templates, with recovery rates...

Full description

Saved in:
Bibliographic Details
Published inGenome Research Vol. 17; no. 12; pp. 1837 - 1849
Main Authors Heger, Andreas, Ponting, Chris P.
Format Journal Article
LanguageEnglish
Published United States Cold Spring Harbor Laboratory Press 01.12.2007
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The newly sequenced genome sequences of 11 Drosophila species provide the first opportunity to investigate variations in evolutionary rates across a clade of closely related species. Protein-coding genes were predicted using established Drosophila melanogaster genes as templates, with recovery rates ranging from 81%–97% depending on species divergence and on genome assembly quality. Orthology and paralogy assignments were shown to be self-consistent among the different Drosophila species and to be consistent with regions of conserved gene order (synteny blocks). Next, we investigated the rates of diversification among these species’ gene repertoires with respect to amino acid substitutions and to gene duplications. Constraints on amino acid sequences appear to have been most pronounced on D. ananassae and least pronounced on D. simulans and D. erecta terminal lineages. Codons predicted to have been subject to positive selection were found to be significantly over-represented among genes with roles in immune response and RNA metabolism, with the latter category including each subunit of the Dicer-2/r2d2 heterodimer. The vast majority of gene duplications (96.5%) and synteny rearrangements were found to occur, as expected, within single Müller elements. We show that the rate of ancient gene duplications was relatively uniform. However, gene duplications in terminal lineages are strongly skewed toward very recent events, consistent with either a rapid-birth and rapid-death model or the presence of large proportions of copy number variable genes in these Drosophila populations. Duplications were significantly more frequent among trypsin-like proteases and DM8 putative lipid-binding domain proteins.
AbstractList The newly sequenced genome sequences of 11 Drosophila species provide the first opportunity to investigate variations in evolutionary rates across a clade of closely related species. Protein-coding genes were predicted using established Drosophila melanogaster genes as templates, with recovery rates ranging from 81%-97% depending on species divergence and on genome assembly quality. Orthology and paralogy assignments were shown to be self-consistent among the different Drosophila species and to be consistent with regions of conserved gene order (synteny blocks). Next, we investigated the rates of diversification among these species' gene repertoires with respect to amino acid substitutions and to gene duplications. Constraints on amino acid sequences appear to have been most pronounced on D. ananassae and least pronounced on D. simulans and D. erecta terminal lineages. Codons predicted to have been subject to positive selection were found to be significantly over-represented among genes with roles in immune response and RNA metabolism, with the latter category including each subunit of the Dicer-2/r2d2 heterodimer. The vast majority of gene duplications (96.5%) and synteny rearrangements were found to occur, as expected, within single Müller elements. We show that the rate of ancient gene duplications was relatively uniform. However, gene duplications in terminal lineages are strongly skewed toward very recent events, consistent with either a rapid-birth and rapid-death model or the presence of large proportions of copy number variable genes in these Drosophila populations. Duplications were significantly more frequent among trypsin-like proteases and DM8 putative lipid-binding domain proteins.
