Direct Evidence of Lithium Ion Migration in Resistive Switching of Lithium Cobalt Oxide Nanobatteries
Lithium cobalt oxide nanobatteries offer exciting prospects in the field of nonvolatile memories and neuromorphic circuits. However, the precise underlying resistive switching (RS) mechanism remains a matter of debate in two‐terminal cells. Herein, intriguing results, obtained by secondary ion mass...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 14; no. 24; pp. e1801038 - n/a |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
14.06.2018
Wiley-VCH Verlag |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Lithium cobalt oxide nanobatteries offer exciting prospects in the field of nonvolatile memories and neuromorphic circuits. However, the precise underlying resistive switching (RS) mechanism remains a matter of debate in two‐terminal cells. Herein, intriguing results, obtained by secondary ion mass spectroscopy (SIMS) 3D imaging, clearly demonstrate that the RS mechanism corresponds to lithium migration toward the outside of the LixCoO2 layer. These observations are very well correlated with the observed insulator‐to‐metal transition of the oxide. Besides, smaller device area experimentally yields much faster switching kinetics, which is qualitatively well accounted for by a simple numerical simulation. Write/erase endurance is also highly improved with downscaling – much further than the present cycling life of usual lithium‐ion batteries. Hence very attractive possibilities can be envisaged for this class of materials in nanoelectronics.
The intriguing resistive switching mechanism of LixCoO2‐based nanobatteries is determined by secondary ion mass spectroscopy (SIMS) 3D imaging. Lithium migrates outside the oxide layer: this yields a decrease of stoichiometry (x) of LixCoO2, which undergoes a semiconductor‐to‐metal transition observed by measuring the temperature‐dependence of device conductivity. |
---|---|
AbstractList | Lithium cobalt oxide nanobatteries offer exciting prospects in the field of nonvolatile memories and neuromorphic circuits. However, the precise underlying resistive switching (RS) mechanism remains a matter of debate in two‐terminal cells. Herein, intriguing results, obtained by secondary ion mass spectroscopy (SIMS) 3D imaging, clearly demonstrate that the RS mechanism corresponds to lithium migration toward the outside of the LixCoO2 layer. These observations are very well correlated with the observed insulator‐to‐metal transition of the oxide. Besides, smaller device area experimentally yields much faster switching kinetics, which is qualitatively well accounted for by a simple numerical simulation. Write/erase endurance is also highly improved with downscaling – much further than the present cycling life of usual lithium‐ion batteries. Hence very attractive possibilities can be envisaged for this class of materials in nanoelectronics. Abstract Lithium cobalt oxide nanobatteries offer exciting prospects in the field of nonvolatile memories and neuromorphic circuits. However, the precise underlying resistive switching (RS) mechanism remains a matter of debate in two‐terminal cells. Herein, intriguing results, obtained by secondary ion mass