Hydrogen storage in M(BDC)(TED) 0.5 metal–organic framework: physical insights and capacities

Finding renewable energy sources to replace fossil energy has been an essential demand in recent years. Hydrogen gas has been becoming a research hotspot for its clean and free-carbon energy. However, hydrogen storage technology is challenging for mobile and automotive applications. Metal–organic fr...

Full description

Saved in:
Bibliographic Details
Published inRSC advances Vol. 14; no. 28; pp. 19891 - 19902
Main Authors Xuan Huynh, Nguyen Thi, Ngan, Vu Thi, Yen Ngoc, Nguyen Thi, Chihaia, Viorel, Son, Do Ngoc
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 18.06.2024
The Royal Society of Chemistry
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Finding renewable energy sources to replace fossil energy has been an essential demand in recent years. Hydrogen gas has been becoming a research hotspot for its clean and free-carbon energy. However, hydrogen storage technology is challenging for mobile and automotive applications. Metal–organic frameworks (MOFs) have emerged as one of the most advanced materials for hydrogen storage due to their exceptionally high surface area, ultra-large and tuneable pore size. Recently, computer simulations allowed the designing of new MOF structures with significant hydrogen storage capacity. However, no studies are available to elucidate the hydrogen storage in M(BDC)(TED) 0.5 , where M = metal, BDC = 1,4-benzene dicarboxylate, and TED = triethylenediamine. In this report, we used van der Waals-dispersion corrected density functional theory and grand canonical Monte Carlo methods to explore the electronic structure properties, adsorption energies, and gravimetric and volumetric hydrogen loadings in M(BDC)(TED) 0.5 (M = Mg, V, Co, Ni, and Cu). Our results showed that the most favourable adsorption site of H 2 in M(BDC)(TED) 0.5 is the metal cluster–TED intersection region, in which Ni offers the strongest binding strength with the adsorption energy of −16.9 kJ mol −1 . Besides, the H 2 @M(BDC)(TED) 0.5 interaction is physisorption, which mainly stems from the contribution of the d orbitals of the metal atoms for M = Ni, V, Cu, and Co and the p orbitals of the O, C, N atoms for M = Mg interacting with the σ* state of the adsorbed hydrogen molecule. Noticeably, the alkaline-earth metal Mg strongly enhanced the specific surface area and pore size of the M(BDC)(TED) 0.5 MOF, leading to an enormous increase in hydrogen storage with the highest absolute (excess) gravimetric and volumetric uptakes of 1.05 (0.36) wt% and 7.47 (2.59) g L −1 at 298 K and 7.42 (5.80) wt% and 52.77 (41.26) g L −1 at 77 K, respectively. The results are comparable to the other MOFs found in the literature.
AbstractList Finding renewable energy sources to replace fossil energy has been an essential demand in recent years. Hydrogen gas has been becoming a research hotspot for its clean and free-carbon energy. However, hydrogen storage technology is challenging for mobile and automotive applications. Metal–organic frameworks (MOFs) have emerged as one of the most advanced materials for hydrogen storage due to their exceptionally high surface area, ultra-large and tuneable pore size. Recently, computer simulations allowed the designing of new MOF structures with significant hydrogen storage capacity. However, no studies are available to elucidate the hydrogen storage in M(BDC)(TED) 0.5 , where M = metal, BDC = 1,4-benzene dicarboxylate, and TED = triethylenediamine. In this report, we used van der Waals-dispersion corrected density functional theory and grand canonical Monte Carlo methods to explore the electronic structure properties, adsorption energies, and gravimetric and volumetric hydrogen loadings in M(BDC)(TED) 0.5 (M = Mg, V, Co, Ni, and Cu). Our results showed that the most favourable adsorption site of H 2 in M(BDC)(TED) 0.5 is the metal cluster–TED intersection region, in which Ni offers the strongest binding strength with the adsorption energy of −16.9 kJ mol −1 . Besides, the H 2 @M(BDC)(TED) 0.5 interaction is physisorption, which mainly stems from the contribution of the d orbitals of the metal atoms for M = Ni, V, Cu, and Co and the p orbitals of the O, C, N atoms for M = Mg interacting with the σ* state of the adsorbed hydrogen molecule. Noticeably, the alkaline-earth metal Mg strongly enhanced the specific surface area and pore size of the M(BDC)(TED) 0.5 MOF, leading to an enormous increase in hydrogen storage with the highest absolute (excess) gravimetric and volumetric uptakes of 1.05 (0.36) wt% and 7.47 (2.59) g L −1 at 298 K and 7.42 (5.80) wt% and 52.77 (41.26) g L −1 at 77 K, respectively. The results are comparable to the other MOFs found in the literature. We elucidated the physical insights into the interaction between the H 2 molecule and M(BDC)(TED) 0.5 metal–organic frameworks and the quantitative influences of metal substitutions on the hydrogen storage capability of M(BDC)(TED) 0.5 .
