Direct Evidence of Lithium Ion Migration in Resistive Switching of Lithium Cobalt Oxide Nanobatteries

Lithium cobalt oxide nanobatteries offer exciting prospects in the field of nonvolatile memories and neuromorphic circuits. However, the precise underlying resistive switching (RS) mechanism remains a matter of debate in two‐terminal cells. Herein, intriguing results, obtained by secondary ion mass...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 14; no. 24; pp. e1801038 - n/a
Main Authors Nguyen, Van Son, Mai, Van Huy, Auban Senzier, Pascale, Pasquier, Claude, Wang, Kang, Rozenberg, Marcelo J., Brun, Nathalie, March, Katia, Jomard, François, Giapintzakis, John, Mihailescu, Cristian N., Kyriakides, Evripides, Nukala, Pavan, Maroutian, Thomas, Agnus, Guillaume, Lecoeur, Philippe, Matzen, Silvia, Aubert, Pascal, Franger, Sylvain, Salot, Raphaël, Albouy, Pierre‐Antoine, Alamarguy, David, Dkhil, Brahim, Chrétien, Pascal, Schneegans, Olivier
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 14.06.2018
Wiley-VCH Verlag
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Lithium cobalt oxide nanobatteries offer exciting prospects in the field of nonvolatile memories and neuromorphic circuits. However, the precise underlying resistive switching (RS) mechanism remains a matter of debate in two‐terminal cells. Herein, intriguing results, obtained by secondary ion mass spectroscopy (SIMS) 3D imaging, clearly demonstrate that the RS mechanism corresponds to lithium migration toward the outside of the LixCoO2 layer. These observations are very well correlated with the observed insulator‐to‐metal transition of the oxide. Besides, smaller device area experimentally yields much faster switching kinetics, which is qualitatively well accounted for by a simple numerical simulation. Write/erase endurance is also highly improved with downscaling – much further than the present cycling life of usual lithium‐ion batteries. Hence very attractive possibilities can be envisaged for this class of materials in nanoelectronics. The intriguing resistive switching mechanism of LixCoO2‐based nanobatteries is determined by secondary ion mass spectroscopy (SIMS) 3D imaging. Lithium migrates outside the oxide layer: this yields a decrease of stoichiometry (x) of LixCoO2, which undergoes a semiconductor‐to‐metal transition observed by measuring the temperature‐dependence of device conductivity.
AbstractList Lithium cobalt oxide nanobatteries offer exciting prospects in the field of nonvolatile memories and neuromorphic circuits. However, the precise underlying resistive switching (RS) mechanism remains a matter of debate in two‐terminal cells. Herein, intriguing results, obtained by secondary ion mass spectroscopy (SIMS) 3D imaging, clearly demonstrate that the RS mechanism corresponds to lithium migration toward the outside of the LixCoO2 layer. These observations are very well correlated with the observed insulator‐to‐metal transition of the oxide. Besides, smaller device area experimentally yields much faster switching kinetics, which is qualitatively well accounted for by a simple numerical simulation. Write/erase endurance is also highly improved with downscaling – much further than the present cycling life of usual lithium‐ion batteries. Hence very attractive possibilities can be envisaged for this class of materials in nanoelectronics.
Abstract Lithium cobalt oxide nanobatteries offer exciting prospects in the field of nonvolatile memories and neuromorphic circuits. However, the precise underlying resistive switching (RS) mechanism remains a matter of debate in two‐terminal cells. Herein, intriguing results, obtained by secondary ion mass spectroscopy (SIMS) 3D imaging, clearly demonstrate that the RS mechanism corresponds to lithium migration toward the outside of the Li x CoO 2 layer. These observations are very well correlated with the observed insulator‐to‐metal transition of the oxide. Besides, smaller device area experimentally yields much faster switching kinetics, which is qualitatively well accounted for by a simple numerical simulation. Write/erase endurance is also highly improved with downscaling – much further than the present cycling life of usual lithium‐ion batteries. Hence very attractive possibilities can be envisaged for this class of materials in nanoelectronics.
