Human pancreatic afferent and efferent nerves: mapping and 3-D illustration of exocrine, endocrine, and adipose innervation

The pancreas consists of both the exocrine (acini and ducts) and endocrine (islets) compartments to participate in and regulate the body’s digestive and metabolic activities. These activities are subjected to neural modulation, but characterization of the human pancreatic afferent and efferent nerve...

Full description

Saved in:
Bibliographic Details
Published inAmerican journal of physiology: Gastrointestinal and liver physiology Vol. 317; no. 5; pp. G694 - G706
Main Authors Chien, Hung-Jen, Chiang, Tsai-Chen, Peng, Shih-Jung, Chung, Mei-Hsin, Chou, Ya-Hsien, Lee, Chih-Yuan, Jeng, Yung-Ming, Tien, Yu-Wen, Tang, Shiue-Cheng
Format Journal Article
LanguageEnglish
Published United States 01.11.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The pancreas consists of both the exocrine (acini and ducts) and endocrine (islets) compartments to participate in and regulate the body’s digestive and metabolic activities. These activities are subjected to neural modulation, but characterization of the human pancreatic afferent and efferent nerves remains difficult because of the lack of three-dimensional (3-D) image data. Here we prepare transparent human donor pancreases for 3-D histology to reveal the pancreatic microstructure, vasculature, and innervation in a global and integrated fashion. The pancreatic neural network consists of the substance P (SP)-positive sensory (afferent) nerves, the vesicular acetylcholine transporter (VAChT)-positive parasympathetic (efferent) nerves, and the tyrosine hydroxylase (TH)-positive sympathetic (efferent) nerves. The SP + afferent nerves were found residing along the basal domain of the interlobular ducts. The VAChT + and TH + efferent nerves were identified at the peri-acinar and perivascular spaces, which follow the blood vessels to the islets. In the intrapancreatic ganglia, the SP + (scattered minority, ~7%) and VAChT + neurons co-localize, suggesting a local afferent-efferent interaction. Compared with the mouse pancreas, the human pancreas differs in 1) the lack of SP + afferent nerves in the islet, 2) the lower ganglionic density, and 3) the obvious presence of VAChT + and TH + nerves around the intralobular adipocytes. The latter implicates the neural influence on the pancreatic steatosis. Overall, our 3-D image data reveal the human pancreatic afferent and efferent innervation patterns and provide the anatomical foundation for future high-definition analyses of neural remodeling in human pancreatic diseases. NEW & NOTEWORTHY Modern three-dimensional (3-D) histology with multiplex optical signals identifies the afferent and efferent innervation patterns of human pancreas, which otherwise cannot be defined with standard histology. Our 3-D image data reveal the unexpected association of sensory and parasympathetic nerves/neurons in the intrapancreatic ganglia and identify the sympathetic and parasympathetic nerve contacts with the infiltrated adipocytes. The multiplex approach offers a new way to characterize the human pancreas in remodeling (e.g., fatty infiltration and duct lesion progression).
AbstractList The pancreas consists of both the exocrine (acini and ducts) and endocrine (islets) compartments to participate in and regulate the body's digestive and metabolic activities. These activities are subjected to neural modulation, but characterization of the human pancreatic afferent and efferent nerves remains difficult because of the lack of three-dimensional (3-D) image data. Here we prepare transparent human donor pancreases for 3-D histology to reveal the pancreatic microstructure, vasculature, and innervation in a global and integrated fashion. The pancreatic neural network consists of the substance P (SP)-positive sensory (afferent) nerves, the vesicular acetylcholine transporter (VAChT)-positive parasympathetic (efferent) nerves, and the tyrosine hydroxylase (TH)-positive sympathetic (efferent) nerves. The SP+ afferent nerves were found residing along the basal domain of the interlobular ducts. The VAChT+ and TH+ efferent nerves were identified at the peri-acinar and perivascular spaces, which follow the blood vessels to the islets. In the intrapancreatic ganglia, the SP+ (scattered minority, ~7%) and VAChT+ neurons co-localize, suggesting a local afferent-efferent interaction. Compared with the mouse pancreas, the human pancreas differs in 1) the lack of SP+ afferent nerves in the islet, 2) the lower ganglionic density, and 3) the obvious presence of VAChT+ and TH+ nerves around the intralobular adipocytes. The latter implicates the neural influence on the pancreatic steatosis. Overall, our 3-D image data reveal the human pancreatic afferent and efferent innervation patterns and provide the anatomical foundation for future high-definition analyses of neural remodeling in human pancreatic diseases.NEW & NOTEWORTHY Modern three-dimensional (3-D) histology with multiplex optical signals identifies the afferent and efferent