Estimating and testing direct genetic effects in directed acyclic graphs using estimating equations

ABSTRACT In genetic association studies, it is important to distinguish direct and indirect genetic effects in order to build truly functional models. For this purpose, we consider a directed acyclic graph setting with genetic variants, primary and intermediate phenotypes, and confounding factors. I...

Full description

Saved in:
Bibliographic Details
Published inGenetic epidemiology Vol. 42; no. 2; pp. 174 - 186
Main Authors Konigorski, Stefan, Wang, Yuan, Cigsar, Candemir, Yilmaz, Yildiz E.
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.03.2018
John Wiley and Sons Inc
Subjects
Online AccessGet full text
ISSN0741-0395
1098-2272
1098-2272
DOI10.1002/gepi.22107

Cover

Loading…
Abstract ABSTRACT In genetic association studies, it is important to distinguish direct and indirect genetic effects in order to build truly functional models. For this purpose, we consider a directed acyclic graph setting with genetic variants, primary and intermediate phenotypes, and confounding factors. In order to make valid statistical inference on direct genetic effects on the primary phenotype, it is necessary to consider all potential effects in the graph, and we propose to use the estimating equations method with robust Huber–White sandwich standard errors. We evaluate the proposed causal inference based on estimating equations (CIEE) method and compare it with traditional multiple regression methods, the structural equation modeling method, and sequential G‐estimation methods through a simulation study for the analysis of (completely observed) quantitative traits and time‐to‐event traits subject to censoring as primary phenotypes. The results show that CIEE provides valid estimators and inference by successfully removing the effect of intermediate phenotypes from the primary phenotype and is robust against measured and unmeasured confounding of the indirect effect through observed factors. All other methods except the sequential G‐estimation method for quantitative traits fail in some scenarios where their test statistics yield inflated type I errors. In the analysis of the Genetic Analysis Workshop 19 dataset, we estimate and test genetic effects on blood pressure accounting for intermediate gene expression phenotypes. The results show that CIEE can identify genetic variants that would be missed by traditional regression analyses. CIEE is computationally fast, widely applicable to different fields, and available as an R package.
AbstractList In genetic association studies, it is important to distinguish direct and indirect genetic effects in order to build truly functional models. For this purpose, we consider a directed acyclic graph setting with genetic variants, primary and intermediate phenotypes, and confounding factors. In order to make valid statistical inference on direct genetic effects on the primary phenotype, it is necessary to consider all potential effects in the graph, and we propose to use the estimating equations method with robust Huber-White sandwich standard errors. We evaluate the proposed causal inference based on estimating equations (CIEE) method and compare it with traditional multiple regression methods, the structural equation modeling method, and sequential G-estimation methods through a simulation study for the analysis of (completely observed) quantitative traits and time-to-event traits subject to censoring as primary phenotypes. The results show that CIEE provides valid estimators and inference by successfully removing the effect of intermediate phenotypes from the primary phenotype and is robust against measured and unmeasured confounding of the indirect effect through observed factors. All other methods except the sequential G-estimation method for quantitative traits fail in some scenarios where their test statistics yield inflated type I errors. In the analysis of the Genetic Analysis Workshop 19 dataset, we estimate and test genetic effects on blood pressure accounting for intermediate gene expression phenotypes. The results show that CIEE can identify genetic variants that would be missed by traditional regression analyses. CIEE is computationally fast, widely applicable to different fields, and available as an R package.In genetic association studies, it is important to distinguish direct and indirect genetic effects in order to build truly functional models. For this purpose, we consider a directed acyclic graph setting with genetic variants, primary and intermediate phenotypes, and confounding factors. In order to make valid statistical inference on direct genetic effects on the primary phenotype, it is necessary to consider all potential effects in the graph, and we propose to use the estimating equations method with robust Huber-White sandwich standard errors. We evaluate the proposed causal inference based on estimating equations (CIEE) method and compare it with traditional multiple regression methods, the structural equation modeling method, and sequential G-estimation methods through a simulation study for the analysis of (completely observed) quantitative traits and time-to-event traits subject to censoring as primary phenotypes. The results show that CIEE provides valid estimators and inference by successfully removing the effect of intermediate phenotypes from the primary phenotype and is robust against measured and unmeasured confounding of the indirect effect through observed factors. All other methods except the sequential G-estimation method for quantitative traits fail in some scenarios where their test statistics yield inflated type I errors. In the analysis of the Genetic Analysis Workshop 19 dataset, we estimate and test genetic effects on blood pressure accounting for intermediate gene expression phenotypes. The results show that CIEE can identify genetic variants that would be missed by traditional regression analyses. CIEE is computationally fast, widely applicable to different fields, and available as an R package.