Lithium cobalt oxide nanobatteries offer exciting prospects in the field of nonvolatile memories and neuromorphic circuits. However, the precise underlying resistive switching (RS) mechanism remains a matter of debate in two-terminal cells. Herein, intriguing results, obtained by secondary ion mass spectroscopy (SIMS) 3D imaging, clearly demonstrate that the RS mechanism corresponds to lithium migration toward the outside of the Li CoO layer. These observations are very well correlated with the observed insulator-to-metal transition of the oxide. Besides, smaller device area experimentally yields much faster switching kinetics, which is qualitatively well accounted for by a simple numerical simulation. Write/erase endurance is also highly improved with downscaling - much further than the present cycling life of usual lithium-ion batteries. Hence very attractive possibilities can be envisaged for this class of materials in nanoelectronics.
Lithium cobalt oxide nanobatteries offer exciting prospects in the field of nonvolatile memories and neuromorphic circuits. However, the precise underlying resistive switching (RS) mechanism remains a matter of debate in two‐terminal cells. Herein, intriguing results, obtained by secondary ion mass spectroscopy (SIMS) 3D imaging, clearly demonstrate that the RS mechanism corresponds to lithium migration toward the outside of the LixCoO2 layer. These observations are very well correlated with the observed insulator‐to‐metal transition of the oxide. Besides, smaller device area experimentally yields much faster switching kinetics, which is qualitatively well accounted for by a simple numerical simulation. Write/erase endurance is also highly improved with downscaling – much further than the present cycling life of usual lithium‐ion batteries. Hence very attractive possibilities can be envisaged for this class of materials in nanoelectronics. The intriguing resistive switching mechanism of LixCoO2‐based nanobatteries is determined by secondary ion mass spectroscopy (SIMS) 3D imaging. Lithium migrates outside the oxide layer: this yields a decrease of stoichiometry (x) of LixCoO2, which undergoes a semiconductor‐to‐metal transition observed by measuring the temperature‐dependence of device conductivity.
Lithium cobalt oxide nanobatteries offer exciting prospects in the field of nonvolatile memories and neuromorphic circuits. However, the precise underlying resistive switching (RS) mechanism remains a matter of debate in two‐terminal cells. Herein, intriguing results, obtained by secondary ion mass spectroscopy (SIMS) 3D imaging, clearly demonstrate that the RS mechanism corresponds to lithium migration toward the outside of the Li$_x$CoO$_2$ layer. These observations are very well correlated with the observed insulator‐to‐metal transition of the oxide. Besides, smaller device area experimentally yields much faster switching kinetics, which is qualitatively well accounted for by a simple numerical simulation. Write/erase endurance is also highly improved with downscaling – much further than the present cycling life of usual lithium‐ion batteries. Hence very attractive possibilities can be envisaged for this class of materials in nanoelectronics.
Lithium cobalt oxide nanobatteries offer exciting prospects in the field of nonvolatile memories and neuromorphic circuits. However, the precise underlying resistive switching (RS) mechanism remains a matter of debate in two-terminal cells. Herein, intriguing results, obtained by secondary ion mass spectroscopy (SIMS) 3D imaging, clearly demonstrate that the RS mechanism corresponds to lithium migration toward the outside of the Lix CoO2 layer. These observations are very well correlated with the observed insulator-to-metal transition of the oxide. Besides, smaller device area experimentally yields much faster switching kinetics, which is qualitatively well accounted for by a simple numerical simulation. Write/erase endurance is also highly improved with downscaling - much further than the present cycling life of usual lithium-ion batteries. Hence very attractive possibilities can be envisaged for this class of materials in nanoelectronics.
Author Franger, Sylvain
Wang, Kang
Kyriakides, Evripides
Auban Senzier, Pascale
Brun, Nathalie
Schneegans, Olivier
Chrétien, Pascal
Albouy, Pierre‐Antoine
Giapintzakis, John
Mai, Van Huy
Jomard, François
Salot, Raphaël
Nguyen, Van Son
March, Katia
Aubert, Pascal
Agnus, Guillaume
Mihailescu, Cristian N.
Rozenberg, Marcelo J.
Dkhil, Brahim
Pasquier, Claude
Alamarguy, David
Lecoeur, Philippe
Nukala, Pavan
Maroutian, Thomas
Matzen, Silvia
Author_xml – sequence: 1
  givenname: Van Son
  surname: Nguyen
  fullname: Nguyen, Van Son
  organization: CNRS, CentraleSupélec, Universités UPMC et Paris‐Sud
– sequence: 2
  givenname: Van Huy
  surname: Mai
  fullname: Mai, Van Huy
  organization: Le Quy Don Technical University
– sequence: 3
  givenname: Pascale
  surname: Auban Senzier
  fullname: Auban Senzier, Pascale
  organization: Université Paris‐Sud
– sequence: 4
  givenname: Claude
  surname: Pasquier
  fullname: Pasquier, Claude
  organization: Université Paris‐Sud
– sequence: 5
  givenname: Kang
  surname: Wang
  fullname: Wang, Kang
  organization: Université Paris‐Sud
– sequence: 6
  givenname: Marcelo J.
  surname: Rozenberg
  fullname: Rozenberg, Marcelo J.
  organization: Université Paris‐Sud
– sequence: 7
  givenname: Nathalie
  surname: Brun
  fullname: Brun, Nathalie
  organization: Université Paris‐Sud
– sequence: 8
  givenname: Katia
  surname: March
  fullname: March, Katia
  organization: Université Paris‐Sud
– sequence: 9
  givenname: François
  surname: Jomard
  fullname: Jomard, François
  organization: Université de Versailles Saint‐Quentin‐En‐Yvelines
– sequence: 10
  givenname: John
  surname: Giapintzakis
  fullname: Giapintzakis, John
  organization: University of Cyprus
– sequence: 11
  givenname: Cristian N.
  surname: Mihailescu
  fullname: Mihailescu, Cristian N.
  organization: National Institute for Laser Plasma and Radiation Physics
– sequence: 12
  givenname: Evripides
  surname: Kyriakides
  fullname: Kyriakides, Evripides
  organization: University of Cyprus
– sequence: 13
  givenname: Pavan
  surname: Nukala
  fullname: Nukala, Pavan
  organization: Laboratoire Structures, Propriétés et Modélisation des Solides CentraleSupélec
– sequence: 14
  givenname: Thomas
  surname: Maroutian
  fullname: Maroutian, Thomas
  organization: CNRS et Université Paris‐Sud
– sequence: 15
  givenname: Guillaume
  surname: Agnus
  fullname: Agnus, Guillaume
  organization: CNRS et Université Paris‐Sud
– sequence: 16
  givenname: Philippe
  surname: Lecoeur
  fullname: Lecoeur, Philippe
  organization: CNRS et Université Paris‐Sud
– sequence: 17
  givenname: Silvia
  surname: Matzen
  fullname: Matzen, Silvia
  organization: CNRS et Université Paris‐Sud
– sequence: 18
  givenname: Pascal
  surname: Aubert
  fullname: Aubert, Pascal
  organization: CNRS et Université Paris‐Sud
– sequence: 19
  givenname: Sylvain
  surname: Franger
  fullname: Franger, Sylvain
  organization: Institut de Chimie Moléculaire et des Matériaux d'Orsay
– sequence: 20
  givenname: Raphaël
  surname: Salot
  fullname: Salot, Raphaël
  organization: CEA de Grenoble
– sequence: 21
  givenname: Pierre‐Antoine
  surname: Albouy
  fullname: Albouy, Pierre‐Antoine
  organization: Université Paris‐Sud
– sequence: 22
  givenname: David
  surname: Alamarguy
  fullname: Alamarguy, David
  organization: CNRS, CentraleSupélec, Universités UPMC et Paris‐Sud
– sequence: 23
  givenname: Brahim
  surname: Dkhil
  fullname: Dkhil, Brahim
  organization: Laboratoire Structures, Propriétés et Modélisation des Solides CentraleSupélec
– sequence: 24
  givenname: Pascal
  surname: Chrétien
