Does protein unfolding play a functional role in vivo?
How mechanical unfolding of proteins has a functional role in vivo is still poorly understood. In this review, we distill the main biophysical characteristics of multidomain proteins functioning under force as binary molecular computational units and examine them as part of several biological proces...
Saved in:
Published in | The FEBS journal Vol. 288; no. 6; pp. 1742 - 1758 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Publishing Ltd
01.03.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | How mechanical unfolding of proteins has a functional role in vivo is still poorly understood. In this review, we distill the main biophysical characteristics of multidomain proteins functioning under force as binary molecular computational units and examine them as part of several biological processes. Understanding the relation between molecular unfolding of proteins under force and their overall macroscopic impact can provide insight into novel mechanical signaling pathways and gain‐of‐function mechanisms.
Unfolding and refolding of multidomain proteins under force have yet to be recognized as a major mechanism of function for proteins in vivo. In this review, we discuss the inherent properties of multidomain proteins under a force vector from a structural and functional perspective. We then characterize three main systems where multidomain proteins could play major roles through mechanical unfolding: muscular contraction, cellular mechanotransduction, and bacterial adhesion. We analyze how key multidomain proteins for each system can produce a gain‐of‐function from the perspective of a fine‐tuned quantized response, a molecular battery, delivery of mechanical work through refolding, elasticity tuning, protection and exposure of cryptic sites, and binding‐induced mechanical changes. Understanding how mechanical unfolding and refolding affect function will have important implications in designing mechano‐active drugs against conditions such as muscular dystrophy, cancer, or novel antibiotics. |
---|---|
AbstractList | Unfolding and refolding of multidomain proteins under force have yet to be recognized as a major mechanism of function for proteins in vivo. In this review, we discuss the inherent properties of multidomain proteins under a force vector from a structural and functional perspective. We then characterize three main systems where multidomain proteins could play major roles through mechanical unfolding: muscular contraction, cellular mechanotransduction, and bacterial adhesion. We analyze how key multidomain proteins for each system can produce a gain‐of‐function from the perspective of a fine‐tuned quantized response, a molecular battery, delivery of mechanical work through refolding, elasticity tuning, protection and exposure of cryptic sites, and binding‐induced mechanical changes. Understanding how mechanical unfolding and refolding affect function will have important implications in designing mechano‐active drugs against conditions such as muscular dystrophy, cancer, or novel antibiotics. Unfolding and refolding of multidomain proteins under force have yet to be recognized as a major mechanism of function for proteins in vivo. In this review, we discuss the inherent properties of multidomain proteins under a force vector from a structural and functional perspective. We then characterize three main systems where multidomain proteins could play major roles through mechanical unfolding: muscular contraction, cellular mechanotransduction, and bacterial adhesion. We analyze how key multidomain proteins for each system can produce a gain-of-function from the perspective of a fine-tuned quantized response, a molecular battery, delivery of mechanical work through refolding, elasticity tuning, protection and exposure of cryptic sites, and binding-induced mechanical changes. Understanding how mechanical unfolding and refolding affect function will have important implications in designing mechano-active drugs against conditions such as muscular dystrophy, cancer, or novel antibiotics. Unfolding and refolding of multidomain proteins under force have yet to be recognized as a major mechanism of function for proteins in vivo . In this review, we discuss the inherent properties of multidomain proteins under a force vector from a structural and functional perspective. We then characterize three main systems where multidomain proteins could play major roles through mechanical unfolding: muscular contraction, cellular mechanotransduction, and bacterial adhesion. We analyze how key multidomain proteins for each system can produce a gain‐of‐function from the perspective of a fine‐tuned quantized response, a molecular battery, delivery of mechanical work through refolding, elasticity tuning, protection and exposure of cryptic sites, and binding‐induced mechanical changes. Understanding how mechanical unfolding and refolding affect function will have important implications in designing mechano‐active drugs against conditions such as muscular dystrophy, cancer, or novel antibiotics. Unfolding and refolding of multidomain proteins under force have yet to be recognized as a major mechanism of function for proteins in vivo. In this review, we discuss the inherent properties of multidomain proteins under a force vector from a structural and functional perspective. We then characterize three main systems where multidomain proteins could play major roles through mechanical unfolding: muscular contraction, cellular mechanotransduction, and bacterial adhesion. We analyze how key multidomain proteins for each system can produce a gain-of-function from the perspective of a fine-tuned quantized response, a molecular battery, delivery of mechanical work through refolding, elasticity tuning, protection and exposure of cryptic sites, and binding-induced mechanical changes. Understanding how mechanical unfolding and refolding affect function will have important implications in designing mechano-active drugs against conditions such as muscular dystrophy, cancer, or novel antibiotics.Unfolding and refolding of multidomain proteins under force have yet to be recognized as a major mechanism of function for proteins in vivo. In this review, we discuss the inherent properties of multidomain proteins under a force vector from a structural and functional perspective. We then characterize three main systems where multidomain proteins could play major roles through mechanical unfolding: muscular contraction, cellular mechanotransduction, and bacterial adhesion. We analyze how key multidomain proteins for each system can produce a gain-of-function from the perspective of a fine-tuned quantized response, a molecular battery, delivery of mechanical work through refolding, elasticity tuning, protection and exposure of cryptic sites, and binding-induced mechanical changes. Understanding how mechanical unfolding and refolding affect function will have important implications in designing mechano-active drugs against conditions such as muscular dystrophy, cancer, or novel antibiotics. How mechanical unfolding of proteins has a functional role in vivo is still poorly understood. In this review, we distill the main biophysical characteristics of multidomain proteins functioning under force as