The newly sequenced genome sequences of 11 Drosophila species provide the first opportunity to investigate variations in evolutionary rates across a clade of closely related species. Protein-coding genes were predicted using established Drosophila melanogaster genes as templates, with recovery rates ranging from 81%-97% depending on species divergence and on genome assembly quality. Orthology and paralogy assignments were shown to be self-consistent among the different Drosophila species and to be consistent with regions of conserved gene order (synteny blocks). Next, we investigated the rates of diversification among these species' gene repertoires with respect to amino acid substitutions and to gene duplications. Constraints on amino acid sequences appear to have been most pronounced on D. ananassae and least pronounced on D. simulans and D. erecta terminal lineages. Codons predicted to have been subject to positive selection were found to be significantly over-represented among genes with roles in immune response and RNA metabolism, with the latter category including each subunit of the Dicer-2/r2d2 heterodimer. The vast majority of gene duplications (96.5%) and synteny rearrangements were found to occur, as expected, within single Müller elements. We show that the rate of ancient gene duplications was relatively uniform. However, gene duplications in terminal lineages are strongly skewed toward very recent events, consistent with either a rapid-birth and rapid-death model or the presence of large proportions of copy number variable genes in these Drosophila populations. Duplications were significantly more frequent among trypsin-like proteases and DM8 putative lipid-binding domain proteins.The newly sequenced genome sequences of 11 Drosophila species provide the first opportunity to investigate variations in evolutionary rates across a clade of closely related species. Protein-coding genes were predicted using established Drosophila melanogaster genes as templates, with recovery rates ranging from 81%-97% depending on species divergence and on genome assembly quality. Orthology and paralogy assignments were shown to be self-consistent among the different Drosophila species and to be consistent with regions of conserved gene order (synteny blocks). Next, we investigated the rates of diversification among these species' gene repertoires with respect to amino acid substitutions and to gene duplications. Constraints on amino acid sequences appear to have been most pronounced on D. ananassae and least pronounced on D. simulans and D. erecta terminal lineages. Codons predicted to have been subject to positive selection were found to be significantly over-represented among genes with roles in immune response and RNA metabolism, with the latter category including each subunit of the Dicer-2/r2d2 heterodimer. The vast majority of gene duplications (96.5%) and synteny rearrangements were found to occur, as expected, within single Müller elements. We show that the rate of ancient gene duplications was relatively uniform. However, gene duplications in terminal lineages are strongly skewed toward very recent events, consistent with either a rapid-birth and rapid-death model or the presence of large proportions of copy number variable genes in these Drosophila populations. Duplications were significantly more frequent among trypsin-like proteases and DM8 putative lipid-binding domain proteins.
The newly sequenced genome sequences of 11 Drosophila species provide the first opportunity to investigate variations in evolutionary rates across a clade of closely related species. Protein-coding genes were predicted using established Drosophila melanogaster genes as templates, with recovery rates ranging from 81%–97% depending on species divergence and on genome assembly quality. Orthology and paralogy assignments were shown to be self-consistent among the different Drosophila species and to be consistent with regions of conserved gene order (synteny blocks). Next, we investigated the rates of diversification among these species’ gene repertoires with respect to amino acid substitutions and to gene duplications. Constraints on amino acid sequences appear to have been most pronounced on D. ananassae and least pronounced on D. simulans and D. erecta terminal lineages. Codons predicted to have been subject to positive selection were found to be significantly over-represented among genes with roles in immune response and RNA metabolism, with the latter category including each subunit of the Dicer-2/r2d2 heterodimer. The vast majority of gene duplications (96.5%) and synteny rearrangements were found to occur, as expected, within single Müller elements. We show that the rate of ancient gene duplications was relatively uniform. However, gene duplications in terminal lineages are strongly skewed toward very recent events, consistent with either a rapid-birth and rapid-death model or the presence of large proportions of copy number variable genes in these Drosophila populations. Duplications were significantly more frequent among trypsin-like proteases and DM8 putative lipid-binding domain proteins.
The newly sequenced genome sequences of 11 Drosophila species provide the first opportunity to investigate variations in evolutionary rates across a clade of closely related species. Protein-coding genes were predicted using established Drosophila melanogaster genes as templates, with recovery rates ranging from 81%-97% depending on species divergence and on genome assembly quality. Orthology and paralogy assignments were shown to be self-consistent among the different Drosophila species and to be consistent with regions of conserved gene order (synteny blocks). Next, we investigated the rates of diversification among these species' gene repertoires with respect to amino acid substitutions and to gene duplications. Constraints on amino acid sequences appear to have been most pronounced on D. ananassae and least pronounced on D. simulans and D. erecta terminal lineages. Codons predicted to have been subject to positive selection were found to be significantly over-represented among genes with roles in immune response and RNA metabolism, with the latter category including each subunit of the Dicer-2/r2d2 heterodimer. The vast majority of gene duplications (96.5%) and synteny rearrangements were found to occur, as expected, within single Mueller elements. We show that the rate of ancient gene duplications was relatively uniform. However, gene duplications in terminal lineages are strongly skewed toward very recent events, consistent with either a rapid-birth and rapid-death model or the presence of large proportions of copy number variable genes in these Drosophila populations. Duplications were significantly more frequent among trypsin-like proteases and DM8 putative lipid-binding domain proteins.