innervation patterns of human pancreas, which otherwise cannot be defined with standard histology. Our 3-D image data reveal the unexpected association of sensory and parasympathetic nerves/neurons in the intrapancreatic ganglia and identify the sympathetic and parasympathetic nerve contacts with the infiltrated adipocytes. The multiplex approach offers a new way to characterize the human pancreas in remodeling (e.g., fatty infiltration and duct lesion progression).The pancreas consists of both the exocrine (acini and ducts) and endocrine (islets) compartments to participate in and regulate the body's digestive and metabolic activities. These activities are subjected to neural modulation, but characterization of the human pancreatic afferent and efferent nerves remains difficult because of the lack of three-dimensional (3-D) image data. Here we prepare transparent human donor pancreases for 3-D histology to reveal the pancreatic microstructure, vasculature, and innervation in a global and integrated fashion. The pancreatic neural network consists of the substance P (SP)-positive sensory (afferent) nerves, the vesicular acetylcholine transporter (VAChT)-positive parasympathetic (efferent) nerves, and the tyrosine hydroxylase (TH)-positive sympathetic (efferent) nerves. The SP+ afferent nerves were found residing along the basal domain of the interlobular ducts. The VAChT+ and TH+ efferent nerves were identified at the peri-acinar and perivascular spaces, which follow the blood vessels to the islets. In the intrapancreatic ganglia, the SP+ (scattered minority, ~7%) and VAChT+ neurons co-localize, suggesting a local afferent-efferent interaction. Compared with the mouse pancreas, the human pancreas differs in 1) the lack of SP+ afferent nerves in the islet, 2) the lower ganglionic density, and 3) the obvious presence of VAChT+ and TH+ nerves around the intralobular adipocytes. The latter implicates the neural influence on the pancreatic steatosis. Overall, our 3-D image data reveal the human pancreatic afferent and efferent innervation patterns and provide the anatomical foundation for future high-definition analyses of neural remodeling in human pancreatic diseases.NEW & NOTEWORTHY Modern three-dimensional (3-D) histology with multiplex optical signals identifies the afferent and efferent innervation patterns of human pancreas, which otherwise cannot be defined with standard histology. Our 3-D image data reveal the unexpected association of sensory and parasympathetic nerves/neurons in the intrapancreatic ganglia and identify the sympathetic and parasympathetic nerve contacts with the infiltrated adipocytes. The multiplex approach offers a new way to characterize the human pancreas in remodeling (e.g., fatty infiltration and duct lesion progression).
The pancreas consists of both the exocrine (acini and ducts) and endocrine (islets) compartments to participate in and regulate the body's digestive and metabolic activities. These activities are subjected to neural modulation, but characterization of the human pancreatic afferent and efferent nerves remains difficult because of the lack of three-dimensional (3-D) image data. Here we prepare transparent human donor pancreases for 3-D histology to reveal the pancreatic microstructure, vasculature, and innervation in a global and integrated fashion. The pancreatic neural network consists of the substance P (SP)-positive sensory (afferent) nerves, the vesicular acetylcholine transporter (VAChT)-positive parasympathetic (efferent) nerves, and the tyrosine hydroxylase (TH)-positive sympathetic (efferent) nerves. The SP afferent nerves were found residing along the basal domain of the interlobular ducts. The VAChT and TH efferent nerves were identified at the peri-acinar and perivascular spaces, which follow the blood vessels to the islets. In the intrapancreatic ganglia, the SP (scattered minority, ~7%) and VAChT neurons co-localize, suggesting a local afferent-efferent interaction. Compared with the mouse pancreas, the human pancreas differs in ) the lack of SP afferent nerves in the islet, ) the lower ganglionic density, and ) the obvious presence of VAChT and TH nerves around the intralobular adipocytes. The latter implicates the neural influence on the pancreatic steatosis. Overall, our 3-D image data reveal the human pancreatic afferent and efferent innervation patterns and provide the anatomical foundation for future high-definition analyses of neural remodeling in human pancreatic diseases. Modern three-dimensional (3-D) histology with multiplex optical signals identifies the afferent and efferent innervation patterns of human pancreas, which otherwise cannot be defined with standard histology. Our 3-D image data reveal the unexpected association of sensory and parasympathetic nerves/neurons in the intrapancreatic ganglia and identify the sympathetic and parasympathetic nerve contacts with the infiltrated adipocytes. The multiplex approach offers a new way to characterize the human pancreas in remodeling (e.g., fatty infiltration and duct lesion progression).
The pancreas consists of both the exocrine (acini and ducts) and endocrine (islets) compartments to participate in and regulate the body’s digestive and metabolic activities. These activities are subjected to neural modulation, but characterization of the human pancreatic afferent and efferent nerves remains difficult because of the lack of three-dimensional (3-D) image data. Here we prepare transparent human donor pancreases for 3-D histology to reveal the pancreatic microstructure, vasculature, and innervation in a global and integrated fashion. The pancreatic neural network consists of the substance P (SP)-positive sensory (afferent) nerves, the vesicular acetylcholine transporter (VAChT)-positive parasympathetic (efferent) nerves, and the tyrosine hydroxylase (TH)-positive sympathetic (efferent) nerves. The SP + afferent nerves were found residing along the basal domain of the interlobular ducts. The VAChT + and TH + efferent nerves were identified at the peri-acinar and perivascular spaces, which follow the blood vessels to the islets. In the intrapancreatic ganglia, the SP + (scattered minority, ~7%) and VAChT + neurons co-localize, suggesting a local afferent-efferent interaction. Compared with the mouse pancreas, the human pancreas differs in 1) the lack of SP + afferent nerves in the islet, 2) the lower ganglionic density, and 3) the obvious presence of VAChT + and TH + nerves around the intralobular adipocytes. The latter implicates the neural influence on the pancreatic steatosis. Overall, our 3-D image data reveal the human pancreatic afferent and efferent innervation patterns and provide the anatomical foundation for future high-definition analyses of neural remodeling in human pancreatic diseases. NEW & NOTEWORTHY Modern three-dimensional (3-D) histology with multiplex optical signals identifies the afferent and efferent innervation patterns of human pancreas, which otherwise cannot be defined with standard histology. Our 3-D image data reveal the unexpected association of sensory and parasympathetic nerves/neurons in the intrapancreatic ganglia and identify the sympathetic and parasympathetic nerve contacts with the infiltrated adipocytes. The multiplex approach offers a new way to characterize the human pancreas in remodeling (e.g., fatty infiltration and duct lesion progression).
Author Tang, Shiue-Cheng
Chung, Mei-Hsin
Jeng, Yung-Ming
Peng, Shih-Jung
Lee, Chih-Yuan
Tien, Yu-Wen
Chou, Ya-Hsien
Chiang, Tsai-Chen
Chien, Hung-Jen
Author_xml – sequence: 1
  givenname: Hung-Jen
  surname: Chien
  fullname: Chien, Hung-Jen
  organization: Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
– sequence: 2
  givenname: Tsai-Chen
  surname: Chiang
  fullname: Chiang, Tsai-Chen
  organization: Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
– sequence: 3
  givenname: Shih-Jung
  surname: Peng
  fullname: Peng, Shih-Jung
  organization: Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan, Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan
– sequence: 4
  givenname: Mei-Hsin
  surname: Chung
  fullname: Chung, Mei-Hsin
  organization: Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan, Department of Pathology, National Taiwan University Hospital-Hsinchu Branch, Hsinchu, Taiwan
– sequence: 5
  givenname: Ya-Hsien
  surname: Chou
  fullname: Chou, Ya-Hsien
  organization: Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan, Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan
– sequence: 6
  givenname: Chih-Yuan
  surname: Lee
  fullname: Lee, Chih-Yuan
  organization: Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
– sequence: 7
  givenname: Yung-Ming
  surname: Jeng
  fullname: Jeng, Yung-Ming
  organization: Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
– sequence: 8
  givenname: Yu-Wen
  surname: Tien
  fullname: Tien, Yu-Wen
  organization: Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
– sequence: 9
  givenname: Shiue-Cheng
  surname: Tang
  fullname: Tang, Shiue-Cheng
  organization: Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan, Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31509431$$D View this record in MEDLINE/PubMed
BookMark eNp1kUtPAyEUhYmpsQ_duzIsXTgVhnkUd6Y-atLEja4Jw1wamhlmhBmj8c9Lp-3GxJDA5fKdm3DOFI1sYwGhS0rmlKbxrdy2GzMnhNJsHhPKT9AktOOIpkk-QpPQYRFdpPkYTb3fEkLSmNIzNGY0JTxhdIJ-Vn0tLW6lVQ5kZxSWWoMD22FpSwzHiwX3Cf4O17Jtjd0Mjyx6wKaqet-5oGwsbjSGr0Y5Y-EGgy2P5Q6WpWkbD9jY3aiBP0enWlYeLg7nDL0_Pb4tV9H69flleb-OVELyLqLFgiXAmSy44gXRpATN84SSQoctrIKlnMpCxUnGZMw4V1olmZQEiiDM2Axd7-e2rvnowXeiNl5BVUkLTe9FHC94mifBs4BeHdC-qKEUrTO1dN_iaFgAsj2gXOO9Ay2U6YbfBBNMJSgRu2TEkIwYkhG7ZIKQ_BEeZ_8r-QVT05K0
CitedBy_id crossref_primary_10_1152_ajpendo_00605_2020
crossref_primary_10_1007_s00125_020_05204_6
crossref_primary_10_2337_db23_0809
crossref_primary_10_1016_j_peptides_2022_170768
crossref_primary_10_1016_j_semcdb_2023_07_010
crossref_primary_10_1111_nmo_13880
crossref_primary_10_1152_ajpendo_00111_2022
crossref_primary_10_2217_bem_2020_0006
crossref_primary_10_1016_j_canlet_2024_216689
crossref_primary_10_1016_j_bbrc_2025_151364
crossref_primary_10_1152_ajpgi_00023_2021
crossref_primary_10_1152_physrev_00038_2023
crossref_primary_10_1016_j_tins_2020_10_015
crossref_primary_10_1038_s41388_023_02775_7
crossref_primary_10_1126_sciadv_aaz9124
crossref_primary_10_1038_s41575_021_00551_0
crossref_primary_10_1210_endrev_bnab010
crossref_primary_10_1002_advs_202306128
crossref_primary_10_3390_biomedicines13030609
crossref_primary_10_1016_j_jtbi_2022_111301
crossref_primary_10_1007_s00125_021_05504_5
crossref_primary_10_1016_j_aanat_2021_151880
crossref_primary_10_1080_00365521_2021_1957496
crossref_primary_10_1016_j_neuron_2022_10_017
crossref_primary_10_1021_acs_analchem_0c01226
crossref_primary_10_1152_ajpendo_00205_2023
crossref_primary_10_1038_s41467_023_39082_4
crossref_primary_10_1146_annurev_pharmtox_052220_010446
crossref_primary_10_1152_ajpendo_00246_2022
crossref_primary_10_3389_fendo_2021_644826
crossref_primary_10_1007_s00125_022_05691_9
crossref_primary_10_1016_j_ejrad_2024_111736
crossref_primary_10_3389_fendo_2021_663022
crossref_primary_10_5507_ag_2023_011
crossref_primary_10_1002_ags3_12459
crossref_primary_10_2337_dbi24_0001
crossref_primary_10_1038_s41467_022_29659_w
crossref_primary_10_1016_j_tins_2024_11_008
crossref_primary_10_1152_ajpendo_00115_2023
crossref_primary_10_1016_j_cnd_2020_03_008
crossref_primary_10_1016_j_clim_2023_109319
Cites_doi 10.1053/j.gastro.2009.05.008
10.1093/acprof:oso/9780195306637.003.0015
10.1097/00006676-199203000-00009
10.1113/expphysiol.2012.066472
10.3389/fphys.2017.00137
10.1152/ajpgi.00209.2012
10.1146/annurev-cellbio-111315-125001
10.1016/j.peptides.2017.12.001
10.1111/cas.13766
10.1016/j.physbeh.2011.01.012
10.1152/ajpendo.00136.2003
10.1016/j.cmet.2011.06.004
10.1007/s00125-017-4409-x
10.2337/db10-0103
10.1016/j.transproceed.2008.01.031
10.1002/jcp.20061
10.1097/00006676-199801000-00013
10.1152/ajpgi.00071.2016
10.1113/jphysiol.2012.234955
10.1016/j.physbeh.2009.11.009
10.1016/j.molmet.2018.10.002
10.1002/(SICI)1096-9861(19970224)378:4<454:AID-CNE2>3.0.CO;2-1
10.1172/JCI0215736
10.1152/advan.00167.2012
10.1152/ajpgi.00077.2010
10.1016/0165-3806(91)90248-H
10.1038/nrgastro.2015.166
10.1152/ajpendo.00515.2013
10.1016/j.metabol.2016.12.012
10.1152/ajpcell.1989.256.1.C190
10.1158/0008-5472.CAN-16-0899
10.1210/en.2011-2040
10.1038/nrgastro.2011.4
10.1016/j.autneu.2006.01.007
10.1016/0026-0495(95)90008-X
10.1152/ajpregu.00679.2005
10.1038/nrgastro.2012.32
10.1038/ijo.2010.182
10.1016/j.autneu.2006.10.001
10.1007/s00125-009-1494-5
10.1016/S0167-0115(00)00177-4
10.1111/j.1365-2982.2011.01773.x
10.1053/j.gastro.2008.09.029
10.1007/s00247-005-1413-y
10.1007/s001250051322
10.1007/s00125-017-4408-y
10.1016/j.cmet.2011.05.008
10.1152/ajpendo.1998.275.3.E457
10.1152/ajpgi.00432.2011
10.2337/db10-1192
10.1080/10408369991239169
10.1016/0196-9781(87)90117-3
10.1161/JAHA.113.000297
10.1210/jc.2012-1206
10.1016/j.yfrne.2014.04.001
10.1016/0016-5085(84)90088-X
10.2337/diabetes.50.5.1030
10.1038/ijo.2015.224
10.1016/S0079-6123(08)60229-0
10.1016/j.npep.2016.06.004
10.1016/j.physbeh.2007.11.049
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1152/ajpgi.00116.2019
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1522-1547
EndPage G706
ExternalDocumentID 31509431
10_1152_ajpgi_00116_2019
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
23M
2WC
39C
4.4
5GY
5VS
6J9
AAFWJ
AAYXX
ABJNI
ACPRK
ADBBV
AENEX
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BKKCC
BKOMP
CITATION
E3Z
EBS
EJD
EMOBN
F5P
GX1
H13
ITBOX
KQ8
OK1
P2P
PQQKQ
RAP
RHI
RPL
RPRKH
TR2
W8F
WOQ
XSW
YSK
CGR
CUY
CVF
DIK
ECM
EIF
NPM
RHF
7X8
ID FETCH-LOGICAL-c407t-1b834e93ab9c9b0f0def97410bf410101b3591abc2463a2399cfc46aa0eb34e63
ISSN 0193-1857
1522-1547
IngestDate Fri Jul 11 16:39:35 EDT 2025
Thu Jan 02 22:58:42 EST 2025
Tue Jul 01 03:43:03 EDT 2025
Thu Apr 24 23:04:35 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords intrapancreatic ganglia
fatty infiltration
pancreatic steatosis
tissue clearing
autonomic innervation
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c407t-1b834e93ab9c9b0f0def97410bf410101b3591abc2463a2399cfc46aa0eb34e63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://journals.physiology.org/doi/pdf/10.1152/ajpgi.00116.2019
PMID 31509431
PQID 2289574547
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2289574547
pubmed_primary_31509431
crossref_citationtrail_10_1152_ajpgi_00116_2019
crossref_primary_10_1152_ajpgi_00116_2019
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-11-01
20191101
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle American journal of physiology: Gastrointestinal and liver physiology
PublicationTitleAlternate Am J Physiol Gastrointest Liver Physiol
PublicationYear 2019
References B20
B21
B23
B24
B25
B26
B27
B28
B30
B31
B32
B33
B34
B35
B36
B37
B38
B39
B1
B2
B3
B4
B5
B6
B7
B8
B9
Liu L (B29) 2011; 12
B40
B41
B42
B43
B44
B45
B46
B47
B48
B49
B50
B51
B52
B53
B10
B54
B11
B55
B12
B56
B13
B57
B14
B58
B15
B59
B16
B17
B18
B19
B60
B61
B62
B63
References_xml – ident: B15
  doi: 10.1053/j.gastro.2009.05.008
– ident: B59
  doi: 10.1093/acprof:oso/9780195306637.003.0015
– ident: B10
  doi: 10.1097/00006676-199203000-00009
– ident: B37
  doi: 10.1113/expphysiol.2012.066472
– ident: B35
  doi: 10.3389/fphys.2017.00137
– ident: B16
  doi: 10.1152/ajpgi.00209.2012
– ident: B53
  doi: 10.1146/annurev-cellbio-111315-125001
– ident: B63
  doi: 10.1016/j.peptides.2017.12.001
– ident: B54
  doi: 10.1111/cas.13766
– ident: B58
  doi: 10.1016/j.physbeh.2011.01.012
– ident: B36
  doi: 10.1152/ajpendo.00136.2003
– ident: B50
  doi: 10.1016/j.cmet.2011.06.004
– ident: B55
  doi: 10.1007/s00125-017-4409-x
– ident: B34
  doi: 10.2337/db10-0103
– ident: B49
  doi: 10.1016/j.transproceed.2008.01.031
– ident: B38
  doi: 10.1002/jcp.20061
– ident: B62
  doi: 10.1097/00006676-199801000-00013
– ident: B28
  doi: 10.1152/ajpgi.00071.2016
– ident: B4
  doi: 10.1113/jphysiol.2012.234955
– ident: B57
  doi: 10.1016/j.physbeh.2009.11.009
– ident: B9
  doi: 10.1016/j.molmet.2018.10.002
– ident: B3
  doi: 10.1002/(SICI)1096-9861(19970224)378:4<454:AID-CNE2>3.0.CO;2-1
– ident: B26
  doi: 10.1172/JCI0215736
– ident: B8
  doi: 10.1152/advan.00167.2012
– ident: B5
  doi: 10.1152/ajpgi.00077.2010
– ident: B24
  doi: 10.1016/0165-3806(91)90248-H
– ident: B13
  doi: 10.1038/nrgastro.2015.166
– ident: B23
  doi: 10.1152/ajpendo.00515.2013
– ident: B45
  doi: 10.1016/j.metabol.2016.12.012
– ident: B19
  doi: 10.1152/ajpcell.1989.256.1.C190
– ident: B46
  doi: 10.1158/0008-5472.CAN-16-0899
– ident: B52
  doi: 10.1210/en.2011-2040
– volume: 12
  start-page: 389
  year: 2011
  ident: B29
  publication-title: JOP
– ident: B47
  doi: 10.1038/nrgastro.2011.4
– ident: B18
  doi: 10.1016/j.autneu.2006.01.007
– ident: B42
  doi: 10.1016/0026-0495(95)90008-X
– ident: B20
  doi: 10.1152/ajpregu.00679.2005
– ident: B17
  doi: 10.1038/nrgastro.2012.32
– ident: B7
  doi: 10.1038/ijo.2010.182
– ident: B32
  doi: 10.1016/j.autneu.2006.10.001
– ident: B51
  doi: 10.1007/s00125-009-1494-5
– ident: B33
  doi: 10.1016/S0167-0115(00)00177-4
– ident: B30
  doi: 10.1111/j.1365-2982.2011.01773.x
– ident: B11
  doi: 10.1053/j.gastro.2008.09.029
– ident: B25
  doi: 10.1007/s00247-005-1413-y
– ident: B1
  doi: 10.1007/s001250051322
– ident: B56
  doi: 10.1007/s00125-017-4408-y
– ident: B41
  doi: 10.1016/j.cmet.2011.05.008
– ident: B27
  doi: 10.1152/ajpendo.1998.275.3.E457
– ident: B31
  doi: 10.1152/ajpgi.00432.2011
– ident: B39
  doi: 10.2337/db10-1192
– ident: B48
  doi: 10.1080/10408369991239169
– ident: B14
  doi: 10.1016/0196-9781(87)90117-3
– ident: B61
  doi: 10.1161/JAHA.113.000297
– ident: B21
  doi: 10.1210/jc.2012-1206
– ident: B6
  doi: 10.1016/j.yfrne.2014.04.001
– ident: B43
  doi: 10.1016/0016-5085(84)90088-X
– ident: B2
  doi: 10.2337/diabetes.50.5.1030
– ident: B12
  doi: 10.1038/ijo.2015.224
– ident: B40
  doi: 10.1016/S0079-6123(08)60229-0
– ident: B44
  doi: 10.1016/j.npep.2016.06.004
– ident: B60
  doi: 10.1016/j.physbeh.2007.11.049
SSID ssj0005211
Score 2.4836917
Snippet The pancreas consists of both the exocrine (acini and ducts) and endocrine (islets) compartments to participate in and regulate the body’s digestive and...
The pancreas consists of both the exocrine (acini and ducts) and endocrine (islets) compartments to participate in and regulate the body's digestive and...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage G694
SubjectTerms Acinar Cells - cytology
Adipose Tissue - cytology
Adipose Tissue - innervation
Adult
Animals
Female
Humans
Imaging, Three-Dimensional
Islets of Langerhans - cytology
Islets of Langerhans - innervation
Male
Mice
Mice, Inbred C57BL
Middle Aged
Neuroanatomical Tract-Tracing Techniques
Neurons, Afferent - cytology
Neurons, Afferent - metabolism
Neurons, Efferent - cytology
Neurons, Efferent - metabolism
Pancreas, Exocrine - cytology
Pancreas, Exocrine - innervation
Substance P - genetics
Substance P - metabolism
Tyrosine 3-Monooxygenase - genetics
Tyrosine 3-Monooxygenase - metabolism
Vesicular Acetylcholine Transport Proteins - genetics
Vesicular Acetylcholine Transport Proteins - metabolism
Title Human pancreatic afferent and efferent nerves: mapping and 3-D illustration of exocrine, endocrine, and adipose innervation
URI https://www.ncbi.nlm.nih.gov/pubmed/31509431
https://www.proquest.com/docview/2289574547
Volume 317
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ra9swEBdZB2Nfxtbukb3QYAxGq9Wy_Ij2rXRbQkZGByn0m5EVufFI7dAkY4__eH_FTi_bK-1YR8DEli0nvp9Pd9Lv7hB6ycBILaJEEDBlBYmSIiYDGackVTyULJzJwpDHJ5-S0XE0PolPer1fHdbSZp2_kT8ujSv5H6nCMZCrjpK9hmSbTuEAfAf5whYkDNt_krGdgYf32Zp-clfYaieWNa78TqVZjYb6diaWSx-VyMi73XKx2PjEudpsVN9qeV7aSU5Vzdodk9J1Vi41u91U6_raStTnsPVrP51kFGbexMbDwN2HAu5V6wQVoFcql6RgoYkhnRNbvkFpNeII1BEZtxFr0ODmuKcrUZLDedt0pNzk97yck_HGDcq25pVtmaiSjFYu27ib7KDcRf115j85Izp9lR2-nM4GfxoswbSr1JmNCHXojTsqepjYqspuuB-mJuPBJUNJrFPTii_L09IuV2keIG-HTU8VuDCaNhxH413FYWZ6MNTBJNM93EA3Q3BpdLWNj58HHToSdbUz7R_0S-pxuH_xN_xpQl3hFxn7aHoX3XGODT6wKL2HeqraRjsHlVjXZ9_xK3zUSHgb3Zo4RscO-mkwjFsMY49hDOjAHsPYYvgtdgg2jYBg3EUwrgvsEbyHG_zumZMdenEHvffR8Yf308MRcQVBiIyCdE1oPmCR4kzkXPI8KIKZKsAfpkFewAY-OageKnIZRgkTOmpbFhIUkQhUDhcm7AHaqupKPUJ4AG4FTVUYKK6ZYZxHFGxtSgt4yDyd8T7a9884ky5bvi7assiukmsfvW6uWNpMMX8594UXWwbqXK_RiUrVm1UWhgMepzrLXh89tPJsemNUZ7tk9PE17vQE3W7fo6doa32-Uc_AjF7nzw3-fgOK8clR
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Human+pancreatic+afferent+and+efferent+nerves%3A+mapping+and+3-D+illustration+of+exocrine%2C+endocrine%2C+and+adipose+innervation&rft.jtitle=American+journal+of+physiology%3A+Gastrointestinal+and+liver+physiology&rft.au=Chien%2C+Hung-Jen&rft.au=Chiang%2C+Tsai-Chen&rft.au=Peng%2C+Shih-Jung&rft.au=Chung%2C+Mei-Hsin&rft.date=2019-11-01&rft.issn=0193-1857&rft.eissn=1522-1547&rft.volume=317&rft.issue=5&rft.spage=G694&rft.epage=G706&rft_id=info:doi/10.1152%2Fajpgi.00116.2019&rft.externalDBID=n%2Fa&rft.externalDocID=10_1152_ajpgi_00116_2019
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0193-1857&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0193-1857&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0193-1857&client=summon