In genetic association studies, it is important to distinguish direct and indirect genetic effects in order to build truly functional models. For this purpose, we consider a directed acyclic graph setting with genetic variants, primary and intermediate phenotypes, and confounding factors. In order to make valid statistical inference on direct genetic effects on the primary phenotype, it is necessary to consider all potential effects in the graph, and we propose to use the estimating equations method with robust Huber–White sandwich standard errors. We evaluate the proposed causal inference based on estimating equations (CIEE) method and compare it with traditional multiple regression methods, the structural equation modeling method, and sequential G‐estimation methods through a simulation study for the analysis of (completely observed) quantitative traits and time‐to‐event traits subject to censoring as primary phenotypes. The results show that CIEE provides valid estimators and inference by successfully removing the effect of intermediate phenotypes from the primary phenotype and is robust against measured and unmeasured confounding of the indirect effect through observed factors. All other methods except the sequential G‐estimation method for quantitative traits fail in some scenarios where their test statistics yield inflated type I errors. In the analysis of the Genetic Analysis Workshop 19 dataset, we estimate and test genetic effects on blood pressure accounting for intermediate gene expression phenotypes. The results show that CIEE can identify genetic variants that would be missed by traditional regression analyses. CIEE is computationally fast, widely applicable to different fields, and available as an R package.
ABSTRACT In genetic association studies, it is important to distinguish direct and indirect genetic effects in order to build truly functional models. For this purpose, we consider a directed acyclic graph setting with genetic variants, primary and intermediate phenotypes, and confounding factors. In order to make valid statistical inference on direct genetic effects on the primary phenotype, it is necessary to consider all potential effects in the graph, and we propose to use the estimating equations method with robust Huber–White sandwich standard errors. We evaluate the proposed causal inference based on estimating equations (CIEE) method and compare it with traditional multiple regression methods, the structural equation modeling method, and sequential G‐estimation methods through a simulation study for the analysis of (completely observed) quantitative traits and time‐to‐event traits subject to censoring as primary phenotypes. The results show that CIEE provides valid estimators and inference by successfully removing the effect of intermediate phenotypes from the primary phenotype and is robust against measured and unmeasured confounding of the indirect effect through observed factors. All other methods except the sequential G‐estimation method for quantitative traits fail in some scenarios where their test statistics yield inflated type I errors. In the analysis of the Genetic Analysis Workshop 19 dataset, we estimate and test genetic effects on blood pressure accounting for intermediate gene expression phenotypes. The results show that CIEE can identify genetic variants that would be missed by traditional regression analyses. CIEE is computationally fast, widely applicable to different fields, and available as an R package.
Author Wang, Yuan
Yilmaz, Yildiz E.
Cigsar, Candemir
Konigorski, Stefan
AuthorAffiliation 1 Molecular Epidemiology Research Group Max Delbrück Center (MDC) for Molecular Medicine in the Helmholtz Association Berlin Germany
2 Department of Mathematics and Statistics Memorial University of Newfoundland St. John's Canada
4 Discipline of Medicine, Faculty of Medicine Memorial University of Newfoundland St. John's Canada
3 Discipline of Genetics Faculty of Medicine Memorial University of Newfoundland St. John's Canada
AuthorAffiliation_xml – name: 4 Discipline of Medicine, Faculty of Medicine Memorial University of Newfoundland St. John's Canada
– name: 3 Discipline of Genetics Faculty of Medicine Memorial University of Newfoundland St. John's Canada
– name: 2 Department of Mathematics and Statistics Memorial University of Newfoundland St. John's Canada
– name: 1 Molecular Epidemiology Research Group Max Delbrück Center (MDC) for Molecular Medicine in the Helmholtz Association Berlin Germany
Author_xml – sequence: 1
  givenname: Stefan
  orcidid: 0000-0002-9966-6819
  surname: Konigorski
  fullname: Konigorski, Stefan
  email: stefan.konigorski@mdc-berlin.de
  organization: Memorial University of Newfoundland
– sequence: 2
  givenname: Yuan
  surname: Wang
  fullname: Wang, Yuan
  organization: Memorial University of Newfoundland
– sequence: 3
  givenname: Candemir
  surname: Cigsar
  fullname: Cigsar, Candemir
  organization: Memorial University of Newfoundland
– sequence: 4
  givenname: Yildiz E.