Author Heger, Andreas
Ponting, Chris P.
AuthorAffiliation MRC Functional Genetics Unit, University of Oxford, Department of Physiology, Anatomy and Genetics, Oxford OX1 3QX, United Kingdom
AuthorAffiliation_xml – name: MRC Functional Genetics Unit, University of Oxford, Department of Physiology, Anatomy and Genetics, Oxford OX1 3QX, United Kingdom
Author_xml – sequence: 1
  givenname: Andreas
  surname: Heger
  fullname: Heger, Andreas
– sequence: 2
  givenname: Chris P.
  surname: Ponting
  fullname: Ponting, Chris P.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/17989258$$D View this record in MEDLINE/PubMed
BookMark eNqFkctOwzAQRS1URB-w4QNQViyQAuM4ie0NEoLykJC6gbU1Se00KImLnSLx97i0VDwWrDz2nLm6vjMmg852mpBjCueUAr2o3HmepJID3yMjmqUyztJcDkINQsQSMjokY-9fAIClQhyQIeVSyCQTIzKbvtlm1de2Q_ceOex1hB027177yJrIun5hG1v58DqPlujw82KcbSOaRDfOertc1A1Gle5sq_0h2TfYeH20PSfk-Xb6dH0fP87uHq6vHuMyBd7HDBLOC2NKyQrBUFNmOAqAUlCZU4lMpCYxAgRCPk9R51Ag18IAlhSLgrIJudzoLldFq-el7vrgTS1d3YaPKIu1-tnp6oWq7JtKQMpMJkHgdCvg7OtK-161tS9102Cn7cqrXELKM8b-BakUQoLgATz5bmnn5SvsAMAGKENs3mmjyrrHdfbBYd0oCmq9T1U5td1nGDn7NbJT_Qt_AN3DofI
CitedBy_id crossref_primary_10_1186_gb_2010_11_6_r68
crossref_primary_10_3390_insects10100368
crossref_primary_10_1093_jhered_esy041
crossref_primary_10_1093_gbe_evz212
crossref_primary_10_1101_gr_076588_108
crossref_primary_10_3389_fevo_2018_00063
crossref_primary_10_1093_molbev_msz203
crossref_primary_10_1111_jeb_12331
crossref_primary_10_1186_1471_2164_10_62
crossref_primary_10_1080_22221751_2019_1657785
crossref_primary_10_12688_f1000research_135250_2
crossref_primary_10_12688_f1000research_135250_1
crossref_primary_10_1093_molbev_mss133
crossref_primary_10_1186_1741_7007_8_26
crossref_primary_10_1016_j_sbi_2008_02_007
crossref_primary_10_1093_jhered_esu003
crossref_primary_10_1093_bioinformatics_btab735
crossref_primary_10_1016_j_ydbio_2012_09_014
crossref_primary_10_1093_molbev_msp039
crossref_primary_10_1186_1471_2164_14_95
crossref_primary_10_1093_gbe_evt060
crossref_primary_10_1534_genetics_117_300567
crossref_primary_10_1371_journal_pone_0237744
crossref_primary_10_1093_molbev_msq080
crossref_primary_10_7717_peerj_17482
crossref_primary_10_1038_s41598_022_19565_y
crossref_primary_10_1038_hdy_2008_49
crossref_primary_10_1534_genetics_112_145714
crossref_primary_10_1093_molbev_mss263
crossref_primary_10_3390_genes2010131
crossref_primary_10_1186_gb_2013_14_3_r28
crossref_primary_10_1002_ajpa_21439
crossref_primary_10_1093_molbev_msr304
crossref_primary_10_1016_j_meegid_2010_04_002
crossref_primary_10_1101_gr_115949_110
crossref_primary_10_1093_gbe_evy183
crossref_primary_10_1534_genetics_109_101386
crossref_primary_10_1093_gbe_evu026
crossref_primary_10_1111_evo_12129
crossref_primary_10_1111_j_1365_294X_2008_03954_x
crossref_primary_10_1093_nar_gkaa1026
crossref_primary_10_1098_rstb_2008_0168
crossref_primary_10_1371_journal_pgen_1000698
crossref_primary_10_1159_000370099
crossref_primary_10_1093_gbe_evq069
crossref_primary_10_1002_jez_b_22453
crossref_primary_10_1016_j_celrep_2014_12_008
crossref_primary_10_1371_journal_pgen_1000330
crossref_primary_10_1186_gb_2009_10_7_r75
crossref_primary_10_1007_s00438_017_1339_8
crossref_primary_10_1007_s00239_009_9236_3
crossref_primary_10_1186_s12864_015_1870_0
crossref_primary_10_1016_j_margen_2011_02_001
crossref_primary_10_1111_evo_14319
crossref_primary_10_1098_rsob_130063
crossref_primary_10_1093_molbev_msp107
crossref_primary_10_5713_ajas_14_0767
crossref_primary_10_1093_bioinformatics_bts661
crossref_primary_10_1186_1471_2164_13_207
crossref_primary_10_1098_rspb_2014_2050
crossref_primary_10_1371_journal_pgen_1001255
crossref_primary_10_1016_j_tig_2020_07_008
crossref_primary_10_1186_1756_0500_4_305
crossref_primary_10_1098_rspb_2012_0776
crossref_primary_10_1371_journal_pntd_0004421
crossref_primary_10_1093_g3journal_jkaf017
crossref_primary_10_1534_g3_115_021402
crossref_primary_10_1093_g3journal_jkab333
crossref_primary_10_1093_gbe_evv219
crossref_primary_10_3389_fcell_2022_1088055
crossref_primary_10_1371_journal_pone_0178643
crossref_primary_10_1016_j_ijbiomac_2016_04_023
crossref_primary_10_1038_nature06936
crossref_primary_10_1111_j_1365_2583_2009_00976_x
crossref_primary_10_1093_molbev_msq280
crossref_primary_10_1371_journal_pgen_1010598
crossref_primary_10_1093_gbe_evr086
crossref_primary_10_1093_gbe_evt021
crossref_primary_10_1093_gbe_evt023
crossref_primary_10_1007_s00239_009_9254_1
crossref_primary_10_1371_journal_pcbi_1002275
crossref_primary_10_1098_rstb_2009_0318
crossref_primary_10_1093_gbe_evaa094
crossref_primary_10_1093_jhered_esp047
crossref_primary_10_1093_bioinformatics_btr592
crossref_primary_10_1098_rspb_2011_2571
crossref_primary_10_1371_journal_pgen_1000305
crossref_primary_10_1038_nature09634
crossref_primary_10_1186_1471_2164_13_70
crossref_primary_10_1093_gbe_evz191
crossref_primary_10_1093_gbe_evr072
crossref_primary_10_1093_gbe_evr074
crossref_primary_10_1093_molbev_msx168
crossref_primary_10_1111_evo_12978
crossref_primary_10_1016_j_ympev_2017_04_023
crossref_primary_10_1534_genetics_117_300583
crossref_primary_10_1007_s00360_008_0263_y
crossref_primary_10_1093_gbe_evz185
crossref_primary_10_1038_nrg2413
crossref_primary_10_1186_1471_2148_11_258
crossref_primary_10_1093_molbev_msp295
Cites_doi 10.1093/genetics/144.3.1297
10.1093/genetics/157.1.245
10.1038/246096a0
10.1101/gr.1865504
10.1371/journal.pgen.0020173
10.1101/gr.6093907
10.1126/science.287.5461.2216
10.1101/gr.3059305
10.1534/genetics.105.049676
10.1534/genetics.107.070466
10.1186/gb-2002-3-12-research0086
10.1038/nature01262
10.1101/gr.198701
10.1126/science.290.5494.1151
10.1016/j.molimm.2006.12.024
10.1101/gr.3726705
10.1371/journal.pcbi.0020133
10.1038/384346a0
10.1093/oxfordjournals.molbev.a004148
10.1016/S0965-1748(98)00123-4
10.1126/science.1088710
10.1093/nar/gkj133
10.1093/molbev/msl090
10.1073/pnas.0506461102
10.1016/j.cub.2006.01.065
10.1038/nature02426
10.1186/1471-2105-6-31
10.1038/nature03001
10.1007/s00239-001-0044-7
10.1534/genetics.104.032144
10.1371/journal.pgen.0030007
10.1073/pnas.0630561100
10.1007/s00441-002-0524-0
10.1073/pnas.97.21.11427
10.1038/nrg733
10.1534/genetics.105.045435
10.1093/genetics/119.4.875
10.1101/gr.162901
10.1093/nar/gkj068
10.1007/s00239-003-2510-x
10.1093/nar/25.17.3389
10.1093/hmg/ddg078
10.1101/gr.1940604
10.1016/S0378-1119(02)01187-3
10.1016/S0968-0004(02)02084-4
10.1038/nrg928
