Human pancreatic afferent and efferent nerves: mapping and 3-D illustration of exocrine, endocrine, and adipose innervation
The pancreas consists of both the exocrine (acini and ducts) and endocrine (islets) compartments to participate in and regulate the body’s digestive and metabolic activities. These activities are subjected to neural modulation, but characterization of the human pancreatic afferent and efferent nerve...
Saved in:
Published in | American journal of physiology: Gastrointestinal and liver physiology Vol. 317; no. 5; pp. G694 - G706 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.11.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The pancreas consists of both the exocrine (acini and ducts) and endocrine (islets) compartments to participate in and regulate the body’s digestive and metabolic activities. These activities are subjected to neural modulation, but characterization of the human pancreatic afferent and efferent nerves remains difficult because of the lack of three-dimensional (3-D) image data. Here we prepare transparent human donor pancreases for 3-D histology to reveal the pancreatic microstructure, vasculature, and innervation in a global and integrated fashion. The pancreatic neural network consists of the substance P (SP)-positive sensory (afferent) nerves, the vesicular acetylcholine transporter (VAChT)-positive parasympathetic (efferent) nerves, and the tyrosine hydroxylase (TH)-positive sympathetic (efferent) nerves. The SP
+
afferent nerves were found residing along the basal domain of the interlobular ducts. The VAChT
+
and TH
+
efferent nerves were identified at the peri-acinar and perivascular spaces, which follow the blood vessels to the islets. In the intrapancreatic ganglia, the SP
+
(scattered minority, ~7%) and VAChT
+
neurons co-localize, suggesting a local afferent-efferent interaction. Compared with the mouse pancreas, the human pancreas differs in 1) the lack of SP
+
afferent nerves in the islet, 2) the lower ganglionic density, and 3) the obvious presence of VAChT
+
and TH
+
nerves around the intralobular adipocytes. The latter implicates the neural influence on the pancreatic steatosis. Overall, our 3-D image data reveal the human pancreatic afferent and efferent innervation patterns and provide the anatomical foundation for future high-definition analyses of neural remodeling in human pancreatic diseases.
NEW & NOTEWORTHY Modern three-dimensional (3-D) histology with multiplex optical signals identifies the afferent and efferent innervation patterns of human pancreas, which otherwise cannot be defined with standard histology. Our 3-D image data reveal the unexpected association of sensory and parasympathetic nerves/neurons in the intrapancreatic ganglia and identify the sympathetic and parasympathetic nerve contacts with the infiltrated adipocytes. The multiplex approach offers a new way to characterize the human pancreas in remodeling (e.g., fatty infiltration and duct lesion progression). |
---|---|
AbstractList | The pancreas consists of both the exocrine (acini and ducts) and endocrine (islets) compartments to participate in and regulate the body's digestive and metabolic activities. These activities are subjected to neural modulation, but characterization of the human pancreatic afferent and efferent nerves remains difficult because of the lack of three-dimensional (3-D) image data. Here we prepare transparent human donor pancreases for 3-D histology to reveal the pancreatic microstructure, vasculature, and innervation in a global and integrated fashion. The pancreatic neural network consists of the substance P (SP)-positive sensory (afferent) nerves, the vesicular acetylcholine transporter (VAChT)-positive parasympathetic (efferent) nerves, and the tyrosine hydroxylase (TH)-positive sympathetic (efferent) nerves. The SP+ afferent nerves were found residing along the basal domain of the interlobular ducts. The VAChT+ and TH+ efferent nerves were identified at the peri-acinar and perivascular spaces, which follow the blood vessels to the islets. In the intrapancreatic ganglia, the SP+ (scattered minority, ~7%) and VAChT+ neurons co-localize, suggesting a local afferent-efferent interaction. Compared with the mouse pancreas, the human pancreas differs in 1) the lack of SP+ afferent nerves in the islet, 2) the lower ganglionic density, and 3) the obvious presence of VAChT+ and TH+ nerves around the intralobular adipocytes. The latter implicates the neural influence on the pancreatic steatosis. Overall, our 3-D image data reveal the human pancreatic afferent and efferent innervation patterns and provide the anatomical foundation for future high-definition analyses of neural remodeling in human pancreatic diseases.NEW & NOTEWORTHY Modern three-dimensional (3-D) histology with multiplex optical signals identifies the afferent and efferent innervation patterns of human pancreas, which otherwise cannot be defined with standard histology. Our 3-D image data reveal the unexpected association of sensory and parasympathetic nerves/neurons in the intrapancreatic ganglia and identify the sympathetic and parasympathetic nerve contacts with the infiltrated adipocytes. The multiplex approach offers a new way to characterize the human pancreas in remodeling (e.g., fatty infiltration and duct lesion progression).The pancreas consists of both the exocrine (acini and ducts) and endocrine (islets) compartments to participate in and regulate the body's digestive and metabolic activities. These activities are subjected to neural modulation, but characterization of the human pancreatic afferent and efferent nerves remains difficult because of the lack of three-dimensional (3-D) image data. Here we prepare transparent human donor pancreases for 3-D histology to reveal the pancreatic microstructure, vasculature, and innervation in a global and integrated fashion. The pancreatic neural network consists of the substance P (SP)-positive sensory (afferent) nerves, the vesicular acetylcholine transporter (VAChT)-positive parasympathetic (efferent) nerves, and the tyrosine hydroxylase (TH)-positive sympathetic (efferent) nerves. The SP+ afferent nerves were found residing along the basal domain of the interlobular ducts. The VAChT+ and TH+ efferent nerves were identified at the peri-acinar and perivascular spaces, which follow the blood vessels to the islets. In the intrapancreatic ganglia, the SP+ (scattered minority, ~7%) and VAChT+ neurons co-localize, suggesting a local afferent-efferent interaction. Compared with the mouse pancreas, the human pancreas differs in 1) the lack of SP+ afferent nerves in the islet, 2) the lower ganglionic density, and 3) the obvious presence of VAChT+ and TH+ nerves around the intralobular adipocytes. The latter implicates the neural influence on the pancreatic steatosis. Overall, our 3-D image data reveal the human pancreatic afferent and efferent innervation patterns and provide the anatomical foundation for future high-definition analyses of neural remodeling in human pancreatic diseases.NEW & NOTEWORTHY Modern three-dimensional (3-D) histology with multiplex optical signals identifies the afferent and efferent innervation patterns of human pancreas, which otherwise cannot be defined with standard histology. Our 3-D image data reveal the unexpected association of sensory and parasympathetic nerves/neurons in the intrapancreatic ganglia and