  surname: Yilmaz
  fullname: Yilmaz, Yildiz E.
  organization: Memorial University of Newfoundland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29265408$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9P3DAQxS1EBQvlwgdAkbigSgGP49jxBQmhLUVCKgc4W44zCUZZZ7ET0H77etkt_XPg5LHmN0_vzRyQXT94JOQY6DlQyi46XLpzxoDKHTIDqqqcMcl2yYxKDjktVLlPDmJ8phSAq3KP7DPFRMlpNSN2Hke3MKPzXWZ8k40Y3-vGBbRj1qHH0dkM2zZ9Y-b8toNNZuzK9qnXBbN8itkU13P4Rw5fplQMPn4lX1rTRzzavofk8fv84fpHfvfz5vb66i63nEqZQ4GiokZYSOaM4JZXIFspLRSybAyrRamESnG4LduiFrS2EgAVUgm1KGxxSC43usupXmBj0Y_B9HoZkqOw0oNx-t-Od0-6G161EKAKXiWBs61AGF6mFEUvXLTY98bjMEUNSiqumBKQ0NP_0OdhCj7F0yztOTGMqkSd_O3ow8rv_Sfg2wawYYgxYPuBANXr4-r1cfX7cRMMG_jN9bj6hNQ38_vbzcwvdv6m3A
Cites_doi 10.1093/biomet/68.3.589
10.1002/gepi.20557
10.1097/00001648-200009000-00011
10.1016/j.immuni.2012.11.003
10.1038/ng1847
10.1002/9781118619179
10.2307/1912526
10.1111/j.1467-9868.2008.00673.x
10.1093/biomet/79.2.321
10.1371/journal.pgen.1004445
10.1093/ije/dys006
10.1214/14-STS493
10.1093/biomet/82.4.669
10.1371/journal.pmed.1002179
10.1093/ije/dyr233
10.1038/ncomms13357
10.1038/ng.3570
10.1093/ije/31.1.163
10.1038/nature18642
10.1080/01621459.1994.10476807
10.1002/sim.2165
10.1111/j.1467-9868.2011.00782.x
10.1038/ng.3561
10.1186/1753-6561-8-S1-S72
10.1038/ng.3674
10.1038/nrg3142
10.1002/gepi.20393
10.1038/nature14177
10.1038/ejhg.2011.122
10.2307/2981697
10.18637/jss.v048.i02
10.1111/1753-0407.12510
10.1093/hmg/ddv303
10.1016/0270-0255(86)90088-6
ContentType Journal Article
Copyright 2017 The Authors. Published by Wiley Periodicals, Inc.
2017 WILEY PERIODICALS, INC.
2018 Wiley Periodicals, Inc.
Copyright_xml – notice: 2017 The Authors. Published by Wiley Periodicals, Inc.
– notice: 2017 WILEY PERIODICALS, INC.
– notice: 2018 Wiley Periodicals, Inc.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
8FD
FR3
K9.
