Using Electronic Health Records in Longitudinal Studies: Estimating Patient Attrition

Electronic health records (EHRs) provide rich data on many domains not routinely available in other data, as such, they are a promising source to study changes in health outcomes using longitudinal study designs (eg, cohort studies, natural experiments, etc.). Yet, patient attrition rates in these d...

Full description

Saved in:
Bibliographic Details
Published inMedical care Vol. 58 Suppl 6 Suppl 1; p. S46
Main Authors Huguet, Nathalie, Kaufmann, Jorge, O'Malley, Jean, Angier, Heather, Hoopes, Megan, DeVoe, Jennifer E, Marino, Miguel
Format Journal Article
LanguageEnglish
Published United States 01.06.2020
Subjects
Online AccessGet more information

Cover

Loading…
Abstract Electronic health records (EHRs) provide rich data on many domains not routinely available in other data, as such, they are a promising source to study changes in health outcomes using longitudinal study designs (eg, cohort studies, natural experiments, etc.). Yet, patient attrition rates in these data are unknown. The objective of this study was to estimate overall and among adults with diabetes or hypertension: (1) patient attrition over a 3-year period at community health centers; and (2) the likelihood that patients with Medicaid permanently switched their source of primary care. A retrospective cohort study of 2012-2017 data from the Accelerating Data Value Across a National Community Health Center Network (ADVANCE) Clinical Data Research Network of community health centers were used to assess EHR data attrition. Oregon Medicaid enrollment and claims data were used to estimate the likelihood of changing the source of primary care. A total of 827,657 patients aged 19-64 with ≥1 ambulatory visit from 76 community health center systems across 20 states. In all, 232,891 Oregon Medicaid enrollees (aged 19-64) with a gap of ≥6 months following a claim for a visit billed to a primary care source. Percentage of patients not returning within 3 years of their qualifying visit (attrition). The probability that a patient with Medicaid permanently changed their primary care source. Attrition over the 3 years averaged 33.5%; attrition rates were lower (<25%) among patients with diabetes and/or hypertension. Among Medicaid enrollees, the percentage of provider change after a 6-month gap between visits was 12% for community health center patients compared with 39% for single-provider practice patients. Over 3 years, the likelihood of a patient changing to a new provider increased with length of time since their last visit but remained lowest among community health center patients. This study demonstrates the use of the EHR dataset is a reliable source of data to support longitudinal studies while highlighting variability in attrition by primary care source and chronic conditions.
AbstractList Electronic health records (EHRs) provide rich data on many domains not routinely available in other data, as such, they are a promising source to study changes in health outcomes using longitudinal study designs (eg, cohort studies, natural experiments, etc.). Yet, patient attrition rates in these data are unknown. The objective of this study was to estimate overall and among adults with diabetes or hypertension: (1) patient attrition over a 3-year period at community health centers; and (2) the likelihood that patients with Medicaid permanently switched their source of primary care. A retrospective cohort study of 2012-2017 data from the Accelerating Data Value Across a National Community Health Center Network (ADVANCE) Clinical Data Research Network of community health centers were used to assess EHR data attrition. Oregon Medicaid enrollment and claims data were used to estimate the likelihood of changing the source of primary care. A total of 827,657 patients aged 19-64 with ≥1 ambulatory visit from 76 community health center systems across 20 states. In all, 232,891 Oregon Medicaid enrollees (aged 19-64) with a gap of ≥6 months following a claim for a visit billed to a primary care source. Percentage of patients not returning within 3 years of their qualifying visit (attrition). The probability that a patient with Medicaid permanently changed their primary care source. Attrition over the 3 years averaged 33.5%; attrition rates were lower (<25%) among patients with diabetes and/or hypertension. Among Medicaid enrollees, the percentage of provider change after a 6-month gap between visits was 12% for community health center patients compared with 39% for single-provider practice patients. Over 3 years, the likelihood of a patient changing to a new provider increased with length of time since their last visit but remained lowest among community health center patients. This study demonstrates the use of the EHR dataset is a reliable source of data to support longitudinal studies while highlighting variability in attrition by primary care source and chronic conditions.
Author Kaufmann, Jorge
O'Malley, Jean
Angier, Heather
DeVoe, Jennifer E
Marino, Miguel
Huguet, Nathalie
Hoopes, Megan
Author_xml – sequence: 1
  givenname: Nathalie
  surname: Huguet
  fullname: Huguet, Nathalie
  organization: Department of Family Medicine, Oregon Health and Science University
– sequence: 2
  givenname: Jorge
  surname: Kaufmann
  fullname: Kaufmann, Jorge
  organization: Department of Family Medicine, Oregon Health and Science University
– sequence: 3
  givenname: Jean
  surname: O'Malley
  fullname: O'Malley, Jean
  organization: Department of Family Medicine, Oregon Health and Science University
– sequence: 4
  givenname: Heather
  surname: Angier
  fullname: Angier, Heather
  organization: Department of Family Medicine, Oregon Health and Science University
– sequence: 5
  givenname: Megan
  surname: Hoopes
  fullname: Hoopes, Megan
  organization: OCHIN Inc
– sequence: 6
  givenname: Jennifer E
  surname: DeVoe
  fullname: DeVoe, Jennifer E
  organization: Department of Family Medicine, Oregon Health and Science University
– sequence: 7
  givenname: Miguel
  surname: Marino
  fullname: Marino, Miguel
  organization: Biostatistics Group, Oregon Health and Science University-Portland State University School of Public Health Portland, Portland, OR
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32412953$$D View this record in MEDLINE/PubMed
BookMark eNpNT9tKAzEUDKLYi_6BSH5gay6bbOJbKasVVpTqPpdsLjWyTcomffDv3aKC8zKHYWY4MwPnIQYLwA1GC4xkdffcbBboHzCR4gxMMaNVgWUpJmCW0ueoV5SRSzChpBwtjE5B2yYfdrDurc5DDF7DtVV9_oAbq-NgEvQBNjHsfD4aH1QP306HTfewTtnvVT6lX0eyIcNlzoPPPoYrcOFUn-z1L89B-1C_r9ZF8_L4tFo2hS5RJQtdCWa4EsIK4bSRSlDSKcIdZ04QY7GxjHLGmeTUSSMMQx2izBFedkpxR-bg9qf3cOz21mwPw_jS8LX920e-Ab4UU7M
CitedBy_id crossref_primary_10_1038_s41591_024_03214_0
crossref_primary_10_1097_MLR_0000000000001330
crossref_primary_10_1186_s12905_024_03343_1
crossref_primary_10_1016_j_whi_2020_08_011
crossref_primary_10_1093_ajh_hpab069
crossref_primary_10_1016_j_ypmed_2022_107338
crossref_primary_10_1007_s11606_025_09457_y
crossref_primary_10_1177_00469580211022618
crossref_primary_10_1002_cam4_4524
crossref_primary_10_1007_s11606_024_08822_7
crossref_primary_10_1001_jamanetworkopen_2023_7497
crossref_primary_10_1111_jgs_17589
crossref_primary_10_1007_s11606_021_07198_2
crossref_primary_10_1136_bmjopen_2024_085806
crossref_primary_10_1111_jrh_12887
crossref_primary_10_1016_j_focus_2023_100077
crossref_primary_10_1016_j_pmedr_2024_102598
crossref_primary_10_1007_s10995_024_03998_0
crossref_primary_10_1111_jcpp_13561
crossref_primary_10_1016_j_ypmed_2020_106271
crossref_primary_10_1016_j_acap_2022_03_019
crossref_primary_10_1177_0972063421994935
crossref_primary_10_1007_s11606_021_07216_3
crossref_primary_10_1093_fampra_cmae018
crossref_primary_10_1016_j_arth_2024_02_036
crossref_primary_10_1016_j_jpeds_2023_113465
crossref_primary_10_1136_fmch_2021_001085
crossref_primary_10_5888_pcd21_240060
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1097/MLR.0000000000001298
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
Public Health
EISSN 1537-1948
ExternalDocumentID 32412953
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, U.S. Gov't, P.H.S
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R01 CA204267
– fundername: AHRQ HHS
  grantid: R01 HS025962
– fundername: NCCDPHP CDC HHS
  grantid: U18 DP006116
– fundername: NHLBI NIH HHS
  grantid: R01 HL136575
– fundername: ACL HHS
  grantid: U18DP006116
GroupedDBID ---
-~X
.-D
..I
.3C
.GJ
.Z2
01R
0R~
1J1
3R3
40H
4Q1
4Q2
4Q3
53G
5GY
5VS
71W
77Y
7O~
8L-
AAAAV
AAAXR
AAGIX
AAHPQ
AAIQE
AAMOA
AAMTA
AAQKA
AAQQT
AARTV
AASCR
AASOK
AAWTL
AAWTO
AAXQO
AAYEP
ABASU
ABAWQ
ABBHK
ABBUW
ABDIG
ABIVO
ABJNI
ABPPZ
ABPXF
ABQDR
ABVCZ
ABXSQ
ABXVJ
ABZAD
ABZZY
ACCJW
ACDDN
ACDIW
ACEWG
ACGFO
ACGFS
ACHJO
ACHQT
ACILI
ACLDA
ACLED
ACNWC
ACWDW
ACWRI
ACXJB
ACXNZ
ACZKN
ADFPA
ADGGA
ADHPY
ADNKB
ADULT
AE3
AE6
AEETU
AELLO
AENEX
AEUPB
AFBFQ
AFDTB
AFRAH
AFUWQ
AGINI
AHMBA
AHOMT
AHQNM
AHRYX
AHVBC
AIJEX
AINUH
AJCLO
AJIOK
AJNWD
AJNYG
AJRGT
AJZMW
AKBRZ
AKCTQ
AKULP
ALKUP
ALMA_UNASSIGNED_HOLDINGS
ALMTX
AMJPA
AMKUR
AMNEI
AOHHW
AOQMC
BOYCO
BQLVK
BS7
BYPQX
C45
CGR
CS3
CUY
CVF
DIWNM
DU5
DUNZO
E.X
EBS
ECM
EEVPB
EIF
EJD
ERAAH
EX3
F2K
F2L
F2M
F2N
F5P
FCALG
FL-
FW0
GIFXF
GNXGY
GQDEL
H0~
HGD
HLJTE
HVGLF
HZ~
H~9
IH2
IKREB
IKYAY
IN~
IPNFZ
IPSME
JAA
JAAYA
JBMMH
JBZCM
JENOY
JF9
JG8
JHFFW
JK3
JK8
JKQEH
JLEZI
JLXEF
JPL
JST
K8S
KD2
KMI
L-C
L7B
N4W
N9A
NPM
N~7
N~B
N~M
O9-
OAG
OAH
OCUKA
ODA
ODZKP
OL1
OLG
OLH
OLL
OLU
OLV
OLY
OLZ
OPUJH
OPX
ORVUJ
OUVQU
OVD
OVDNE
OVIDH
OVLEI
OWBYB
OWU
OWV
OWW
OWX
OWY
OWZ
OXXIT
P-K
P-O
P2P
PQQKQ
QZG
R58
RIG
RLZ
S4R
S4S
SA0
T8P
TEORI
TN5
TSPGW
V2I
VQP
VVN
W3M
WH7
WOQ
WOW
X3V
X3W
XFW
XXN
XYM
YFH
YHZ
YOC
ZFV
ZGI
ZXP
ZY1
ZZMQN
ID FETCH-LOGICAL-c4079-c785d6a88e88fcd9a832ba26f65f82de1de536565963f9d8d50b035f264baa6f2
IngestDate Sat May 31 02:12:34 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4079-c785d6a88e88fcd9a832ba26f65f82de1de536565963f9d8d50b035f264baa6f2
PMID 32412953
ParticipantIDs pubmed_primary_32412953
PublicationCentury 2000
PublicationDate 2020-06-00
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-00
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Medical care
PublicationTitleAlternate Med Care
PublicationYear 2020
SSID ssj0017352
Score 2.4879973
Snippet Electronic health records (EHRs) provide rich data on many domains not routinely available in other data, as such, they are a promising source to study changes...
SourceID pubmed
SourceType Index Database
StartPage S46
SubjectTerms Adult
Diabetes Mellitus - epidemiology
Diabetes Mellitus - therapy
Electronic Health Records - statistics & numerical data
Female
Humans
Hypertension - epidemiology
Hypertension - therapy
Longitudinal Studies
Male
Medicaid - statistics & numerical data
Middle Aged
Patient Dropouts - statistics & numerical data
Primary Health Care - statistics & numerical data
Retrospective Studies
United States
Young Adult
Title Using Electronic Health Records in Longitudinal Studies: Estimating Patient Attrition
URI https://www.ncbi.nlm.nih.gov/pubmed/32412953
Volume 58 Suppl 6 Suppl 1
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6qQhFEfL9lD95KNK9Ndr0VqRRtRbSF3sqmuyuCVg_txYO_3dnMpgn1gdpDWjJNCDtfhm9m50HIiY5SE4dx4qnIz-wIM-kJbbgXK8tOZZxGeRJN9yZp9-OrARvUau_V6pJJdjp6-7Ku5D9ahXOgV1sl-wfNzm4KJ-A36BeOoGE4_krHuN_fKifZuKIi9CnzTNfOix1INFX58CuXNGijAC14tS1ZhetvsbVqozlxjfmrhLXYyLEZYiUEHqa4h3FjI-9PjzPJtZya52Lssg22V3NqunZsCw5I1iUmm_B8CJs2stFqHCL0y3ypU13YztQLBDbOLIwr4418PGkjcd9BxVreY_TxkxXH7sDdzh12l3QfYCa8-ndYrNfnXLNACkGITYd_ls711i5EC2QBvAw7NtXGetweVArctCi2FOnZV4-zTOrFLebckpye9NbIqvMraBNBsk5qerxB6l2XObFBVjA-SxEhm6SfY4eW2HES6rBDH8e0ih3qsHNOS-RQhxw6Q84W6V-2ehdtz43Y8EbgyQtvlHKmEsm55tyMlJBg4DMZJiZhhodKB0qzCCg_AztthOKK-ZkfMQM0OpMyMeE2WRy_jPUuoTwLGYhj6UccWLnkQgdMG18oEWSGyz2ygws0fMU-KsNi6fa_lRyQ5RJqh2TJwIurj4AFTrLjXFkfgvJZYA
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+Electronic+Health+Records+in+Longitudinal+Studies%3A+Estimating+Patient+Attrition&rft.jtitle=Medical+care&rft.au=Huguet%2C+Nathalie&rft.au=Kaufmann%2C+Jorge&rft.au=O%27Malley%2C+Jean&rft.au=Angier%2C+Heather&rft.date=2020-06-01&rft.eissn=1537-1948&rft.volume=58+Suppl+6+Suppl+1&rft.spage=S46&rft_id=info:doi/10.1097%2FMLR.0000000000001298&rft_id=info%3Apmid%2F32412953&rft_id=info%3Apmid%2F32412953&rft.externalDocID=32412953