identify the sympathetic and parasympathetic nerve contacts with the infiltrated adipocytes. The multiplex approach offers a new way to characterize the human pancreas in remodeling (e.g., fatty infiltration and duct lesion progression). The pancreas consists of both the exocrine (acini and ducts) and endocrine (islets) compartments to participate in and regulate the body's digestive and metabolic activities. These activities are subjected to neural modulation, but characterization of the human pancreatic afferent and efferent nerves remains difficult because of the lack of three-dimensional (3-D) image data. Here we prepare transparent human donor pancreases for 3-D histology to reveal the pancreatic microstructure, vasculature, and innervation in a global and integrated fashion. The pancreatic neural network consists of the substance P (SP)-positive sensory (afferent) nerves, the vesicular acetylcholine transporter (VAChT)-positive parasympathetic (efferent) nerves, and the tyrosine hydroxylase (TH)-positive sympathetic (efferent) nerves. The SP afferent nerves were found residing along the basal domain of the interlobular ducts. The VAChT and TH efferent nerves were identified at the peri-acinar and perivascular spaces, which follow the blood vessels to the islets. In the intrapancreatic ganglia, the SP (scattered minority, ~7%) and VAChT neurons co-localize, suggesting a local afferent-efferent interaction. Compared with the mouse pancreas, the human pancreas differs in ) the lack of SP afferent nerves in the islet, ) the lower ganglionic density, and ) the obvious presence of VAChT and TH nerves around the intralobular adipocytes. The latter implicates the neural influence on the pancreatic steatosis. Overall, our 3-D image data reveal the human pancreatic afferent and efferent innervation patterns and provide the anatomical foundation for future high-definition analyses of neural remodeling in human pancreatic diseases. Modern three-dimensional (3-D) histology with multiplex optical signals identifies the afferent and efferent innervation patterns of human pancreas, which otherwise cannot be defined with standard histology. Our 3-D image data reveal the unexpected association of sensory and parasympathetic nerves/neurons in the intrapancreatic ganglia and identify the sympathetic and parasympathetic nerve contacts with the infiltrated adipocytes. The multiplex approach offers a new way to characterize the human pancreas in remodeling (e.g., fatty infiltration and duct lesion progression). The pancreas consists of both the exocrine (acini and ducts) and endocrine (islets) compartments to participate in and regulate the body’s digestive and metabolic activities. These activities are subjected to neural modulation, but characterization of the human pancreatic afferent and efferent nerves remains difficult because of the lack of three-dimensional (3-D) image data. Here we prepare transparent human donor pancreases for 3-D histology to reveal the pancreatic microstructure, vasculature, and innervation in a global and integrated fashion. The pancreatic neural network consists of the substance P (SP)-positive sensory (afferent) nerves, the vesicular acetylcholine transporter (VAChT)-positive parasympathetic (efferent) nerves, and the tyrosine hydroxylase (TH)-positive sympathetic (efferent) nerves. The SP + afferent nerves were found residing along the basal domain of the interlobular ducts. The VAChT + and TH + efferent nerves were identified at the peri-acinar and perivascular spaces, which follow the blood vessels to the islets. In the intrapancreatic ganglia, the SP + (scattered minority, ~7%) and VAChT + neurons co-localize, suggesting a local afferent-efferent interaction. Compared with the mouse pancreas, the human pancreas differs in 1) the lack of SP + afferent nerves in the islet, 2) the lower ganglionic density, and 3) the obvious presence of VAChT + and TH + nerves around the intralobular adipocytes. The latter implicates the neural influence on the pancreatic steatosis. Overall, our 3-D image data reveal the human pancreatic afferent and efferent innervation patterns and provide the anatomical foundation for future high-definition analyses of neural remodeling in human pancreatic diseases. NEW & NOTEWORTHY Modern three-dimensional (3-D) histology with multiplex optical signals identifies the afferent and efferent innervation patterns of human pancreas, which otherwise cannot be defined with standard histology. Our 3-D image data reveal the unexpected association of sensory and parasympathetic nerves/neurons in the intrapancreatic ganglia and identify the sympathetic and parasympathetic nerve contacts with the infiltrated adipocytes. The multiplex approach offers a new way to characterize the human pancreas in remodeling (e.g., fatty infiltration and duct lesion progression). |
Author | Tang, Shiue-Cheng Chung, Mei-Hsin Jeng, Yung-Ming Peng, Shih-Jung Lee, Chih-Yuan Tien, Yu-Wen Chou, Ya-Hsien Chiang, Tsai-Chen Chien, Hung-Jen |
Author_xml | – sequence: 1 givenname: Hung-Jen surname: Chien fullname: Chien, Hung-Jen organization: Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan – sequence: 2 givenname: Tsai-Chen surname: Chiang fullname: Chiang, Tsai-Chen organization: Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan – sequence: 3 givenname: Shih-Jung surname: Peng fullname: Peng, Shih-Jung organization: Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan, Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan – sequence: 4 givenname: Mei-Hsin surname: Chung fullname: Chung, Mei-Hsin organization: Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan, Department of Pathology, National Taiwan University Hospital-Hsinchu Branch, Hsinchu, Taiwan – sequence: 5 givenname: Ya-Hsien surname: Chou fullname: Chou, Ya-Hsien organization: Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan, Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan – sequence: 6 givenname: Chih-Yuan surname: Lee fullname: Lee, Chih-Yuan organization: Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan – sequence: 7 givenname: Yung-Ming surname: Jeng fullname: Jeng, Yung-Ming organization: Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan – sequence: 8 givenname: Yu-Wen surname: Tien fullname: Tien, Yu-Wen organization: Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan – sequence: 9 givenname: Shiue-Cheng surname: Tang fullname: Tang, Shiue-Cheng organization: Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan, Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31509431$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kUtPAyEUhYmpsQ_duzIsXTgVhnkUd6Y-atLEja4Jw1wamhlmhBmj8c9Lp-3GxJDA5fKdm3DOFI1sYwGhS0rmlKbxrdy2GzMnhNJsHhPKT9AktOOIpkk-QpPQYRFdpPkYTb3fEkLSmNIzNGY0JTxhdIJ-Vn0tLW6lVQ5kZxSWWoMD22FpSwzHiwX3Cf4O17Jtjd0Mjyx6wKaqet-5oGwsbjSGr0Y5Y-EGgy2P5Q6WpWkbD9jY3aiBP0enWlYeLg7nDL0_Pb4tV9H69flleb-OVELyLqLFgiXAmSy44gXRpATN84SSQoctrIKlnMpCxUnGZMw4V1olmZQEiiDM2Axd7-e2rvnowXeiNl5BVUkLTe9FHC94mifBs4BeHdC-qKEUrTO1dN_iaFgAsj2gXOO9Ay2U6YbfBBNMJSgRu2TEkIwYkhG7ZIKQ_BEeZ_8r-QVT05K0 |