spectroscopy (SIMS) 3D imaging, clearly demonstrate that the RS mechanism corresponds to lithium migration toward the outside of the Li x CoO 2 layer. These observations are very well correlated with the observed insulator‐to‐metal transition of the oxide. Besides, smaller device area experimentally yields much faster switching kinetics, which is qualitatively well accounted for by a simple numerical simulation. Write/erase endurance is also highly improved with downscaling – much further than the present cycling life of usual lithium‐ion batteries. Hence very attractive possibilities can be envisaged for this class of materials in nanoelectronics. Lithium cobalt oxide nanobatteries offer exciting prospects in the field of nonvolatile memories and neuromorphic circuits. However, the precise underlying resistive switching (RS) mechanism remains a matter of debate in two-terminal cells. Herein, intriguing results, obtained by secondary ion mass spectroscopy (SIMS) 3D imaging, clearly demonstrate that the RS mechanism corresponds to lithium migration toward the outside of the Li CoO layer. These observations are very well correlated with the observed insulator-to-metal transition of the oxide. Besides, smaller device area experimentally yields much faster switching kinetics, which is qualitatively well accounted for by a simple numerical simulation. Write/erase endurance is also highly improved with downscaling - much further than the present cycling life of usual lithium-ion batteries. Hence very attractive possibilities can be envisaged for this class of materials in nanoelectronics. Lithium cobalt oxide nanobatteries offer exciting prospects in the field of nonvolatile memories and neuromorphic circuits. However, the precise underlying resistive switching (RS) mechanism remains a matter of debate in two‐terminal cells. Herein, intriguing results, obtained by secondary ion mass spectroscopy (SIMS) 3D imaging, clearly demonstrate that the RS mechanism corresponds to lithium migration toward the outside of the LixCoO2 layer. These observations are very well correlated with the observed insulator‐to‐metal transition of the oxide. Besides, smaller device area experimentally yields much faster switching kinetics, which is qualitatively well accounted for by a simple numerical simulation. Write/erase endurance is also highly improved with downscaling – much further than the present cycling life of usual lithium‐ion batteries. Hence very attractive possibilities can be envisaged for this class of materials in nanoelectronics. The intriguing resistive switching mechanism of LixCoO2‐based nanobatteries is determined by secondary ion mass spectroscopy (SIMS) 3D imaging. Lithium migrates outside the oxide layer: this yields a decrease of stoichiometry (x) of LixCoO2, which undergoes a semiconductor‐to‐metal transition observed by measuring the temperature‐dependence of device conductivity. Lithium cobalt oxide nanobatteries offer exciting prospects in the field of nonvolatile memories and neuromorphic circuits. However, the precise underlying resistive switching (RS) mechanism remains a matter of debate in two‐terminal cells. Herein, intriguing results, obtained by secondary ion mass spectroscopy (SIMS) 3D imaging, clearly demonstrate that the RS mechanism corresponds to lithium migration toward the outside of the Li$_x$CoO$_2$ layer. These observations are very well correlated with the observed insulator‐to‐metal transition of the oxide. Besides, smaller device area experimentally yields much faster switching kinetics, which is qualitatively well accounted for by a simple numerical simulation. Write/erase endurance is also highly improved with downscaling – much further than the present cycling life of usual lithium‐ion batteries. Hence very attractive possibilities can be envisaged for this class of materials in nanoelectronics. Lithium cobalt oxide nanobatteries offer exciting prospects in the field of nonvolatile memories and neuromorphic circuits. However, the precise underlying resistive switching (RS) mechanism remains a matter of debate in two-terminal cells. Herein, intriguing results, obtained by secondary ion mass spectroscopy (SIMS) 3D imaging, clearly demonstrate that the RS mechanism corresponds to lithium migration toward the outside of the Lix CoO2 layer. These observations are very well correlated with the observed insulator-to-metal transition of the oxide. Besides, smaller device area experimentally yields much faster switching kinetics, which is qualitatively well accounted for by a simple numerical simulation. Write/erase endurance is also highly improved with downscaling - much further than the present cycling life of usual lithium-ion batteries. Hence very attractive possibilities can be envisaged for this class of materials in nanoelectronics. |
Author | Franger, Sylvain Wang, Kang Kyriakides, Evripides Auban Senzier, Pascale Brun, Nathalie Schneegans, Olivier Chrétien, Pascal Albouy, Pierre‐Antoine Giapintzakis, John Mai, Van Huy Jomard, François Salot, Raphaël Nguyen, Van Son March, Katia Aubert, Pascal Agnus, Guillaume Mihailescu, Cristian N. Rozenberg, Marcelo J. Dkhil, Brahim Pasquier, Claude Alamarguy, David Lecoeur, Philippe Nukala, Pavan Maroutian, Thomas Matzen, Silvia |
Author_xml | – sequence: 1 givenname: Van Son surname: Nguyen fullname: Nguyen, Van Son organization: CNRS, CentraleSupélec, Universités UPMC et Paris‐Sud – sequence: 2 givenname: Van Huy surname: Mai fullname: Mai, Van Huy organization: Le Quy Don Technical University – sequence: 3 givenname: Pascale surname: Auban Senzier fullname: Auban Senzier, Pascale organization: Université Paris‐Sud – sequence: 4 givenname: Claude surname: Pasquier fullname: Pasquier, Claude organization: Université Paris‐Sud – sequence: 5 givenname: Kang surname: Wang fullname: Wang, Kang organization: Université Paris‐Sud – sequence: 6 givenname: Marcelo J. surname: Rozenberg fullname: Rozenberg, Marcelo J. organization: Université Paris‐Sud – sequence: 7 givenname: Nathalie surname: Brun fullname: Brun, Nathalie organization: Université Paris‐Sud – sequence: 8 givenname: Katia surname: March fullname: March, Katia organization: Université Paris‐Sud – sequence: 9 givenname: François surname: Jomard fullname: Jomard, François organization: Université de Versailles Saint‐Quentin‐En‐Yvelines – sequence: 10 givenname: John surname: Giapintzakis fullname: Giapintzakis, John organization: University of Cyprus – sequence: 11 givenname: Cristian N. surname: Mihailescu fullname: Mihailescu, Cristian N. organization: National Institute for Laser Plasma and Radiation Physics – sequence: 12 givenname: Evripides surname: Kyriakides fullname: Kyriakides, Evripides organization: University of Cyprus – sequence: 13 givenname: Pavan surname: Nukala fullname: Nukala, Pavan organization: Laboratoire Structures, Propriétés et Modélisation des Solides CentraleSupélec – sequence: 14 givenname: Thomas surname: Maroutian fullname: Maroutian, Thomas organization: CNRS et Université Paris‐Sud – sequence: 15 givenname: Guillaume surname: Agnus fullname: Agnus, Guillaume organization: CNRS et Université Paris‐Sud – sequence: 16 givenname: Philippe surname: Lecoeur fullname: Lecoeur, Philippe organization: CNRS et Université Paris‐Sud – sequence: 17 givenname: Silvia surname: Matzen fullname: Matzen, Silvia organization: CNRS et Université Paris‐Sud – sequence: 18 givenname: Pascal surname: Aubert fullname: Aubert, Pascal organization: CNRS et Université Paris‐Sud – sequence: 19 givenname: Sylvain surname: Franger fullname: Franger, Sylvain organization: Institut de Chimie Moléculaire et des Matériaux d'Orsay – sequence: 20 givenname: Raphaël surname: Salot fullname: Salot, Raphaël organization: CEA de Grenoble – sequence: 21 givenname: Pierre‐Antoine surname: Albouy fullname: Albouy, Pierre‐Antoine organization: Université Paris‐Sud – sequence: 22 givenname: David surname: Alamarguy fullname: Alamarguy, David organization: CNRS, CentraleSupélec, Universités UPMC et Paris‐Sud – sequence: 23 givenname: Brahim surname: Dkhil fullname: Dkhil, Brahim organization: Laboratoire Structures, Propriétés et Modélisation des Solides CentraleSupélec – sequence: 24 givenname: Pascal surname: Chrétien fullname: Chrétien, Pascal organization: CNRS, CentraleSupélec, Universités UPMC et Paris‐Sud – sequence: 25 givenname: Olivier orcidid: 0000-0001-9741-3327 surname: Schneegans fullname: Schneegans, Olivier email: schneegans@geeps.centralesupelec.fr organization: CNRS, CentraleSupélec, Universités UPMC et Paris‐Sud |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29770993$$D View this record in MEDLINE/PubMed https://centralesupelec.hal.science/hal-01799107$$DView record in HAL |
BookMark | eNqFkc9PFDEYhhsDEVi5ejRNvOhh16_ttJ0eyYpCMkgicm66M9-wJfMD284i_73dLC7Gi6d-X_P0ydu8J-RgGAck5C2DBQPgn2LfdQsOrAQGonxFjpliYq5Kbg72M4MjchLjPYBgvNCvyRE3WoMx4pjgZx-wTvR84xscaqRjSyuf1n7q6eU40Ct_F1zyefID_Y7Rx-Q3SG8efarXfrj7m1-OK9clev0rq-g3N-Q1JQwe4xty2Lou4unzOSO3X85_LC_m1fXXy-VZNa8L0OUcYWWUbqTGQuJKuUYJJkzJNYq2AGBS5l1yXijEpm4UV04a08patgYECDEjH3fetevsQ_C9C092dN5enFV2ewdMG8NAb1hmP-zYhzD-nDAm2_tYY9e5AccpWg45kyp0oTP6_h_0fpzCkH-SKSlZqXSONiOLHVWHMcaA7T4BA7sty27Lsvuy8oN3z9pp1WOzx_-0kwGzAx59h0__0dmbq6p6kf8GLMGgTw |
CitedBy_id | crossref_primary_10_1016_j_nanoen_2023_108199 crossref_primary_10_1002_aelm_202200269 crossref_primary_10_1038_s41598_019_41508_3 crossref_primary_10_1002_aelm_201901363 crossref_primary_10_1016_j_mtphys_2022_100947 crossref_primary_10_1002_aelm_201900184 crossref_primary_10_1088_1361_6528_ac9286 crossref_primary_10_1002_adma_201907465 crossref_primary_10_1007_s10854_019_00768_5 crossref_primary_10_1021_acsami_9b06855 crossref_primary_10_1063_1_5051568 crossref_primary_10_1038_s41598_020_65237_0 crossref_primary_10_1016_j_scib_2021_04_025 crossref_primary_10_1021_acsaelm_0c00739 crossref_primary_10_1038_s41427_020_00274_9 crossref_primary_10_1063_1_5138193 crossref_primary_10_7868_S2410993222010080 crossref_primary_10_1016_j_orgel_2020_106019 crossref_primary_10_1021_acs_nanolett_2c01765 crossref_primary_10_1038_s41578_020_00261_0 |
Cites_doi | 10.1063/1.4807424 10.3762/bjnano.6.110 10.1109/TED.2014.2330202 10.1063/1.1989431 10.1021/cm0702464 10.1002/adma.201604310 10.1038/ncomms14544 10.1038/srep00242 10.1038/ncomms1737 10.1021/nl102255r 10.1063/1.4705283 10.1149/1.2221184 10.1021/acsnano.7b00783 10.1038/srep07761 10.1149/1.1787631 10.1038/srep01084 10.1016/S1369-7021(08)70119-6 10.1016/j.mee.2016.10.007 10.1039/a900016j 10.1021/nn100483a 10.1146/annurev.biophys.050708.133634 10.1063/1.3640806 10.1021/acs.nanolett.5b00901 10.1002/adma.201502574 10.1002/aelm.201700458 10.1002/adfm.201101846 10.1038/ncomms2784 10.1021/jp1083899 10.1002/adma.201101800 10.1038/nmat2023 10.1109/LED.2013.2258653 10.1002/adma.200900375 10.1021/ac201685t 10.1038/s41598-017-02330-x 10.1002/adma.201601425 |
ContentType | Journal Article |
Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | NPM AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M 7X8 1XC |
DOI | 10.1002/smll.201801038 |
DatabaseName | PubMed CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic Hyper Article en Ligne (HAL) |
DatabaseTitle | PubMed CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database CrossRef PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | oai_HAL_hal_01799107v1 10_1002_smll_201801038 29770993 SMLL201801038 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: French National Research Agency funderid: 10‐LABX‐0035 – fundername: Research Promotion Foundation of the Republic of Cyprus funderid: PENEK‐0609‐65 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAIHA AANLZ AAONW AASGY AAXRX AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AAYOK ACBWZ ASPBG AVWKF AZFZN BDRZF FEDTE GODZA HVGLF NPM AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M 7X8 1XC |
ID | FETCH-LOGICAL-c4078-e0b967d57e45eb6ad63139827e3f40015531352246eedcd626a599f5c5f903033 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 |
IngestDate | Thu Oct 31 07:27:40 EDT 2024 Fri Aug 16 01:48:26 EDT 2024 Thu Oct 10 17:48:07 EDT 2024 Fri Aug 23 01:08:49 EDT 2024 Sat Sep 28 08:40:25 EDT 2024 Sat Aug 24 00:50:21 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Keywords | lithium-ion batteries nonvolatile memories resistive switching oxides thin films thin film lithium‐ion batteries |
Language | English |
License | 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4078-e0b967d57e45eb6ad63139827e3f40015531352246eedcd626a599f5c5f903033 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-9741-3327 0000-0002-3079-2016 0000-0002-9862-625X 0000-0001-5457-0357 0000-0001-5519-3063 0009-0005-5177-1360 0000-0001-5535-391X 0000-0002-2280-7986 0000-0001-7617-3029 0000-0001-7672-4759 |
PMID | 29770993 |
PQID | 2055186755 |
PQPubID | 1046358 |
PageCount | 7 |
ParticipantIDs | hal_primary_oai_HAL_hal_01799107v1 proquest_miscellaneous_2040764747 proquest_journals_2055186755 crossref_primary_10_1002_smll_201801038 pubmed_primary_29770993 wiley_primary_10_1002_smll_201801038_SMLL201801038 |
PublicationCentury | 2000 |
PublicationDate | June 14, 2018 |
PublicationDateYYYYMMDD | 2018-06-14 |
PublicationDate_xml | – month: 06 year: 2018 text: June 14, 2018 day: 14 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc Wiley-VCH Verlag |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: Wiley-VCH Verlag |
References | 2011; 115 2015; 15 2017; 7 2010; 10 2007; 19 2017; 8 2013; 3 2015; 6 2013; 4 2015; 5 2009; 21 2018 2015 2012; 4 27 22 2011; 83 2008 2013; 102 2008; 11 2017; 29 2014; 61 2011; 110 1999; 9 2012; 2 2012; 3 2012; 111 2013; 34 2017; 11 2004; 151 1992; 139 2007; 6 2005; 98 2011; 23 2014 2016; 28 2017; 168 2010; 4 2009; 38 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 Snider G. S. (e_1_2_8_4_1) 2008 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_1_1 e_1_2_8_15_3 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_15_2 e_1_2_8_16_1 Hong Y. Y. (e_1_2_8_14_1) 2014 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – volume: 3 start-page: 1084 year: 2013 publication-title: Sci. Rep. – volume: 38 start-page: 53 year: 2009 publication-title: Annu. Rev. Biophys. – volume: 29 start-page: 1604310 year: 2017 publication-title: Adv. Mater. – volume: 4 start-page: 1771 year: 2013 publication-title: Nat. Commun. – volume: 28 start-page: 7658 year: 2016 publication-title: Adv. Mater. – volume: 9 start-page: 1135 year: 1999 publication-title: J. Mater. Chem. – volume: 11 start-page: 28 year: 2008 publication-title: Mater. Today – start-page: 396 year: 2014 – start-page: 85 year: 2008 – volume: 115 start-page: 2514 year: 2011 publication-title: J. Phys. Chem. C – volume: 8 start-page: 14544 year: 2017 publication-title: Nat. Commun. – volume: 21 start-page: 2632 year: 2009 publication-title: Adv. Mater. – volume: 83 start-page: 6940 year: 2011 publication-title: Anal. Chem. – volume: 4 start-page: 2515 year: 2010 publication-title: ACS Nano – volume: 6 start-page: 833 year: 2007 publication-title: Nat. Mater. – volume: 139 start-page: 2091 year: 1992 publication-title: J. Electrochem. Soc. – volume: 7 start-page: 3065 year: 2017 publication-title: Sci. Rep. – volume: 6 start-page: 1091 year: 2015 publication-title: Beilstein J. Nanotechnol. – volume: 110 start-page: 071101 year: 2011 publication-title: J. Appl. Phys. – volume: 61 start-page: 2920 year: 2014 publication-title: IEEE Trans. Electron Devices – volume: 98 start-page: 023516 year: 2005 publication-title: J. Appl. Phys. – volume: 10 start-page: 4105 year: 2010 publication-title: Nano Lett. – volume: 15 start-page: 3983 year: 2015 publication-title: Nano Lett. – volume: 2 start-page: 242 year: 2012 publication-title: Sci. Rep. – volume: 102 start-page: 213502 year: 2013 publication-title: Appl. Phys. Lett. – volume: 3 start-page: 732 year: 2012 publication-title: Nat. Commun. – volume: 151 start-page: A1584 year: 2004 publication-title: J. Electrochem. Soc. – volume: 19 start-page: 5063 year: 2007 publication-title: Chem. Mater. – volume: 111 start-page: 084512 year: 2012 publication-title: J. Appl. Phys. – volume: 23 start-page: 4141 year: 2011 publication-title: Adv. Mater. – volume: 168 start-page: 37 year: 2017 publication-title: Microelectron. Eng. – volume: 34 start-page: 762 year: 2013 publication-title: IEEE Electron Device Lett. – volume: 11 start-page: 4097 year: 2017 publication-title: ACS Nano – volume: 5 start-page: 7761 year: 2015 publication-title: Sci. Rep. – volume: 4 27 22 start-page: 1700458 6202 70 year: 2018 2015 2012 publication-title: Adv. Electron. Mater. Adv. Mater. Adv. Funct. Mater. – ident: e_1_2_8_9_1 doi: 10.1063/1.4807424 – ident: e_1_2_8_28_1 doi: 10.3762/bjnano.6.110 – ident: e_1_2_8_31_1 doi: 10.1109/TED.2014.2330202 – ident: e_1_2_8_16_1 doi: 10.1063/1.1989431 – ident: e_1_2_8_30_1 doi: 10.1021/cm0702464 – ident: e_1_2_8_11_1 doi: 10.1002/adma.201604310 – ident: e_1_2_8_23_1 doi: 10.1038/ncomms14544 – ident: e_1_2_8_25_1 doi: 10.1038/srep00242 – ident: e_1_2_8_18_1 doi: 10.1038/ncomms1737 – ident: e_1_2_8_24_1 doi: 10.1021/nl102255r – ident: e_1_2_8_33_1 doi: 10.1063/1.4705283 – ident: e_1_2_8_29_1 doi: 10.1149/1.2221184 – ident: e_1_2_8_20_1 doi: 10.1021/acsnano.7b00783 – ident: e_1_2_8_13_1 doi: 10.1038/srep07761 – ident: e_1_2_8_35_1 doi: 10.1149/1.1787631 – ident: e_1_2_8_7_1 doi: 10.1038/srep01084 – ident: e_1_2_8_6_1 doi: 10.1016/S1369-7021(08)70119-6 – ident: e_1_2_8_12_1 doi: 10.1016/j.mee.2016.10.007 – ident: e_1_2_8_17_1 doi: 10.1039/a900016j – ident: e_1_2_8_22_1 doi: 10.1021/nn100483a – start-page: 85 volume-title: Proc. IEEE International Symposium on Nanoscale Architectures year: 2008 ident: e_1_2_8_4_1 contributor: fullname: Snider G. S. – ident: e_1_2_8_26_1 doi: 10.1146/annurev.biophys.050708.133634 – ident: e_1_2_8_2_1 doi: 10.1063/1.3640806 – ident: e_1_2_8_19_1 doi: 10.1021/acs.nanolett.5b00901 – ident: e_1_2_8_15_2 doi: 10.1002/adma.201502574 – ident: e_1_2_8_15_1 doi: 10.1002/aelm.201700458 – ident: e_1_2_8_15_3 doi: 10.1002/adfm.201101846 – ident: e_1_2_8_3_1 doi: 10.1038/ncomms2784 – start-page: 396 volume-title: Nanoscale Semiconductor Memories: Technology and Applications year: 2014 ident: e_1_2_8_14_1 contributor: fullname: Hong Y. Y. – ident: e_1_2_8_34_1 doi: 10.1021/jp1083899 – ident: e_1_2_8_8_1 doi: 10.1002/adma.201101800 – ident: e_1_2_8_5_1 doi: 10.1038/nmat2023 – ident: e_1_2_8_32_1 doi: 10.1109/LED.2013.2258653 – ident: e_1_2_8_1_1 doi: 10.1002/adma.200900375 – ident: e_1_2_8_27_1 doi: 10.1021/ac201685t – ident: e_1_2_8_21_1 doi: 10.1038/s41598-017-02330-x – ident: e_1_2_8_10_1 doi: 10.1002/adma.201601425 |
SSID | ssj0031247 |
Score | 2.4215324 |
Snippet | Lithium cobalt oxide nanobatteries offer exciting prospects in the field of nonvolatile memories and neuromorphic circuits. However, the precise underlying... Abstract Lithium cobalt oxide nanobatteries offer exciting prospects in the field of nonvolatile memories and neuromorphic circuits. However, the precise... |
SourceID | hal proquest crossref pubmed wiley |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | e1801038 |
SubjectTerms | Cobalt Cobalt oxides Computer simulation Condensed Matter Endurance Engineering Sciences Ion migration Ions Lithium Lithium compounds Lithium ions Lithium-ion batteries Materials Materials Science Micro and nanotechnologies Microelectronics Nanoelectronics Nanotechnology nonvolatile memories oxides Physics resistive switching Secondary ion mass spectroscopy Switching thin films |
Title | Direct Evidence of Lithium Ion Migration in Resistive Switching of Lithium Cobalt Oxide Nanobatteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201801038 https://www.ncbi.nlm.nih.gov/pubmed/29770993 https://www.proquest.com/docview/2055186755 https://search.proquest.com/docview/2040764747 https://centralesupelec.hal.science/hal-01799107 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5RTvRQSssj7RYZVIlTYB3beRxXFLRFu1SCInGLYseBqCWLulla8euZiTdhtz1Uam9xYid-zcznePwNwEeT8NiYmPsCrZkvVaF9HYvMF9rw0Ki-NoLOO4_Pw-GVPLtW1wun-B0_RPfDjSSj0dck4JmeHj2Thk7vvtPWAY8pUgGd9uUiIp-uTxcdf5RA49VEV0Gb5RPxVsva2A-OlosvWaUXt-QT-SfgXMavjQE6XYesrbrzO_l2OKv1oXn8jdXxf9r2Gl7N0SkbuOm0ASu2egMvFzgL34J1SpK14UjZpGCjsr4tZ3fs86Ri4_LGTSpWVuzCTkmHPFh2-bOsG7fNxfzHREZSsy-_8FUM9Twm6XARLt434er05Ovx0J_HavAN7QT6tq-TMMpVZKWyOszyUCC2jIPIikK66EScsJ4M0SibHJdRmUqSQhlVJKhnhNiC1WpS2R1gQcIN19YWeR5JmatMGW37VvG4iHKrjQcH7Vil946SI3Xky0FKHZd2HefBPg5ll4mYtIeDUUr3SBEhUooeuAe9dqTTufxO8RXEVIeLKeXBXvcYJY-2U7LKTmaUB1seSlyPebDtZkj3qQBhNWJv4UHQjPNfKppejkejLvXuXwq9hzW6Ji82LnuwWv-Y2Q-Il2q928jEE7yCC5g |
link.rule.ids | 230,315,783,787,888,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB71cQAOQIG2KQUMQuKUdh3beRyrQrWFbJH6kLhFseO0EW226mZLxa9nJt6k3XKoBEc7tuPEnpnP9vgbgI8m4bExMfcFWjNfqlL7Oha5L7ThoVEDbQTddx4dhMMT-fWH6rwJ6S6M44foN9xIMlp9TQJOG9Lbt6yhk4tzOjvgMYUqiBdhGWVeUPSGz4c9g5RA89XGV0Gr5RP1VsfbOAi25-vP2aXFM_KK_BtyziPY1gTtPQPddd55nvzcmjZ6y_y-x-v4X1_3HJ7OACrbcTNqBRZs_QKe3KEtfAnW6UnWRSRl45KlVXNWTS_Y_rhmo-rUzStW1ezQTkiNXFt29KtqWs_Nu-V3iY-kYd9vsCmGqh6TdL8I1--v4GTvy_Hu0J-Fa_ANHQb6dqCTMCpUZKWyOsyLUCC8jIPIilK6AEWc4J4M0S6bAldSuUqSUhlVJqhqhFiFpXpc23VgQcIN19aWRRFJWahcGW0HVvG4jAqrjQefusHKLh0rR-b4l4OMflzW_zgPPuBY9oWITHu4k2aUR7oIwVJ0zT3Y7IY6m4nwBJsgsjpcTykP3vePUfjoRCWv7XhKZfDLQ4lLMg_W3BTpXxUgskb4LTwI2oF-oKPZ0ShN-9TGv1R6B4-Gx6M0S_cPvr2Gx5RPTm1cbsJSczW1bxA-NfptKyB_AGtOD7A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RVkJwgPJoCbRgEBKntOvYzuNYla62kC2opVJvUew4bQTNVmy2VP31zMSbsAsHJDjGsR2_ZuZzPP4G4K1JeGxMzH2B1syXqtS-jkXuC214aNRAG0H3ncdH4ehUfjhTZwu3-B0_RP_DjSSj1dck4FdFufuLNHR6-Y2ODnhMkQriFViTIcJfgkXHPYGUQOvVhldBo-UT81ZH2zgIdpfLL5mllQtyivwTcS4D2NYCDR9C3rXdOZ583Zk1esfc_kbr-D-dW4cHc3jK9tx6egR3bP0Y7i-QFj4B67Qk6-KRsknJ0qq5qGaX7HBSs3F17lYVq2p2bKekRK4tO_lRNa3f5mL-fWIjadinG6yKoaLHR7pdhLv3p3A6PPiyP_LnwRp8Q0eBvh3oJIwKFVmprA7zIhQILuMgsqKULjwRJ7AnQ7TKpsB9VK6SpFRGlQkqGiE2YLWe1PYZsCDhhmtry6KIpCxUroy2A6t4XEaF1caDd91cZVeOkyNz7MtBRgOX9QPnwRucyj4TUWmP9tKM0kgTIVSKrrkHW91MZ3MBnmIVRFWHuynlwev-NYoenafktZ3MKA_2PJS4IfNg062Q_lMB4moE38KDoJ3nvzQ0Oxmnaf_0_F8KvYK7n98Ps_Tw6OMLuEfJ5NHG5RasNt9ndhuxU6NftuLxEyjgDl8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Direct+Evidence+of+Lithium+Ion+Migration+in+Resistive+Switching+of+Lithium+Cobalt+Oxide+Nanobatteries&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Nguyen%2C+Van+Son&rft.au=Mai%2C+Van+Huy&rft.au=Auban+Senzier%2C+Pascale&rft.au=Pasquier%2C+Claude&rft.date=2018-06-14&rft.eissn=1613-6829&rft.volume=14&rft.issue=24&rft.spage=e1801038&rft_id=info:doi/10.1002%2Fsmll.201801038&rft_id=info%3Apmid%2F29770993&rft.externalDocID=29770993 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |