Hybrid Elastic Organic Crystals that Respond to Aerial Humidity
Reshaping of elongated organic crystals that can be used as semiconductors, waveguides or soft robotic grippers by application of force or light is now a commonplace, however mechanical response of organic crystals to changes in humidity has not been accomplished yet. Here, we report a universal app...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 61; no. 14; pp. e202200196 - n/a |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
WEINHEIM
Wiley
28.03.2022
Wiley Subscription Services, Inc Wiley-VCH Verlag |
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Reshaping of elongated organic crystals that can be used as semiconductors, waveguides or soft robotic grippers by application of force or light is now a commonplace, however mechanical response of organic crystals to changes in humidity has not been accomplished yet. Here, we report a universal approach to instigating a humidity response into elastically bendable organic crystals that elicits controllable deformation with linear response to aerial humidity while retaining their physical integrity entirely intact. Hygroresponsive bilayer elements are designed by mechanically coupling a humidity‐responsive polymer with elastic molecular crystals that have been mechanically reinforced by a polymer coating. As an illustration of the application of these cladded crystalline actuators, they are tested as active optical transducers of visible light where the position of light output can be precisely controlled by variations in aerial humidity. Within a broader context, the approach described here provides access to a vast range of mechanically robust, lightweight hybrid hygroresponsive crystalline materials.
A new class of lightweight, mechanically reinforced, hygroresponsive organic crystalline hybrid materials has been synthesized by a universally applicable approach. The crystals are robust, durable, and moisture‐absorbing, and show a highly linear deformation over a wide range of relative humidity. Such precise spatiotemporal control over the light output in response to air humidity allows the materials to be used as optical waveguides. |
---|---|
AbstractList | Reshaping of elongated organic crystals that can be used as semiconductors, waveguides or soft robotic grippers by application of force or light is now a commonplace, however mechanical response of organic crystals to changes in humidity has not been accomplished yet. Here, we report a universal approach to instigating a humidity response into elastically bendable organic crystals that elicits controllable deformation with linear response to aerial humidity while retaining their physical integrity entirely intact. Hygroresponsive bilayer elements are designed by mechanically coupling a humidity-responsive polymer with elastic molecular crystals that have been mechanically reinforced by a polymer coating. As an illustration of the application of these cladded crystalline actuators, they are tested as active optical transducers of visible light where the position of light output can be precisely controlled by variations in aerial humidity. Within a broader context, the approach described here provides access to a vast range of mechanically robust, lightweight hybrid hygroresponsive crystalline materials. Reshaping of elongated organic crystals that can be used as semiconductors, waveguides or soft robotic grippers by application of force or light is now a commonplace, however mechanical response of organic crystals to changes in humidity has not been accomplished yet. Here, we report a universal approach