  fullname: Chrétien, Pascal
  organization: CNRS, CentraleSupélec, Universités UPMC et Paris‐Sud
– sequence: 25
  givenname: Olivier
  orcidid: 0000-0001-9741-3327
  surname: Schneegans
  fullname: Schneegans, Olivier
  email: schneegans@geeps.centralesupelec.fr
  organization: CNRS, CentraleSupélec, Universités UPMC et Paris‐Sud
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29770993$$D View this record in MEDLINE/PubMed
https://centralesupelec.hal.science/hal-01799107$$DView record in HAL
BookMark eNqFkc9PFDEYhhsDEVi5ejRNvOhh16_ttJ0eyYpCMkgicm66M9-wJfMD284i_73dLC7Gi6d-X_P0ydu8J-RgGAck5C2DBQPgn2LfdQsOrAQGonxFjpliYq5Kbg72M4MjchLjPYBgvNCvyRE3WoMx4pjgZx-wTvR84xscaqRjSyuf1n7q6eU40Ct_F1zyefID_Y7Rx-Q3SG8efarXfrj7m1-OK9clev0rq-g3N-Q1JQwe4xty2Lou4unzOSO3X85_LC_m1fXXy-VZNa8L0OUcYWWUbqTGQuJKuUYJJkzJNYq2AGBS5l1yXijEpm4UV04a08patgYECDEjH3fetevsQ_C9C092dN5enFV2ewdMG8NAb1hmP-zYhzD-nDAm2_tYY9e5AccpWg45kyp0oTP6_h_0fpzCkH-SKSlZqXSONiOLHVWHMcaA7T4BA7sty27Lsvuy8oN3z9pp1WOzx_-0kwGzAx59h0__0dmbq6p6kf8GLMGgTw
CitedBy_id crossref_primary_10_1016_j_nanoen_2023_108199
crossref_primary_10_1002_aelm_202200269
crossref_primary_10_1038_s41598_019_41508_3
crossref_primary_10_1002_aelm_201901363
crossref_primary_10_1016_j_mtphys_2022_100947
crossref_primary_10_1002_aelm_201900184
crossref_primary_10_1088_1361_6528_ac9286
crossref_primary_10_1002_adma_201907465
crossref_primary_10_1007_s10854_019_00768_5
crossref_primary_10_1021_acsami_9b06855
crossref_primary_10_1063_1_5051568
crossref_primary_10_1038_s41598_020_65237_0
crossref_primary_10_1016_j_scib_2021_04_025
crossref_primary_10_1021_acsaelm_0c00739
crossref_primary_10_1038_s41427_020_00274_9
crossref_primary_10_1063_1_5138193
crossref_primary_10_7868_S2410993222010080
crossref_primary_10_1016_j_orgel_2020_106019
crossref_primary_10_1021_acs_nanolett_2c01765
crossref_primary_10_1038_s41578_020_00261_0
Cites_doi 10.1063/1.4807424
10.3762/bjnano.6.110
10.1109/TED.2014.2330202
10.1063/1.1989431
10.1021/cm0702464
10.1002/adma.201604310
10.1038/ncomms14544
10.1038/srep00242
10.1038/ncomms1737
10.1021/nl102255r
10.1063/1.4705283
10.1149/1.2221184
10.1021/acsnano.7b00783
10.1038/srep07761
10.1149/1.1787631
10.1038/srep01084
10.1016/S1369-7021(08)70119-6
10.1016/j.mee.2016.10.007
10.1039/a900016j
10.1021/nn100483a
10.1146/annurev.biophys.050708.133634
10.1063/1.3640806
10.1021/acs.nanolett.5b00901
10.1002/adma.201502574
10.1002/aelm.201700458
10.1002/adfm.201101846
10.1038/ncomms2784
10.1021/jp1083899
10.1002/adma.201101800
10.1038/nmat2023
10.1109/LED.2013.2258653
10.1002/adma.200900375
10.1021/ac201685t
10.1038/s41598-017-02330-x
10.1002/adma.201601425
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID NPM
AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
1XC
DOI 10.1002/smll.201801038
DatabaseName PubMed
CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle PubMed
CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
CrossRef
PubMed


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1613-6829
EndPage n/a
ExternalDocumentID oai_HAL_hal_01799107v1
10_1002_smll_201801038
29770993
SMLL201801038
Genre article
Journal Article
GrantInformation_xml – fundername: French National Research Agency
  funderid: 10‐LABX‐0035
– fundername: Research Promotion Foundation of the Republic of Cyprus
