Noninvasive iPhone Measurement of Left Ventricular Ejection Fraction Using Intrinsic Frequency Methodology
The study is based on previously reported mathematical analysis of arterial waveform that extracts hidden oscillations in the waveform that we called intrinsic frequencies. The goal of this clinical study was to compare the accuracy of left ventricular ejection fraction derived from intrinsic freque...
Saved in:
Published in | Critical care medicine Vol. 45; no. 7; p. 1115 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.07.2017
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Abstract | The study is based on previously reported mathematical analysis of arterial waveform that extracts hidden oscillations in the waveform that we called intrinsic frequencies. The goal of this clinical study was to compare the accuracy of left ventricular ejection fraction derived from intrinsic frequencies noninvasively versus left ventricular ejection fraction obtained with cardiac MRI, the most accurate method for left ventricular ejection fraction measurement.
After informed consent, in one visit, subjects underwent cardiac MRI examination and noninvasive capture of a carotid waveform using an iPhone camera (The waveform is captured using a custom app that constructs the waveform from skin displacement images during the cardiac cycle.). The waveform was analyzed using intrinsic frequency algorithm.
Outpatient MRI facility.
Adults able to undergo MRI were referred by local physicians or self-referred in response to local advertisement and included patients with heart failure with reduced ejection fraction diagnosed by a cardiologist.
Standard cardiac MRI sequences were used, with periodic breath holding for image stabilization. To minimize motion artifact, the iPhone camera was held in a cradle over the carotid artery during iPhone measurements.
Regardless of neck morphology, carotid waveforms were captured in all subjects, within seconds to minutes. Seventy-two patients were studied, ranging in age from 20 to 92 years old. The main endpoint of analysis was left ventricular ejection fraction; overall, the correlation between ejection fraction-iPhone and ejection fraction-MRI was 0.74 (r = 0.74; p < 0.0001; ejection fraction-MRI = 0.93 × [ejection fraction-iPhone] + 1.9).
Analysis of carotid waveforms using intrinsic frequency methods can be used to document left ventricular ejection fraction with accuracy comparable with that of MRI. The measurements require no training to perform or interpret, no calibration, and can be repeated at the bedside to generate almost continuous analysis of left ventricular ejection fraction without arterial cannulation. |
---|---|
AbstractList | The study is based on previously reported mathematical analysis of arterial waveform that extracts hidden oscillations in the waveform that we called intrinsic frequencies. The goal of this clinical study was to compare the accuracy of left ventricular ejection fraction derived from intrinsic frequencies noninvasively versus left ventricular ejection fraction obtained with cardiac MRI, the most accurate method for left ventricular ejection fraction measurement.
After informed consent, in one visit, subjects underwent cardiac MRI examination and noninvasive capture of a carotid waveform using an iPhone camera (The waveform is captured using a custom app that constructs the waveform from skin displacement images during the cardiac cycle.). The waveform was analyzed using intrinsic frequency algorithm.
Outpatient MRI facility.
Adults able to undergo MRI were referred by local physicians or self-referred in response to local advertisement and included patients with heart failure with reduced ejection fraction diagnosed by a cardiologist.
Standard cardiac MRI sequences were used, with periodic breath holding for image stabilization. To minimize motion artifact, the iPhone camera was held in a cradle over the carotid artery during iPhone measurements.
Regardless of neck morphology, carotid waveforms were captured in all subjects, within seconds to minutes. Seventy-two patients were studied, ranging in age from 20 to 92 years old. The main endpoint of analysis was left ventricular ejection fraction; overall, the correlation between ejection fraction-iPhone and ejection fraction-MRI was 0.74 (r = 0.74; p < 0.0001; ejection fraction-MRI = 0.93 × [ejection fraction-iPhone] + 1.9).
Analysis of carotid waveforms using intrinsic frequency methods can be used to document left ventricular ejection fraction with accuracy comparable with that of MRI. The measurements require no training to perform or interpret, no calibration, and can be repeated at the bedside to generate almost continuous analysis of left ventricular ejection fraction without arterial cannulation. |
Author | Pahlevan, Niema M Rinderknecht, Derek G Tavallali, Peyman Tran, Thao T Csete, Marie Gharib, Morteza Kloner, Robert A Razavi, Marianne Fong, Michael W |
Author_xml | – sequence: 1 givenname: Niema M surname: Pahlevan fullname: Pahlevan, Niema M organization: 1Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA.2Advanced Imaging and Spectroscopy Center, Huntington Medical Research Institutes, Pasadena, CA.3Avicena LLC, Los Angeles, CA.4Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA.5Medical Engineering Department, California Institute of Technology, Pasadena, CA.6Division of Cardiovascular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA.7Cardiovascular Research Institute, Huntington Medical Research Institutes, Pasadena, CA.8Department of Anesthesiology, Keck School of Medicine, University of Southern California, Los Angeles, CA.9Graduate Aerospace Laboratory, California Institute of Technology, Pasadena, CA – sequence: 2 givenname: Derek G surname: Rinderknecht fullname: Rinderknecht, Derek G – sequence: 3 givenname: Peyman surname: Tavallali fullname: Tavallali, Peyman – sequence: 4 givenname: Marianne surname: Razavi fullname: Razavi, Marianne – sequence: 5 givenname: Thao T surname: Tran fullname: Tran, Thao T – sequence: 6 givenname: Michael W surname: Fong fullname: Fong, Michael W – sequence: 7 givenname: Robert A surname: Kloner fullname: Kloner, Robert A – sequence: 8 givenname: Marie surname: Csete fullname: Csete, Marie – sequence: 9 givenname: Morteza surname: Gharib fullname: Gharib, Morteza |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28441235$$D View this record in MEDLINE/PubMed |
BookMark | eNpNkN1KAzEQhYMo9kffQCQvsDW_3c2lLG0ttOqF9bYk2Umb0iZ1s1vo27tSBedmzuEMH5wZoOsQAyD0QMmIEpU_leVyRP4NE1JdoT6VnGSEKd5Dg5R2hFAhc36LeqwQgjIu-2j3GoMPJ538CbB_33ZcvASd2hoOEBocHV6Aa_BnZ2pv272u8WQHtvEx4GmtL2KVfNjg-c9JSN52AXy1EOy5YzXbWMV93Jzv0I3T-wT3v3uIVtPJR_mSLd5m8_J5kVlBcpUV2nDtgCumlHGGFbkjhhdCGS0KLh2XYwrMWF5QS1TFK919gBEn6bjS47xiQ_R44R5bc4Bqfaz9Qdfn9V9p9g1Ci1uf |
CitedBy_id | crossref_primary_10_1152_ajpheart_00096_2021 crossref_primary_10_1007_s10439_018_2072_0 crossref_primary_10_1088_1361_6579_aba67f crossref_primary_10_1200_EDBK_100015 crossref_primary_10_1093_ajh_hpy145 crossref_primary_10_1088_1361_6579_acba7b crossref_primary_10_1097_CCM_0000000000002638 crossref_primary_10_1093_ehjopen_oead099 crossref_primary_10_1371_journal_pone_0285228 crossref_primary_10_1007_s00134_018_5419_y crossref_primary_10_1109_TSP_2023_3252883 crossref_primary_10_3389_fphys_2020_00313 crossref_primary_10_1016_j_amjcard_2023_07_076 crossref_primary_10_1016_j_jcp_2019_109130 crossref_primary_10_1016_j_jbiomech_2021_110852 crossref_primary_10_1093_ehjopen_oeae040 crossref_primary_10_3390_fluids4010016 crossref_primary_10_1088_1361_6579_ab7b3f crossref_primary_10_1088_1361_6579_ac2671 crossref_primary_10_1038_s41598_018_22907_4 crossref_primary_10_1016_j_mri_2020_02_013 crossref_primary_10_1155_2022_3864256 crossref_primary_10_1109_TBME_2023_3236918 crossref_primary_10_2139_ssrn_3982580 crossref_primary_10_1097_CCM_0000000000002665 crossref_primary_10_1161_HYPERTENSIONAHA_120_15632 crossref_primary_10_1158_1078_0432_CCR_17_3599 crossref_primary_10_1016_j_lfs_2021_119880 crossref_primary_10_1097_CCM_0000000000002492 crossref_primary_10_1136_heartjnl_2018_313397 crossref_primary_10_1371_journal_pone_0227145 crossref_primary_10_1038_s41598_018_19457_0 crossref_primary_10_1016_j_amcp_2018_04_003 crossref_primary_10_1053_j_seminoncol_2019_01_005 |
ContentType | Journal Article |
DBID | CGR CUY CVF ECM EIF NPM |
DOI | 10.1097/CCM.0000000000002459 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1530-0293 |
ExternalDocumentID | 28441235 |
Genre | Journal Article |
GroupedDBID | --- .-D .3C .55 .GJ .XZ .Z2 01R 0R~ 1J1 354 3O- 40H 4Q1 4Q2 4Q3 53G 5GY 5RE 5VS 6J9 6PF 71W 77Y 7O~ AAAAV AAAXR AAGIX AAHPQ AAIQE AAJCS AAMOA AAMTA AAQKA AAQQT AARTV AASCR AASOK AASXQ AAUEB AAWTL AAXQO AAYEP AAYOK ABASU ABBUW ABDIG ABJNI ABOCM ABPPZ ABVCZ ABXVJ ABZAD ACCJW ACDDN ACEWG ACGFO ACGFS ACILI ACLDA ACOAL ACWDW ACWRI ACXJB ACXNZ ADFPA ADGGA ADHPY ADNKB AE3 AE6 AEBDS AEETU AENEX AFDTB AFEXH AFFNX AFSOK AFUWQ AGINI AHOMT AHQNM AHRYX AHVBC AI. AIJEX AINUH AJIOK AJNWD AJNYG AJZMW AKULP ALMA_UNASSIGNED_HOLDINGS ALMTX AMJPA AMKUR AMNEI AOHHW AWKKM BOYCO BQLVK BS7 BYPQX C45 CGR CS3 CUY CVF DIWNM DU5 DUNZO E.X EBS ECM EEVPB EIF EJD ERAAH EX3 F2K F2L F2M F2N F5P FCALG FL- FW0 GNXGY GQDEL H0~ HLJTE HZ~ IKREB IKYAY IN~ IPNFZ J5H JF9 JG8 JK3 JK8 K-A K-F K8S KD2 KMI L-C L7B M18 N4W N9A NEJ NPM N~7 N~B N~M O9- OAG OAH OB4 OBH OCUKA ODA ODMTH ODZKP OHH OHT OHYEH OJAPA OL1 OLB OLG OLH OLU OLV OLW OLY OLZ ONV OPUJH ORVUJ OUVQU OVD OVDNE OVIDH OVLEI OVOZU OWBYB OWU OWV OWW OWX OWY OWZ OXXIT P-K P2P PONUX R58 RIG RLZ S4R S4S T8P TEORI TSPGW V2I VH1 VVN W3M WOQ WOW X3V X3W X7M XXN XYM YCJ YFH YOC YOJ ZCG ZFV ZGI ZXP ZY1 ZZMQN ~9M |
ID | FETCH-LOGICAL-c4079-8ab3afe39299bfb287f0b3849ba4835f3561e2bc381c09d3da09720f516da67d2 |
IngestDate | Wed Oct 16 00:49:48 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4079-8ab3afe39299bfb287f0b3849ba4835f3561e2bc381c09d3da09720f516da67d2 |
PMID | 28441235 |
ParticipantIDs | pubmed_primary_28441235 |
PublicationCentury | 2000 |
PublicationDate | 2017-Jul |
PublicationDateYYYYMMDD | 2017-07-01 |
PublicationDate_xml | – month: 07 year: 2017 text: 2017-Jul |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Critical care medicine |
PublicationTitleAlternate | Crit Care Med |
PublicationYear | 2017 |
References | 29028727 - Crit Care Med. 2017 Nov;45(11):e1199-e1201 28622217 - Crit Care Med. 2017 Jul;45(7):1240-1241 29028728 - Crit Care Med. 2017 Nov;45(11):e1201-e1202 |
References_xml | |
SSID | ssj0014573 |
Score | 2.460081 |
Snippet | The study is based on previously reported mathematical analysis of arterial waveform that extracts hidden oscillations in the waveform that we called intrinsic... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 1115 |
SubjectTerms | Adult Aged Aged, 80 and over Female Humans Magnetic Resonance Imaging Male Middle Aged Mobile Applications Reproducibility of Results Smartphone Stroke Volume - physiology Ventricular Function, Left - physiology |
Title | Noninvasive iPhone Measurement of Left Ventricular Ejection Fraction Using Intrinsic Frequency Methodology |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28441235 |
Volume | 45 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bSyMxFA5VYfFF1HVdr-Rh32TcuWSayaN4QYSWIlV8k2SSYJVWkW5B_43_1HMmSWcoFVf7MJSkpMN835w5OXPO-Qj5o2UGFs8kEU90ARsUbiIYKaIiLzjqx6U6w9rhTrd9fsUubvKbVuutkbX0b6wOy9e5dSXfQRXGAFeskv0CstNFYQC-A75wBITh-F8YdzGWOpFVBvqgd_cIDmOnjvlV4X9jxwfXGMEduITT03vjxMHPnr1KeEgagJ-MADKYcNnVL7AWqkvXcffQ0CCoI1RZY7Mv53uop-zfLnUHZigPGo2ysZLmYWRKFw84Mc_moRb36ssJRvVdvXbPvAxr4l7KVzkZ-NoiILT_Ox-tSPg0sxUeNsHCxlGcOlnEYIJdR0lPNd6wp2CJ87mG3jcQPu64BpT-kzLXXryB_dOwAh-ewgzLgj-fnWm_HaYWyAIv0JB2MRzkX1OxnGehHlPwv_NOB7tN-yVmdi6VB9NfJSt-60GPHI_WSMuM1smPjsfvJ7lv0Ik6OtEGneijpUgn2qATDXSigU60ohOd0olO6UQbdNogV2en_ePzyEtxRCXcvyIqpMqkNehMC2UVbLNtrLKCCSUZ-PA2AzfcpKoE_6-Mhc60xLZQsc2TtpZtrtNfZHEEp_2bUM2ydq5jwSRTTNgSFlRJroRVAjWn1RbZdFfp9sn1W7kN12_7w5kdslyTbZcsWbjBzR54i2O1XyH2Dke7azQ |
link.rule.ids | 783 |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Noninvasive+iPhone+Measurement+of+Left+Ventricular+Ejection+Fraction+Using+Intrinsic+Frequency+Methodology&rft.jtitle=Critical+care+medicine&rft.au=Pahlevan%2C+Niema+M&rft.au=Rinderknecht%2C+Derek+G&rft.au=Tavallali%2C+Peyman&rft.au=Razavi%2C+Marianne&rft.date=2017-07-01&rft.eissn=1530-0293&rft.volume=45&rft.issue=7&rft.spage=1115&rft_id=info:doi/10.1097%2FCCM.0000000000002459&rft_id=info%3Apmid%2F28441235&rft_id=info%3Apmid%2F28441235&rft.externalDocID=28441235 |