to instigating a humidity response into elastically bendable organic crystals that elicits controllable deformation with linear response to aerial humidity while retaining their physical integrity entirely intact. Hygroresponsive bilayer elements are designed by mechanically coupling a humidity-responsive polymer with elastic molecular crystals that have been mechanically reinforced by a polymer coating. As an illustration of the application of these cladded crystalline actuators, they are tested as active optical transducers of visible light where the position of light output can be precisely controlled by variations in aerial humidity. Within a broader context, the approach described here provides access to a vast range of mechanically robust, lightweight hybrid hygro-responsive crystalline materials. Reshaping of elongated organic crystals that can be used as semiconductors, waveguides or soft robotic grippers by application of force or light is now a commonplace, however mechanical response of organic crystals to changes in humidity has not been accomplished yet. Here, we report a universal approach to instigating a humidity response into elastically bendable organic crystals that elicits controllable deformation with linear response to aerial humidity while retaining their physical integrity entirely intact. Hygroresponsive bilayer elements are designed by mechanically coupling a humidity-responsive polymer with elastic molecular crystals that have been mechanically reinforced by a polymer coating. As an illustration of the application of these cladded crystalline actuators, they are tested as active optical transducers of visible light where the position of light output can be precisely controlled by variations in aerial humidity. Within a broader context, the approach described here provides access to a vast range of mechanically robust, lightweight hybrid hygroresponsive crystalline materials.Reshaping of elongated organic crystals that can be used as semiconductors, waveguides or soft robotic grippers by application of force or light is now a commonplace, however mechanical response of organic crystals to changes in humidity has not been accomplished yet. Here, we report a universal approach to instigating a humidity response into elastically bendable organic crystals that elicits controllable deformation with linear response to aerial humidity while retaining their physical integrity entirely intact. Hygroresponsive bilayer elements are designed by mechanically coupling a humidity-responsive polymer with elastic molecular crystals that have been mechanically reinforced by a polymer coating. As an illustration of the application of these cladded crystalline actuators, they are tested as active optical transducers of visible light where the position of light output can be precisely controlled by variations in aerial humidity. Within a broader context, the approach described here provides access to a vast range of mechanically robust, lightweight hybrid hygroresponsive crystalline materials. Reshaping of elongated organic crystals that can be used as semiconductors, waveguides or soft robotic grippers by application of force or light is now a commonplace, however mechanical response of organic crystals to changes in humidity has not been accomplished yet. Here, we report a universal approach to instigating a humidity response into elastically bendable organic crystals that elicits controllable deformation with linear response to aerial humidity while retaining their physical integrity entirely intact. Hygroresponsive bilayer elements are designed by mechanically coupling a humidity‐responsive polymer with elastic molecular crystals that have been mechanically reinforced by a polymer coating. As an illustration of the application of these cladded crystalline actuators, they are tested as active optical transducers of visible light where the position of light output can be precisely controlled by variations in aerial humidity. Within a broader context, the approach described here provides access to a vast range of mechanically robust, lightweight hybrid hygroresponsive crystalline materials. A new class of lightweight, mechanically reinforced, hygroresponsive organic crystalline hybrid materials has been synthesized by a universally applicable approach. The crystals are robust, durable, and moisture‐absorbing, and show a highly linear deformation over a wide range of relative humidity. Such precise spatiotemporal control over the light output in response to air humidity allows the materials to be used as optical waveguides. |
ArticleNumber | 202200196 |
Author | Naumov, Panče Tang, Baolei Li, Liang Liu, Xiaokong Yu, Xu Lan, Linfeng Zhang, Hongyu Yang, Xuesong |
Author_xml | – sequence: 1 givenname: Linfeng orcidid: 0000-0001-7051-9332 surname: Lan fullname: Lan, Linfeng organization: Jilin University – sequence: 2 givenname: Xuesong surname: Yang fullname: Yang, Xuesong organization: Jilin University – sequence: 3 givenname: Baolei surname: Tang fullname: Tang, Baolei organization: Jilin University – sequence: 4 givenname: Xu surname: Yu fullname: Yu, Xu organization: Jilin University – sequence: 5 givenname: Xiaokong orcidid: 0000-0002-0355-2658 surname: Liu fullname: Liu, Xiaokong organization: Jilin University – sequence: 6 givenname: Liang orcidid: 0000-0002-3577-4343 surname: Li fullname: Li, Liang organization: Sorbonne University Abu Dhabi – sequence: 7 givenname: Panče orcidid: 0000-0003-2416-6569 surname: Naumov fullname: Naumov, Panče email: pance.naumov@nyu.edu organization: New York University – sequence: 8 givenname: Hongyu orcidid: 0000-0002-0219-3948 surname: Zhang fullname: Zhang, Hongyu email: hongyuzhang@jlu.edu.cn organization: Jilin University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35090063$$D View this record in MEDLINE/PubMed https://hal.science/hal-03955590$$DView record in HAL |
BookMark | eNqN0s2L1DAYB-AgK-6HXj1KwYsiHd98NElPMpTZnYXBBdFzSNPUzdJpxiRV-t-bYWZHWBA9JSTPL5_vJTob_WgReo1hgQHIRz06uyBACACu-TN0gSuCSyoEPct9RmkpZIXP0WWMD9lLCfwFOqcV1ACcXqBP67kNritWg47JmeIufM9LmqIJc0x6iEW616n4YuPOj12RfLG0wemhWE9b17k0v0TP-8zsq2N7hb5dr74263Jzd3PbLDelYSB42UkuOk61AUtaTCUlHZE9yNYCM1JzDLTt-joL6Fva13mUacYr0KwTAmN6hd4f1r3Xg9oFt9VhVl47tV5u1H4MaF1VVQ0_9_bdwe6C_zHZmNTWRWOHQY_WT1ERTqiUQvIq07dP6IOfwphvkhWDuiKEiKzeHNXUbm132v_xGTP4cAC_bOv7aJwdjT0xABAVqxnLn5S_KWv5_7pxSSfnx8ZPY8pRdoia4GMMtlfmOJ-CdoPCoPZlofZloU5lkWOLJ7HH3f4aqI9HdIOd_6HV8vPt6k_2N9h7xDc |
CitedBy_id | crossref_primary_10_1039_D2CS00481J crossref_primary_10_1002_adom_202401922 crossref_primary_10_1039_D2SC06470G crossref_primary_10_1002_chem_202403293 crossref_primary_10_1021_acs_cgd_3c00866 crossref_primary_10_1002_adfm_202211760 crossref_primary_10_1016_j_ccr_2024_216035 crossref_primary_10_1016_j_dyepig_2023_111527 crossref_primary_10_1002_adma_202200471 crossref_primary_10_1002_smll_202402120 crossref_primary_10_1016_j_dyepig_2023_111531 crossref_primary_10_1002_ange_202417459 crossref_primary_10_1016_j_mtcomm_2024_109102 crossref_primary_10_1038_s41467_022_29959_1 crossref_primary_10_1039_D3SC06469G crossref_primary_10_1002_chem_202401023 crossref_primary_10_1021_acs_cgd_2c00855 crossref_primary_10_1039_D4SC02918F crossref_primary_10_1002_agt2_500 crossref_primary_10_1002_smll_202501058 