CitedBy_id | crossref_primary_10_1152_ajpendo_00605_2020 crossref_primary_10_1007_s00125_020_05204_6 crossref_primary_10_2337_db23_0809 crossref_primary_10_1016_j_peptides_2022_170768 crossref_primary_10_1016_j_semcdb_2023_07_010 crossref_primary_10_1111_nmo_13880 crossref_primary_10_1152_ajpendo_00111_2022 crossref_primary_10_2217_bem_2020_0006 crossref_primary_10_1016_j_canlet_2024_216689 crossref_primary_10_1016_j_bbrc_2025_151364 crossref_primary_10_1152_ajpgi_00023_2021 crossref_primary_10_1152_physrev_00038_2023 crossref_primary_10_1016_j_tins_2020_10_015 crossref_primary_10_1038_s41388_023_02775_7 crossref_primary_10_1126_sciadv_aaz9124 crossref_primary_10_1038_s41575_021_00551_0 crossref_primary_10_1210_endrev_bnab010 crossref_primary_10_1002_advs_202306128 crossref_primary_10_3390_biomedicines13030609 crossref_primary_10_1016_j_jtbi_2022_111301 crossref_primary_10_1007_s00125_021_05504_5 crossref_primary_10_1016_j_aanat_2021_151880 crossref_primary_10_1080_00365521_2021_1957496 crossref_primary_10_1016_j_neuron_2022_10_017 crossref_primary_10_1021_acs_analchem_0c01226 crossref_primary_10_1152_ajpendo_00205_2023 crossref_primary_10_1038_s41467_023_39082_4 crossref_primary_10_1146_annurev_pharmtox_052220_010446 crossref_primary_10_1152_ajpendo_00246_2022 crossref_primary_10_3389_fendo_2021_644826 crossref_primary_10_1007_s00125_022_05691_9 crossref_primary_10_1016_j_ejrad_2024_111736 crossref_primary_10_3389_fendo_2021_663022 crossref_primary_10_5507_ag_2023_011 crossref_primary_10_1002_ags3_12459 crossref_primary_10_2337_dbi24_0001 crossref_primary_10_1038_s41467_022_29659_w crossref_primary_10_1016_j_tins_2024_11_008 crossref_primary_10_1152_ajpendo_00115_2023 crossref_primary_10_1016_j_cnd_2020_03_008 crossref_primary_10_1016_j_clim_2023_109319 |
Cites_doi | 10.1053/j.gastro.2009.05.008 10.1093/acprof:oso/9780195306637.003.0015 10.1097/00006676-199203000-00009 10.1113/expphysiol.2012.066472 10.3389/fphys.2017.00137 10.1152/ajpgi.00209.2012 10.1146/annurev-cellbio-111315-125001 10.1016/j.peptides.2017.12.001 10.1111/cas.13766 10.1016/j.physbeh.2011.01.012 10.1152/ajpendo.00136.2003 10.1016/j.cmet.2011.06.004 10.1007/s00125-017-4409-x 10.2337/db10-0103 10.1016/j.transproceed.2008.01.031 10.1002/jcp.20061 10.1097/00006676-199801000-00013 10.1152/ajpgi.00071.2016 10.1113/jphysiol.2012.234955 10.1016/j.physbeh.2009.11.009 10.1016/j.molmet.2018.10.002 10.1002/(SICI)1096-9861(19970224)378:4<454:AID-CNE2>3.0.CO;2-1 10.1172/JCI0215736 10.1152/advan.00167.2012 10.1152/ajpgi.00077.2010 10.1016/0165-3806(91)90248-H 10.1038/nrgastro.2015.166 10.1152/ajpendo.00515.2013 10.1016/j.metabol.2016.12.012 10.1152/ajpcell.1989.256.1.C190 10.1158/0008-5472.CAN-16-0899 10.1210/en.2011-2040 10.1038/nrgastro.2011.4 10.1016/j.autneu.2006.01.007 10.1016/0026-0495(95)90008-X 10.1152/ajpregu.00679.2005 10.1038/nrgastro.2012.32 10.1038/ijo.2010.182 10.1016/j.autneu.2006.10.001 10.1007/s00125-009-1494-5 10.1016/S0167-0115(00)00177-4 10.1111/j.1365-2982.2011.01773.x 10.1053/j.gastro.2008.09.029 10.1007/s00247-005-1413-y 10.1007/s001250051322 10.1007/s00125-017-4408-y 10.1016/j.cmet.2011.05.008 10.1152/ajpendo.1998.275.3.E457 10.1152/ajpgi.00432.2011 10.2337/db10-1192 10.1080/10408369991239169 10.1016/0196-9781(87)90117-3 10.1161/JAHA.113.000297 10.1210/jc.2012-1206 10.1016/j.yfrne.2014.04.001 10.1016/0016-5085(84)90088-X 10.2337/diabetes.50.5.1030 10.1038/ijo.2015.224 10.1016/S0079-6123(08)60229-0 10.1016/j.npep.2016.06.004 10.1016/j.physbeh.2007.11.049 |
ContentType | Journal Article |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1152/ajpgi.00116.2019 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1522-1547 |
EndPage | G706 |
ExternalDocumentID | 31509431 10_1152_ajpgi_00116_2019 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 23M 2WC 39C 4.4 5GY 5VS 6J9 AAFWJ AAYXX ABJNI ACPRK ADBBV AENEX ALMA_UNASSIGNED_HOLDINGS BAWUL BKKCC BKOMP CITATION E3Z EBS EJD EMOBN F5P GX1 H13 ITBOX KQ8 OK1 P2P PQQKQ RAP RHI RPL RPRKH TR2 W8F WOQ XSW YSK CGR CUY CVF DIK ECM EIF NPM RHF 7X8 |
ID | FETCH-LOGICAL-c407t-1b834e93ab9c9b0f0def97410bf410101b3591abc2463a2399cfc46aa0eb34e63 |
ISSN | 0193-1857 1522-1547 |
IngestDate | Fri Jul 11 16:39:35 EDT 2025 Thu Jan 02 22:58:42 EST 2025 Tue Jul 01 03:43:03 EDT 2025 Thu Apr 24 23:04:35 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | intrapancreatic ganglia fatty infiltration pancreatic steatosis tissue clearing autonomic innervation |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c407t-1b834e93ab9c9b0f0def97410bf410101b3591abc2463a2399cfc46aa0eb34e63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://journals.physiology.org/doi/pdf/10.1152/ajpgi.00116.2019 |
PMID | 31509431 |
PQID | 2289574547 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2289574547 pubmed_primary_31509431 crossref_citationtrail_10_1152_ajpgi_00116_2019 crossref_primary_10_1152_ajpgi_00116_2019 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-11-01 20191101 |
PublicationDateYYYYMMDD | 2019-11-01 |
PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | American journal of physiology: Gastrointestinal and liver physiology |
PublicationTitleAlternate | Am J Physiol Gastrointest Liver Physiol |
PublicationYear | 2019 |
References | B20 B21 B23 B24 B25 B26 B27 B28 B30 B31 B32 B33 B34 B35 B36 B37 B38 B39 B1 B2 B3 B4 B5 B6 B7 B8 B9 Liu L (B29) 2011; 12 B40 B41 B42 B43 B44 B45 B46 B47 B48 B49 B50 B51 B52 B53 B10 B54 B11 B55 B12 B56 B13 B57 B14 B58 B15 B59 B16 B17 B18 B19 B60 B61 B62 B63 |
References_xml | – ident: B15 doi: 10.1053/j.gastro.2009.05.008 – ident: B59 doi: 10.1093/acprof:oso/9780195306637.003.0015 – ident: B10 doi: 10.1097/00006676-199203000-00009 – ident: B37 doi: 10.1113/expphysiol.2012.066472 – ident: B35 doi: 10.3389/fphys.2017.00137 – ident: B16 doi: 10.1152/ajpgi.00209.2012 – ident: B53 doi: 10.1146/annurev-cellbio-111315-125001 – ident: B63 doi: 10.1016/j.peptides.2017.12.001 – ident: B54 doi: 10.1111/cas.13766 – ident: B58 doi: 10.1016/j.physbeh.2011.01.012 – ident: B36 doi: 10.1152/ajpendo.00136.2003 – ident: B50 doi: 10.1016/j.cmet.2011.06.004 – ident: B55 doi: 10.1007/s00125-017-4409-x – ident: B34 doi: 10.2337/db10-0103 – ident: B49 doi: 10.1016/j.transproceed.2008.01.031 – ident: B38 doi: 10.1002/jcp.20061 – ident: B62 doi: 10.1097/00006676-199801000-00013 – ident: B28 doi: 10.1152/ajpgi.00071.2016 – ident: B4 doi: 10.1113/jphysiol.2012.234955 – ident: B57 doi: 10.1016/j.physbeh.2009.11.009 – ident: B9 doi: 10.1016/j.molmet.2018.10.002 – ident: B3 doi: 10.1002/(SICI)1096-9861(19970224)378:4<454:AID-CNE2>3.0.CO;2-1 – ident: B26 doi: 10.1172/JCI0215736 – ident: B8 doi: 10.1152/advan.00167.2012 – ident: B5 doi: 10.1152/ajpgi.00077.2010 – ident: B24 doi: 10.1016/0165-3806(91)90248-H – ident: B13 doi: 10.1038/nrgastro.2015.166 – ident: B23 doi: 10.1152/ajpendo.00515.2013 – ident: B45 doi: 10.1016/j.metabol.2016.12.012 – ident: B19 doi: 10.1152/ajpcell.1989.256.1.C190 – ident: B46 doi: 10.1158/0008-5472.CAN-16-0899 – ident: B52 doi: 10.1210/en.2011-2040 – volume: 12 start-page: 389 year: 2011 ident: B29 publication-title: JOP – ident: B47 doi: 10.1038/nrgastro.2011.4 – ident: B18 doi: 10.1016/j.autneu.2006.01.007 – ident: B42 doi: 10.1016/0026-0495(95)90008-X – ident: B20 doi: 10.1152/ajpregu.00679.2005 – ident: B17 doi: 10.1038/nrgastro.2012.32 – ident: B7 doi: 10.1038/ijo.2010.182 – ident: B32 doi: 10.1016/j.autneu.2006.10.001 – ident: B51 doi: 10.1007/s00125-009-1494-5 – ident: B33 doi: 10.1016/S0167-0115(00)00177-4 – ident: B30 doi: 10.1111/j.1365-2982.2011.01773.x – ident: B11 doi: 10.1053/j.gastro.2008.09.029 – ident: B25 doi: 10.1007/s00247-005-1413-y – ident: B1 doi: 10.1007/s001250051322 – ident: B56 doi: 10.1007/s00125-017-4408-y – ident: B41 doi: 10.1016/j.cmet.2011.05.008 – ident: B27 doi: 10.1152/ajpendo.1998.275.3.E457 – ident: B31 doi: 10.1152/ajpgi.00432.2011 – ident: B39 doi: 10.2337/db10-1192 – ident: B48 doi: 10.1080/10408369991239169 – ident: B14 doi: 10.1016/0196-9781(87)90117-3 – ident: B61 doi: 10.1161/JAHA.113.000297 – ident: B21 doi: 10.1210/jc.2012-1206 – ident: B6 doi: 10.1016/j.yfrne.2014.04.001 – ident: B43 doi: 10.1016/0016-5085(84)90088-X – ident: B2 doi: 10.2337/diabetes.50.5.1030 – ident: B12 doi: 10.1038/ijo.2015.224 – ident: B40 doi: 10.1016/S0079-6123(08)60229-0 – ident: B44 doi: 10.1016/j.npep.2016.06.004 – ident: B60 doi: 10.1016/j.physbeh.2007.11.049 |
SSID | ssj0005211 |
Score | 2.4836917 |
Snippet | The pancreas consists of both the exocrine (acini and ducts) and endocrine (islets) compartments to participate in and regulate the body’s digestive and... The pancreas consists of both the exocrine (acini and ducts) and endocrine (islets) compartments to participate in and regulate the body's digestive and... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | G694 |
SubjectTerms | Acinar Cells - cytology Adipose Tissue - cytology Adipose Tissue - innervation Adult Animals Female Humans Imaging, Three-Dimensional Islets of Langerhans - cytology Islets of Langerhans - innervation Male Mice Mice, Inbred C57BL Middle Aged Neuroanatomical Tract-Tracing Techniques Neurons, Afferent - cytology Neurons, Afferent - metabolism Neurons, Efferent - cytology Neurons, Efferent - metabolism Pancreas, Exocrine - cytology Pancreas, Exocrine - innervation Substance P - genetics Substance P - metabolism Tyrosine 3-Monooxygenase - genetics Tyrosine 3-Monooxygenase - metabolism Vesicular Acetylcholine Transport Proteins - genetics Vesicular Acetylcholine Transport Proteins - metabolism |
Title | Human pancreatic afferent and efferent nerves: mapping and 3-D illustration of exocrine, endocrine, and adipose innervation |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31509431 https://www.proquest.com/docview/2289574547 |
Volume | 317 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ra9swEBdZB2Nfxtbukb3QYAxGq9Wy_Ij2rXRbQkZGByn0m5EVufFI7dAkY4__eH_FTi_bK-1YR8DEli0nvp9Pd9Lv7hB6ycBILaJEEDBlBYmSIiYDGackVTyULJzJwpDHJ5-S0XE0PolPer1fHdbSZp2_kT8ujSv5H6nCMZCrjpK9hmSbTuEAfAf5whYkDNt_krGdgYf32Zp-clfYaieWNa78TqVZjYb6diaWSx-VyMi73XKx2PjEudpsVN9qeV7aSU5Vzdodk9J1Vi41u91U6_raStTnsPVrP51kFGbexMbDwN2HAu5V6wQVoFcql6RgoYkhnRNbvkFpNeII1BEZtxFr0ODmuKcrUZLDedt0pNzk97yck_HGDcq25pVtmaiSjFYu27ib7KDcRf115j85Izp9lR2-nM4GfxoswbSr1JmNCHXojTsqepjYqspuuB-mJuPBJUNJrFPTii_L09IuV2keIG-HTU8VuDCaNhxH413FYWZ6MNTBJNM93EA3Q3BpdLWNj58HHToSdbUz7R_0S-pxuH_xN_xpQl3hFxn7aHoX3XGODT6wKL2HeqraRjsHlVjXZ9_xK3zUSHgb3Zo4RscO-mkwjFsMY49hDOjAHsPYYvgtdgg2jYBg3EUwrgvsEbyHG_zumZMdenEHvffR8Yf308MRcQVBiIyCdE1oPmCR4kzkXPI8KIKZKsAfpkFewAY-OageKnIZRgkTOmpbFhIUkQhUDhcm7AHaqupKPUJ4AG4FTVUYKK6ZYZxHFGxtSgt4yDyd8T7a9884ky5bvi7assiukmsfvW6uWNpMMX8594UXWwbqXK_RiUrVm1UWhgMepzrLXh89tPJsemNUZ7tk9PE17vQE3W7fo6doa32-Uc_AjF7nzw3-fgOK8clR |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Human+pancreatic+afferent+and+efferent+nerves%3A+mapping+and+3-D+illustration+of+exocrine%2C+endocrine%2C+and+adipose+innervation&rft.jtitle=American+journal+of+physiology%3A+Gastrointestinal+and+liver+physiology&rft.au=Chien%2C+Hung-Jen&rft.au=Chiang%2C+Tsai-Chen&rft.au=Peng%2C+Shih-Jung&rft.au=Chung%2C+Mei-Hsin&rft.date=2019-11-01&rft.issn=0193-1857&rft.eissn=1522-1547&rft.volume=317&rft.issue=5&rft.spage=G694&rft.epage=G706&rft_id=info:doi/10.1152%2Fajpgi.00116.2019&rft.externalDBID=n%2Fa&rft.externalDocID=10_1152_ajpgi_00116_2019 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0193-1857&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0193-1857&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0193-1857&client=summon |