  funderid: PENEK‐0609‐65
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAIHA
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AAYOK
ACBWZ
ASPBG
AVWKF
AZFZN
BDRZF
FEDTE
GODZA
HVGLF
NPM
AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
1XC
ID FETCH-LOGICAL-c4078-e0b967d57e45eb6ad63139827e3f40015531352246eedcd626a599f5c5f903033
IEDL.DBID DR2
ISSN 1613-6810
IngestDate Thu Oct 31 07:27:40 EDT 2024
Fri Aug 16 01:48:26 EDT 2024
Thu Oct 10 17:48:07 EDT 2024
Fri Aug 23 01:08:49 EDT 2024
Sat Sep 28 08:40:25 EDT 2024
Sat Aug 24 00:50:21 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 24
Keywords lithium-ion batteries
nonvolatile memories
resistive switching
oxides
thin films
thin film
lithium‐ion batteries
Language English
License 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4078-e0b967d57e45eb6ad63139827e3f40015531352246eedcd626a599f5c5f903033
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9741-3327
0000-0002-3079-2016
0000-0002-9862-625X
0000-0001-5457-0357
0000-0001-5519-3063
0009-0005-5177-1360
0000-0001-5535-391X
0000-0002-2280-7986
0000-0001-7617-3029
0000-0001-7672-4759
PMID 29770993
PQID 2055186755
PQPubID 1046358
PageCount 7
ParticipantIDs hal_primary_oai_HAL_hal_01799107v1
proquest_miscellaneous_2040764747
proquest_journals_2055186755
crossref_primary_10_1002_smll_201801038
pubmed_primary_29770993
wiley_primary_10_1002_smll_201801038_SMLL201801038
PublicationCentury 2000
PublicationDate June 14, 2018
PublicationDateYYYYMMDD 2018-06-14
PublicationDate_xml – month: 06
  year: 2018
  text: June 14, 2018
  day: 14
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Wiley-VCH Verlag
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley-VCH Verlag
References 2011; 115
2015; 15
2017; 7
2010; 10
2007; 19
2017; 8
2013; 3
2015; 6
2013; 4
2015; 5
2009; 21
2018 2015 2012; 4 27 22
2011; 83
2008
2013; 102
2008; 11
2017; 29
2014; 61
2011; 110
1999; 9
2012; 2
2012; 3
2012; 111
2013; 34
2017; 11
2004; 151
1992; 139
2007; 6
2005; 98
2011; 23
2014
2016; 28
2017; 168
2010; 4
2009; 38
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
Snider G. S. (e_1_2_8_4_1) 2008
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_1_1
e_1_2_8_15_3
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_15_2
e_1_2_8_16_1
Hong Y. Y. (e_1_2_8_14_1) 2014
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 3
  start-page: 1084
  year: 2013
  publication-title: Sci. Rep.
– volume: 38
  start-page: 53
  year: 2009
  publication-title: Annu. Rev. Biophys.
– volume: 29
  start-page: 1604310
  year: 2017
  publication-title: Adv. Mater.
– volume: 4
  start-page: 1771
  year: 2013
  publication-title: Nat. Commun.
– volume: 28
  start-page: 7658
  year: 2016
  publication-title: Adv. Mater.
– volume: 9
  start-page: 1135
  year: 1999
  publication-title: J. Mater. Chem.
– volume: 11
  start-page: 28
  year: 2008
  publication-title: Mater. Today
– start-page: 396
  year: 2014
– start-page: 85
  year: 2008
– volume: 115
  start-page: 2514
  year: 2011
  publication-title: J. Phys. Chem. C
– volume: 8
  start-page: 14544
  year: 2017
  publication-title: Nat. Commun.
– volume: 21
  start-page: 2632
  year: 2009
  publication-title: Adv. Mater.
– volume: 83
  start-page: 6940
  year: 2011
  publication-title: Anal. Chem.
