Application of clustering methods to anomaly detection in fibrous media

The paper considers the problem of anomaly detection in 3D images of fibre materials. The spatial Stochastic Expectation Maximisation algorithm and Adaptive Weights Clustering are applied to solve this problem. The initial 3D grey scale image was divided into small cubes subject to clustering. For e...

Full description

Saved in:
Bibliographic Details
Published inIOP conference series. Materials Science and Engineering Vol. 537; no. 2; pp. 22001 - 22007
Main Authors Dresvyanskiy, Denis, Karaseva, Tatiana, Mitrofanov, Sergei, Redenbach, Claudia, Schwaar, Stefanie, Makogin, Vitalii, Spodarev, Evgeny
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 01.05.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The paper considers the problem of anomaly detection in 3D images of fibre materials. The spatial Stochastic Expectation Maximisation algorithm and Adaptive Weights Clustering are applied to solve this problem. The initial 3D grey scale image was divided into small cubes subject to clustering. For each cube clustering attributes values were calculated: mean local direction and directional entropy. Clustering is conducted according to the given attributes. The proposed methods are tested on the simulated images and on real fibre materials. The spatial Stochastic Expectation Maximization algorithm shows its effectiveness in comparison to Adaptive Weights Clustering.
AbstractList The paper considers the problem of anomaly detection in 3D images of fibre materials. The spatial Stochastic Expectation Maximisation algorithm and Adaptive Weights Clustering are applied to solve this problem. The initial 3D grey scale image was divided into small cubes subject to clustering. For each cube clustering attributes values were calculated: mean local direction and directional entropy. Clustering is conducted according to the given attributes. The proposed methods are tested on the simulated images and on real fibre materials. The spatial Stochastic Expectation Maximization algorithm shows its effectiveness in comparison to Adaptive Weights Clustering.
Author Dresvyanskiy, Denis
Redenbach, Claudia
Spodarev, Evgeny
Mitrofanov, Sergei
Schwaar, Stefanie
Karaseva, Tatiana
Makogin, Vitalii
Author_xml – sequence: 1
  givenname: Denis
  surname: Dresvyanskiy
  fullname: Dresvyanskiy, Denis
  organization: Reshetnev Siberian State University of Science and Technology 31 , Russian Federation
– sequence: 2
  givenname: Tatiana
  surname: Karaseva
  fullname: Karaseva, Tatiana
  email: tatyanakarasewa@yandex.ru
  organization: Reshetnev Siberian State University of Science and Technology 31 , Russian Federation
– sequence: 3
  givenname: Sergei
  surname: Mitrofanov
  fullname: Mitrofanov, Sergei
  organization: Reshetnev Siberian State University of Science and Technology 31 , Russian Federation
– sequence: 4
  givenname: Claudia
  surname: Redenbach
  fullname: Redenbach, Claudia
  organization: Technische Universität Kaiserlautern, Fachbereich Mathematik , Germany
– sequence: 5
  givenname: Stefanie
  surname: Schwaar
  fullname: Schwaar, Stefanie
  organization: Fraunhofer Institute for Industrial Mathematics ITWM , Germany
– sequence: 6
  givenname: Vitalii
  surname: Makogin
  fullname: Makogin, Vitalii
