Application of clustering methods to anomaly detection in fibrous media
The paper considers the problem of anomaly detection in 3D images of fibre materials. The spatial Stochastic Expectation Maximisation algorithm and Adaptive Weights Clustering are applied to solve this problem. The initial 3D grey scale image was divided into small cubes subject to clustering. For e...
Saved in:
Published in | IOP conference series. Materials Science and Engineering Vol. 537; no. 2; pp. 22001 - 22007 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Bristol
IOP Publishing
01.05.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The paper considers the problem of anomaly detection in 3D images of fibre materials. The spatial Stochastic Expectation Maximisation algorithm and Adaptive Weights Clustering are applied to solve this problem. The initial 3D grey scale image was divided into small cubes subject to clustering. For each cube clustering attributes values were calculated: mean local direction and directional entropy. Clustering is conducted according to the given attributes. The proposed methods are tested on the simulated images and on real fibre materials. The spatial Stochastic Expectation Maximization algorithm shows its effectiveness in comparison to Adaptive Weights Clustering. |
---|---|
AbstractList | The paper considers the problem of anomaly detection in 3D images of fibre materials. The spatial Stochastic Expectation Maximisation algorithm and Adaptive Weights Clustering are applied to solve this problem. The initial 3D grey scale image was divided into small cubes subject to clustering. For each cube clustering attributes values were calculated: mean local direction and directional entropy. Clustering is conducted according to the given attributes. The proposed methods are tested on the simulated images and on real fibre materials. The spatial Stochastic Expectation Maximization algorithm shows its effectiveness in comparison to Adaptive Weights Clustering. |
Author | Dresvyanskiy, Denis Redenbach, Claudia Spodarev, Evgeny Mitrofanov, Sergei Schwaar, Stefanie Karaseva, Tatiana Makogin, Vitalii |
Author_xml | – sequence: 1 givenname: Denis surname: Dresvyanskiy fullname: Dresvyanskiy, Denis organization: Reshetnev Siberian State University of Science and Technology 31 , Russian Federation – sequence: 2 givenname: Tatiana surname: Karaseva fullname: Karaseva, Tatiana email: tatyanakarasewa@yandex.ru organization: Reshetnev Siberian State University of Science and Technology 31 , Russian Federation – sequence: 3 givenname: Sergei surname: Mitrofanov fullname: Mitrofanov, Sergei organization: Reshetnev Siberian State University of Science and Technology 31 , Russian Federation – sequence: 4 givenname: Claudia surname: Redenbach fullname: Redenbach, Claudia organization: Technische Universität Kaiserlautern, Fachbereich Mathematik , Germany – sequence: 5 givenname: Stefanie surname: Schwaar fullname: Schwaar, Stefanie organization: Fraunhofer Institute for Industrial Mathematics ITWM , Germany – sequence: 6 givenname: Vitalii surname: Makogin fullname: Makogin, Vitalii organization: Institut für Stochastik, Universität Ulm , Germany – sequence: 7 givenname: Evgeny surname: Spodarev fullname: Spodarev, Evgeny organization: Institut für Stochastik, Universität Ulm , Germany |
BookMark | eNqFkEFLwzAYQINMcJv-BSl48VKbpG3SgJcx5hQmHlTwFtIk1YyuqUl62L-3W2WiCDslkPe-L7wJGDW20QBcIniDYFEkiOY0Lhh7S_KUJjiBGEOITsD48DA63At0BiberyEkNMvgGCxnbVsbKYKxTWSrSNadD9qZ5j3a6PBhlY-CjURjN6LeRkoHLfeoaaLKlM52vueUEefgtBK11xff5xS83i1e5vfx6mn5MJ-tYplBGmIESS4yhcu8KilTGZaClakSRSEKliKGNcmVZhRpiBkWRGdpyhRBBBNIU4nSKbga5rbOfnbaB762nWv6lRznpO8BWQ57igyUdNZ7pyveOrMRbssR5LtofNeD79rwPhrHfIjWi7d_RGnCPk5wwtTHdTzoxrY_HzsqXf8jPT4vfmG8VVX6BSDwj6U |
CitedBy_id | crossref_primary_10_1088_1757_899X_1249_1_012004 crossref_primary_10_1007_s11222_020_09921_1 |
Cites_doi | 10.1016/j.compositesa.2016.12.028 10.1016/j.compscitech.2017.10.023 10.1046/j.1365-2818.2002.01009.x 10.1137/1103036 10.5566/ias.1489 10.1007/s11009-017-9603-2 10.1017/apr.2016.87 |
ContentType | Journal Article |
Copyright | Published under licence by IOP Publishing Ltd 2019. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: Published under licence by IOP Publishing Ltd – notice: 2019. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | O3W TSCCA AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. L6V M7S PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
DOI | 10.1088/1757-899X/537/2/022001 |
DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central (New) Technology Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Science Database ProQuest Engineering Collection Engineering Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection |
DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea Materials Science Database ProQuest Central (New) Engineering Collection ProQuest Materials Science Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Enrichment Source Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitleAlternate | Application of clustering methods to anomaly detection in fibrous media |
EISSN | 1757-899X |
ExternalDocumentID | 10_1088_1757_899X_537_2_022001 MSE_537_2_022001 |
GroupedDBID | 1JI 5B3 5PX 5VS AAJIO AAJKP ABHWH ABJCF ACAFW ACGFO ACHIP ACIPV AEFHF AEJGL AFKRA AFYNE AHSEE AIYBF AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN BENPR BGLVJ CCPQU CEBXE CJUJL CRLBU EBS EDWGO EJD EQZZN GROUPED_DOAJ GX1 HCIFZ HH5 IJHAN IOP IZVLO KB. KNG KQ8 M7S N5L O3W OK1 P2P PDBOC PIMPY PJBAE PTHSS RIN RNS SY9 T37 TR2 TSCCA W28 AAYXX CITATION PHGZM PHGZT 8FE 8FG ABUWG AEINN AZQEC D1I DWQXO L6V PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c407t-1065a4d2b5fb79d42ca9b3da88a893192e65de971e0292a6e4339d61626073c13 |
IEDL.DBID | O3W |
ISSN | 1757-8981 |
IngestDate | Wed Aug 13 03:18:27 EDT 2025 Tue Jul 01 04:23:18 EDT 2025 Thu Apr 24 23:07:53 EDT 2025 Wed Aug 21 03:33:17 EDT 2024 Thu Jan 07 13:51:24 EST 2021 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c407t-1065a4d2b5fb79d42ca9b3da88a893192e65de971e0292a6e4339d61626073c13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://iopscience.iop.org/article/10.1088/1757-899X/537/2/022001 |
PQID | 2561080950 |
PQPubID | 4998670 |
PageCount | 7 |
ParticipantIDs | proquest_journals_2561080950 crossref_primary_10_1088_1757_899X_537_2_022001 iop_journals_10_1088_1757_899X_537_2_022001 crossref_citationtrail_10_1088_1757_899X_537_2_022001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190501 |
PublicationDateYYYYMMDD | 2019-05-01 |
PublicationDate_xml | – month: 05 year: 2019 text: 20190501 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Bristol |
PublicationPlace_xml | – name: Bristol |
PublicationTitle | IOP conference series. Materials Science and Engineering |
PublicationTitleAlternate | IOP Conf. Ser.: Mater. Sci. Eng |
PublicationYear | 2019 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Emerson (MSE_537_2_022001bib1) 2017; 97 Korolev (MSE_537_2_022001bib3) 2007 Dobrushin (MSE_537_2_022001bib8) 1958; 3 Eberhardt (MSE_537_2_022001bib9) 2002; 206 Wirjadi (MSE_537_2_022001bib7) 2016; 35 MSE_537_2_022001bib4 Alonso-Ruiz (MSE_537_2_022001bib5) 2017; 20 Andrä (MSE_537_2_022001bib10) 2014 Garcea (MSE_537_2_022001bib2) 2018; 156 Alonso-Ruiz (MSE_537_2_022001bib6) 2017; 49 |
References_xml | – volume: 97 start-page: 83 year: 2017 ident: MSE_537_2_022001bib1 article-title: Individual fibre segmentation from 3d x-ray computed tomography for characterising the fibre orientation in unidirectional composite materials publication-title: Composites Part A: Applied Science and Manufacturing doi: 10.1016/j.compositesa.2016.12.028 – volume: 156 start-page: 305 year: 2018 ident: MSE_537_2_022001bib2 article-title: X-ray computed tomography of polymer composites publication-title: Composites Science and Technology doi: 10.1016/j.compscitech.2017.10.023 – volume: 206 start-page: 41 year: 2002 ident: MSE_537_2_022001bib9 article-title: Automated reconstruction of curvilinear fibres from 3d datasets acquired by x-ray microtomography publication-title: Journal of microscopy doi: 10.1046/j.1365-2818.2002.01009.x – ident: MSE_537_2_022001bib4 – start-page: 35 year: 2014 ident: MSE_537_2_022001bib10 article-title: Geometric and mechanical modeling of fiber-reinforced composites – year: 2007 ident: MSE_537_2_022001bib3 – volume: 3 start-page: 428 year: 1958 ident: MSE_537_2_022001bib8 article-title: A simplified method of experimentally evaluating the entropy of a stationary sequence publication-title: Theory of Probability & Its Applications doi: 10.1137/1103036 – volume: 35 start-page: 167 year: 2016 ident: MSE_537_2_022001bib7 article-title: Estimating fibre direction distributions of reinforced composites from tomographic images publication-title: Image Analysis & Stereology doi: 10.5566/ias.1489 – volume: 20 start-page: 1223 year: 2017 ident: MSE_537_2_022001bib5 article-title: Entropy-based inhomogeneity detection in fiber materials publication-title: Methodology and Computing in Applied Probability doi: 10.1007/s11009-017-9603-2 – volume: 49 start-page: 258 year: 2017 ident: MSE_537_2_022001bib6 article-title: Estimation of entropy for Poisson marked point processes publication-title: Adv. in Appl. Proba doi: 10.1017/apr.2016.87 |
SSID | ssj0067440 |
Score | 2.1220233 |
Snippet | The paper considers the problem of anomaly detection in 3D images of fibre materials. The spatial Stochastic Expectation Maximisation algorithm and Adaptive... |
SourceID | proquest crossref iop |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 22001 |
SubjectTerms | Adaptive algorithms Anomalies Clustering Cubes Maximization Optimization |
SummonAdditionalLinks | – databaseName: ProQuest Central (New) dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LS8QwEA4-LnoQn7i6SgRvUtqmTZucRGVVBBfxAXsLeTQgrO3qdg_-eydt6roIeu0kUCbJN_Ml80Do1Nk4qzITKKpJkNJIB1xmKqC5TmXuKqjbJtpimN2-pHcjOvIXblMfVtlhYgPUptLujjwkztAzcAii88l74LpGuddV30JjGa0CBDMgX6uXg-HDY4fFmSt_16REUsBizuIuRxhon__GRyFN8pCELuXUt4bpzNPyazX5hdGN4bneRBveY8QX7RJvoaWi3EbrP-oI7qCbi_kzNK4s1uOZq38AMtx2iJ7iusKyrN7k-BObom7ir0r8WmILdBnIP24ySHbRy_Xg-eo28B0SAg1ErAYMzahMDVHUqpyblGjJVWIkYxL8EHDeioyagudxERFOZFakScJNFjsWkyc6TvbQSlmVxT7CMpKWxZbnkU1TZS23wF2UsYoAR2S57SHaKUZoXz7cdbEYi-YZmzHhFCqcQgUoVBDRKrSHwu95k7aAxr8zzkDvwp-l6b-jTxZG3z8NFuRiYuDf-90azgfON9TB3-JDtAZeEm-jHPtopf6YFUfgidTq2G-3L9Bb1NA priority: 102 providerName: ProQuest |
Title | Application of clustering methods to anomaly detection in fibrous media |
URI | https://iopscience.iop.org/article/10.1088/1757-899X/537/2/022001 https://www.proquest.com/docview/2561080950 |
Volume | 537 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA7qXvQgPvG5RPAmtW3apMlRZddV8IEP9BaSpgFhbRetB_-9k7RVFxHx1pKkDV_amfnIzBeE9p2Ps5qZQNOcBCmN8kAopgOa5anKnIK69dkWl2x0n54_0i6b0NfCVJPW9B_CZSMU3EDYJsTxEBweGFYhHkOaZCEJXa2oq-DqJZxxx7-ukofOGDOnf-drIv0YHndFwr8-Z8o_zcIcfhhp73mGS2ixDRnxUTPBZTRTlCto4ZuQ4Co6Pfrah8aVxfn4zQkgQBtujoh-xXWFVVk9q_E7NkXtE7BK_FRiC3wZ2D_2JSRr6H44uDsZBe0RCUEOTKwGI8qoSg3R1OpMmJTkSujEKM4VBCIQvRWMmkJkcRERQRQr0iQRhsWOxmRJHifraK6symIDYRUpy2MrssimqbZWWCAv2lhNgCTyzG4i2gEj81Y_3B1jMZZ-H5tz6QCVDlAJgEoiG0A3Ufg5btIoaPw54gBwl-3P9Ppn772p3he3g6l2OTEw951uDb86Ehc6cggxo61_vXAbzUPUJJqsxx00V7-8FbsQmdS6j2b58LSPeseDy-sbuDu7uu777_EDOwbXMA |
linkProvider | IOP Publishing |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFH7qcoAeEKtoKcWV4ISiJE6c2AeEKtrpdL3QSnMzXqVKQzLtZIT6p_iNPGfpUCHRU6_eFH1-fkveBvAxyDivCxtpZmiUs8REQhU6YqXJVRkqqPs22uK8GF_mxxM2WYHfQy5MCKsceGLLqG1twj_ymAZBz1EhSL7OrqPQNSp4V4cWGh1ZnLjbX2iyzb8c7eP9fqJ0dHDxbRz1XQUig8ZLg3ynYCq3VDOvS2FzapTQmVWcK5TdqPC4glknytQlVFBVuDzLhC3SoPmXmUkzPHcV1sNoeFF8dDhw_iIU22sTMBlyfsHTISMZjcx-TExilpUxjUOCa9-IZhCGq1f17B-J0Iq50XN41uunZK8jqBew4qqXsPFX1cJXcLi3dHqT2hMzXYRqCzhHun7Uc9LURFX1TzW9JdY1bbRXRa4q4tE4rxdz0uarvIbLR0HuDaxVdeXeAlGJ8jz1okx8nmvvhUdLSVuvKVqkvPSbwAZgpOmLlYeeGVPZOs05lwFQGQCVCKiksgN0E-K7fbOuXMeDOz4j7rJ_ufMHV-_eW332_eDevJxZ_Pbt4Q6XC5fku_X_6Q_wZHxxdipPj85P3sFT1M9EF1-5DWvNzcK9Rx2o0Tst4RH48diU_gfJzA6t |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7ygJIeSpMmZPNoVMitOLZlS5aOodnNq0kKTcjehGRZENjYS9d7yL_PyPbudikl5GaQZJvP8sw3aOYbgGPv45zhNjAsp0HKojyQmpuAZXmqM6-g7ppsi1t-8ZBeDdlwBfrzWphq3Jn-E7xshYJbCLuEOBGiw0PDKuUwZEkW0tDXikZxOLZuFdZZwrnv4HCXPM4MMvcaeE1dZLNOxLNC4f_ea8lHreJ7_GOoG-8z-AyfOtpITtuX3ISVotyCj3-JCX6B89PFWTSpHMlHUy-CgGOkbRM9IXVFdFk969ELsUXdJGGV5KkkDmPmajohTRnJNjwM-vc_LoKuTUKQYzRWoyHlTKeWGuZMJm1Kcy1NYrUQGskIMriCM1vILC4iKqnmRZok0vLYhzJZksfJDqyVVVnsAtGRdiJ2MotcmhrnpMMAxlhnKAaKInM9YDNgVN5piPtWFiPVnGULoTygygOqEFBFVQtoD8L5unGrovHmiu-Iu-p-qMmbs78tzb753V8aV7g5enAw-4aLidTTR4E0M9p71wOP4MOvs4H6eXl7vQ8bSKJkmwR5AGv1n2lxiESlNl-bbfgK06fXlg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+clustering+methods+to+anomaly+detection+in+fibrous+media&rft.jtitle=IOP+conference+series.+Materials+Science+and+Engineering&rft.au=Dresvyanskiy%2C+Denis&rft.au=Karaseva%2C+Tatiana&rft.au=Mitrofanov%2C+Sergei&rft.au=Redenbach%2C+Claudia&rft.date=2019-05-01&rft.issn=1757-8981&rft.eissn=1757-899X&rft.volume=537&rft.issue=2&rft.spage=22001&rft_id=info:doi/10.1088%2F1757-899X%2F537%2F2%2F022001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1757_899X_537_2_022001 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1757-8981&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1757-8981&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1757-8981&client=summon |