10.1038/nature06341
10.1038/75556
ContentType Journal Article
Copyright Copyright © 2007, Cold Spring Harbor Laboratory Press 2007
Copyright_xml – notice: Copyright © 2007, Cold Spring Harbor Laboratory Press 2007
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SS
7TM
8FD
FR3
P64
RC3
7X8
5PM
DOI 10.1101/gr.6249707
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Entomology Abstracts (Full archive)
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Entomology Abstracts
Genetics Abstracts
Engineering Research Database
Technology Research Database
Nucleic Acids Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

CrossRef
Entomology Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Biology
DocumentTitleAlternate Evolutionary rates from 12 Drosophila genomes
EISSN 1549-5469
1549-5477
EndPage 1849
ExternalDocumentID PMC2099592
17989258
10_1101_gr_6249707
Genre Validation Study
Comparative Study
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Medical Research Council
  grantid: MC_U137761446
GroupedDBID ---
.GJ
18M
29H
2WC
39C
4.4
53G
5GY
5RE
5VS
AAFWJ
AAYOK
AAYXX
AAZTW
ABDIX
ABDNZ
ACGFO
ACLKE
ACYGS
ADBBV
ADNWM
AEILP
AENEX
AHPUY
AI.
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
C1A
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HYE
IH2
K-O
KQ8
MV1
R.V
RCX
RHI
RNS
RPM
RXW
SJN
TAE
TR2
VH1
W8F
WOQ
YKV
ZCG
ZGI
ZXP
CGR
CUY
CVF
ECM
EIF
NPM
7SS
7TM
8FD
FR3
P64
RC3
7X8
-DZ
-~X
.-4
.55
0VX
5PM
85S
ABCQX
ACNCT
ADIYS
ADXHL
AETEA
AFFNX
H~9
L7B
MVM
N9A
OK1
P2P
TN5
UHB
WH7
X7M
XJT
XSW
YBU
YHG
YSK
ZY4
ID FETCH-LOGICAL-c407t-30277bffc93b83ae13f7a800c819619a384f2f808a06d4ae60ba7e8f0ac1abb13
ISSN 1088-9051
IngestDate Thu Aug 21 18:45:43 EDT 2025
Fri Jul 11 08:27:33 EDT 2025
Fri Jul 11 05:27:33 EDT 2025
Mon Jul 21 05:44:42 EDT 2025
Tue Jul 01 02:20:32 EDT 2025
Thu Apr 24 22:53:40 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License Freely available online through the Genome Research Open Access option.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c407t-30277bffc93b83ae13f7a800c819619a384f2f808a06d4ae60ba7e8f0ac1abb13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ObjectType-Undefined-3
OpenAccessLink https://genome.cshlp.org/content/17/12/1837.full.pdf
PMID 17989258
PQID 19889087
PQPubID 23462
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2099592
proquest_miscellaneous_69047533
proquest_miscellaneous_19889087
pubmed_primary_17989258
crossref_citationtrail_10_1101_gr_6249707
crossref_primary_10_1101_gr_6249707
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-12-00
2007-Dec
20071201
PublicationDateYYYYMMDD 2007-12-01
PublicationDate_xml – month: 12
  year: 2007
  text: 2007-12-00
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Genome Research
PublicationTitleAlternate Genome Res
PublicationYear 2007
Publisher Cold Spring Harbor Laboratory Press
Publisher_xml – name: Cold Spring Harbor Laboratory Press
References 2021111811034595000_17.12.1837.20
2021111811034595000_17.12.1837.21
2021111811034595000_17.12.1837.22
2021111811034595000_17.12.1837.23
2021111811034595000_17.12.1837.24
2021111811034595000_17.12.1837.25
2021111811034595000_17.12.1837.26
2021111811034595000_17.12.1837.27
2021111811034595000_17.12.1837.28
2021111811034595000_17.12.1837.29
2021111811034595000_17.12.1837.10
2021111811034595000_17.12.1837.11
2021111811034595000_17.12.1837.12
2021111811034595000_17.12.1837.13
2021111811034595000_17.12.1837.14
2021111811034595000_17.12.1837.15
2021111811034595000_17.12.1837.50
2021111811034595000_17.12.1837.16
2021111811034595000_17.12.1837.18
2021111811034595000_17.12.1837.19
Felsenstein (2021111811034595000_17.12.1837.17) 1989; 5
2021111811034595000_17.12.1837.9
2021111811034595000_17.12.1837.41
2021111811034595000_17.12.1837.42
2021111811034595000_17.12.1837.7
2021111811034595000_17.12.1837.43
2021111811034595000_17.12.1837.8
Akashi (2021111811034595000_17.12.1837.1) 1996; 144
2021111811034595000_17.12.1837.45
2021111811034595000_17.12.1837.6
2021111811034595000_17.12.1837.46
2021111811034595000_17.12.1837.3
2021111811034595000_17.12.1837.47
2021111811034595000_17.12.1837.4
2021111811034595000_17.12.1837.48
2021111811034595000_17.12.1837.2
2021111811034595000_17.12.1837.40
Russo (2021111811034595000_17.12.1837.44) 1995; 12
2021111811034595000_17.12.1837.49
McVean (2021111811034595000_17.12.1837.32) 2001; 157
2021111811034595000_17.12.1837.30
2021111811034595000_17.12.1837.31
2021111811034595000_17.12.1837.33
2021111811034595000_17.12.1837.34
2021111811034595000_17.12.1837.35
2021111811034595000_17.12.1837.36
2021111811034595000_17.12.1837.37
Aquadro (2021111811034595000_17.12.1837.5) 1988; 119
2021111811034595000_17.12.1837.38
2021111811034595000_17.12.1837.39
References_xml – volume: 144
  start-page: 1297
  year: 1996
  ident: 2021111811034595000_17.12.1837.1
  article-title: Molecular evolution between Drosophila melanogaster and D. simulans: Reduced codon bias, faster rates of amino acid substitution, and larger proteins in D. melanogaster
  publication-title: Genetics
  doi: 10.1093/genetics/144.3.1297
– volume: 157
  start-page: 245
  year: 2001
  ident: 2021111811034595000_17.12.1837.32
  article-title: Inferring parameters of mutation, selection and demography from patterns of synonymous site evolution in Drosophila
  publication-title: Genetics
  doi: 10.1093/genetics/157.1.245
– ident: 2021111811034595000_17.12.1837.35
  doi: 10.1038/246096a0
– ident: 2021111811034595000_17.12.1837.11
  doi: 10.1101/gr.1865504
– ident: 2021111811034595000_17.12.1837.37
  doi: 10.1371/journal.pgen.0020173
– ident: 2021111811034595000_17.12.1837.20
  doi: 10.1101/gr.6093907
– ident: 2021111811034595000_17.12.1837.43
  doi: 10.1126/science.287.5461.2216
– ident: 2021111811034595000_17.12.1837.41
  doi: 10.1101/gr.3059305
– ident: 2021111811034595000_17.12.1837.2
  doi: 10.1534/genetics.105.049676
– ident: 2021111811034595000_17.12.1837.22
  doi: 10.1534/genetics.107.070466
– ident: 2021111811034595000_17.12.1837.8
  doi: 10.1186/gb-2002-3-12-research0086
– ident: 2021111811034595000_17.12.1837.48
  doi: 10.1038/nature01262
– ident: 2021111811034595000_17.12.1837.38
  doi: 10.1101/gr.198701
– ident: 2021111811034595000_17.12.1837.30
  doi: 10.1126/science.290.5494.1151
– ident: 2021111811034595000_17.12.1837.4
  doi: 10.1016/j.molimm.2006.12.024
– ident: 2021111811034595000_17.12.1837.6
  doi: 10.1101/gr.3726705
– ident: 2021111811034595000_17.12.1837.19
  doi: 10.1371/journal.pcbi.0020133
– ident: 2021111811034595000_17.12.1837.36
  doi: 10.1038/384346a0
– ident: 2021111811034595000_17.12.1837.50
  doi: 10.1093/oxfordjournals.molbev.a004148
– ident: 2021111811034595000_17.12.1837.47
  doi: 10.1016/S0965-1748(98)00123-4
– ident: 2021111811034595000_17.12.1837.29
  doi: 10.1126/science.1088710
– ident: 2021111811034595000_17.12.1837.12
  doi: 10.1093/nar/gkj133
– ident: 2021111811034595000_17.12.1837.9
  doi: 10.1093/molbev/msl090
– ident: 2021111811034595000_17.12.1837.13
  doi: 10.1073/pnas.0506461102
– ident: 2021111811034595000_17.12.1837.34
  doi: 10.1016/j.cub.2006.01.065
– ident: 2021111811034595000_17.12.1837.18
  doi: 10.1038/nature02426
– ident: 2021111811034595000_17.12.1837.45
  doi: 10.1186/1471-2105-6-31
– ident: 2021111811034595000_17.12.1837.25
  doi: 10.1038/nature03001
– ident: 2021111811034595000_17.12.1837.10
  doi: 10.1007/s00239-001-0044-7
– ident: 2021111811034595000_17.12.1837.31
  doi: 10.1534/genetics.104.032144
– ident: 2021111811034595000_17.12.1837.23
  doi: 10.1371/journal.pgen.0030007
– ident: 2021111811034595000_17.12.1837.33
  doi: 10.1073/pnas.0630561100
– ident: 2021111811034595000_17.12.1837.49
  doi: 10.1007/s00441-002-0524-0
– ident: 2021111811034595000_17.12.1837.28
  doi: 10.1073/pnas.97.21.11427
– ident: 2021111811034595000_17.12.1837.46
  doi: 10.1038/nrg733
– ident: 2021111811034595000_17.12.1837.26
  doi: 10.1534/genetics.105.045435
– volume: 12
  start-page: 391
  year: 1995
  ident: 2021111811034595000_17.12.1837.44
  article-title: Molecular phylogeny and divergence times of drosophilid species
  publication-title: Mol. Biol. Evol.
– volume: 119
  start-page: 875
  year: 1988
  ident: 2021111811034595000_17.12.1837.5
  article-title: The rosy region of Drosophila melanogaster and Drosophila simulans. I. Contrasting levels of naturally occurring DNA restriction map variation and divergence
  publication-title: Genetics
  doi: 10.1093/genetics/119.4.875
– ident: 2021111811034595000_17.12.1837.40
  doi: 10.1101/gr.162901
– ident: 2021111811034595000_17.12.1837.21
  doi: 10.1093/nar/gkj068
– ident: 2021111811034595000_17.12.1837.27
  doi: 10.1007/s00239-003-2510-x
– ident: 2021111811034595000_17.12.1837.3
  doi: 10.1093/nar/25.17.3389
– ident: 2021111811034595000_17.12.1837.15
  doi: 10.1093/hmg/ddg078
– volume: 5
  start-page: 164
  year: 1989
  ident: 2021111811034595000_17.12.1837.17
  article-title: PHYLIP—Phylogeny inference package (version 3.2)
  publication-title: Cladistics
– ident: 2021111811034595000_17.12.1837.16
  doi: 10.1101/gr.1940604
– ident: 2021111811034595000_17.12.1837.42
  doi: 10.1016/S0378-1119(02)01187-3
– ident: 2021111811034595000_17.12.1837.24
  doi: 10.1016/S0968-0004(02)02084-4
– ident: 2021111811034595000_17.12.1837.39
  doi: 10.1038/nrg928
– ident: 2021111811034595000_17.12.1837.14
  doi: 10.1038/nature06341
– ident: 2021111811034595000_17.12.1837.7
  doi: 10.1038/75556
SSID ssj0003488
ssj0006066
Score 2.2693596
Snippet The newly sequenced genome sequences of 11 Drosophila species provide the first opportunity to investigate variations in evolutionary rates across a clade of...
The newly sequenced genome sequences of 11 Drosophila species provide the first opportunity to investigate variations in evolutionary rates across a clade of...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1837
SubjectTerms Animals
Conserved Sequence
Drosophila melanogaster
Drosophila melanogaster - genetics
Drosophila melanogaster - metabolism
Drosophila Proteins - genetics
Drosophila simulans
Evolution, Molecular
Genetic Variation
Genome, Insect
Genomes/Letter
Sequence Homology, Nucleic Acid
Synteny - genetics
Title Evolutionary rate analyses of orthologs and paralogs from 12 Drosophila genomes
URI https://www.ncbi.nlm.nih.gov/pubmed/17989258
https://www.proquest.com/docview/19889087
https://www.proquest.com/docview/69047533
https://pubmed.ncbi.nlm.nih.gov/PMC2099592
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3rb9MwELfQEIIvCDYeZTwsgZBQlc6Jncb-OMpgAgZF2qR9i5zEKZO6ZOo6JPjrubOdR0uFYF-ixHXzul_Od_bd7wh5VeZMaUBOoMH9CIQ2PNBRYQKlkVsdlAOzVSKOvowPT8TH0_i0Cyuy2SXLbJT_2phXch2pQhvIFbNk_0Oy7UmhAfZBvrAFCcP2n2R88MOfHkPfkPNhqC3HiCOSxRUZVG2OhRk5vu2BTSgJo-G7hS1hcDbXWEa5bjJBvKH6wTa1gXndlOnMl7_GQEjdGuTT2lacaOkKhtPRynxCshabMannYOjaSUXMIwIgDj87OOKafz8uBNUl6KgAGb7caOJVqFBBLHxxlkbHJn0sRT2NCSol6Y2-4HCqzZrdVhSYLUZjcBgTVym3J-KLcytjpF9TkSODX-PRnh5NME04VjBg34zAqcB6F5--ddzyXMjuAP06l5vhHtAz28Jd7HX3gIyz_oKrZs0fvsp6yG3Phjm-R-5654PuOyTdJzdMtU129it46-c_6Wtqw4HtOss2ufW22bs9aYoC7pCvfchRhBxtIEfrkraQg9aCNpCjCDkaRrSDHPWQe0BO3h8cTw4DX5MjyMH1Xwa4zJ1kZZkrnkmuTcjLRIPTkYNlCb645lKUUSmZ1GxcwKc_ZplOjCyZzkOdZSF_SLaqujKPCUXTPi6YKUXBhQ7B1SiipBC8iDJZmCQekDfNK01zT1iPdVPmqXVcWZjOFqmXxIC8bPteOJqWjb1eNJJJ4b3h0piuTH11mYZKSsXkX3qMFRPg2vMBeeQk2V3HQ2BAkhUZtx2QwX31l-rsu2Vy94B8cu1_7pI73Tf8lGwtF1fmGVjJy-y5BfdvEYW_Lg
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolutionary+rate+analyses+of+orthologs+and+paralogs+from+12+Drosophila+genomes&rft.jtitle=Genome+Research&rft.au=Heger%2C+Andreas&rft.au=Ponting%2C+Chris+P.&rft.date=2007-12-01&rft.pub=Cold+Spring+Harbor+Laboratory+Press&rft.issn=1088-9051&rft.eissn=1549-5477&rft.volume=17&rft.issue=12&rft.spage=1837&rft.epage=1849&rft_id=info:doi/10.1101%2Fgr.6249707&rft_id=info%3Apmid%2F17989258&rft.externalDocID=PMC2099592
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1088-9051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1088-9051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1088-9051&client=summon