  organization: Institut für Stochastik, Universität Ulm , Germany
– sequence: 7
  givenname: Evgeny
  surname: Spodarev
  fullname: Spodarev, Evgeny
  organization: Institut für Stochastik, Universität Ulm , Germany
BookMark eNqFkEFLwzAYQINMcJv-BSl48VKbpG3SgJcx5hQmHlTwFtIk1YyuqUl62L-3W2WiCDslkPe-L7wJGDW20QBcIniDYFEkiOY0Lhh7S_KUJjiBGEOITsD48DA63At0BiberyEkNMvgGCxnbVsbKYKxTWSrSNadD9qZ5j3a6PBhlY-CjURjN6LeRkoHLfeoaaLKlM52vueUEefgtBK11xff5xS83i1e5vfx6mn5MJ-tYplBGmIESS4yhcu8KilTGZaClakSRSEKliKGNcmVZhRpiBkWRGdpyhRBBBNIU4nSKbga5rbOfnbaB762nWv6lRznpO8BWQ57igyUdNZ7pyveOrMRbssR5LtofNeD79rwPhrHfIjWi7d_RGnCPk5wwtTHdTzoxrY_HzsqXf8jPT4vfmG8VVX6BSDwj6U
CitedBy_id crossref_primary_10_1088_1757_899X_1249_1_012004
crossref_primary_10_1007_s11222_020_09921_1
Cites_doi 10.1016/j.compositesa.2016.12.028
10.1016/j.compscitech.2017.10.023
10.1046/j.1365-2818.2002.01009.x
10.1137/1103036
10.5566/ias.1489
10.1007/s11009-017-9603-2
10.1017/apr.2016.87
ContentType Journal Article
Copyright Published under licence by IOP Publishing Ltd
2019. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Published under licence by IOP Publishing Ltd
– notice: 2019. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID O3W
TSCCA
AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
L6V
M7S
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1088/1757-899X/537/2/022001
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central (New)
Technology Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
Materials Science Database
ProQuest Engineering Collection
Engineering Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Engineering Collection
ProQuest Materials Science Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Application of clustering methods to anomaly detection in fibrous media
EISSN 1757-899X
ExternalDocumentID 10_1088_1757_899X_537_2_022001
MSE_537_2_022001
GroupedDBID 1JI
5B3
5PX
5VS
AAJIO
AAJKP
ABHWH
ABJCF
ACAFW
ACGFO
ACHIP
ACIPV
AEFHF
AEJGL
AFKRA
AFYNE
AHSEE
AIYBF
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
BENPR
BGLVJ
CCPQU
CEBXE
CJUJL
CRLBU
EBS
EDWGO
EJD
EQZZN
GROUPED_DOAJ
GX1
HCIFZ
HH5
IJHAN
IOP
IZVLO
KB.
KNG
KQ8
M7S
N5L
O3W
OK1
P2P
PDBOC
PIMPY
PJBAE
PTHSS
RIN
RNS
SY9
T37
TR2
TSCCA
W28
AAYXX
CITATION
PHGZM
PHGZT
8FE
8FG
ABUWG
AEINN
AZQEC
D1I
DWQXO
L6V
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c407t-1065a4d2b5fb79d42ca9b3da88a893192e65de971e0292a6e4339d61626073c13
IEDL.DBID O3W
ISSN 1757-8981
IngestDate Wed Aug 13 03:18:27 EDT 2025
Tue Jul 01 04:23:18 EDT 2025
Thu Apr 24 23:07:53 EDT 2025
Wed Aug 21 03:33:17 EDT 2024
Thu Jan 07 13:51:24 EST 2021
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c407t-1065a4d2b5fb79d42ca9b3da88a893192e65de971e0292a6e4339d61626073c13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://iopscience.iop.org/article/10.1088/1757-899X/537/2/022001
PQID 2561080950
PQPubID 4998670
PageCount 7
ParticipantIDs proquest_journals_2561080950
crossref_primary_10_1088_1757_899X_537_2_022001
iop_journals_10_1088_1757_899X_537_2_022001
crossref_citationtrail_10_1088_1757_899X_537_2_022001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190501
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: 20190501
  day: 01
PublicationDecade 2010
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
PublicationTitle IOP conference series. Materials Science and Engineering
PublicationTitleAlternate IOP Conf. Ser.: Mater. Sci. Eng
PublicationYear 2019
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Emerson (MSE_537_2_022001bib1) 2017; 97
Korolev (MSE_537_2_022001bib3) 2007
Dobrushin (MSE_537_2_022001bib8) 1958; 3
Eberhardt (MSE_537_2_022001bib9) 2002; 206
Wirjadi (MSE_537_2_022001bib7) 2016; 35
MSE_537_2_022001bib4
Alonso-Ruiz (MSE_537_2_022001bib5) 2017; 20
Andrä (MSE_537_2_022001bib10) 2014
Garcea (MSE_537_2_022001bib2) 2018; 156
Alonso-Ruiz (MSE_537_2_022001bib6) 2017; 49
References_xml – volume: 97
  start-page: 83
  year: 2017
  ident: MSE_537_2_022001bib1
  article-title: Individual fibre segmentation from 3d x-ray computed tomography for characterising the fibre orientation in unidirectional composite materials
  publication-title: Composites Part A: Applied Science and Manufacturing
  doi: 10.1016/j.compositesa.2016.12.028
– volume: 156
  start-page: 305
  year: 2018
  ident: MSE_537_2_022001bib2
  article-title: X-ray computed tomography of polymer composites
  publication-title: Composites Science and Technology
  doi: 10.1016/j.compscitech.2017.10.023
– volume: 206
  start-page: 41
  year: 2002
  ident: MSE_537_2_022001bib9
  article-title: Automated reconstruction of curvilinear fibres from 3d datasets acquired by x-ray microtomography
  publication-title: Journal of microscopy
  doi: 10.1046/j.1365-2818.2002.01009.x
– ident: MSE_537_2_022001bib4
– start-page: 35
  year: 2014
  ident: MSE_537_2_022001bib10
  article-title: Geometric and mechanical modeling of fiber-reinforced composites
– year: 2007
  ident: MSE_537_2_022001bib3
– volume: 3
  start-page: 428
  year: 1958
  ident: MSE_537_2_022001bib8
  article-title: A simplified method of experimentally evaluating the entropy of a stationary sequence
  publication-title: Theory of Probability & Its Applications
  doi: 10.1137/1103036
– volume: 35
  start-page: 167
  year: 2016
  ident: MSE_537_2_022001bib7
  article-title: Estimating fibre direction distributions of reinforced composites from tomographic images
  publication-title: Image Analysis & Stereology
  doi: 10.5566/ias.1489
– volume: 20
  start-page: 1223
  year: 2017
  ident: MSE_537_2_022001bib5
  article-title: Entropy-based inhomogeneity detection in fiber materials
  publication-title: Methodology and Computing in Applied Probability
  doi: 10.1007/s11009-017-9603-2
– volume: 49
  start-page: 258
  year: 2017
  ident: MSE_537_2_022001bib6
  article-title: Estimation of entropy for Poisson marked point processes
  publication-title: Adv. in Appl. Proba
  doi: 10.1017/apr.2016.87
SSID ssj0067440
Score 2.1220233
Snippet The paper considers the problem of anomaly detection in 3D images of fibre materials. The spatial Stochastic Expectation Maximisation algorithm and Adaptive...
SourceID proquest
crossref
iop
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 22001
SubjectTerms Adaptive algorithms
Anomalies
Clustering
Cubes
Maximization
Optimization
SummonAdditionalLinks – databaseName: ProQuest Central (New)
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LS8QwEA4-LnoQn7i6SgRvUtqmTZucRGVVBBfxAXsLeTQgrO3qdg_-eydt6roIeu0kUCbJN_Ml80Do1Nk4qzITKKpJkNJIB1xmKqC5TmXuKqjbJtpimN2-pHcjOvIXblMfVtlhYgPUptLujjwkztAzcAii88l74LpGuddV30JjGa0CBDMgX6uXg-HDY4fFmSt_16REUsBizuIuRxhon__GRyFN8pCELuXUt4bpzNPyazX5hdGN4bneRBveY8QX7RJvoaWi3EbrP-oI7qCbi_kzNK4s1uOZq38AMtx2iJ7iusKyrN7k-BObom7ir0r8WmILdBnIP24ySHbRy_Xg-eo28B0SAg1ErAYMzahMDVHUqpyblGjJVWIkYxL8EHDeioyagudxERFOZFakScJNFjsWkyc6TvbQSlmVxT7CMpKWxZbnkU1TZS23wF2UsYoAR2S57SHaKUZoXz7cdbEYi-YZmzHhFCqcQgUoVBDRKrSHwu95k7aAxr8zzkDvwp-l6b-jTxZG3z8NFuRiYuDf-90azgfON9TB3-JDtAZeEm-jHPtopf6YFUfgidTq2G-3L9Bb1NA
  priority: 102
  providerName: ProQuest
Title Application of clustering methods to anomaly detection in fibrous media
URI https://iopscience.iop.org/article/10.1088/1757-899X/537/2/022001
https://www.proquest.com/docview/2561080950
Volume 537
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA7qXvQgPvG5RPAmtW3apMlRZddV8IEP9BaSpgFhbRetB_-9k7RVFxHx1pKkDV_amfnIzBeE9p2Ps5qZQNOcBCmN8kAopgOa5anKnIK69dkWl2x0n54_0i6b0NfCVJPW9B_CZSMU3EDYJsTxEBweGFYhHkOaZCEJXa2oq-DqJZxxx7-ukofOGDOnf-drIv0YHndFwr8-Z8o_zcIcfhhp73mGS2ixDRnxUTPBZTRTlCto4ZuQ4Co6Pfrah8aVxfn4zQkgQBtujoh-xXWFVVk9q_E7NkXtE7BK_FRiC3wZ2D_2JSRr6H44uDsZBe0RCUEOTKwGI8qoSg3R1OpMmJTkSujEKM4VBCIQvRWMmkJkcRERQRQr0iQRhsWOxmRJHifraK6symIDYRUpy2MrssimqbZWWCAv2lhNgCTyzG4i2gEj81Y_3B1jMZZ-H5tz6QCVDlAJgEoiG0A3Ufg5btIoaPw54gBwl-3P9Ppn772p3he3g6l2OTEw951uDb86Ehc6cggxo61_vXAbzUPUJJqsxx00V7-8FbsQmdS6j2b58LSPeseDy-sbuDu7uu777_EDOwbXMA
linkProvider IOP Publishing
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFH7qcoAeEKtoKcWV4ISiJE6c2AeEKtrpdL3QSnMzXqVKQzLtZIT6p_iNPGfpUCHRU6_eFH1-fkveBvAxyDivCxtpZmiUs8REQhU6YqXJVRkqqPs22uK8GF_mxxM2WYHfQy5MCKsceGLLqG1twj_ymAZBz1EhSL7OrqPQNSp4V4cWGh1ZnLjbX2iyzb8c7eP9fqJ0dHDxbRz1XQUig8ZLg3ynYCq3VDOvS2FzapTQmVWcK5TdqPC4glknytQlVFBVuDzLhC3SoPmXmUkzPHcV1sNoeFF8dDhw_iIU22sTMBlyfsHTISMZjcx-TExilpUxjUOCa9-IZhCGq1f17B-J0Iq50XN41uunZK8jqBew4qqXsPFX1cJXcLi3dHqT2hMzXYRqCzhHun7Uc9LURFX1TzW9JdY1bbRXRa4q4tE4rxdz0uarvIbLR0HuDaxVdeXeAlGJ8jz1okx8nmvvhUdLSVuvKVqkvPSbwAZgpOmLlYeeGVPZOs05lwFQGQCVCKiksgN0E-K7fbOuXMeDOz4j7rJ_ufMHV-_eW332_eDevJxZ_Pbt4Q6XC5fku_X_6Q_wZHxxdipPj85P3sFT1M9EF1-5DWvNzcK9Rx2o0Tst4RH48diU_gfJzA6t
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7ygJIeSpMmZPNoVMitOLZlS5aOodnNq0kKTcjehGRZENjYS9d7yL_PyPbudikl5GaQZJvP8sw3aOYbgGPv45zhNjAsp0HKojyQmpuAZXmqM6-g7ppsi1t-8ZBeDdlwBfrzWphq3Jn-E7xshYJbCLuEOBGiw0PDKuUwZEkW0tDXikZxOLZuFdZZwrnv4HCXPM4MMvcaeE1dZLNOxLNC4f_ea8lHreJ7_GOoG-8z-AyfOtpITtuX3ISVotyCj3-JCX6B89PFWTSpHMlHUy-CgGOkbRM9IXVFdFk969ELsUXdJGGV5KkkDmPmajohTRnJNjwM-vc_LoKuTUKQYzRWoyHlTKeWGuZMJm1Kcy1NYrUQGskIMriCM1vILC4iKqnmRZok0vLYhzJZksfJDqyVVVnsAtGRdiJ2MotcmhrnpMMAxlhnKAaKInM9YDNgVN5piPtWFiPVnGULoTygygOqEFBFVQtoD8L5unGrovHmiu-Iu-p-qMmbs78tzb753V8aV7g5enAw-4aLidTTR4E0M9p71wOP4MOvs4H6eXl7vQ8bSKJkmwR5AGv1n2lxiESlNl-bbfgK06fXlg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+clustering+methods+to+anomaly+detection+in+fibrous+media&rft.jtitle=IOP+conference+series.+Materials+Science+and+Engineering&rft.au=Dresvyanskiy%2C+Denis&rft.au=Karaseva%2C+Tatiana&rft.au=Mitrofanov%2C+Sergei&rft.au=Redenbach%2C+Claudia&rft.date=2019-05-01&rft.issn=1757-8981&rft.eissn=1757-899X&rft.volume=537&rft.issue=2&rft.spage=22001&rft_id=info:doi/10.1088%2F1757-899X%2F537%2F2%2F022001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1757_899X_537_2_022001
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1757-8981&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1757-8981&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1757-8981&client=summon