P64
RC3
7X8
5PM
DOI 10.1002/gepi.22107
DatabaseName Wiley Online Library Open Access (Activated by CARLI)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Genetics Abstracts
MEDLINE

CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Biology
DocumentTitleAlternate KONIGORSKI et al
EISSN 1098-2272
EndPage 186
ExternalDocumentID PMC6619348
29265408
10_1002_gepi_22107
GEPI22107
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Natural Sciences and Engineering Research Council of Canada
  funderid: RGPIN 2014-04904; RGPIN 2015-06152
– fundername: Helmholtz Association
– fundername: Research and Development Corporation of Newfoundland and Labrador
  funderid: 5404.1723.101; 5404.1801.101
– fundername: Faculty of Medicine of Memorial University of Newfoundland
– fundername: NIDDK NIH HHS
  grantid: U01 DK085524
– fundername: NIDDK NIH HHS
  grantid: R01 DK073541
– fundername: NIDDK NIH HHS
  grantid: U01 DK085584
– fundername: NHLBI NIH HHS
  grantid: R01 HL102830
– fundername: NIDDK NIH HHS
  grantid: U01 DK085545
– fundername: NHLBI NIH HHS
  grantid: P01 HL045522
– fundername: NIDDK NIH HHS
  grantid: U01 DK085501
– fundername: NIDDK NIH HHS
  grantid: R01 DK047482
– fundername: NIDDK NIH HHS
  grantid: U01 DK057295
– fundername: NIDDK NIH HHS
  grantid: R01 DK053889
– fundername: Natural Sciences and Engineering Research Council of Canada
  grantid: RGPIN 2014-04904; RGPIN 2015-06152
– fundername: Research and Development Corporation of Newfoundland and Labrador
  grantid: 5404.1723.101; 5404.1801.101
GroupedDBID ---
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
DVXWH
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M66
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RWV
RX1
RYL
SAMSI
SUPJJ
SV3
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WTM
WXSBR
WYISQ
XG1
XV2
ZGI
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
K9.
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c4077-13e680a6c1265a64c4817f77c1375da2b659690394c5f3b60bc711e9e071b63c3
IEDL.DBID 24P
ISSN 0741-0395
1098-2272
IngestDate Thu Aug 21 18:33:30 EDT 2025
Fri Jul 11 16:25:18 EDT 2025
Fri Jul 25 12:29:35 EDT 2025
Thu Apr 03 07:01:44 EDT 2025
Tue Jul 01 04:23:58 EDT 2025
Wed Jan 22 17:00:32 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords directed acyclic graph
estimating equations
direct effect
causal inference
genetic association study
time-to-event phenotype
Language English
License Attribution-NonCommercial-NoDerivs
http://creativecommons.org/licenses/by-nc-nd/4.0
2017 WILEY PERIODICALS, INC.
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4077-13e680a6c1265a64c4817f77c1375da2b659690394c5f3b60bc711e9e071b63c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9966-6819
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fgepi.22107
PMID 29265408
PQID 2001296209
PQPubID 105460
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6619348
proquest_miscellaneous_1979492961
proquest_journals_2001296209
pubmed_primary_29265408
crossref_primary_10_1002_gepi_22107
wiley_primary_10_1002_gepi_22107_GEPI22107
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2018
PublicationDateYYYYMMDD 2018-03-01
PublicationDate_xml – month: 03
  year: 2018
  text: March 2018
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Genetic epidemiology
PublicationTitleAlternate Genet Epidemiol
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 1984; 147
2002; 31
1982; 50
2006; 38
2012a; 41
2016; 10
1994; 89
1981; 68
2011; 35
1992; 79
2003
2014; 29
2012; 37
2012; 13
2008; 70
2011; 19
2017; 9
2016; 13
2005; 24
2012b; 41
2015; 24
2009; 33
2016; 7
1995; 82
1986; 7
2016; 536
2000; 11
2011; 73
2016; 518
2012; 48
2014; 8
2016; 48
1989
2014; 10
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
Konigorski S. (e_1_2_7_15_1) 2016; 10
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Lawless J. F. (e_1_2_7_16_1) 2003
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
Blangero J. (e_1_2_7_2_1) 2016; 10
References_xml – volume: 73
  start-page: 773
  issue: 5
  year: 2011
  end-page: 788
  article-title: Estimation of direct effects for survival data by using the Aalen additive hazards model
  publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology)
– volume: 48
  start-page: 634
  issue: 6
  year: 2016
  end-page: 639
  article-title: Variants with large effect on blood lipids and the role of cholesterol and triglycerides in coronary disease
  publication-title: Nature Genetics
– volume: 11
  start-page: 550
  issue: 5
  year: 2000
  end-page: 560
  article-title: Marginal structural models and causal inference in epidemiology
  publication-title: Epidemiology
– year: 1989
– volume: 70
  start-page: 1049
  issue: 5
  year: 2008
  end-page: 1066
  article-title: Estimation of controlled direct effects
  publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology)
– year: 2003
– volume: 33
  start-page: 394
  issue: 5
  year: 2009
  end-page: 405
  article-title: On the adjustment for covariates in genetic association analysis: A novel, simple principle to infer direct causal effects
  publication-title: Genetic Epidemiology
– volume: 48
  start-page: 1313
  issue: 11
  year: 2016
  end-page: 1320
  article-title: Modeling disease risk through analysis of physical interactions between genetic variants within chromatin regulatory circuitry
  publication-title: Nature Genetics
– volume: 48
  start-page: 709
  issue: 10
  year: 2016
  end-page: 717
  article-title: Detection and interpretation of shared genetic influences on 42 human traits
  publication-title: Nature Genetics
– volume: 518
  start-page: 197
  issue: 7538
  year: 2016
  end-page: 206
  article-title: Genetic studies of body mass index yield new insights for obesity biology
  publication-title: Nature
– volume: 147
  start-page: 656
  issue: 5
  year: 1984
  end-page: 666
  article-title: The consequences of adjustment for a concomitant variable that has been affected by the treatment
  publication-title: Journal of the Royal Statistical Society: Series A (General)
– volume: 29
  start-page: 707
  issue: 4
  year: 2014
  end-page: 731
  article-title: Structural nested models and G‐estimation: The partially realized promise
  publication-title: Statistical Science
– volume: 9
  start-page: 898
  issue: 10
  year: 2017
  end-page: 907
  article-title: Increased identification of novel variants in type 2 diabetes, birth weight and their pleiotropic loci
  publication-title: Journal of Diabetes
– volume: 31
  start-page: 163
  issue: 1
  year: 2002
  end-page: 165
  article-title: Fallibility in estimating direct effects
  publication-title: International Journal of Epidemiology
– volume: 10
  start-page: 289
  issue: Suppl 7
  year: 2016
  end-page: 294
  article-title: Genetic association analysis based on a joint model of gene expression and blood pressure
  publication-title: BMC Proceedings
– volume: 38
  start-page: 904
  issue: 8
  year: 2006
  end-page: 909
  article-title: Principal components analysis corrects for stratification in genome‐wide association studies
  publication-title: Nature Genetics
– volume: 24
  start-page: 5940
  issue: 20
  year: 2015
  end-page: 5954
  article-title: A multiancestry study identifies novel genetic associations with CHRNA5 methylation in human brain and risk of nicotine dependence
  publication-title: Human Molecular Genetics
– volume: 13
  start-page: e1002179
  issue: 11
  year: 2016
  article-title: Genetic predisposition to an impaired metabolism of the branched‐chain amino acids and risk of type 2 diabetes: A Mendelian randomization analysis
  publication-title: PLoS Medicine
– volume: 8
  start-page: S72
  issue: Suppl 1
  year: 2014
  end-page: S77
  article-title: Bivariate genetic association analysis of systolic and diastolic blood pressure by copula models
  publication-title: BMC Proceedings
– volume: 79
  start-page: 321
  issue: 2
  year: 1992
  end-page: 334
  article-title: Estimation of the time‐dependent accelerated failure time model in the presence of confounding factors
  publication-title: Biometrika
– volume: 89
  start-page: 737
  issue: 427
  year: 1994
  end-page: 749
  article-title: Adjusting for differential rates of PCP prophylaxis in high‐ versus low‐dose AZT treatment arms in an AIDS randomized trial
  publication-title: Journal of the American Statistical Association
– volume: 7
  start-page: 1393
  issue: 9–12
  year: 1986
  end-page: 1512
  article-title: A new approach to causal inference in mortality studies with a sustained exposure period—Application to control of the healthy worker survivor effect. Mathematical models in medicine: Diseases and epidemics. Part 2
  publication-title: Mathematical Modelling
– volume: 536
  start-page: 41
  issue: 7614
  year: 2016
  end-page: 47
  article-title: The genetic architecture of type 2 diabetes
  publication-title: Nature
– volume: 68
  start-page: 589
  issue: 3
  year: 1981
  end-page: 599
  article-title: Nonparametric estimates of standard error: the jackknife, the bootstrap, and other methods
  publication-title: Biometrika
– volume: 19
  start-page: 1292
  issue: 12
  year: 2011
  end-page: 1294
  article-title: CGene: An R package for implementation of causal genetic analyses
  publication-title: European Journal of Human Genetics
– volume: 37
  start-page: 960
  issue: 6
  year: 2012
  end-page: 969
  article-title: Interleukin‐27: Balancing protective and pathological immunity
  publication-title: Immunity
– volume: 82
  start-page: 669
  issue: 4
  year: 1995
  end-page: 688
  article-title: Causal diagrams for empirical research
  publication-title: Biometrika
– volume: 7
  start-page: 13357
  year: 2016
  article-title: A principal component meta‐analysis on multiple anthropometric traits identifies novel loci for body shape
  publication-title: Nature Communications
– volume: 48
  start-page: 1
  issue: 2
  year: 2012
  end-page: 36
  article-title: lavaan: An R package for structural equation modeling
  publication-title: Journal of Statistical Software
– volume: 10
  start-page: 71
  issue: Suppl 7
  year: 2016
  end-page: 77
  article-title: Omics‐squared: Human genomic, transcriptomic and phenotypic data for Genetic Analysis Workshop 19
  publication-title: BMC Proceedings
– volume: 35
  start-page: 119
  issue: 2
  year: 2011
  end-page: 124
  article-title: Inferring genetic causal effects on survival data with associated endo‐phenotypes
  publication-title: Genetic Epidemiology
– volume: 10
  start-page: e1004445
  issue: 7
  year: 2014
  article-title: Comparison of methods to account for relatedness in genome‐wide association studies with family‐based data
  publication-title: PLoS Genetics
– volume: 13
  start-page: 97
  issue: 2
  year: 2012
  end-page: 109
  article-title: Epigenetics and the environment: Emerging patterns and implications
  publication-title: Nature Review Genetics
– volume: 41
  start-page: 5
  issue: 1
  year: 2012a
  end-page: 9
  article-title: Is epidemiology ready for epigenetics
  publication-title: International Journal of Epidemiology
– volume: 24
  start-page: 2911
  issue: 19
  year: 2005
  end-page: 2935
  article-title: Adjusting for treatment effects in studies of quantitative traits: Antihypertensive therapy and systolic blood pressure
  publication-title: Statistics in Medicine
– volume: 41
  start-page: 161
  issue: 1
  year: 2012b
  end-page: 176
  article-title: Two‐step epigenetic Mendelian randomization: A strategy for establishing the causal role of epigenetic processes in pathways to disease
  publication-title: International Journal of Epidemiology
– volume: 50
  start-page: 1
  issue: 1
  year: 1982
  end-page: 25
  article-title: Maximum likelihood estimation of misspecified models
  publication-title: Econometrica
– ident: e_1_2_7_6_1
  doi: 10.1093/biomet/68.3.589
– ident: e_1_2_7_18_1
  doi: 10.1002/gepi.20557
– ident: e_1_2_7_31_1
  doi: 10.1097/00001648-200009000-00011
– ident: e_1_2_7_13_1
  doi: 10.1016/j.immuni.2012.11.003
– ident: e_1_2_7_24_1
  doi: 10.1038/ng1847
– ident: e_1_2_7_3_1
  doi: 10.1002/9781118619179
– ident: e_1_2_7_37_1
  doi: 10.2307/1912526
– ident: e_1_2_7_10_1
  doi: 10.1111/j.1467-9868.2008.00673.x
– ident: e_1_2_7_29_1
  doi: 10.1093/biomet/79.2.321
– ident: e_1_2_7_7_1
  doi: 10.1371/journal.pgen.1004445
– ident: e_1_2_7_25_1
  doi: 10.1093/ije/dys006
– volume: 10
  start-page: 289
  issue: 7
  year: 2016
  ident: e_1_2_7_15_1
  article-title: Genetic association analysis based on a joint model of gene expression and blood pressure
  publication-title: BMC Proceedings
– ident: e_1_2_7_36_1
  doi: 10.1214/14-STS493
– ident: e_1_2_7_22_1
  doi: 10.1093/biomet/82.4.669
– ident: e_1_2_7_20_1
  doi: 10.1371/journal.pmed.1002179
– ident: e_1_2_7_26_1
  doi: 10.1093/ije/dyr233
– ident: e_1_2_7_27_1
  doi: 10.1038/ncomms13357
– ident: e_1_2_7_23_1
  doi: 10.1038/ng.3570
– ident: e_1_2_7_4_1
  doi: 10.1093/ije/31.1.163
– ident: e_1_2_7_9_1
  doi: 10.1038/nature18642
– ident: e_1_2_7_30_1
  doi: 10.1080/01621459.1994.10476807
– ident: e_1_2_7_34_1
  doi: 10.1002/sim.2165
– ident: e_1_2_7_21_1
  doi: 10.1111/j.1467-9868.2011.00782.x
– volume: 10
  start-page: 71
  issue: 7
  year: 2016
  ident: e_1_2_7_2_1
  article-title: Omics‐squared: Human genomic, transcriptomic and phenotypic data for Genetic Analysis Workshop 19
  publication-title: BMC Proceedings
– ident: e_1_2_7_12_1
  doi: 10.1038/ng.3561
– ident: e_1_2_7_14_1
  doi: 10.1186/1753-6561-8-S1-S72
– ident: e_1_2_7_5_1
  doi: 10.1038/ng.3674
– ident: e_1_2_7_8_1
  doi: 10.1038/nrg3142
– ident: e_1_2_7_35_1
  doi: 10.1002/gepi.20393
– ident: e_1_2_7_19_1
  doi: 10.1038/nature14177
– ident: e_1_2_7_17_1
  doi: 10.1038/ejhg.2011.122
– ident: e_1_2_7_32_1
  doi: 10.2307/2981697
– ident: e_1_2_7_33_1
  doi: 10.18637/jss.v048.i02
– ident: e_1_2_7_38_1
  doi: 10.1111/1753-0407.12510
– ident: e_1_2_7_11_1
  doi: 10.1093/hmg/ddv303
– volume-title: Statistical models and methods for lifetime data
  year: 2003
  ident: e_1_2_7_16_1
– ident: e_1_2_7_28_1
  doi: 10.1016/0270-0255(86)90088-6
SSID ssj0011495
Score 2.1904953
Snippet ABSTRACT In genetic association studies, it is important to distinguish direct and indirect genetic effects in order to build truly functional models. For this...
In genetic association studies, it is important to distinguish direct and indirect genetic effects in order to build truly functional models. For this purpose,...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 174
SubjectTerms Blood pressure
Blood Pressure - genetics
causal inference
Confounding Factors, Epidemiologic
Datasets as Topic
direct effect
directed acyclic graph
estimating equations
Gene expression
Genetic analysis
Genetic Association Studies - methods
genetic association study
Genetic diversity
Genetic Variation
Genotype & phenotype
Humans
Mathematical models
Methods
Models, Genetic
Phenotype
Phenotypes
Polymorphism, Single Nucleotide - genetics
Regression Analysis
Research Design
Software
Statistical analysis
time‐to‐event phenotype
Title Estimating and testing direct genetic effects in directed acyclic graphs using estimating equations
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fgepi.22107
https://www.ncbi.nlm.nih.gov/pubmed/29265408
https://www.proquest.com/docview/2001296209
https://www.proquest.com/docview/1979492961
https://pubmed.ncbi.nlm.nih.gov/PMC6619348
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dSxwxEB_siVCQUu2H16qk2KfC1t1sNrmAL0XP2oIiouDbkmSz13tZP_Z8uP--M8nenodQ6MsSyNcmk2R-k0x-AfiKSlLWUqWJVrZO6OAtMdzqBI2NqqqVrF3wdj-_kGc34vdtcbsGR4u7MJEfot9wo5kR1mua4Ma2h0vS0Im_n37naLGoV7BOd2tplHNx2Z8hEPaPJJzkNKSLnpyUHy7zrqqjFxjzpavkcwgbdNDpW3jTgUf2I0p7C9Z8sw0b8TnJ-TZsxj04Fq8WvQM3xvlLiLSZMNNUbEaMGhiOaozh0KEbjKxz6WDTpovxFTNu7qiowGfdMvKOnzC_LM4_RIrw9j3cnI6vj8-S7lGFxKHtppIs93KUGukyLgsjhROjTNVKuSxXRYVykoVGiznXwhV1bmVqncoyrz1iEStzl3-AQXPX-B1gyvlCCCOqSqMu5JUhdj5jc-etRlyQDeFg0bflfeTOKCNLMi9JAmWQwBB2F91edvOnpccxEYhInuohfOmjceTTcYZp_N1TW2Ya1xJEdxIr-hil1FfDNbZOpKMhqBX59QmIVXs1ppn-CezaCFiwOZjzW5D0P_68_Dm-_BVCn_4n8Wd4jahrFB3ZdmEwe3zye4hsZnY_DGD8nlzxv_hQ9QU
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED9tTGhICG1sQIFtRuxpUiBxHLt-RKis3dqKB5B4ixzHKX0JHy0P_Pfc2SGlQkLiLZK_Yp_P9zv7_DPAbzSSspIqjrQqqogO3iLDCx2hs1GWlZKV9dHuo7HsX4p_V9lVE5tDd2ECP0S74Uaa4ddrUnDakD5esIZO3O30iKPLoj7CJyG5opcbuDhvDxEI_AcWTooa0lnLTsqPF2WX7dErkPk6VvIlhvVG6OwLbDTokZ0EcX-FD67ehNXwnuTjJqyHTTgW7hZ9A9tDBSZIWk-YqUs2J0oN_A52jOHcoSuMrInpYNO6SXElM_bRUlWe0HrGKDx-wtyiOncXOMJn3-HyrHdx2o-aVxUii86bipLUyW5spE24zIwUVnQTVSllk1RlJQpKZhpd5lQLm1VpIePCqiRx2iEYKWRq0y1YqW9qtwNMWZcJYURZajSGvDREz2eK1LpCIzBIOnD4PLb5bSDPyANNMs9JArmXQAf2n4c9bxRoRq9jIhKRPNYdOGiTcerTeYap3c3DLE80LiYI7yQ2tB2k1DbDNfZOxN0OqCX5tRmIVns5pZ5ee3ptRCzYHSz5x0v6jT_P__bOB_5r9z2Zf8Hn_sVomA8H4_97sIYQrBui2vZhZX7_4H4gzJkXP_1kfgJrUveI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RUKtKFaK0lC2PumpPlQKJ49hrqRcEu4U-0B6KxC1ybGfZS1i6y4F_3xk7m-0KqRK3SH7FnhnPZ3v8GeAzOklZS5UmWlV1QgdvieGVTnCx4VytZG1DtPuvS3l-Jb5fF9dr8HVxFybyQ3QbbmQZYb4mA5-6-nhJGjr208kRxxWLegYbdNpH-s3FqDtDIOwfSTgpaEgXHTkpP16WXXVHjzDm41DJfyFs8EHDLdhswSM7idJ-DWu-2Ybn8TnJh214FffgWLxa9AbsAO2XEGkzZqZxbE6MGvgd3RhD1aEbjKwN6WCTpk3xjhn7YKmqwGc9YxQdP2Z-WZ2_ixThs7dwNRz8Pj1P2kcVEotrN5VkuZf91EibcVkYKazoZ6pWyma5KhzKSRYaV8y5Frao80qmlVVZ5rVHLFLJ3OY7sN7cNn4XmLK-EMII5zT6Qu4MsfOZKre-0ogLsh58WoxtOY3cGWVkSeYlSaAMEujB_mLYy9Z-ZvQ4JgIRyVPdg49dMmo-HWeYxt_ez8pM41yC6E5iQ--ilLpmuMbeibTfA7Uivy4DsWqvpjSTm8CujYAFu4MlvwRJ_-fPy2-D0UX4ev-UzB_gxehsWP68uPyxBy8RgPVjTNs-rM__3PsDBDnz6jDo8l8C0Pa6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+and+testing+direct+genetic+effects+in+directed+acyclic+graphs+using+estimating+equations&rft.jtitle=Genetic+epidemiology&rft.au=Konigorski%2C+Stefan&rft.au=Wang%2C+Yuan&rft.au=Candemir+Cigsar&rft.au=Yilmaz%2C+Yildiz+E&rft.date=2018-03-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0741-0395&rft.eissn=1098-2272&rft.volume=42&rft.issue=2&rft.spage=174&rft.epage=186&rft_id=info:doi/10.1002%2Fgepi.22107&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0741-0395&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0741-0395&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0741-0395&client=summon