Finding renewable energy sources to replace fossil energy has been an essential demand in recent years. Hydrogen gas has been becoming a research hotspot for its clean and free-carbon energy. However, hydrogen storage technology is challenging for mobile and automotive applications. Metal-organic frameworks (MOFs) have emerged as one of the most advanced materials for hydrogen storage due to their exceptionally high surface area, ultra-large and tuneable pore size. Recently, computer simulations allowed the designing of new MOF structures with significant hydrogen storage capacity. However, no studies are available to elucidate the hydrogen storage in M(BDC)(TED)0.5, where M = metal, BDC = 1,4-benzene dicarboxylate, and TED = triethylenediamine. In this report, we used van der Waals-dispersion corrected density functional theory and grand canonical Monte Carlo methods to explore the electronic structure properties, adsorption energies, and gravimetric and volumetric hydrogen loadings in M(BDC)(TED)0.5 (M = Mg, V, Co, Ni, and Cu). Our results showed that the most favourable adsorption site of H2 in M(BDC)(TED)0.5 is the metal cluster-TED intersection region, in which Ni offers the strongest binding strength with the adsorption energy of -16.9 kJ mol-1. Besides, the H2@M(BDC)(TED)0.5 interaction is physisorption, which mainly stems from the contribution of the d orbitals of the metal atoms for M = Ni, V, Cu, and Co and the p orbitals of the O, C, N atoms for M = Mg interacting with the σ* state of the adsorbed hydrogen molecule. Noticeably, the alkaline-earth metal Mg strongly enhanced the specific surface area and pore size of the M(BDC)(TED)0.5 MOF, leading to an enormous increase in hydrogen storage with the highest absolute (excess) gravimetric and volumetric uptakes of 1.05 (0.36) wt% and 7.47 (2.59) g L-1 at 298 K and 7.42 (5.80) wt% and 52.77 (41.26) g L-1 at 77 K, respectively. The results are comparable to the other MOFs found in the literature.Finding renewable energy sources to replace fossil energy has been an essential demand in recent years. Hydrogen gas has been becoming a research hotspot for its clean and free-carbon energy. However, hydrogen storage technology is challenging for mobile and automotive applications. Metal-organic frameworks (MOFs) have emerged as one of the most advanced materials for hydrogen storage due to their exceptionally high surface area, ultra-large and tuneable pore size. Recently, computer simulations allowed the designing of new MOF structures with significant hydrogen storage capacity. However, no studies are available to elucidate the hydrogen storage in M(BDC)(TED)0.5, where M = metal, BDC = 1,4-benzene dicarboxylate, and TED = triethylenediamine. In this report, we used van der Waals-dispersion corrected density functional theory and grand canonical Monte Carlo methods to explore the electronic structure properties, adsorption energies, and gravimetric and volumetric hydrogen loadings in M(BDC)(TED)0.5 (M = Mg, V, Co, Ni, and Cu). Our results showed that the most favourable adsorption site of H2 in M(BDC)(TED)0.5 is the metal cluster-TED intersection region, in which Ni offers the strongest binding strength with the adsorption energy of -16.9 kJ mol-1. Besides, the H2@M(BDC)(TED)0.5 interaction is physisorption, which mainly stems from the contribution of the d orbitals of the metal atoms for M = Ni, V, Cu, and Co and the p orbitals of the O, C, N atoms for M = Mg interacting with the σ* state of the adsorbed hydrogen molecule. Noticeably, the alkaline-earth metal Mg strongly enhanced the specific surface area and pore size of the M(BDC)(TED)0.5 MOF, leading to an enormous increase in hydrogen storage with the highest absolute (excess) gravimetric and volumetric uptakes of 1.05 (0.36) wt% and 7.47 (2.59) g L-1 at 298 K and 7.42 (5.80) wt% and 52.77 (41.26) g L-1 at 77 K, respectively. The results are comparable to the other MOFs found in the literature.
Finding renewable energy sources to replace fossil energy has been an essential demand in recent years. Hydrogen gas has been becoming a research hotspot for its clean and free-carbon energy. However, hydrogen storage technology is challenging for mobile and automotive applications. Metal-organic frameworks (MOFs) have emerged as one of the most advanced materials for hydrogen storage due to their exceptionally high surface area, ultra-large and tuneable pore size. Recently, computer simulations allowed the designing of new MOF structures with significant hydrogen storage capacity. However, no studies are available to elucidate the hydrogen storage in M(BDC)(TED) , where M = metal, BDC = 1,4-benzene dicarboxylate, and TED = triethylenediamine. In this report, we used van der Waals-dispersion corrected density functional theory and grand canonical Monte Carlo methods to explore the electronic structure properties, adsorption energies, and gravimetric and volumetric hydrogen loadings in M(BDC)(TED) (M = Mg, V, Co, Ni, and Cu). Our results showed that the most favourable adsorption site of H in M(BDC)(TED) is the metal cluster-TED intersection region, in which Ni offers the strongest binding strength with the adsorption energy of -16.9 kJ mol . Besides, the H @M(BDC)(TED) interaction is physisorption, which mainly stems from the contribution of the d orbitals of the metal atoms for M = Ni, V, Cu, and Co and the p orbitals of the O, C, N atoms for M = Mg interacting with the σ* state of the adsorbed hydrogen molecule. Noticeably, the alkaline-earth metal Mg strongly enhanced the specific surface area and pore size of the M(BDC)(TED) MOF, leading to an enormous increase in hydrogen storage with the highest absolute (excess) gravimetric and volumetric uptakes of 1.05 (0.36) wt% and 7.47 (2.59) g L at 298 K and 7.42 (5.80) wt% and 52.77 (41.26) g L at 77 K, respectively. The results are comparable to the other MOFs found in the literature.
Finding renewable energy sources to replace fossil energy has been an essential demand in recent years. Hydrogen gas has been becoming a research hotspot for its clean and free-carbon energy. However, hydrogen storage technology is challenging for mobile and automotive applications. Metal–organic frameworks (MOFs) have emerged as one of the most advanced materials for hydrogen storage due to their exceptionally high surface area, ultra-large and tuneable pore size. Recently, computer simulations allowed the designing of new MOF structures with significant hydrogen storage capacity. However, no studies are available to elucidate the hydrogen storage in M(BDC)(TED) 0.5 , where M = metal, BDC = 1,4-benzene dicarboxylate, and TED = triethylenediamine. In this report, we used van der Waals-dispersion corrected density functional theory and grand canonical Monte Carlo methods to explore the electronic structure properties, adsorption energies, and gravimetric and volumetric hydrogen loadings in M(BDC)(TED) 0.5 (M = Mg, V, Co, Ni, and Cu). Our results showed that the most favourable adsorption site of H 2 in M(BDC)(TED) 0.5 is the metal cluster–TED intersection region, in which Ni offers the strongest binding strength with the adsorption energy of −16.9 kJ mol −1 . Besides, the H 2 @M(BDC)(TED) 0.5 interaction is physisorption, which mainly stems from the contribution of the d orbitals of the metal atoms for M = Ni, V, Cu, and Co and the p orbitals of the O, C, N atoms for M = Mg interacting with the σ* state of the adsorbed hydrogen molecule. Noticeably, the alkaline-earth metal Mg strongly enhanced the specific surface area and pore size of the M(BDC)(TED) 0.5 MOF, leading to an enormous increase in hydrogen storage with the highest absolute (excess) gravimetric and volumetric uptakes of 1.05 (0.36) wt% and 7.47 (2.59) g L −1 at 298 K and 7.42 (5.80) wt% and 52.77 (41.26) g L −1 at 77 K, respectively. The results are comparable to the other MOFs found in the literature.
Finding renewable energy sources to replace fossil energy has been an essential demand in recent years. Hydrogen gas has been becoming a research hotspot for its clean and free-carbon energy. However, hydrogen storage technology is challenging for mobile and automotive applications. Metal–organic frameworks (MOFs) have emerged as one of the most advanced materials for hydrogen storage due to their exceptionally high surface area, ultra-large and tuneable pore size. Recently, computer simulations allowed the designing of new MOF structures with significant hydrogen storage capacity. However, no studies are available to elucidate the hydrogen storage in M(BDC)(TED)0.5, where M = metal, BDC = 1,4-benzene dicarboxylate, and TED = triethylenediamine. In this report, we used van der Waals-dispersion corrected density functional theory and grand canonical Monte Carlo methods to explore the electronic structure properties, adsorption energies, and gravimetric and volumetric hydrogen loadings in M(BDC)(TED)0.5 (M = Mg, V, Co, Ni, and Cu). Our results showed that the most favourable adsorption site of H2 in M(BDC)(TED)0.5 is the metal cluster–TED intersection region, in which Ni offers the strongest binding strength with the adsorption energy of −16.9 kJ mol−1. Besides, the H2@M(BDC)(TED)0.5 interaction is physisorption, which mainly stems from the contribution of the d orbitals of the metal atoms for M = Ni, V, Cu, and Co and the p orbitals of the O, C, N atoms for M = Mg interacting with the σ* state of the adsorbed hydrogen molecule. Noticeably, the alkaline-earth metal Mg strongly enhanced the specific surface area and pore size of the M(BDC)(TED)0.5 MOF, leading to an enormous increase in hydrogen storage with the highest absolute (excess) gravimetric and volumetric uptakes of 1.05 (0.36) wt% and 7.47 (2.59) g L−1 at 298 K and 7.42 (5.80) wt% and 52.77 (41.26) g L−1 at 77 K, respectively. The results are comparable to the other MOFs found in the literature.