– volume: 4
  start-page: 2515
  year: 2010
  publication-title: ACS Nano
– volume: 6
  start-page: 833
  year: 2007
  publication-title: Nat. Mater.
– volume: 139
  start-page: 2091
  year: 1992
  publication-title: J. Electrochem. Soc.
– volume: 7
  start-page: 3065
  year: 2017
  publication-title: Sci. Rep.
– volume: 6
  start-page: 1091
  year: 2015
  publication-title: Beilstein J. Nanotechnol.
– volume: 110
  start-page: 071101
  year: 2011
  publication-title: J. Appl. Phys.
– volume: 61
  start-page: 2920
  year: 2014
  publication-title: IEEE Trans. Electron Devices
– volume: 98
  start-page: 023516
  year: 2005
  publication-title: J. Appl. Phys.
– volume: 10
  start-page: 4105
  year: 2010
  publication-title: Nano Lett.
– volume: 15
  start-page: 3983
  year: 2015
  publication-title: Nano Lett.
– volume: 2
  start-page: 242
  year: 2012
  publication-title: Sci. Rep.
– volume: 102
  start-page: 213502
  year: 2013
  publication-title: Appl. Phys. Lett.
– volume: 3
  start-page: 732
  year: 2012
  publication-title: Nat. Commun.
– volume: 151
  start-page: A1584
  year: 2004
  publication-title: J. Electrochem. Soc.
– volume: 19
  start-page: 5063
  year: 2007
  publication-title: Chem. Mater.
– volume: 111
  start-page: 084512
  year: 2012
  publication-title: J. Appl. Phys.
– volume: 23
  start-page: 4141
  year: 2011
  publication-title: Adv. Mater.
– volume: 168
  start-page: 37
  year: 2017
  publication-title: Microelectron. Eng.
– volume: 34
  start-page: 762
  year: 2013
  publication-title: IEEE Electron Device Lett.
– volume: 11
  start-page: 4097
  year: 2017
  publication-title: ACS Nano
– volume: 5
  start-page: 7761
  year: 2015
  publication-title: Sci. Rep.
– volume: 4 27 22
  start-page: 1700458 6202 70
  year: 2018 2015 2012
  publication-title: Adv. Electron. Mater. Adv. Mater. Adv. Funct. Mater.
– ident: e_1_2_8_9_1
  doi: 10.1063/1.4807424
– ident: e_1_2_8_28_1
  doi: 10.3762/bjnano.6.110
– ident: e_1_2_8_31_1
  doi: 10.1109/TED.2014.2330202
– ident: e_1_2_8_16_1
  doi: 10.1063/1.1989431
– ident: e_1_2_8_30_1
  doi: 10.1021/cm0702464
– ident: e_1_2_8_11_1
  doi: 10.1002/adma.201604310
– ident: e_1_2_8_23_1
  doi: 10.1038/ncomms14544
– ident: e_1_2_8_25_1
  doi: 10.1038/srep00242
– ident: e_1_2_8_18_1
  doi: 10.1038/ncomms1737
– ident: e_1_2_8_24_1
  doi: 10.1021/nl102255r
– ident: e_1_2_8_33_1
  doi: 10.1063/1.4705283
– ident: e_1_2_8_29_1
  doi: 10.1149/1.2221184
– ident: e_1_2_8_20_1
  doi: 10.1021/acsnano.7b00783
– ident: e_1_2_8_13_1
  doi: 10.1038/srep07761
– ident: e_1_2_8_35_1
  doi: 10.1149/1.1787631
– ident: e_1_2_8_7_1
  doi: 10.1038/srep01084
– ident: e_1_2_8_6_1
  doi: 10.1016/S1369-7021(08)70119-6
– ident: e_1_2_8_12_1
  doi: 10.1016/j.mee.2016.10.007
– ident: e_1_2_8_17_1
  doi: 10.1039/a900016j
– ident: e_1_2_8_22_1
  doi: 10.1021/nn100483a
– start-page: 85
  volume-title: Proc. IEEE International Symposium on Nanoscale Architectures
  year: 2008
  ident: e_1_2_8_4_1
  contributor:
    fullname: Snider G. S.
– ident: e_1_2_8_26_1
  doi: 10.1146/annurev.biophys.050708.133634
– ident: e_1_2_8_2_1
  doi: 10.1063/1.3640806
– ident: e_1_2_8_19_1
  doi: 10.1021/acs.nanolett.5b00901
– ident: e_1_2_8_15_2
  doi: 10.1002/adma.201502574
– ident: e_1_2_8_15_1
  doi: 10.1002/aelm.201700458
– ident: e_1_2_8_15_3
  doi: 10.1002/adfm.201101846
– ident: e_1_2_8_3_1
  doi: 10.1038/ncomms2784
– start-page: 396
  volume-title: Nanoscale Semiconductor Memories: Technology and Applications
  year: 2014
  ident: e_1_2_8_14_1
  contributor:
    fullname: Hong Y. Y.
– ident: e_1_2_8_34_1
  doi: 10.1021/jp1083899
– ident: e_1_2_8_8_1
  doi: 10.1002/adma.201101800
– ident: e_1_2_8_5_1
  doi: 10.1038/nmat2023
– ident: e_1_2_8_32_1
  doi: 10.1109/LED.2013.2258653
– ident: e_1_2_8_1_1
  doi: 10.1002/adma.200900375
– ident: e_1_2_8_27_1
  doi: 10.1021/ac201685t
– ident: e_1_2_8_21_1
  doi: 10.1038/s41598-017-02330-x
– ident: e_1_2_8_10_1
  doi: 10.1002/adma.201601425
SSID ssj0031247
Score 2.4215324
Snippet Lithium cobalt oxide nanobatteries offer exciting prospects in the field of nonvolatile memories and neuromorphic circuits. However, the precise underlying...
Abstract Lithium cobalt oxide nanobatteries offer exciting prospects in the field of nonvolatile memories and neuromorphic circuits. However, the precise...
SourceID hal
proquest
crossref
pubmed
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage e1801038
SubjectTerms Cobalt
Cobalt oxides
Computer simulation
Condensed Matter
Endurance
Engineering Sciences
Ion migration
Ions
Lithium
Lithium compounds
Lithium ions
Lithium-ion batteries
Materials
Materials Science
Micro and nanotechnologies
Microelectronics
Nanoelectronics
Nanotechnology
nonvolatile memories
oxides
Physics
resistive switching
Secondary ion mass spectroscopy
Switching
thin films
Title Direct Evidence of Lithium Ion Migration in Resistive Switching of Lithium Cobalt Oxide Nanobatteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201801038
https://www.ncbi.nlm.nih.gov/pubmed/29770993
https://www.proquest.com/docview/2055186755
https://search.proquest.com/docview/2040764747
https://centralesupelec.hal.science/hal-01799107
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5RTvRQSssj7RYZVIlTYB3beRxXFLRFu1SCInGLYseBqCWLulla8euZiTdhtz1Uam9xYid-zcznePwNwEeT8NiYmPsCrZkvVaF9HYvMF9rw0Ki-NoLOO4_Pw-GVPLtW1wun-B0_RPfDjSSj0dck4JmeHj2Thk7vvtPWAY8pUgGd9uUiIp-uTxcdf5RA49VEV0Gb5RPxVsva2A-OlosvWaUXt-QT-SfgXMavjQE6XYesrbrzO_l2OKv1oXn8jdXxf9r2Gl7N0SkbuOm0ASu2egMvFzgL34J1SpK14UjZpGCjsr4tZ3fs86Ri4_LGTSpWVuzCTkmHPFh2-bOsG7fNxfzHREZSsy-_8FUM9Twm6XARLt434er05Ovx0J_HavAN7QT6tq-TMMpVZKWyOszyUCC2jIPIikK66EScsJ4M0SibHJdRmUqSQhlVJKhnhNiC1WpS2R1gQcIN19YWeR5JmatMGW37VvG4iHKrjQcH7Vil946SI3Xky0FKHZd2HefBPg5ll4mYtIeDUUr3SBEhUooeuAe9dqTTufxO8RXEVIeLKeXBXvcYJY-2U7LKTmaUB1seSlyPebDtZkj3qQBhNWJv4UHQjPNfKppejkejLvXuXwq9hzW6Ji82LnuwWv-Y2Q-Il2q928jEE7yCC5g
link.rule.ids 230,315,783,787,888,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB71cQAOQIG2KQUMQuKUdh3beRyrQrWFbJH6kLhFseO0EW226mZLxa9nJt6k3XKoBEc7tuPEnpnP9vgbgI8m4bExMfcFWjNfqlL7Oha5L7ThoVEDbQTddx4dhMMT-fWH6rwJ6S6M44foN9xIMlp9TQJOG9Lbt6yhk4tzOjvgMYUqiBdhGWVeUPSGz4c9g5RA89XGV0Gr5RP1VsfbOAi25-vP2aXFM_KK_BtyziPY1gTtPQPddd55nvzcmjZ6y_y-x-v4X1_3HJ7OACrbcTNqBRZs_QKe3KEtfAnW6UnWRSRl45KlVXNWTS_Y_rhmo-rUzStW1ezQTkiNXFt29KtqWs_Nu-V3iY-kYd9vsCmGqh6TdL8I1--v4GTvy_Hu0J-Fa_ANHQb6dqCTMCpUZKWyOsyLUCC8jIPIilK6AEWc4J4M0S6bAldSuUqSUhlVJqhqhFiFpXpc23VgQcIN19aWRRFJWahcGW0HVvG4jAqrjQefusHKLh0rR-b4l4OMflzW_zgPPuBY9oWITHu4k2aUR7oIwVJ0zT3Y7IY6m4nwBJsgsjpcTykP3vePUfjoRCWv7XhKZfDLQ4lLMg_W3BTpXxUgskb4LTwI2oF-oKPZ0ShN-9TGv1R6B4-Gx6M0S_cPvr2Gx5RPTm1cbsJSczW1bxA-NfptKyB_AGtOD7A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RVkJwgPJoCbRgEBKntOvYzuNYla62kC2opVJvUew4bQTNVmy2VP31zMSbsAsHJDjGsR2_ZuZzPP4G4K1JeGxMzH2B1syXqtS-jkXuC214aNRAG0H3ncdH4ehUfjhTZwu3-B0_RP_DjSSj1dck4FdFufuLNHR6-Y2ODnhMkQriFViTIcJfgkXHPYGUQOvVhldBo-UT81ZH2zgIdpfLL5mllQtyivwTcS4D2NYCDR9C3rXdOZ583Zk1esfc_kbr-D-dW4cHc3jK9tx6egR3bP0Y7i-QFj4B67Qk6-KRsknJ0qq5qGaX7HBSs3F17lYVq2p2bKekRK4tO_lRNa3f5mL-fWIjadinG6yKoaLHR7pdhLv3p3A6PPiyP_LnwRp8Q0eBvh3oJIwKFVmprA7zIhQILuMgsqKULjwRJ7AnQ7TKpsB9VK6SpFRGlQkqGiE2YLWe1PYZsCDhhmtry6KIpCxUroy2A6t4XEaF1caDd91cZVeOkyNz7MtBRgOX9QPnwRucyj4TUWmP9tKM0kgTIVSKrrkHW91MZ3MBnmIVRFWHuynlwev-NYoenafktZ3MKA_2PJS4IfNg062Q_lMB4moE38KDoJ3nvzQ0Oxmnaf_0_F8KvYK7n98Ps_Tw6OMLuEfJ5NHG5RasNt9ndhuxU6NftuLxEyjgDl8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Direct+Evidence+of+Lithium+Ion+Migration+in+Resistive+Switching+of+Lithium+Cobalt+Oxide+Nanobatteries&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Nguyen%2C+Van+Son&rft.au=Mai%2C+Van+Huy&rft.au=Auban+Senzier%2C+Pascale&rft.au=Pasquier%2C+Claude&rft.date=2018-06-14&rft.eissn=1613-6829&rft.volume=14&rft.issue=24&rft.spage=e1801038&rft_id=info:doi/10.1002%2Fsmll.201801038&rft_id=info%3Apmid%2F29770993&rft.externalDocID=29770993
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon