FROM BINARIES TO MULTIPLES. II. HIERARCHICAL MULTIPLICITY OF F AND G DWARFS

Statistics of hierarchical multiplicity among solar-type dwarfs are studied using the distance-limited sample of 4847 targets presented in the accompanying Paper I. Known facts about binaries (multiplicity fraction 0.46, lognormal period distribution with median period 100 yr and logarithmic dispers...

Full description

Saved in:
Bibliographic Details
Published inThe Astronomical journal Vol. 147; no. 4; pp. 87 - 14
Main Author Tokovinin, Andrei
Format Journal Article
LanguageEnglish
Published United States 01.04.2014
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Statistics of hierarchical multiplicity among solar-type dwarfs are studied using the distance-limited sample of 4847 targets presented in the accompanying Paper I. Known facts about binaries (multiplicity fraction 0.46, lognormal period distribution with median period 100 yr and logarithmic dispersion 2.4, and nearly uniform mass-ratio distribution independent of the period) are confirmed with a high statistical significance. The fraction of hierarchies with three or more components is 0.13 + or - 0.01, and the fractions of targets with n = 1,2, 3,... components are 54:33:8:4:1. Subsystems in the secondary components are almost as frequent as in the primary components, but in half of such cases both inner pairs are present. The high frequency of those 2+2 hierarchies (4%) suggests that both inner pairs were formed by a common process. The statistics of hierarchies can be reproduced by simulations, assuming that the field is a mixture coming from binary-rich and binary-poor environments. Periods of the outer and inner binaries are selected recursively from the same lognormal distribution, subject to the stability constraint and accounting for the correlation between inner subsystems. The simulator can be used to evaluate the frequency of multiple systems with specified parameters. However, it does not reproduce the observed excess of inner periods shorter than 10 days, caused by tidal evolution.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0004-6256
1538-3881
1538-3881
DOI:10.1088/0004-6256/147/4/87