binary molecular computational units and examine them as part of several biological processes. Understanding the relation between molecular unfolding of proteins under force and their overall macroscopic impact can provide insight into novel mechanical signaling pathways and gain‐of‐function mechanisms. Unfolding and refolding of multidomain proteins under force have yet to be recognized as a major mechanism of function for proteins in vivo. In this review, we discuss the inherent properties of multidomain proteins under a force vector from a structural and functional perspective. We then characterize three main systems where multidomain proteins could play major roles through mechanical unfolding: muscular contraction, cellular mechanotransduction, and bacterial adhesion. We analyze how key multidomain proteins for each system can produce a gain‐of‐function from the perspective of a fine‐tuned quantized response, a molecular battery, delivery of mechanical work through refolding, elasticity tuning, protection and exposure of cryptic sites, and binding‐induced mechanical changes. Understanding how mechanical unfolding and refolding affect function will have important implications in designing mechano‐active drugs against conditions such as muscular dystrophy, cancer, or novel antibiotics. |
Author | Subramani, Smrithika Popa, Ionel Sharma, Sabita |
Author_xml | – sequence: 1 givenname: Sabita surname: Sharma fullname: Sharma, Sabita organization: University of Wisconsin‐Milwaukee – sequence: 2 givenname: Smrithika surname: Subramani fullname: Subramani, Smrithika organization: University of Wisconsin‐Milwaukee – sequence: 3 givenname: Ionel orcidid: 0000-0003-3111-4716 surname: Popa fullname: Popa, Ionel email: popa@uwm.edu organization: University of Wisconsin‐Milwaukee |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32761965$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0c9LwzAUB_AgivuhF_8AKXgRYTNpfjQ9ic5NhYEHFbyVNH2RjKyZTTvZf2_n5g4imkty-Hwfee_10H7pS0DohOAhac-lgTwMCedY7qEuSVg8YILL_d2bvXZQL4QZxpSzND1EHRongqSCd5G49RCiReVrsGXUlMa7wpZv0cKpVaQi05S6tr5ULqq8g6g1S7v0V0fowCgX4Hh799HLZPw8uh9MH-8eRtfTgWY4kQNDsQGWgxCSQEq0MFwVWkkmqIAUNAOBTaLzHJhMSZFyTAuZSp0wgmVRSNpH55u67Q_fGwh1NrdBg3OqBN-ELOYxo5SKOP6fMkok5gKzlp79oDPfVG2T64KYyARLTlp1ulVNPociW1R2rqpV9j28FlxsgK58CBWYHSE4W28mW28m-9pMi_EPrG2t1rOtK2Xd7xGyiXxYB6s_imeT8c3TJvMJsDSduA |
CitedBy_id | crossref_primary_10_1021_acs_jchemed_2c00231 crossref_primary_10_1002_cbic_202200165 crossref_primary_10_1038_s41578_022_00488_z crossref_primary_10_7554_eLife_66862 crossref_primary_10_1016_j_crmeth_2024_100815 crossref_primary_10_1126_sciadv_abl7719 crossref_primary_10_1021_acsnano_4c08663 crossref_primary_10_1021_acs_jpcb_3c01683 crossref_primary_10_1242_jcs_259355 crossref_primary_10_3390_ijms25042135 crossref_primary_10_1021_acs_jpcb_1c10715 |
Cites_doi | 10.1088/1361-6528/aa655e 10.1038/s41467-018-05107-6 10.3389/fphys.2020.00173 10.1038/nature06231 10.1016/j.chom.2008.09.005 10.1126/science.1246135 10.1016/j.bpj.2013.04.002 10.1038/nrmicro.2016.164 10.1038/nrn1007 10.1016/j.bbrc.2015.03.051 10.1038/s41564-019-0378-9 10.1016/j.neuron.2010.03.028 10.1038/nature01605 10.1042/ETLS20180043 10.1042/ETLS20180044 10.1146/annurev-physiol-021317-121254 10.1074/jbc.M508060200 10.1021/acs.jpcb.0c00167 10.1038/ncb1060 10.1021/acs.jpclett.8b01925 10.1021/acsnano.6b03314 10.1016/j.celrep.2016.01.025 10.1038/s41598-018-32952-8 10.1016/j.revip.2017.05.001 10.1038/35024105 10.1016/j.tibs.2019.11.003 10.1038/ncomms5525 10.1073/pnas.0805034105 10.1073/pnas.1400752111 10.1126/sciadv.aaz4707 10.1038/s41467-019-13782-2 10.1002/pro.3478 10.1074/jbc.M111.297481 10.1021/jacs.9b06776 10.1073/pnas.1013893107 10.1083/jcb.201001149 10.1016/j.semcdb.2003.12.008 10.1016/S0006-3495(97)78753-8 10.1038/nature21035 10.1038/s41579-019-0314-2 10.1128/AEM.06912-11 10.1021/acs.nanolett.5b03888 10.1074/jbc.M117.777466 10.1038/s41567-019-0551-3 10.7554/eLife.03406 10.1016/j.cell.2014.01.056 10.1073/pnas.1115485109 10.1038/nrm2144 10.1042/ETLS20180046 10.1111/j.1574-695X.1996.tb00128.x 10.1021/acs.jpcb.7b00610 10.1371/journal.pbio.0040298 10.1111/j.1365-2958.2007.05858.x 10.1126/science.1162912 10.1021/acsnano.6b01658 10.1016/S0065-3233(04)68002-8 10.1038/368113a0 10.1126/science.1145806 10.1073/pnas.1522946113 10.1073/pnas.1807689115 10.1007/s00424-007-0389-x 10.1021/jacs.6b05429 10.1038/s41467-017-02528-7 10.1038/nrm3920 10.1073/pnas.1820567116 10.1084/jem.20120325 10.1016/j.yexcr.2015.10.029 10.1016/j.sbi.2019.11.012 10.1038/369248a0 10.1146/annurev-biochem-061516-045115 10.1016/j.bpj.2019.12.042 10.1073/pnas.1506538112 10.1038/s41598-018-19755-7 10.1038/nature00938 10.1111/febs.14854 10.1038/ncomms12490 10.1242/jcs.109447 10.1083/jcb.201502062 10.1073/pnas.100124597 10.1530/JOE-10-0377 10.1146/annurev-physiol-021317-121234 10.1073/pnas.1013159107 10.1038/ncb3336 10.1016/j.celrep.2019.04.046 10.1083/jcb.200703036 10.1073/pnas.1607193113 10.1021/ja4056382 10.1016/j.febslet.2013.02.024 10.1529/biophysj.107.110643 10.1038/nature10109 10.1016/j.jsb.2020.107495 10.1083/jcb.144.6.1311 10.1111/j.1365-2958.2004.04226.x 10.1529/biophysj.105.075937 10.1016/j.cell.2015.05.005 10.1529/biophysj.106.088989 10.1126/science.1239764 10.1134/S0006297911030023 10.3389/fmolb.2020.00085 10.1126/science.7824937 10.1113/JP273299 10.1021/acs.chemrev.8b00532 10.1038/ncomms16036 10.1083/jcb.201212037 10.1074/jbc.M110.102962 10.1038/nrm2871 10.1113/JP278713 10.1016/j.bpj.2011.09.027 10.1038/nrm2593 10.1016/j.cub.2013.01.009 10.1146/annurev-biochem-072711-164947 10.1074/jbc.M307473200 10.1073/pnas.0705367104 10.1111/febs.14818 10.1038/nrm2594 10.1042/BST0360141 10.1083/jcb.127.1.235 10.1038/ncomms10038 10.1126/science.347575 10.1146/annurev-cellbio-100913-013212 10.1126/science.aar2094 10.1201/9781136665493 10.1074/jbc.M110.149385 10.1096/fj.201500080R 10.1016/j.cell.2006.10.048 10.1126/science.1261909 10.1126/science.276.5315.1112 10.1038/nature02281 10.1126/science.aan2556 10.1161/hh2301.100981 10.1016/j.jmb.2014.12.017 10.1016/j.cell.2011.03.036 10.1161/CIRCRESAHA.112.268680 10.1038/s41467-018-05115-6 10.1126/sciadv.aba6112 10.1111/j.1432-1033.1996.00317.x 10.1021/ja107513t 10.1098/rsos.160313 10.1002/smtd.201800039 10.1002/1873-3468.12362 10.1529/biophysj.105.069344 10.1161/CIRCRESAHA.114.301286 10.1073/pnas.1211929109 10.1021/nn5044383 |
ContentType | Journal Article |
Copyright | 2020 Federation of European Biochemical Societies 2020 Federation of European Biochemical Societies. Copyright © 2021 Federation of European Biochemical Societies |
Copyright_xml | – notice: 2020 Federation of European Biochemical Societies – notice: 2020 Federation of European Biochemical Societies. – notice: Copyright © 2021 Federation of European Biochemical Societies |
DBID | AAYXX CITATION NPM 7QL 7QP 7QR 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 |
DOI | 10.1111/febs.15508 |
DatabaseName | CrossRef PubMed Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Virology and AIDS Abstracts PubMed CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1742-4658 |
EndPage | 1758 |
ExternalDocumentID | 32761965 10_1111_febs_15508 FEBS15508 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: University of Wisconsin‐Milwaukee funderid: RGI 101X396 – fundername: National Science Foundation, Directorate for Biological Sciences funderid: DBI‐1919670; MCB‐1846143 – fundername: Greater Milwaukee Foundation: Shaw Award – fundername: National Science Foundation, Directorate for Biological Sciences grantid: DBI-1919670 – fundername: University of Wisconsin-Milwaukee grantid: RGI 101X396 – fundername: National Science Foundation, Directorate for Biological Sciences grantid: MCB-1846143 |
GroupedDBID | --- -DZ -~X .3N .55 .GA .Y3 05W 0R~ 10A 1OC 24P 29H 31~ 33P 36B 3O- 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 A8Z AAESR AAEVG AAHBH AAHHS AAHQN AAIPD AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEFU ABEML ABPVW ABQWH ABXGK ACAHQ ACCFJ ACCZN ACFBH ACGFS ACGOF ACIWK ACMXC ACNCT ACPOU ACPRK ACSCC ACUHS ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMXJE BROTX BRXPI BY8 C1A C45 CAG COF CS3 D-6 D-7 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRMAN DRSTM E3Z EAD EAP EAS EAU EBB EBC EBD EBS EBX EJD EMB EMK EMOBN EST ESX EX3 F00 F01 F04 F5P FIJ FUBAC G-S G.N GODZA GX1 H.X HF~ HGLYW HH5 HZI HZ~ IHE IX1 J0M KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MVM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OBS OIG OK1 OVD P2W P2X P2Z P4B P4D PQQKQ Q.N Q11 QB0 R.K RNS ROL RX1 SUPJJ SV3 TEORI TR2 TUS UB1 V8K W8V W99 WBFHL WBKPD WIH WIJ WIK WIN WOHZO WOQ WOW WQJ WRC WXI WXSBR WYISQ X7M XG1 Y6R ~IA ~KM ~WT AAYXX AEYWJ AGHNM AGYGG CITATION NPM 7QL 7QP 7QR 7TK 7TM 7U9 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c4078-f30fe4be6681e91c6f5adca84636e9ec4e60f7cbbe4891d9503d898c74108dd83 |
IEDL.DBID | DR2 |
ISSN | 1742-464X 1742-4658 |
IngestDate | Fri Jul 11 18:29:46 EDT 2025 Thu Jul 10 17:59:44 EDT 2025 Fri Jul 25 19:35:47 EDT 2025 Thu Apr 03 07:04:29 EDT 2025 Thu Apr 24 22:58:40 EDT 2025 Tue Jul 01 03:06:52 EDT 2025 Wed Jan 22 16:29:49 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | cellular mechanotransduction energy landscape force spectroscopy protein unfolding bacterial adhesion muscular contraction |
Language | English |
License | 2020 Federation of European Biochemical Societies. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4078-f30fe4be6681e91c6f5adca84636e9ec4e60f7cbbe4891d9503d898c74108dd83 |
Notes | Sabita Sharma and Smrithika Subramani contributed equally to this work ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-3111-4716 |
OpenAccessLink | https://febs.onlinelibrary.wiley.com/doi/pdfdirect/10.1111/febs.15508 |
PMID | 32761965 |
PQID | 2501870851 |
PQPubID | 28478 |
PageCount | 17 |
ParticipantIDs | proquest_miscellaneous_2524333622 proquest_miscellaneous_2431805604 proquest_journals_2501870851 pubmed_primary_32761965 crossref_primary_10_1111_febs_15508 crossref_citationtrail_10_1111_febs_15508 wiley_primary_10_1111_febs_15508_FEBS15508 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2021 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: March 2021 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | The FEBS journal |
PublicationTitleAlternate | FEBS J |
PublicationYear | 2021 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | 2007; 104 2010; 11 2017; 86 2010; 107 2019; 10 2013; 126 2019; 15 1997; 276 2010; 189 2008; 36 2016; 30 2008; 105 2015; 427 2020; 11 2011; 474 2019; 286 2020; 18 2000; 407 2018; 9 2018; 8 2007; 179 2018; 2 2009; 10 2000; 97 2007; 450 2007; 8 2013; 112 2019; 27 2020; 210 2007; 65 2019; 4 2013; 104 2016; 10 2013; 342 2013; 587 2010; 285 2011; 76 2002; 418 2007; 93 2016; 18 2004; 427 2016; 16 1996; 16 2016; 14 2018; 27 2011; 133 2014; 156 2012; 109 2016; 7 2004; 53 2004; 279 2016; 3 2018; 359 2015; 112 2018; 115 1978; 200 1995; 267 2014; 30 1996; 235 2017; 542 2007; 318 2011; 145 2015; 460 2017; 8 2012; 287 2017; 2 2013; 23 2020; 60 2004; 68 2018; 80 2016; 343 2013; 201 2020; 124 2015; 348 2008; 4 2017; 595 2001; 89 2017; 357 2012; 209 2020; 7 2010; 66 2020; 6 2014; 5 2014; 3 2011; 209 2016; 113 2019; 116 2003; 4 2003; 5 2019; 119 2020; 45 2017; 121 2014; 8 2009; 323 2016; 590 2006; 90 2015; 161 2006; 91 2015; 6 2015; 16 2007; 128 2012 2017; 28 2017; 292 2015; 209 2006; 4 1999; 144 2014; 111 2019; 141 2014; 83 2012; 78 2014; 114 2005; 280 1994; 369 1994; 127 1997; 72 1994; 368 2017; 15 2004; 15 2019 2013; 135 2020; 118 2016; 138 2008; 456 2020; 598 2003; 423 2011; 101 2014; 343 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_52_1 e_1_2_9_79_1 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_33_1 e_1_2_9_90_1 e_1_2_9_71_1 e_1_2_9_103_1 e_1_2_9_126_1 e_1_2_9_107_1 e_1_2_9_122_1 e_1_2_9_145_1 e_1_2_9_14_1 e_1_2_9_141_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_6_1 e_1_2_9_119_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_138_1 e_1_2_9_111_1 e_1_2_9_134_1 e_1_2_9_115_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_130_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_99_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_95_1 e_1_2_9_76_1 e_1_2_9_91_1 e_1_2_9_102_1 e_1_2_9_129_1 e_1_2_9_144_1 e_1_2_9_106_1 e_1_2_9_125_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_140_1 e_1_2_9_121_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_88_1 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_65_1 e_1_2_9_80_1 e_1_2_9_5_1 Liu T (e_1_2_9_39_1) 2014; 3 e_1_2_9_114_1 e_1_2_9_137_1 e_1_2_9_118_1 e_1_2_9_133_1 e_1_2_9_9_1 e_1_2_9_27_1 e_1_2_9_69_1 e_1_2_9_110_1 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_35_1 e_1_2_9_77_1 e_1_2_9_96_1 e_1_2_9_12_1 e_1_2_9_54_1 e_1_2_9_92_1 e_1_2_9_109_1 e_1_2_9_101_1 e_1_2_9_128_1 e_1_2_9_105_1 e_1_2_9_124_1 e_1_2_9_120_1 e_1_2_9_16_1 e_1_2_9_58_1 e_1_2_9_143_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_89_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_85_1 e_1_2_9_8_1 e_1_2_9_81_1 e_1_2_9_4_1 e_1_2_9_113_1 e_1_2_9_117_1 e_1_2_9_136_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_132_1 e_1_2_9_74_1 Pricolo MR (e_1_2_9_51_1) 2019 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_97_1 e_1_2_9_93_1 e_1_2_9_108_1 e_1_2_9_70_1 e_1_2_9_127_1 e_1_2_9_100_1 e_1_2_9_123_1 e_1_2_9_104_1 e_1_2_9_146_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_142_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_86_1 e_1_2_9_7_1 e_1_2_9_82_1 e_1_2_9_3_1 e_1_2_9_112_1 e_1_2_9_139_1 e_1_2_9_116_1 e_1_2_9_135_1 e_1_2_9_25_1 e_1_2_9_131_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 133 start-page: 478 year: 2011 end-page: 485 article-title: Autocatalytic intramolecular isopeptide bond formation in gram‐positive bacterial pili: a QM/MM simulation publication-title: J Am Chem Soc – volume: 156 start-page: 1235 year: 2014 end-page: 1246 article-title: S‐glutathionylation of cryptic cysteines enhances titin elasticity by blocking protein folding publication-title: Cell – volume: 7 start-page: 12490 year: 2016 article-title: Protein S‐sulfenylation is a fleeting molecular switch that regulates non‐enzymatic oxidative folding publication-title: Nat Commun – volume: 93 start-page: 3008 year: 2007 end-page: 3014 article-title: The biomechanical properties of pili for urinary tract attachment reflect the host environment publication-title: Biophys J – volume: 2 start-page: 687 year: 2018 end-page: 699 article-title: Mechanobiology: protein refolding under force publication-title: Emerg Top Life Sci – volume: 104 start-page: 15677 year: 2007 end-page: 15681 article-title: A functional single‐molecule binding assay via force spectroscopy publication-title: Proc Natl Acad Sci USA – volume: 5 year: 2014 article-title: Force‐dependent conformational switch of alpha‐catenin controls vinculin binding publication-title: Nat Commun – volume: 9 start-page: 185 year: 2018 article-title: Disulfide isomerization reactions in titin immunoglobulin domains enable a mode of protein elasticity publication-title: Nat Commun – volume: 369 start-page: 248 year: 1994 end-page: 251 article-title: How does a protein fold? publication-title: Nature – volume: 407 start-page: 98 year: 2000 end-page: 102 article-title: Pilus retraction powers bacterial twitching motility publication-title: Nature – volume: 10 year: 2019 article-title: An Abl‐FBP17 mechanosensing system couples local plasma membrane curvature and stress fiber remodeling during mechanoadaptation publication-title: Nat Commun – volume: 115 start-page: 9222 year: 2018 end-page: 9227 article-title: Molecular strategy for blocking isopeptide bond formation in nascent pilin proteins publication-title: Proc Natl Acad Sci USA – volume: 280 start-page: 37217 year: 2005 end-page: 37224 article-title: Mapping and consensus sequence identification for multiple vinculin binding sites within the talin rod publication-title: J Biol Chem – volume: 91 start-page: 3848 year: 2006 end-page: 3856 article-title: The mechanical properties of type 1 pili measured by atomic force microscopy techniques publication-title: Biophys J – volume: 6 year: 2020 article-title: Cation‐induced shape programming and morphing in protein‐based hydrogels publication-title: Sci Adv – volume: 68 start-page: 29 year: 2004 end-page: 63 article-title: The three‐dimensional structure of integrins and their ligands, and conformational regulation of cell adhesion publication-title: Adv Protein Chem – volume: 119 start-page: 5537 year: 2019 end-page: 5606 article-title: Folding and misfolding of human membrane proteins in health and disease: from single molecules to cellular proteostasis publication-title: Chem Rev – volume: 423 start-page: 190 year: 2003 end-page: 193 article-title: Direct observation of catch bonds involving cell‐adhesion molecules publication-title: Nature – volume: 135 start-page: 12762 year: 2013 end-page: 12771 article-title: Nanomechanics of HaloTag tethers publication-title: J Am Chem Soc – volume: 97 start-page: 6521 year: 2000 end-page: 6526 article-title: Unfolding proteins by external forces and temperature: the importance of topology and energetics publication-title: Proc Natl Acad Sci USA – volume: 112 start-page: 382 year: 2013 end-page: 392 article-title: Cysteine oxidative posttranslational modifications: emerging regulation in the cardiovascular system publication-title: Circ Res – volume: 3 year: 2014 article-title: Direct measurement of the mechanical work during translocation by the ribosome publication-title: Elife – volume: 6 year: 2015 article-title: Vinculin controls talin engagement with the actomyosin machinery publication-title: Nat Commun – volume: 587 start-page: 1081 year: 2013 end-page: 1088 article-title: Regulated unfolding of proteins in signaling publication-title: FEBS Lett – volume: 53 start-page: 1545 year: 2004 end-page: 1557 article-title: Shear‐dependent 'stick‐and‐roll' adhesion of type 1 fimbriated publication-title: Mol Microbiol – volume: 4 year: 2006 article-title: Uncoiling mechanics of type I fimbriae are optimized for catch bonds publication-title: PLoS Biol – volume: 2 start-page: 727 year: 2018 end-page: 737 article-title: The extracellular matrix–myosin pathway in mechanotransduction: from molecule to tissue publication-title: Emerg Top Life Sci – volume: 112 start-page: 8290 year: 2015 end-page: 8295 article-title: Structural and functional insights into alpha2‐macroglobulin endopeptidase snap‐trap inhibition publication-title: Proc Natl Acad Sci USA – volume: 11 start-page: 288 year: 2010 end-page: 300 article-title: The final steps of integrin activation: the end game publication-title: Nat Rev Mol Cell Biol – volume: 80 start-page: 327 year: 2018 end-page: 351 article-title: The work of titin protein folding as a major driver in muscle contraction publication-title: Annu Rev Physiol – volume: 292 start-page: 8988 year: 2017 end-page: 8997 article-title: Mechanical forces regulate the reactivity of a thioester bond in a bacterial adhesin publication-title: J Biol Chem – volume: 9 year: 2018 article-title: Mechanical architecture and folding of type 1 pilus domains publication-title: Nat Commun – volume: 107 start-page: 20744 year: 2010 end-page: 20749 article-title: Force‐induced formation and propagation of adhesion nanodomains in living fungal cells publication-title: Proc Natl Acad Sci USA – volume: 78 start-page: 99 year: 2012 end-page: 102 article-title: Adhesive bond stiffness of with and without proteins that bind to an adsorbed fibronectin film publication-title: Appl Environ Microbiol – volume: 276 start-page: 1112 year: 1997 end-page: 1116 article-title: Folding‐unfolding transitions in single titin molecules characterized with laser tweezers publication-title: Science – volume: 161 start-page: 988 year: 2015 end-page: 997 article-title: The mechanical world of bacteria publication-title: Cell – volume: 10 start-page: 21 year: 2009 end-page: 33 article-title: Environmental sensing through focal adhesions publication-title: Nat Rev Mol Cell Biol – volume: 286 start-page: 2240 year: 2019 end-page: 2260 article-title: Posttranslational modifications of titin from cardiac muscle: how, where, and what for? publication-title: FEBS J – year: 2019 article-title: Thermodynamic destabilization informs pathogenicity assessment of a variant of uncertain significance in cardiac myosin binding protein C publication-title: bioRxiv – volume: 83 start-page: 553 year: 2014 end-page: 584 article-title: Intrinsically disordered proteins and intrinsically disordered protein regions publication-title: Annu Rev Biochem – volume: 200 start-page: 618 year: 1978 end-page: 627 article-title: Models for the specific adhesion of cells to cells publication-title: Science – volume: 598 start-page: 331 year: 2020 end-page: 345 article-title: Contracting striated muscle has a dynamic I‐band spring with an undamped stiffness 100 times larger than the passive stiffness publication-title: J Physiol – volume: 8 year: 2017 article-title: Coordinated force generation of skeletal myosins in myofilaments through motor coupling publication-title: Nat Commun – volume: 116 start-page: 6766 year: 2019 end-page: 6774 article-title: Structural and mechanistic insights into mechanoactivation of focal adhesion kinase publication-title: Proc Natl Acad Sci USA – volume: 267 start-page: 386 year: 1995 end-page: 389 article-title: Solution structure of the epithelial cadherin domain responsible for selective cell adhesion publication-title: Science – volume: 113 start-page: E5389 year: 2016 end-page: E5398 article-title: Comprehensive structural and dynamical view of an unfolded protein from the combination of single‐molecule FRET, NMR, and SAXS publication-title: Proc Natl Acad Sci USA – volume: 287 start-page: 7728 year: 2012 end-page: 7737 article-title: alpha‐Catenin uses a novel mechanism to activate vinculin publication-title: J Biol Chem – volume: 18 start-page: 227 year: 2020 end-page: 240 article-title: Mechanomicrobiology: how bacteria sense and respond to forces publication-title: Nat Rev Microbiol – volume: 65 start-page: 1158 year: 2007 end-page: 1169 article-title: The cysteine bond in the FimH adhesin is critical for adhesion under flow conditions publication-title: Mol Microbiol – volume: 89 start-page: 1065 year: 2001 end-page: 1072 article-title: The complete gene sequence of titin, expression of an unusual approximately 700‐kDa titin isoform, and its interaction with obscurin identify a novel Z‐line to I‐band linking system publication-title: Circ Res – volume: 427 start-page: 707 year: 2015 end-page: 714 article-title: Titin and obscurin: giants holding hands and discovery of a new Ig domain subset publication-title: J Mol Biol – volume: 30 start-page: 2073 year: 2016 end-page: 2085 article-title: Talin: a mechanosensitive molecule in health and disease publication-title: FASEB J – volume: 15 start-page: 3 year: 2004 end-page: 16 article-title: Principles of protein folding, misfolding and aggregation publication-title: Semin Cell Dev Biol – volume: 201 start-page: 1053 year: 2013 end-page: 1068 article-title: Complete integrin headpiece opening in eight steps publication-title: J Cell Biol – volume: 28 year: 2017 article-title: Multidomain proteins under force publication-title: Nanotechnology – volume: 111 start-page: 3413 year: 2014 end-page: 3418 article-title: How force unfolding differs from chemical denaturation publication-title: Proc Natl Acad Sci USA – volume: 4 start-page: 774 year: 2019 end-page: 780 article-title: Pseudomonas aeruginosa orchestrates twitching motility by sequential control of type IV pili movements publication-title: Nat Microbiol – volume: 18 start-page: 540 year: 2016 end-page: 548 article-title: Mechanical regulation of a molecular clutch defines force transmission and transduction in response to matrix rigidity publication-title: Nat Cell Biol – volume: 30 start-page: 291 year: 2014 end-page: 315 article-title: Cadherin adhesion and mechanotransduction publication-title: Annu Rev Cell Dev Biol – volume: 456 start-page: 101 year: 2008 end-page: 115 article-title: Pulling single molecules of titin by AFM–recent advances and physiological implications publication-title: Pflugers Arch – volume: 126 start-page: 403 year: 2013 end-page: 413 article-title: Mechanosensitive systems at the cadherin‐F‐actin interface publication-title: J Cell Sci – volume: 138 start-page: 10546 year: 2016 end-page: 10553 article-title: A HaloTag anchored ruler for week‐long studies of protein dynamics publication-title: J Am Chem Soc – volume: 279 start-page: 7917 year: 2004 end-page: 7924 article-title: Association of the chaperone alphaB‐crystallin with titin in heart muscle publication-title: J Biol Chem – volume: 427 start-page: 171 year: 2004 end-page: 175 article-title: Vinculin activation by talin through helical bundle conversion publication-title: Nature – volume: 342 start-page: 741 year: 2013 end-page: 743 article-title: High‐speed force spectroscopy unfolds titin at the velocity of molecular dynamics simulations publication-title: Science – volume: 3 year: 2016 article-title: Force per cross‐sectional area from molecules to muscles: a general property of biological motors publication-title: R Soc Open Sci – volume: 9 year: 2018 article-title: Forcing the reversibility of a mechanochemical reaction publication-title: Nat Commun – volume: 107 start-page: 19284 year: 2010 end-page: 19289 article-title: Water's role in the force‐induced unfolding of ubiquitin publication-title: Proc Natl Acad Sci USA – volume: 80 start-page: 389 year: 2018 end-page: 411 article-title: Titin gene and protein functions in passive and active muscle publication-title: Annu Rev Physiol – volume: 209 start-page: 139 year: 2011 end-page: 151 article-title: Extracellular matrix and cell signalling: the dynamic cooperation of integrin, proteoglycan and growth factor receptor publication-title: J Endocrinol – volume: 323 start-page: 638 year: 2009 end-page: 641 article-title: Stretching single talin rod molecules activates vinculin binding publication-title: Science – volume: 474 start-page: 49 year: 2011 end-page: 53 article-title: Crystal structure of the FimD usher bound to its cognate FimC‐FimH substrate publication-title: Nature – volume: 2 start-page: 32 year: 2017 end-page: 45 article-title: Strategies for the exploration of free energy landscapes: unity in diversity and challenges ahead publication-title: Rev Phys – volume: 179 start-page: 1043 year: 2007 end-page: 1057 article-title: Vinculin controls focal adhesion formation by direct interactions with talin and actin publication-title: J Cell Biol – volume: 318 start-page: 1625 year: 2007 end-page: 1628 article-title: Stabilizing isopeptide bonds revealed in gram‐positive bacterial pilus structure publication-title: Science – volume: 285 start-page: 11235 year: 2010 end-page: 11242 article-title: Isopeptide bonds block the mechanical extension of pili in pathogenic publication-title: J Biol Chem – volume: 8 start-page: 10723 year: 2014 end-page: 10733 article-title: Nanoscale adhesion forces of type IV Pili publication-title: ACS Nano – volume: 15 start-page: 83 year: 2017 end-page: 95 article-title: Cellulosomes: bacterial nanomachines for dismantling plant polysaccharides publication-title: Nat Rev Microbiol – volume: 141 start-page: 14752 year: 2019 end-page: 14763 article-title: Mechanisms of nanonewton mechanostability in a protein complex revealed by molecular dynamics simulations and single‐molecule force spectroscopy publication-title: J Am Chem Soc – volume: 2 year: 2018 article-title: Mechanical polyprotein assembly using Sfp and sortase‐mediated domain oligomerization for single‐molecule studies publication-title: Small Methods – volume: 101 start-page: 1978 year: 2011 end-page: 1986 article-title: A conditional gating mechanism assures the integrity of the molecular force‐sensor titin kinase publication-title: Biophys J – volume: 210 year: 2020 article-title: Correlations within polyprotein forced unfolding dwell‐times introduce sequential dependency publication-title: J Struct Biol – volume: 5 start-page: 980 year: 2003 end-page: 986 article-title: Load‐dependent kinetics of force production by smooth muscle myosin measured with optical tweezers publication-title: Nat Cell Biol – volume: 343 start-page: 656 year: 2014 end-page: 661 article-title: A structurally distinct human mycoplasma protein that generically blocks antigen‐antibody union publication-title: Science – volume: 7 year: 2020 article-title: Next generation methods for single‐molecule force spectroscopy on polyproteins and receptor‐ligand complexes publication-title: Front Mol Biosci – volume: 16 start-page: 341 year: 2016 end-page: 348 article-title: Titin‐based nanoparticle tension sensors map high‐magnitude integrin forces within focal adhesions publication-title: Nano Lett – volume: 6 year: 2020 article-title: Direct observation of a coil‐to‐helix contraction triggered by vinculin binding to talin publication-title: Sci Adv – volume: 128 start-page: 171 year: 2007 end-page: 182 article-title: Structural basis of integrin activation by talin publication-title: Cell – volume: 27 start-page: 1651 year: 2018 end-page: 1660 article-title: A new structural class of bacterial thioester domains reveals a slipknot topology publication-title: Protein Sci – volume: 450 start-page: 124 year: 2007 end-page: 127 article-title: Probing the chemistry of thioredoxin catalysis with force publication-title: Nature – volume: 90 start-page: 1411 year: 2006 end-page: 1418 article-title: Sacrificial bonds and hidden length: unraveling molecular mesostructures in tough materials publication-title: Biophys J – volume: 144 start-page: 1311 year: 1999 end-page: 1322 article-title: Functional domains of alpha‐catenin required for the strong state of cadherin‐based cell adhesion publication-title: J Cell Biol – volume: 359 start-page: 1527 year: 2018 end-page: 1533 article-title: Molecular mechanism of extreme mechanostability in a pathogen adhesin publication-title: Science – volume: 90 start-page: 3827 year: 2006 end-page: 3841 article-title: Mapping the energy landscape of biomolecules using single molecule force correlation spectroscopy: theory and applications publication-title: Biophys J – volume: 10 start-page: 75 year: 2009 end-page: 82 article-title: Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus publication-title: Nat Rev Mol Cell Biol – volume: 66 start-page: 85 year: 2010 end-page: 100 article-title: Structural determinants of cadherin‐23 function in hearing and deafness publication-title: Neuron – volume: 10 start-page: 6648 year: 2016 end-page: 6658 article-title: All subdomains of the talin rod are mechanically vulnerable and may contribute to cellular mechanosensing publication-title: ACS Nano – volume: 105 start-page: 13385 year: 2008 end-page: 13390 article-title: Mechanoenzymatics of titin kinase publication-title: Proc Natl Acad Sci USA – volume: 16 start-page: 18 year: 2015 end-page: 29 article-title: Intrinsically disordered proteins in cellular signalling and regulation publication-title: Nat Rev Mol Cell Biol – volume: 104 start-page: 2051 year: 2013 end-page: 2057 article-title: Isopeptide bonds mechanically stabilize spy0128 in bacterial pili publication-title: Biophys J – volume: 590 start-page: 3098 year: 2016 end-page: 3110 article-title: CARP interacts with titin at a unique helical N2A sequence and at the domain Ig81 to form a structured complex publication-title: FEBS Lett – volume: 109 start-page: 20431 year: 2012 end-page: 20436 article-title: Single‐molecule dissection of the high‐affinity cohesin‐dockerin complex publication-title: Proc Natl Acad Sci USA – volume: 235 start-page: 317 year: 1996 end-page: 323 article-title: A molecular map of the interactions between titin and myosin‐binding protein C. Implications for sarcomeric assembly in familial hypertrophic cardiomyopathy publication-title: Eur J Biochem – volume: 127 start-page: 235 year: 1994 end-page: 245 article-title: The roles of catenins in the cadherin‐mediated cell adhesion: functional analysis of E‐cadherin‐alpha catenin fusion molecules publication-title: J Cell Biol – volume: 209 start-page: 329 year: 2015 end-page: 337 article-title: Cytoskeletal dynamics: a view from the membrane publication-title: J Cell Biol – volume: 113 start-page: 2490 year: 2016 end-page: 2495 article-title: CnaA domains in bacterial pili are efficient dissipaters of large mechanical shocks publication-title: Proc Natl Acad Sci USA – volume: 460 start-page: 434 year: 2015 end-page: 438 article-title: The elastic free energy of a tandem modular protein under force publication-title: Biochem Biophys Res Commun – volume: 368 start-page: 113 year: 1994 end-page: 119 article-title: Single myosin molecule mechanics: piconewton forces and nanometre steps publication-title: Nature – volume: 118 start-page: 1344 year: 2020 end-page: 1356 article-title: Different vinculin binding sites use the same mechanism to regulate directional force transduction publication-title: Biophys J – volume: 72 start-page: 1006 year: 1997 end-page: 1021 article-title: Smooth muscle and skeletal muscle myosins produce similar unitary forces and displacements in the laser trap publication-title: Biophys J – volume: 343 start-page: 14 year: 2016 end-page: 20 article-title: Focal adhesions, stress fibers and mechanical tension publication-title: Exp Cell Res – volume: 4 start-page: 314 year: 2008 end-page: 323 article-title: Catch‐bond mechanism of force‐enhanced adhesion: counterintuitive, elusive, but … widespread? publication-title: Cell Host Microbe – volume: 145 start-page: 257 year: 2011 end-page: 267 article-title: Single‐molecule protein unfolding and translocation by an ATP‐fueled proteolytic machine publication-title: Cell – volume: 595 start-page: 1127 year: 2017 end-page: 1142 article-title: Minimum number of myosin motors accounting for shortening velocity under zero load in skeletal muscle publication-title: J Physiol – volume: 8 start-page: 319 year: 2007 end-page: 330 article-title: The folding and evolution of multidomain proteins publication-title: Nat Rev Mol Cell Biol – volume: 86 start-page: 27 year: 2017 end-page: 68 article-title: Protein misfolding, amyloid formation, and human disease: a summary of progress over the last decade publication-title: Annu Rev Biochem – volume: 2 start-page: 681 year: 2018 end-page: 686 article-title: The power of the force: mechano‐physiology of the giant titin publication-title: Emer Top Life Sci – volume: 16 start-page: 117 year: 1996 end-page: 126 article-title: Interactions of bacterial adhesins with extracellular matrix and plasma proteins: pathogenic implications and therapeutic possibilities publication-title: FEMS Immunol Med Microbiol – volume: 357 start-page: 703 year: 2017 end-page: 706 article-title: Vinculin forms a directionally asymmetric catch bond with F‐actin publication-title: Science – volume: 15 start-page: 973 year: 2019 end-page: 981 article-title: The mechanical stability of proteins regulates their translocation rate into the cell nucleus publication-title: Nat Phys – volume: 23 start-page: 271 year: 2013 end-page: 281 article-title: Vinculin regulates the recruitment and release of core focal adhesion proteins in a force‐dependent manner publication-title: Curr Biol – volume: 348 start-page: 457 year: 2015 end-page: 460 article-title: Ribosome. Mechanical force releases nascent chain‐mediated ribosome arrest and publication-title: Science – volume: 8 year: 2018 article-title: Differences in the mechanical unfolding pathways of apo‐ and copper‐bound azurins publication-title: Sci Rep – volume: 189 start-page: 1107 year: 2010 end-page: 1115 article-title: Vinculin potentiates E‐cadherin mechanosensing and is recruited to actin‐anchored sites within adherens junctions in a myosin II‐dependent manner publication-title: J Cell Biol – year: 2012 – volume: 14 start-page: 1339 year: 2016 end-page: 1347 article-title: Work done by titin protein folding assists muscle contraction publication-title: Cell Rep – volume: 4 start-page: 49 year: 2003 end-page: 60 article-title: Unfolding the role of protein misfolding in neurodegenerative diseases publication-title: Nat Rev Neurosci – volume: 209 start-page: 2367 year: 2012 end-page: 2381 article-title: Antibody orientation at bacterial surfaces is related to invasive infection publication-title: J Exp Med – volume: 418 start-page: 998 year: 2002 end-page: 1002 article-title: Reverse engineering of the giant muscle protein titin publication-title: Nature – volume: 9 start-page: 4707 year: 2018 end-page: 4713 article-title: Segmentation and the entropic elasticity of modular proteins publication-title: J Phys Chem Lett – volume: 60 start-page: 124 year: 2020 end-page: 130 article-title: Extreme mechanical stability in protein complexes publication-title: Curr Opin Struct Biol – volume: 285 start-page: 33858 year: 2010 end-page: 33866 article-title: A highly unusual thioester bond in a pilus adhesin is required for efficient host cell interaction publication-title: J Biol Chem – volume: 114 start-page: 1052 year: 2014 end-page: 1068 article-title: Gigantic business: titin properties and function through thick and thin publication-title: Circ Res – volume: 121 start-page: 5162 year: 2017 end-page: 5173 article-title: simulated force quench dynamics shows GB1 protein is not a two state folder publication-title: J Phys Chem B – volume: 8 year: 2018 article-title: Calcium increases titin N2A binding to F‐actin and regulated thin filaments publication-title: Sci Rep – volume: 45 start-page: 96 year: 2020 end-page: 107 article-title: The cytoskeleton as regulator of cell signaling pathways publication-title: Trends Biochem Sci – volume: 124 start-page: 3283 year: 2020 end-page: 3290 article-title: Binding‐induced stabilization measured on the same molecular protein substrate using single‐molecule magnetic tweezers and heterocovalent attachments publication-title: J Phys Chem B – volume: 76 start-page: 295 year: 2011 end-page: 308 article-title: IgG‐binding proteins of bacteria publication-title: Biochemistry‐Moscow+ – volume: 11 year: 2020 article-title: Single‐molecule force spectroscopy on the N2A element of titin: effects of phosphorylation and CARP publication-title: Front Physiol – volume: 10 start-page: 10745 year: 2016 end-page: 10752 article-title: Single molecule force measurements in living cells reveal a minimally tensioned integrin state publication-title: ACS Nano – volume: 36 start-page: 141 year: 2008 end-page: 147 article-title: Biochemical and structural analysis of alpha‐catenin in cell‐cell contacts publication-title: Biochem Soc Trans – volume: 286 start-page: 2830 year: 2019 end-page: 2869 article-title: The extracellular matrix as a multitasking player in disease publication-title: FEBS J – volume: 109 start-page: E690 year: 2012 end-page: E697 article-title: Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin publication-title: Proc Natl Acad Sci USA – volume: 542 start-page: 55 year: 2017 end-page: 59 article-title: Force interacts with macromolecular structure in activation of TGF‐beta publication-title: Nature – volume: 27 start-page: 1836 year: 2019 end-page: 1847 article-title: The mechanical power of titin folding publication-title: Cell Rep – ident: e_1_2_9_13_1 doi: 10.1088/1361-6528/aa655e – ident: e_1_2_9_116_1 doi: 10.1038/s41467-018-05107-6 – ident: e_1_2_9_69_1 doi: 10.3389/fphys.2020.00173 – ident: e_1_2_9_31_1 doi: 10.1038/nature06231 – ident: e_1_2_9_120_1 doi: 10.1016/j.chom.2008.09.005 – ident: e_1_2_9_135_1 doi: 10.1126/science.1246135 – ident: e_1_2_9_128_1 doi: 10.1016/j.bpj.2013.04.002 – ident: e_1_2_9_138_1 doi: 10.1038/nrmicro.2016.164 – ident: e_1_2_9_7_1 doi: 10.1038/nrn1007 – ident: e_1_2_9_25_1 doi: 10.1016/j.bbrc.2015.03.051 – ident: e_1_2_9_145_1 doi: 10.1038/s41564-019-0378-9 – ident: e_1_2_9_29_1 doi: 10.1016/j.neuron.2010.03.028 – ident: e_1_2_9_118_1 doi: 10.1038/nature01605 – ident: e_1_2_9_80_1 doi: 10.1042/ETLS20180043 – ident: e_1_2_9_23_1 doi: 10.1042/ETLS20180044 – ident: e_1_2_9_58_1 doi: 10.1146/annurev-physiol-021317-121254 – ident: e_1_2_9_100_1 doi: 10.1074/jbc.M508060200 – ident: e_1_2_9_34_1 doi: 10.1021/acs.jpcb.0c00167 – ident: e_1_2_9_60_1 doi: 10.1038/ncb1060 – ident: e_1_2_9_142_1 doi: 10.1021/acs.jpclett.8b01925 – ident: e_1_2_9_103_1 doi: 10.1021/acsnano.6b03314 – ident: e_1_2_9_57_1 doi: 10.1016/j.celrep.2016.01.025 – ident: e_1_2_9_37_1 doi: 10.1038/s41598-018-32952-8 – ident: e_1_2_9_107_1 doi: 10.1016/j.revip.2017.05.001 – ident: e_1_2_9_144_1 doi: 10.1038/35024105 – ident: e_1_2_9_74_1 doi: 10.1016/j.tibs.2019.11.003 – ident: e_1_2_9_98_1 doi: 10.1038/ncomms5525 – ident: e_1_2_9_47_1 doi: 10.1073/pnas.0805034105 – ident: e_1_2_9_17_1 doi: 10.1073/pnas.1400752111 – ident: e_1_2_9_87_1 doi: 10.1126/sciadv.aaz4707 – ident: e_1_2_9_109_1 doi: 10.1038/s41467-019-13782-2 – ident: e_1_2_9_131_1 doi: 10.1002/pro.3478 – ident: e_1_2_9_81_1 doi: 10.1074/jbc.M111.297481 – ident: e_1_2_9_139_1 doi: 10.1021/jacs.9b06776 – ident: e_1_2_9_136_1 doi: 10.1073/pnas.1013893107 – ident: e_1_2_9_96_1 doi: 10.1083/jcb.201001149 – ident: e_1_2_9_3_1 doi: 10.1016/j.semcdb.2003.12.008 – ident: e_1_2_9_41_1 doi: 10.1016/S0006-3495(97)78753-8 – ident: e_1_2_9_99_1 doi: 10.1038/nature21035 – ident: e_1_2_9_110_1 doi: 10.1038/s41579-019-0314-2 – ident: e_1_2_9_30_1 doi: 10.1128/AEM.06912-11 – ident: e_1_2_9_105_1 doi: 10.1021/acs.nanolett.5b03888 – ident: e_1_2_9_133_1 doi: 10.1074/jbc.M117.777466 – ident: e_1_2_9_5_1 doi: 10.1038/s41567-019-0551-3 – volume: 3 year: 2014 ident: e_1_2_9_39_1 article-title: Direct measurement of the mechanical work during translocation by the ribosome publication-title: Elife doi: 10.7554/eLife.03406 – ident: e_1_2_9_64_1 doi: 10.1016/j.cell.2014.01.056 – ident: e_1_2_9_126_1 doi: 10.1073/pnas.1115485109 – ident: e_1_2_9_27_1 doi: 10.1038/nrm2144 – ident: e_1_2_9_44_1 doi: 10.1042/ETLS20180046 – ident: e_1_2_9_112_1 doi: 10.1111/j.1574-695X.1996.tb00128.x – ident: e_1_2_9_22_1 doi: 10.1021/acs.jpcb.7b00610 – ident: e_1_2_9_117_1 doi: 10.1371/journal.pbio.0040298 – ident: e_1_2_9_129_1 doi: 10.1111/j.1365-2958.2007.05858.x – ident: e_1_2_9_83_1 doi: 10.1126/science.1162912 – ident: e_1_2_9_106_1 doi: 10.1021/acsnano.6b01658 – ident: e_1_2_9_76_1 doi: 10.1016/S0065-3233(04)68002-8 – ident: e_1_2_9_42_1 doi: 10.1038/368113a0 – ident: e_1_2_9_124_1 doi: 10.1126/science.1145806 – ident: e_1_2_9_38_1 doi: 10.1073/pnas.1522946113 – ident: e_1_2_9_146_1 doi: 10.1073/pnas.1807689115 – ident: e_1_2_9_54_1 doi: 10.1007/s00424-007-0389-x – ident: e_1_2_9_15_1 doi: 10.1021/jacs.6b05429 – ident: e_1_2_9_62_1 doi: 10.1038/s41467-017-02528-7 – ident: e_1_2_9_9_1 doi: 10.1038/nrm3920 – ident: e_1_2_9_90_1 doi: 10.1073/pnas.1820567116 – ident: e_1_2_9_134_1 doi: 10.1084/jem.20120325 – ident: e_1_2_9_88_1 doi: 10.1016/j.yexcr.2015.10.029 – ident: e_1_2_9_123_1 doi: 10.1016/j.sbi.2019.11.012 – ident: e_1_2_9_2_1 doi: 10.1038/369248a0 – ident: e_1_2_9_8_1 doi: 10.1146/annurev-biochem-061516-045115 – ident: e_1_2_9_102_1 doi: 10.1016/j.bpj.2019.12.042 – ident: e_1_2_9_132_1 doi: 10.1073/pnas.1506538112 – ident: e_1_2_9_35_1 doi: 10.1038/s41598-018-19755-7 – ident: e_1_2_9_53_1 doi: 10.1038/nature00938 – ident: e_1_2_9_65_1 doi: 10.1111/febs.14854 – ident: e_1_2_9_66_1 doi: 10.1038/ncomms12490 – ident: e_1_2_9_97_1 doi: 10.1242/jcs.109447 – ident: e_1_2_9_108_1 doi: 10.1083/jcb.201502062 – ident: e_1_2_9_18_1 doi: 10.1073/pnas.100124597 – ident: e_1_2_9_75_1 doi: 10.1530/JOE-10-0377 – ident: e_1_2_9_45_1 doi: 10.1146/annurev-physiol-021317-121234 – ident: e_1_2_9_21_1 doi: 10.1073/pnas.1013159107 – ident: e_1_2_9_104_1 doi: 10.1038/ncb3336 – ident: e_1_2_9_67_1 doi: 10.1016/j.celrep.2019.04.046 – ident: e_1_2_9_85_1 doi: 10.1083/jcb.200703036 – ident: e_1_2_9_16_1 doi: 10.1073/pnas.1607193113 – ident: e_1_2_9_56_1 doi: 10.1021/ja4056382 – ident: e_1_2_9_11_1 doi: 10.1016/j.febslet.2013.02.024 – ident: e_1_2_9_114_1 doi: 10.1529/biophysj.107.110643 – ident: e_1_2_9_140_1 doi: 10.1038/nature10109 – ident: e_1_2_9_24_1 doi: 10.1016/j.jsb.2020.107495 – ident: e_1_2_9_93_1 doi: 10.1083/jcb.144.6.1311 – ident: e_1_2_9_119_1 doi: 10.1111/j.1365-2958.2004.04226.x – ident: e_1_2_9_19_1 doi: 10.1529/biophysj.105.075937 – ident: e_1_2_9_111_1 doi: 10.1016/j.cell.2015.05.005 – ident: e_1_2_9_113_1 doi: 10.1529/biophysj.106.088989 – ident: e_1_2_9_55_1 doi: 10.1126/science.1239764 – ident: e_1_2_9_141_1 doi: 10.1134/S0006297911030023 – ident: e_1_2_9_14_1 doi: 10.3389/fmolb.2020.00085 – ident: e_1_2_9_92_1 doi: 10.1126/science.7824937 – ident: e_1_2_9_61_1 doi: 10.1113/JP273299 – ident: e_1_2_9_6_1 doi: 10.1021/acs.chemrev.8b00532 – ident: e_1_2_9_40_1 doi: 10.1038/ncomms16036 – ident: e_1_2_9_78_1 doi: 10.1083/jcb.201212037 – ident: e_1_2_9_127_1 doi: 10.1074/jbc.M110.102962 – ident: e_1_2_9_77_1 doi: 10.1038/nrm2871 – ident: e_1_2_9_59_1 doi: 10.1113/JP278713 – ident: e_1_2_9_48_1 doi: 10.1016/j.bpj.2011.09.027 – ident: e_1_2_9_72_1 doi: 10.1038/nrm2593 – ident: e_1_2_9_86_1 doi: 10.1016/j.cub.2013.01.009 – ident: e_1_2_9_10_1 doi: 10.1146/annurev-biochem-072711-164947 – ident: e_1_2_9_68_1 doi: 10.1074/jbc.M307473200 – ident: e_1_2_9_33_1 doi: 10.1073/pnas.0705367104 – ident: e_1_2_9_71_1 doi: 10.1111/febs.14818 – ident: e_1_2_9_73_1 doi: 10.1038/nrm2594 – ident: e_1_2_9_94_1 doi: 10.1042/BST0360141 – ident: e_1_2_9_95_1 doi: 10.1083/jcb.127.1.235 – ident: e_1_2_9_89_1 doi: 10.1038/ncomms10038 – ident: e_1_2_9_20_1 doi: 10.1126/science.347575 – ident: e_1_2_9_91_1 doi: 10.1146/annurev-cellbio-100913-013212 – ident: e_1_2_9_121_1 doi: 10.1126/science.aar2094 – year: 2019 ident: e_1_2_9_51_1 article-title: Thermodynamic destabilization informs pathogenicity assessment of a variant of uncertain significance in cardiac myosin binding protein C publication-title: bioRxiv – ident: e_1_2_9_26_1 doi: 10.1201/9781136665493 – ident: e_1_2_9_130_1 doi: 10.1074/jbc.M110.149385 – ident: e_1_2_9_79_1 doi: 10.1096/fj.201500080R – ident: e_1_2_9_82_1 doi: 10.1016/j.cell.2006.10.048 – ident: e_1_2_9_28_1 doi: 10.1126/science.1261909 – ident: e_1_2_9_52_1 doi: 10.1126/science.276.5315.1112 – ident: e_1_2_9_84_1 doi: 10.1038/nature02281 – ident: e_1_2_9_101_1 doi: 10.1126/science.aan2556 – ident: e_1_2_9_46_1 doi: 10.1161/hh2301.100981 – ident: e_1_2_9_49_1 doi: 10.1016/j.jmb.2014.12.017 – ident: e_1_2_9_4_1 doi: 10.1016/j.cell.2011.03.036 – ident: e_1_2_9_63_1 doi: 10.1161/CIRCRESAHA.112.268680 – ident: e_1_2_9_32_1 doi: 10.1038/s41467-018-05115-6 – ident: e_1_2_9_36_1 doi: 10.1126/sciadv.aba6112 – ident: e_1_2_9_50_1 doi: 10.1111/j.1432-1033.1996.00317.x – ident: e_1_2_9_125_1 doi: 10.1021/ja107513t – ident: e_1_2_9_12_1 doi: 10.1098/rsos.160313 – ident: e_1_2_9_122_1 doi: 10.1002/smtd.201800039 – ident: e_1_2_9_70_1 doi: 10.1002/1873-3468.12362 – ident: e_1_2_9_143_1 doi: 10.1529/biophysj.105.069344 – ident: e_1_2_9_43_1 doi: 10.1161/CIRCRESAHA.114.301286 – ident: e_1_2_9_137_1 doi: 10.1073/pnas.1211929109 – ident: e_1_2_9_115_1 doi: 10.1021/nn5044383 |
SSID | ssj0035499 |
Score | 2.3803887 |
SecondaryResourceType | review_article |
Snippet | How mechanical unfolding of proteins has a functional role in vivo is still poorly understood. In this review, we distill the main biophysical characteristics... Unfolding and refolding of multidomain proteins under force have yet to be recognized as a major mechanism of function for proteins in vivo . In this review,... Unfolding and refolding of multidomain proteins under force have yet to be recognized as a major mechanism of function for proteins in vivo. In this review, we... Unfolding and refolding of multidomain proteins under force have yet to be recognized as a major mechanism of function for proteins in vivo. In this review, we... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1742 |
SubjectTerms | Antibiotics bacterial adhesion batteries cellular mechanotransduction Contraction Dystrophy energy landscape force spectroscopy gain-of-function mutation Mechanotransduction Muscle contraction muscular contraction Muscular dystrophy Protein folding protein unfolding Proteins Structure-function relationships |
Title | Does protein unfolding play a functional role in vivo? |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Ffebs.15508 https://www.ncbi.nlm.nih.gov/pubmed/32761965 https://www.proquest.com/docview/2501870851 https://www.proquest.com/docview/2431805604 https://www.proquest.com/docview/2524333622 |
Volume | 288 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZaxsxEB5C8tC8pEmcY3OhkhJIYM0eWlkLhWInMSbQPjQJ-CUsuhZM3bWp7UD666vRHrlKIH1b8CxoJY3nm9E3nwA-iyiUgZa5L0Un8amQoS-01L7IVWKzgZgb1x797Tsb3NKrYTJcgi91L0ypD9EU3NAz3P81OriQsydOnhs5ayPAxk5fJGshIvrRaEfFmPiU3ZCRTxkdVtqkSON5fPV5NHoFMZ8jVhdy-h_hrh5syTT52V7MZVv9eaHj-L9fsw5rFRYl3XLzbMCSKTah1S1sHv7rgZwQxw51ZfdN-HBe3wzXAnYxMTPiFB5GBVnYLepOsMh0LB6IIBgqywojQe4isTb3o_vJ1y247V_enA_86v4FX-Hpnp_HQW6oNIzx0KShYnkitBIcNcZMahQ1LMg7SkpDeRrqNAlizVOuLEgJuNY83oblYlKYXSBc2GApOsJmk5oGUglh0pymKjJKKhZKD07rdchUJU6Od2SMszpJwQnK3AR5cNzYTktJjn9aHdTLmVVuOcsilC_sIMr04FPzs509PCURhZksrI2FVNzCwoC-YZNYq9jG_siDnXKrNEOJI6wMscSDM7fgb4wx61_2rt3T3nuM92E1QmaNY8IdwPL898IcWmg0l0ew0u1d9PpHzhX-AtLZCxk |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS-RAEC5cfXBfPHfXeLYowi5kyNHp6TyJ1zCeDx4wb6GvwLCaEWdG0F9vVycTTwR9C6QCSXdX6qvqr78C2BRRKAMtc1-KZuJTIUNfaKl9kavEZgMxN-549OkZa1_Ro07Sqbg5eBam1IeoC27oGe5_jQ6OBekXXp4b2W8gwuY_YAJbeqN0_v55rR4VY-pTnoeMfMpop1InRSLP87Ov49E7kPkas7qg05ouO6v2nVYhck3-N4YD2VCPb5Qcv_09MzBVwVGyU66fWRgzxRzM7xQ2Fb95IFvEEURd5X0OJvdGzeHmge33TJ84kYduQYZ2lbpNLHJ7LR6IIBgtyyIjQfoisTb33fve9i-4ah1c7rX9qgWDr3CDz8_jIDdUGsZ4aNJQsTwRWgmOMmMmNYoaFuRNJaWhPA11mgSx5ilXFqcEXGse_4bxoleYBSBc2HgpmsImlJoGUglh0pymKjJKKhZKD_6OJiJTlT45tsm4zkZ5Cg5Q5gbIg43a9rZU5fjQank0n1nlmf0sQgXDJgJND9br23b0cKNEFKY3tDYWVXGLDAP6iU1irWIb_iMP_pRrpX6VOMLiEEs8-Odm_JN3zFoHuxfuavErxmsw2b48PclODs-Ol-BnhEQbR4xbhvHB3dCsWKQ0kKvOH54AER4Nww |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1taxQxEB5qBe0Xq622q1UjloKFPfYlm8tCodRej2ptKdXCfZElr1Ba9w7vBc5f30z2xdZKQb8t3LOQTTI3z0wmzwBsiiSWkZY2lKKbhVTIOBRa6lBYlbloIOXGX48-PmGH5_TzIBsswE5zF6bSh2gTbmgZ_v8aDXyk7Q0jt0aOO0iw-QN4SFmUY-OG3lkrHpVi5FNdh0xCyuigFifFOp7f7952R3c45m3K6n1Ofxm-N6OtSk0uO9OJ7Khffwg5_u_nPIUnNRkle9XueQYLplyB1b3SBeI_5mSL-PJQn3dfgcf7TWu4VWC9oRkTL_FwUZKp26P-CIuMrsScCIK-skoxEixeJA4zu5gNd5_Def_g2_5hWDdgCBUe74U2jayh0jDGY5PHitlMaCU4ioyZ3ChqWGS7SkpDeR7rPItSzXOuHEuJuNY8fQGL5bA060C4cN5SdIULJzWNpBLC5JbmKjFKKhbLAD4061CoWp0cm2RcFU2UghNU-AkK4H2LHVWaHH9FbTTLWdR2OS4S1C_sIs0M4F37s5s9PCYRpRlOHcZxKu54YUTvwWQOlTrnnwSwVm2VdihpgqkhlgWw7Rf8njEW_YOPX_3Ty38Bv4VHp71-8eXTydErWEqwysZXxW3A4uTn1Lx2NGki33hruAbfUQxy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Does+protein+unfolding+play+a+functional+role+in+vivo%3F&rft.jtitle=The+FEBS+journal&rft.au=Sharma%2C+Sabita&rft.au=Subramani%2C+Smrithika&rft.au=Popa%2C+Ionel&rft.date=2021-03-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1742-464X&rft.eissn=1742-4658&rft.volume=288&rft.issue=6&rft.spage=1742&rft.epage=1758&rft_id=info:doi/10.1111%2Ffebs.15508&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-464X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-464X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-464X&client=summon |