Author Ngan, Vu Thi
Chihaia, Viorel
Xuan Huynh, Nguyen Thi
Yen Ngoc, Nguyen Thi
Son, Do Ngoc
Author_xml – sequence: 1
  givenname: Nguyen Thi
  orcidid: 0000-0002-8393-978X
  surname: Xuan Huynh
  fullname: Xuan Huynh, Nguyen Thi
  organization: Laboratory of Computational Chemistry and Modelling (LCCM) – Faculty of Natural Sciences, Quy Nhon University, 170 An Duong Vuong, Quy Nhon City, Binh Dinh Province, Vietnam
– sequence: 2
  givenname: Vu Thi
  surname: Ngan
  fullname: Ngan, Vu Thi
  organization: Laboratory of Computational Chemistry and Modelling (LCCM) – Faculty of Natural Sciences, Quy Nhon University, 170 An Duong Vuong, Quy Nhon City, Binh Dinh Province, Vietnam
– sequence: 3
  givenname: Nguyen Thi
  surname: Yen Ngoc
  fullname: Yen Ngoc, Nguyen Thi
  organization: Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam, Vietnam National University Ho Chi Minh City, Linh Trung Ward, Ho Chi Minh City, Vietnam
– sequence: 4
  givenname: Viorel
  orcidid: 0000-0002-3910-9105
  surname: Chihaia
  fullname: Chihaia, Viorel
  organization: Institute of Physical Chemistry “Ilie Murgulescu” of the Romanian Academy, Splaiul Independentei 202, Sector 6, 060021 Bucharest, Romania
– sequence: 5
  givenname: Do Ngoc
  orcidid: 0000-0001-9414-9727
  surname: Son
  fullname: Son, Do Ngoc
  organization: Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam, Vietnam National University Ho Chi Minh City, Linh Trung Ward, Ho Chi Minh City, Vietnam
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38903680$$D View this record in MEDLINE/PubMed
BookMark eNptkc1u1DAQxy3Uin7QCw-ALHHZIm0Zx46T9ILKbmmRWlVC5WzNOk7WJbEXO0u1N96BN-RJcNQPSsVcPCP_5q_5z-yRLeedIeQ1gyMGvHo_F19OIJNVcfaC7GYg5DQDWW09yXfIQYw3kELmLJPsJdnhZQVclrBL1PmmDr41jsbBB2wNtY5eTj7OZ4eT69P5IYWjnPZmwO73z18-tOispk3A3tz68O2YrpabaDV2qS3adjlEiq6mGleo7WBNfEW2G-yiObh_98nXT6fXs_PpxdXZ59nJxVQLKIZpVkOteal5LcxCoKwZNlAxbjKoFlLXDa_GKk-m8hwWma50oaFBjpw30DC-Tz7c6a7Wi97U2rghYKdWwfYYNsqjVf_-OLtUrf-hGGNlUYhRYXKvEPz3tYmD6m3UpuvQGb-OikMBpQApRELfPkNv_Dq45G-keJmXQkCi3jwd6XGWh-Un4N0doIOPMZjmEWGgxuOqv8dNMDyD04JxsH60Y7v_tfwBZX6lTw
CitedBy_id crossref_primary_10_1039_D4RA07861F
crossref_primary_10_1016_j_ijhydene_2025_03_042
crossref_primary_10_1016_j_vacuum_2025_114203
Cites_doi 10.3389/fmats.2021.766288
10.1126/science.1192160
10.1039/C7RA05801B
10.1021/ja058213h
10.1039/C7RA11829E
10.1021/acs.jpcc.8b04021
10.1039/C3SC52633J
10.1021/jp710011b
10.1103/PhysRevLett.92.246401
10.1038/nenergy.2016.34
10.1007/s10853-018-3140-4
10.1021/ie503752h
10.1002/adfm.200500561
10.1021/ja9072707
10.3390/nano11071638
10.1039/b703608f
10.1016/j.commatsci.2005.08.012
10.1039/B308903G
10.1016/j.commatsci.2005.04.010
10.1021/jp510253m
10.1016/j.ica.2023.121683
10.1017/CBO9780511755613
10.1039/c2cc35711a
10.1016/j.matpr.2022.05.059
10.1021/la0523816
10.1246/bcsj.81.847
10.1107/S0021889811038970
10.1039/D3MA00822C
10.1039/C6RA04656H
10.1103/PhysRevB.50.17953
10.1103/PhysRevB.54.11169
10.1002/adfm.200600944
10.1039/D3RA01588B
10.3390/designs7040097
10.1103/PhysRevB.46.6671
10.1039/C0CC03453C
10.1039/C8EE01085D
10.1080/08927022.2015.1010082
10.1126/science.1083440
10.1016/j.micromeso.2019.109724
10.1103/PhysRevB.59.1758
10.1021/jp1003177
10.1021/cm502760q
10.1007/s10450-020-00213-8
10.1038/nchem.834
10.1016/j.jallcom.2019.153548
10.3390/pr10020304
10.1088/2516-1083/ac8d44
10.1021/jp210985a
10.1021/cm301427w
10.1016/j.ijhydene.2017.01.209
10.1021/acsomega.2c01914
10.1016/j.chempr.2022.01.012
10.1021/cm401270b
10.1039/C8RA07919F
10.1103/PhysRevLett.77.3865
10.1103/PhysRevB.13.5188
10.1021/jp0376727
10.1002/anie.200600105
10.1016/j.ijhydene.2004.10.011
10.1002/zaac.200700580
10.1021/ja0392871
10.1039/C6RA12799A
10.1016/0927-0256(96)00008-0
10.1016/j.jtice.2022.104479
10.1016/j.ijhydene.2022.09.199
ContentType Journal Article
Copyright This journal is © The Royal Society of Chemistry.
Copyright Royal Society of Chemistry 2024
This journal is © The Royal Society of Chemistry 2024 The Royal Society of Chemistry
Copyright_xml – notice: This journal is © The Royal Society of Chemistry.
– notice: Copyright Royal Society of Chemistry 2024
– notice: This journal is © The Royal Society of Chemistry 2024 The Royal Society of Chemistry
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
5PM
DOI 10.1039/D4RA02697G
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
CrossRef
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2046-2069
EndPage 19902
ExternalDocumentID PMC11187741
38903680
10_1039_D4RA02697G
Genre Journal Article
GrantInformation_xml – fundername: ;
  grantid: B2022-DQN-05
GroupedDBID 0-7
0R~
53G
AAFWJ
AAHBH
AAIWI
AAJAE
AARTK
AAWGC
AAXHV
AAYXX
ABEMK
ABIQK
ABPDG
ABXOH
ACGFS
ADBBV
ADMRA
AEFDR
AENEX
AESAV
AFLYV
AFPKN
AFVBQ
AGEGJ
AGRSR
AHGCF
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
BCNDV
BLAPV
BSQNT
C6K
CITATION
EBS
EE0
EF-
GROUPED_DOAJ
HZ~
H~N
J3I
M~E
O9-
OK1
PGMZT
R7C
R7G
RCNCU
RPM
RPMJG
RRC
RSCEA
RVUXY
SLH
ZCN
NPM
7SR
8BQ
8FD
H13
JG9
7X8
5PM
ID FETCH-LOGICAL-c407t-2d0dc38c3d4eb4a6d1af0913e209b6cdf39913e5204550b2c9c7c0fa3a33f0f13
ISSN 2046-2069
IngestDate Thu Aug 21 18:33:07 EDT 2025
Fri Jul 11 02:35:04 EDT 2025
Sun Jul 13 04:15:37 EDT 2025
Thu Apr 03 06:53:57 EDT 2025
Tue Jul 01 01:57:00 EDT 2025
Thu Apr 24 22:51:22 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 28
Language English
License This journal is © The Royal Society of Chemistry.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c407t-2d0dc38c3d4eb4a6d1af0913e209b6cdf39913e5204550b2c9c7c0fa3a33f0f13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8393-978X
0000-0001-9414-9727
0000-0002-3910-9105
OpenAccessLink http://dx.doi.org/10.1039/d4ra02697g
PMID 38903680
PQID 3073858440
PQPubID 2047525
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11187741
proquest_miscellaneous_3070840644
proquest_journals_3073858440
pubmed_primary_38903680
crossref_primary_10_1039_D4RA02697G
crossref_citationtrail_10_1039_D4RA02697G
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-18
PublicationDateYYYYMMDD 2024-06-18
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-18
  day: 18
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle RSC advances
PublicationTitleAlternate RSC Adv
PublicationYear 2024
Publisher Royal Society of Chemistry
The Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
– name: The Royal Society of Chemistry
References Meduri (D4RA02697G/cit16/1) 2023; 72
Zhang (D4RA02697G/cit67/1) 2022; 4
Pan (D4RA02697G/cit65/1) 2004; 126
Liu (D4RA02697G/cit8/1) 2010; 22
Liu (D4RA02697G/cit23/1) 2022; 47
Zhang (D4RA02697G/cit24/1) 2022; 138
Fairen-Jimenez (D4RA02697G/cit66/1) 2012; 48
Chen (D4RA02697G/cit30/1) 2010; 114
Lee (D4RA02697G/cit32/1) 2007; 17
Levesque (D4RA02697G/cit54/1) 2002; 14
Tyuterev (D4RA02697G/cit55/1) 2006; 38
Farha (D4RA02697G/cit19/1) 2010; 2
Huynh (D4RA02697G/cit34/1) 2023; 13
Momirlan (D4RA02697G/cit4/1) 2005; 30
Pham (D4RA02697G/cit36/1) 2015; 119
Momma (D4RA02697G/cit50/1) 2011; 44
Gómez (D4RA02697G/cit17/1) 2023; 7
Li (D4RA02697G/cit5/1) 2022; 7
Pareek (D4RA02697G/cit38/1) 2017; 42
Zhang (D4RA02697G/cit3/1) 2023; 557
Allendorf (D4RA02697G/cit7/1) 2018; 11
Schoedel (D4RA02697G/cit26/1) 2016; 1
Kresse (D4RA02697G/cit41/1) 1996; 6
Chen (D4RA02697G/cit9/1) 2022; 8
Rosi (D4RA02697G/cit10/1) 2003; 300
Manz (D4RA02697G/cit51/1) 2016; 6
Kresse (D4RA02697G/cit45/1) 1999; 59
Dubbeldam (D4RA02697G/cit59/1) 2004; 108
Son (D4RA02697G/cit29/1) 2018; 8
Sumida (D4RA02697G/cit21/1) 2009; 131
Wong-Foy (D4RA02697G/cit70/1) 2006; 128
Blöchl (D4RA02697G/cit44/1) 1994; 50
Tan (D4RA02697G/cit57/1) 2012; 24
Dion (D4RA02697G/cit39/1) 2004; 92
Pack (D4RA02697G/cit46/1) 1976; 13
Huynh (D4RA02697G/cit12/1) 2020; 26
Kohanoff (D4RA02697G/cit49/1) 2006
Bak (D4RA02697G/cit35/1) 2012; 116
Henkelman (D4RA02697G/cit48/1) 2006; 36
Furukawa (D4RA02697G/cit20/1) 2007; 17
Bhatia (D4RA02697G/cit58/1) 2006; 22
Panella (D4RA02697G/cit22/1) 2006; 16
Huynh (D4RA02697G/cit56/1) 2017; 7
Mason (D4RA02697G/cit60/1) 2014; 5
Peng (D4RA02697G/cit27/1) 2016; 6
Hirscher (D4RA02697G/cit69/1) 2020; 827
Camp (D4RA02697G/cit68/1) 2018; 122
Lee (D4RA02697G/cit1/1) 2022; 10
Huynh (D4RA02697G/cit13/1) 2019; 54
Tang (D4RA02697G/cit47/1) 2009; 21
Dubbeldam (D4RA02697G/cit53/1) 2016; 42
Perdew (D4RA02697G/cit43/1) 1996; 77
Sandhu (D4RA02697G/cit6/1) 2024; 5
Li (D4RA02697G/cit2/1) 2022; 2403
Takei (D4RA02697G/cit62/1) 2008; 81
Tan (D4RA02697G/cit28/1) 2013; 25
Perdew (D4RA02697G/cit42/1) 1992; 46
Xiang (D4RA02697G/cit31/1) 2020; 292
Sumida (D4RA02697G/cit64/1) 2011; 47
Furukawa (D4RA02697G/cit18/1) 2010; 329
Shannon (D4RA02697G/cit25/1) 2015; 54
Liu (D4RA02697G/cit33/1) 2008; 112
Limas (D4RA02697G/cit52/1) 2018; 8
Latroche (D4RA02697G/cit63/1) 2006; 45
Huong (D4RA02697G/cit15/1) 2016; 32
Ferey (D4RA02697G/cit71/1) 2003
Zeleňák (D4RA02697G/cit11/1) 2021; 11
Kresse (D4RA02697G/cit40/1) 1996; 54
Zhu (D4RA02697G/cit61/1) 2008; 634
Zhang (D4RA02697G/cit14/1) 2021; 8
Lee (D4RA02697G/cit37/1) 2015; 27
References_xml – volume: 8
  start-page: 766288
  year: 2021
  ident: D4RA02697G/cit14/1
  publication-title: Front. Mater.
  doi: 10.3389/fmats.2021.766288
– volume: 329
  start-page: 424
  year: 2010
  ident: D4RA02697G/cit18/1
  publication-title: Science
  doi: 10.1126/science.1192160
– volume: 7
  start-page: 39583
  year: 2017
  ident: D4RA02697G/cit56/1
  publication-title: RSC Adv.
  doi: 10.1039/C7RA05801B
– volume: 128
  start-page: 3494
  year: 2006
  ident: D4RA02697G/cit70/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja058213h
– volume: 8
  start-page: 2678
  year: 2018
  ident: D4RA02697G/cit52/1
  publication-title: RSC Adv.
  doi: 10.1039/C7RA11829E
– volume: 122
  start-page: 18957
  year: 2018
  ident: D4RA02697G/cit68/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.8b04021
– volume: 5
  start-page: 32
  year: 2014
  ident: D4RA02697G/cit60/1
  publication-title: Chem. Sci.
  doi: 10.1039/C3SC52633J
– volume: 112
  start-page: 2911
  year: 2008
  ident: D4RA02697G/cit33/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp710011b
– volume: 92
  start-page: 246401
  year: 2004
  ident: D4RA02697G/cit39/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.92.246401
– volume: 1
  start-page: 16034
  year: 2016
  ident: D4RA02697G/cit26/1
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.34
– volume: 54
  start-page: 3994
  year: 2019
  ident: D4RA02697G/cit13/1
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-018-3140-4
– volume: 54
  start-page: 462
  year: 2015
  ident: D4RA02697G/cit25/1
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie503752h
– volume: 16
  start-page: 520
  year: 2006
  ident: D4RA02697G/cit22/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200500561
– volume: 22
  start-page: E28
  year: 2010
  ident: D4RA02697G/cit8/1
  publication-title: Adv. Mater.
– volume: 131
  start-page: 15120
  year: 2009
  ident: D4RA02697G/cit21/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9072707
– volume: 11
  start-page: 1638
  year: 2021
  ident: D4RA02697G/cit11/1
  publication-title: Nanomaterials
  doi: 10.3390/nano11071638
– volume: 17
  start-page: 3197
  year: 2007
  ident: D4RA02697G/cit20/1
  publication-title: J. Mater. Chem.
  doi: 10.1039/b703608f
– volume: 38
  start-page: 350
  year: 2006
  ident: D4RA02697G/cit55/1
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2005.08.012
– start-page: 2976
  year: 2003
  ident: D4RA02697G/cit71/1
  publication-title: Chem. Commun.
  doi: 10.1039/B308903G
– volume: 36
  start-page: 354
  year: 2006
  ident: D4RA02697G/cit48/1
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2005.04.010
– volume: 119
  start-page: 1078
  year: 2015
  ident: D4RA02697G/cit36/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp510253m
– volume: 557
  start-page: 121683
  year: 2023
  ident: D4RA02697G/cit3/1
  publication-title: Inorg. Chim. Acta
  doi: 10.1016/j.ica.2023.121683
– volume-title: Electronic Structure Calculations for Solids and Molecules: Theory and Computational Methods
  year: 2006
  ident: D4RA02697G/cit49/1
  doi: 10.1017/CBO9780511755613
– volume: 48
  start-page: 10496
  year: 2012
  ident: D4RA02697G/cit66/1
  publication-title: Chem. Commun.
  doi: 10.1039/c2cc35711a
– volume: 72
  start-page: 1
  year: 2023
  ident: D4RA02697G/cit16/1
  publication-title: Mater. Today Proc.
  doi: 10.1016/j.matpr.2022.05.059
– volume: 22
  start-page: 1688
  year: 2006
  ident: D4RA02697G/cit58/1
  publication-title: Langmuir
  doi: 10.1021/la0523816
– volume: 81
  start-page: 847
  year: 2008
  ident: D4RA02697G/cit62/1
  publication-title: Bull. Chem. Soc. Jpn.
  doi: 10.1246/bcsj.81.847
– volume: 44
  start-page: 1272
  year: 2011
  ident: D4RA02697G/cit50/1
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S0021889811038970
– volume: 5
  start-page: 30
  year: 2024
  ident: D4RA02697G/cit6/1
  publication-title: Mater. Adv.
  doi: 10.1039/D3MA00822C
– volume: 6
  start-page: 47771
  year: 2016
  ident: D4RA02697G/cit51/1
  publication-title: RSC Adv.
  doi: 10.1039/C6RA04656H
– volume: 32
  start-page: 67
  year: 2016
  ident: D4RA02697G/cit15/1
  publication-title: VNU Journal of Science: Mathematics - Physics
– volume: 50
  start-page: 17953
  year: 1994
  ident: D4RA02697G/cit44/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.50.17953
– volume: 54
  start-page: 11169
  year: 1996
  ident: D4RA02697G/cit40/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.54.11169
– volume: 17
  start-page: 1255
  year: 2007
  ident: D4RA02697G/cit32/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200600944
– volume: 13
  start-page: 15606
  year: 2023
  ident: D4RA02697G/cit34/1
  publication-title: RSC Adv.
  doi: 10.1039/D3RA01588B
– volume: 7
  start-page: 97
  year: 2023
  ident: D4RA02697G/cit17/1
  publication-title: Designs
  doi: 10.3390/designs7040097
– volume: 21
  start-page: 084204
  year: 2009
  ident: D4RA02697G/cit47/1
  publication-title: J. Phys.: Condens.Matter
– volume: 46
  start-page: 6671
  year: 1992
  ident: D4RA02697G/cit42/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.46.6671
– volume: 47
  start-page: 1157
  year: 2011
  ident: D4RA02697G/cit64/1
  publication-title: Chem. Commun.
  doi: 10.1039/C0CC03453C
– volume: 11
  start-page: 2784
  year: 2018
  ident: D4RA02697G/cit7/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE01085D
– volume: 42
  start-page: 81
  year: 2016
  ident: D4RA02697G/cit53/1
  publication-title: Mol. Simul.
  doi: 10.1080/08927022.2015.1010082
– volume: 300
  start-page: 1127
  year: 2003
  ident: D4RA02697G/cit10/1
  publication-title: Science
  doi: 10.1126/science.1083440
– volume: 292
  start-page: 109724
  year: 2020
  ident: D4RA02697G/cit31/1
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2019.109724
– volume: 59
  start-page: 1758
  year: 1999
  ident: D4RA02697G/cit45/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.59.1758
– volume: 2403
  start-page: 012022
  year: 2022
  ident: D4RA02697G/cit2/1
  publication-title: J. Phys.: Conf. Ser.
– volume: 114
  start-page: 6602
  year: 2010
  ident: D4RA02697G/cit30/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp1003177
– volume: 27
  start-page: 668
  year: 2015
  ident: D4RA02697G/cit37/1
  publication-title: Chem. Mater.
  doi: 10.1021/cm502760q
– volume: 26
  start-page: 509
  year: 2020
  ident: D4RA02697G/cit12/1
  publication-title: Adsorption
  doi: 10.1007/s10450-020-00213-8
– volume: 2
  start-page: 944
  year: 2010
  ident: D4RA02697G/cit19/1
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.834
– volume: 827
  start-page: 153548
  year: 2020
  ident: D4RA02697G/cit69/1
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2019.153548
– volume: 10
  start-page: 304
  year: 2022
  ident: D4RA02697G/cit1/1
  publication-title: Processes
  doi: 10.3390/pr10020304
– volume: 4
  start-page: 042013
  year: 2022
  ident: D4RA02697G/cit67/1
  publication-title: Prog. Energy
  doi: 10.1088/2516-1083/ac8d44
– volume: 116
  start-page: 7386
  year: 2012
  ident: D4RA02697G/cit35/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp210985a
– volume: 24
  start-page: 3153
  year: 2012
  ident: D4RA02697G/cit57/1
  publication-title: Chem. Mater.
  doi: 10.1021/cm301427w
– volume: 42
  start-page: 6801
  year: 2017
  ident: D4RA02697G/cit38/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2017.01.209
– volume: 7
  start-page: 20081
  year: 2022
  ident: D4RA02697G/cit5/1
  publication-title: ACS Omega
  doi: 10.1021/acsomega.2c01914
– volume: 8
  start-page: 693
  year: 2022
  ident: D4RA02697G/cit9/1
  publication-title: Chem
  doi: 10.1016/j.chempr.2022.01.012
– volume: 25
  start-page: 4653
  year: 2013
  ident: D4RA02697G/cit28/1
  publication-title: Chem. Mater.
  doi: 10.1021/cm401270b
– volume: 8
  start-page: 38648
  year: 2018
  ident: D4RA02697G/cit29/1
  publication-title: RSC Adv.
  doi: 10.1039/C8RA07919F
– volume: 77
  start-page: 3865
  year: 1996
  ident: D4RA02697G/cit43/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 13
  start-page: 5188
  year: 1976
  ident: D4RA02697G/cit46/1
  publication-title: Phys. Rev. B: Solid State
  doi: 10.1103/PhysRevB.13.5188
– volume: 14
  start-page: 9285
  year: 2002
  ident: D4RA02697G/cit54/1
  publication-title: J. Phys.: Condens.Matter
– volume: 108
  start-page: 12301
  year: 2004
  ident: D4RA02697G/cit59/1
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0376727
– volume: 45
  start-page: 8227
  year: 2006
  ident: D4RA02697G/cit63/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200600105
– volume: 30
  start-page: 795
  year: 2005
  ident: D4RA02697G/cit4/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2004.10.011
– volume: 634
  start-page: 845
  year: 2008
  ident: D4RA02697G/cit61/1
  publication-title: Z. Anorg. Allg. Chem.
  doi: 10.1002/zaac.200700580
– volume: 126
  start-page: 1308
  year: 2004
  ident: D4RA02697G/cit65/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0392871
– volume: 6
  start-page: 72433
  year: 2016
  ident: D4RA02697G/cit27/1
  publication-title: RSC Adv.
  doi: 10.1039/C6RA12799A
– volume: 6
  start-page: 15
  year: 1996
  ident: D4RA02697G/cit41/1
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
– volume: 138
  start-page: 104479
  year: 2022
  ident: D4RA02697G/cit24/1
  publication-title: J. Taiwan Inst. Chem. Eng.
  doi: 10.1016/j.jtice.2022.104479
– volume: 47
  start-page: 41055
  year: 2022
  ident: D4RA02697G/cit23/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2022.09.199
SSID ssj0000651261
Score 2.4331806
Snippet Finding renewable energy sources to replace fossil energy has been an essential demand in recent years. Hydrogen gas has been becoming a research hotspot for...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 19891
SubjectTerms Adsorption
Alkaline earth metals
Atomic properties
Benzene
Chemistry
Clean energy
Copper
Density functional theory
Electronic structure
Energy storage
Hydrogen
Hydrogen storage
Magnesium
Metal clusters
Metal-organic frameworks
Monte Carlo simulation
Nickel
Orbitals
Pore size
Renewable energy sources
Storage capacity
Surface area
Title Hydrogen storage in M(BDC)(TED) 0.5 metal–organic framework: physical insights and capacities
URI https://www.ncbi.nlm.nih.gov/pubmed/38903680
https://www.proquest.com/docview/3073858440
https://www.proquest.com/docview/3070840644
https://pubmed.ncbi.nlm.nih.gov/PMC11187741
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb5tAEF21yaG9VP2u2zSiag-xLFI-Fgy9pU5Sq0pcybUtR4qElt3FRopw5JiD--v7FliMWx_SXhAsC6yYx_BmdnaGkE-J9BNHdkPT7iYWDJRYmDF1BZQhF4GUfoCPXUVbDPz-mH6feo2J9mJ1ySo-5r92riv5H6miDXJVq2T_QbL1TdGAfcgXW0gY23vJuL8WywXOdlSIowq-SbPOJSjj19MeLHzsQC1hxzr2VKVodmOWNZx4J9EhWcohcKtFlWZ3ylQvszZz_EV5kW61yV-HP3s6bKAm49McOqKfr7PCQzOY5WuMaDRPaz_zrHSyTvJm6xU6DWYLvvua3jydszKOd5IullVcf-WdcKiKomoqVAf2N2RWlmM5ljvatBamDbRV68VLnaqiuuyd2t5yVbJUQZcMlmTYnW3-aXoef_AjOh9fXESjs-noIdl3YEtAGe4PJ-PpVe2KAwuznSKzbj0yncjWDT9vbr9NXf6yR_4Mq23wlNFT8qQyMIyTEi3PyAOZPSePerqu3wtyrVFjVKgx0sy4PAJm2kfASxtoMbbQYtRo-WJorBgaKwawYmyw8pKMz89Gvb5Z1dgwOUz5lekIS3A34K6gMqbMFzZLVKpY6Vhh7HORgMDiyFNVCzwrdnjIu9xKmMtcN7ES231F9rJFJt8QI2CMcSZ5VwhBWRzHgodeEiZ-GHIvFLRF2vr1RbxKQK_qoNxERSCEG0andHhSvOpvLfKx7ntbpl3Z2etASyGqPsu7SP20AtBqarXIh_o03rGaCWOZXORFHysAlaUY1OtSaPVjwODB6gJcHWyJs-6gErJvn8nSeZGYHbwhgDllv73Hg9-Rx5vv5YDsrZa5fA9-u4oPC7_QYYXS33hnqG0
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydrogen+storage+in+M%28BDC%29%28TED%290.5+metal-organic+framework%3A+physical+insights+and+capacities&rft.jtitle=RSC+advances&rft.au=Xuan+Huynh%2C+Nguyen+Thi&rft.au=Ngan%2C+Vu+Thi&rft.au=Yen+Ngoc%2C+Nguyen+Thi&rft.au=Chihaia%2C+Viorel&rft.date=2024-06-18&rft.issn=2046-2069&rft.eissn=2046-2069&rft.volume=14&rft.issue=28&rft.spage=19891&rft_id=info:doi/10.1039%2Fd4ra02697g&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-2069&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-2069&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-2069&client=summon