crossref_primary_10_1021_acsmaterialslett_2c00889 crossref_primary_10_1039_D5TC00112A crossref_primary_10_1038_s41563_025_02133_w crossref_primary_10_1021_acs_cgd_4c00501 crossref_primary_10_1039_D3CE00296A crossref_primary_10_1038_s41467_024_53196_3 crossref_primary_10_1002_smll_202407498 crossref_primary_10_1002_anie_202207426 crossref_primary_10_1002_ange_202411405 crossref_primary_10_1021_jacs_4c07370 crossref_primary_10_1021_acs_cgd_4c01111 crossref_primary_10_1021_acs_chemmater_3c01659 crossref_primary_10_1002_anie_202217547 crossref_primary_10_1002_ange_202210128 crossref_primary_10_1021_acs_cgd_3c00473 crossref_primary_10_1002_anie_202417459 crossref_primary_10_1002_adom_202400539 crossref_primary_10_1021_acs_cgd_5c00154 crossref_primary_10_1039_D3CE00227F crossref_primary_10_1039_D4SC02152E crossref_primary_10_1002_ange_202207426 crossref_primary_10_1002_ange_202217547 crossref_primary_10_1038_s41467_023_43084_7 crossref_primary_10_1016_j_wees_2024_05_003 crossref_primary_10_1016_j_jlumin_2023_120355 crossref_primary_10_1002_smll_202406184 crossref_primary_10_1007_s12274_023_6092_1 crossref_primary_10_1039_D2CE01592G crossref_primary_10_1002_adfm_202312478 crossref_primary_10_1002_anie_202300046 crossref_primary_10_1039_D3TC02146G crossref_primary_10_1002_smm2_1213 crossref_primary_10_1021_acs_cgd_3c00125 crossref_primary_10_1039_D2TC04642C crossref_primary_10_1002_anie_202210128 crossref_primary_10_34133_research_0259 crossref_primary_10_1002_marc_202300281 crossref_primary_10_1007_s40843_024_3249_x crossref_primary_10_1002_anie_202411405 crossref_primary_10_1021_acs_jpclett_4c01797 crossref_primary_10_1039_D3CS00116D crossref_primary_10_1039_D4CE01131G crossref_primary_10_1007_s40843_022_2383_7 crossref_primary_10_1016_j_cej_2024_157905 crossref_primary_10_1021_acs_cgd_2c01397 crossref_primary_10_1021_acsomega_3c04846 crossref_primary_10_1007_s40843_024_3140_4 crossref_primary_10_1021_acs_cgd_3c01421 crossref_primary_10_1016_j_tet_2024_134245 crossref_primary_10_1002_adom_202200627 crossref_primary_10_1002_ange_202300046 crossref_primary_10_1021_jacs_4c11689 |
Cites_doi | 10.1242/jeb.050567 10.1002/ange.202011857 10.1002/anie.202003820 10.1038/nature08603 10.1002/ange.202002627 10.3390/nano9030422 10.1002/anie.201810422 10.1126/science.1223304 10.1002/anie.201802020 10.1021/acsami.0c17970 10.1246/cl.200693 10.1016/S0924-4247(99)00004-7 10.1016/j.snb.2009.12.021 10.1098/rsif.2009.0184 10.1126/science.1140097 10.1073/pnas.232710999 10.6028/jres.081A.011 10.1002/ange.202102285 10.1002/ange.201802020 10.3390/s140507881 10.1002/anie.201106652 10.1021/jacs.8b00772 10.1002/anie.201914026 10.1038/ncomms1336 10.1039/C9TB00243J 10.1002/adom.202000959 10.2307/2260070 10.1166/sl.2005.045 10.31635/ccschem.020.202000565 10.1016/j.matchemphys.2008.12.010 10.1021/acsami.7b00195 10.1002/ange.201810422 10.1002/ange.202003820 10.1038/37745 10.1002/adom.201200067 10.1021/jacs.9b07645 10.1016/j.snb.2020.129236 10.1016/S0925-4005(00)00448-2 10.1002/adfm.202004116 10.1002/anie.202102285 10.1002/ange.201914026 10.1002/ange.201106652 10.1002/anie.202002627 10.1002/admi.201601002 10.1002/anie.202011857 10.1002/smll.202006795 10.1039/c9tb00243j |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. Copyright |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. – notice: Copyright |
DBID | AAYXX CITATION 17B 1KM AHQBO BLEPL DTL EGQ NPM 7TM K9. 7X8 1XC |
DOI | 10.1002/anie.202200196 |
DatabaseName | CrossRef Web of Knowledge Index Chemicus Web of Science - Science Citation Index Expanded - 2022 Web of Science Core Collection Science Citation Index Expanded Web of Science Primary (SCIE, SSCI & AHCI) PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef Web of Science PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | Web of Science CrossRef ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 1KM name: Index Chemicus url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.IC sourceTypes: Enrichment Source Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | oai_HAL_hal_03955590v1 35090063 000754944200001 10_1002_anie_202200196 ANIE202200196 |
Genre | shortCommunication Journal Article |
GrantInformation_xml | – fundername: New York University Abu Dhabi – fundername: National Natural Science Foundation of China funderid: 52173164 and 51773077 – fundername: National Natural Science Foundation of China; National Natural Science Foundation of China (NSFC) grantid: 52173164; 51773077 – fundername: National Natural Science Foundation of China grantid: 52173164 and 51773077 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION 17B 1KM BLEPL DTL GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED GROUPED_WOS_WEB_OF_SCIENCE NPM YIN 7TM K9. 7X8 .GJ .HR .Y3 186 1XC 31~ 9M8 AANHP AASGY AAYJJ AAYOK ABDPE ABEFU ACBWZ ACRPL ACYXJ ADNMO AETEA AGCDD AGQPQ AI. ASPBG AVWKF AZFZN EJD FEDTE HF~ HVGLF H~9 LW6 MVM NHB OHT PALCI RIWAO RJQFR RWH S10 SAMSI UMC VH1 WHG XOL YYP ZCG ZE2 ZGI ZXP ZY4 |
ID | FETCH-LOGICAL-c4076-d867d63ac0e2b13832d28f08be04c8a6103bdf963a0fb3f904c4a4650a4d77113 |
IEDL.DBID | DR2 |
ISICitedReferencesCount | 81 |
ISICitedReferencesURI | https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000754944200001 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri May 09 12:20:49 EDT 2025 Fri Jul 11 15:42:17 EDT 2025 Sun Jul 13 05:09:56 EDT 2025 Wed Feb 19 02:26:23 EST 2025 Wed Jul 09 18:33:22 EDT 2025 Fri Aug 29 15:45:30 EDT 2025 Thu Apr 24 23:12:56 EDT 2025 Tue Jul 01 01:18:15 EDT 2025 Wed Jan 22 16:25:04 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Keywords | DISPERSAL Optical Transducers Humidity SELF-BURIAL Elastic Crystals PINE-CONES SENSORS Hybrid Materials |
Language | English |
License | 2022 Wiley-VCH GmbH. Copyright: http://hal.archives-ouvertes.fr/licences/copyright |
LinkModel | DirectLink |
LogoURL | https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg |
MergedId | FETCHMERGED-LOGICAL-c4076-d867d63ac0e2b13832d28f08be04c8a6103bdf963a0fb3f904c4a4650a4d77113 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0219-3948 0000-0003-2416-6569 0000-0001-7051-9332 0000-0002-3577-4343 0000-0002-0355-2658 |
PMID | 35090063 |
PQID | 2640952227 |
PQPubID | 946352 |
PageCount | 7 |
ParticipantIDs | hal_primary_oai_HAL_hal_03955590v1 webofscience_primary_000754944200001CitationCount proquest_miscellaneous_2623887865 wiley_primary_10_1002_anie_202200196_ANIE202200196 crossref_citationtrail_10_1002_anie_202200196 webofscience_primary_000754944200001 crossref_primary_10_1002_anie_202200196 proquest_journals_2640952227 pubmed_primary_35090063 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 28, 2022 |
PublicationDateYYYYMMDD | 2022-03-28 |
PublicationDate_xml | – month: 03 year: 2022 text: March 28, 2022 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | WEINHEIM |
PublicationPlace_xml | – name: WEINHEIM – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAbbrev | ANGEW CHEM INT EDIT |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2022 |
Publisher | Wiley Wiley Subscription Services, Inc Wiley-VCH Verlag |
Publisher_xml | – name: Wiley – name: Wiley Subscription Services, Inc – name: Wiley-VCH Verlag |
References | 2011; 214 2019; 7 2019; 9 2011; 2 2018; 140 2013; 1 2017; 4 2000; 68 2010; 145 2020 2020; 59 132 2020; 12 2021; 50 2019; 141 2017; 9 2009; 115 1977; 81 1984; 72 2020; 8 2007; 316 2020; 2 2020; 30 2018 2018; 57 130 2012 2012; 51 124 2021; 17 2009; 462 2021 2021; 60 133 2014; 14 1999; 76 2009; 6 2005; 3 2014 1997; 390 2021; 330 2012; 337 2003; 100 e_1_2_3_1_1 e_1_2_3_2_1 e_1_2_3_6_1 e_1_2_3_16_1 e_1_2_3_39_1 e_1_2_3_5_1 e_1_2_3_17_1 e_1_2_3_37_2 e_1_2_3_38_1 e_1_2_3_4_1 e_1_2_3_17_2 e_1_2_3_18_1 e_1_2_3_3_1 e_1_2_3_18_2 e_1_2_3_19_1 e_1_2_3_12_1 e_1_2_3_34_2 e_1_2_3_35_1 e_1_2_3_9_1 e_1_2_3_13_1 e_1_2_3_34_1 e_1_2_3_8_1 e_1_2_3_14_1 Zhao Y. (e_1_2_3_27_1) 2014 e_1_2_3_36_2 e_1_2_3_37_1 e_1_2_3_7_1 e_1_2_3_15_1 e_1_2_3_36_1 e_1_2_3_30_1 e_1_2_3_31_1 e_1_2_3_30_2 e_1_2_3_10_1 e_1_2_3_32_2 e_1_2_3_33_1 e_1_2_3_11_1 e_1_2_3_31_2 e_1_2_3_32_1 e_1_2_3_28_1 e_1_2_3_29_1 e_1_2_3_23_1 e_1_2_3_24_1 e_1_2_3_25_1 e_1_2_3_26_1 e_1_2_3_20_1 e_1_2_3_21_1 e_1_2_3_22_1 Penza, M (WOS:000083925200027) 1999; 76 Chiba, H (WOS:000598378400014) 2021; 50 Farahani, H (WOS:000337112200013) 2014; 14 Evangelista, D (WOS:000286597000005) 2011; 214 Chandrasekhar, N (WOS:000320998600006) 2013; 1 (000754944200001.43) 2012; 124 Liu, HP (WOS:000437668700012) 2018; 57 (000754944200001.35) 2018; 130 Halabi, JM (WOS:000488322500004) 2019; 141 STAMP, NE (WOS:A1984TD55300018) 1984; 72 HAYASHI (000754944200001.33) 2018; 130 Lu, ZQ (WOS:000509769100001) 2020; 59 Cao, JC (WOS:000794234500008) 2021; 3 Sun, YQ (WOS:000433404000001) 2018; 140 Annadhasan, M (WOS:000538584600001) 2020; 59 Li, P (WOS:000264841900069) 2009; 115 Gerbode, SJ (WOS:000308125800045) 2012; 337 Agudelo, JID (WOS:000472892600011) 2019; 7 (000754944200001.37) 2020; 132 (000754944200001.40) 2020; 132 LAN, LF (000754944200001.18) 2021; 133 Wang, YR (WOS:000612159400003) 2021; 330 Dawson, J (WOS:A1997YM50800024) 1997; 390 Chandrasekhar, N (WOS:000302348200005) 2012; 51 Lv, C (WOS:000401009400004) 2017; 4 Li, ZX (WOS:000599505200094) 2020; 12 Elbaum, R (WOS:000246369800036) 2007; 316 GREENSPAN, L (WOS:A1977DM87500006) 1977; 81 Fratzl, P (WOS:000272144200032) 2009; 462 Westphal, AJ (WOS:000181675200087) 2003; 100 Harrington, MJ (WOS:000294804400003) 2011; 2 (WOS:000754944200001.29) 2015 Hayashi, S (WOS:000454575500008) 2018; 57 Chen, Z (WOS:000234767100002) 2005; 3 Yao, W (WOS:000275763100051) 2010; 145 Tang, BL (WOS:000557394800001) 2020; 30 Annadhasan, M (WOS:000537136700001) 2020; 59 Liu, B (WOS:000577744300001) 2020; 59 ANNADHASAN (000754944200001.45) 2020; 132 Penza, M (WOS:000089218000047) 2000; 68 LV C (WOS:000754944200001.10) 2019; 9 Reyssat, E (WOS:000269197900011) 2009; 6 Pradeep, VV (WOS:000600915600001) 2021; 17 Lan, LF (WOS:000637829200001) 2021; 60 ANNADHASAN M (WOS:000754944200001.31) 2020; 8 Li, Y (WOS:000396801200053) 2017; 9 LIU (000754944200001.20) 2020; 132 |
References_xml | – volume: 9 start-page: 422 year: 2019 publication-title: Nanomaterials – volume: 76 start-page: 162 year: 1999 end-page: 166 publication-title: Sens. Actuators A – volume: 51 124 start-page: 3556 3616 year: 2012 2012 end-page: 3561 3621 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 72 start-page: 611 year: 1984 end-page: 620 publication-title: J. Ecol. – volume: 60 133 start-page: 11283 11383 year: 2021 2021 end-page: 11287 11387 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 59 132 start-page: 23117 23317 year: 2020 2020 end-page: 23121 23321 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 59 132 start-page: 4299 4329 year: 2020 2020 end-page: 4303 4333 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 2 start-page: 337 year: 2011 publication-title: Nat. Commun. – volume: 50 start-page: 84 year: 2021 end-page: 86 publication-title: Chem. Lett. – volume: 12 start-page: 55205 year: 2020 end-page: 55214 publication-title: ACS Appl. Mater. Interfaces – volume: 337 start-page: 1087 year: 2012 end-page: 1091 publication-title: Science – volume: 8 year: 2020 publication-title: Adv. Opt. Mater. – volume: 7 start-page: 4049 year: 2019 end-page: 4054 publication-title: J. Mater. Chem. B – volume: 3 start-page: 274 year: 2005 end-page: 295 publication-title: Sens. Lett. – volume: 17 year: 2021 publication-title: Small – volume: 57 130 start-page: 17002 17248 year: 2018 2018 end-page: 17008 17254 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 1 start-page: 305 year: 2013 end-page: 311 publication-title: Adv. Opt. Mater. – volume: 2 start-page: 2569 year: 2020 end-page: 2575 publication-title: CCS Chem. – volume: 59 132 start-page: 13852 13956 year: 2020 2020 end-page: 13858 13962 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 330 year: 2021 publication-title: Sens. Actuators B – volume: 145 start-page: 327 year: 2010 end-page: 333 publication-title: Sens. Actuators B – year: 2014 – volume: 68 start-page: 300 year: 2000 end-page: 306 publication-title: Sens. Actuators B – volume: 390 start-page: 668 year: 1997 publication-title: Nature – volume: 4 year: 2017 publication-title: Adv. Mater. Interfaces – volume: 14 start-page: 7881 year: 2014 end-page: 7939 publication-title: Sensors – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 57 130 start-page: 8448 8584 year: 2018 2018 end-page: 8452 8588 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 214 start-page: 521 year: 2011 end-page: 529 publication-title: J. Exp. Biol. – volume: 140 start-page: 6186 year: 2018 end-page: 6189 publication-title: J. Am. Chem. Soc. – volume: 316 start-page: 884 year: 2007 end-page: 886 publication-title: Science – volume: 100 start-page: 3461 year: 2003 end-page: 3466 publication-title: Proc. Natl. Acad. Sci. USA – volume: 59 132 start-page: 13821 13925 year: 2020 2020 end-page: 13830 13934 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 115 start-page: 395 year: 2009 end-page: 399 publication-title: Mater. Chem. Phys. – volume: 81 start-page: 89 year: 1977 end-page: 96 publication-title: J. Res. Natl. Bur. Stand. Sect. A – volume: 141 start-page: 14966 year: 2019 end-page: 14970 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 951 year: 2009 end-page: 957 publication-title: J. R. Soc. Interface – volume: 9 start-page: 8910 year: 2017 end-page: 8918 publication-title: ACS Appl. Mater. Interfaces – volume: 462 start-page: 442 year: 2009 end-page: 448 publication-title: Nature – ident: e_1_2_3_7_1 doi: 10.1242/jeb.050567 – ident: e_1_2_3_18_2 doi: 10.1002/ange.202011857 – ident: e_1_2_3_32_1 doi: 10.1002/anie.202003820 – ident: e_1_2_3_1_1 doi: 10.1038/nature08603 – ident: e_1_2_3_37_2 doi: 10.1002/ange.202002627 – ident: e_1_2_3_10_1 doi: 10.3390/nano9030422 – ident: e_1_2_3_30_1 doi: 10.1002/anie.201810422 – ident: e_1_2_3_3_1 doi: 10.1126/science.1223304 – ident: e_1_2_3_31_1 doi: 10.1002/anie.201802020 – ident: e_1_2_3_9_1 doi: 10.1021/acsami.0c17970 – ident: e_1_2_3_16_1 doi: 10.1246/cl.200693 – ident: e_1_2_3_22_1 doi: 10.1016/S0924-4247(99)00004-7 – ident: e_1_2_3_24_1 doi: 10.1016/j.snb.2009.12.021 – ident: e_1_2_3_2_1 doi: 10.1098/rsif.2009.0184 – ident: e_1_2_3_6_1 doi: 10.1126/science.1140097 – ident: e_1_2_3_13_1 doi: 10.1073/pnas.232710999 – ident: e_1_2_3_26_1 doi: 10.6028/jres.081A.011 – ident: e_1_2_3_17_2 doi: 10.1002/ange.202102285 – ident: e_1_2_3_31_2 doi: 10.1002/ange.201802020 – ident: e_1_2_3_11_1 doi: 10.3390/s140507881 – ident: e_1_2_3_36_1 doi: 10.1002/anie.201106652 – ident: e_1_2_3_15_1 doi: 10.1021/jacs.8b00772 – ident: e_1_2_3_34_1 doi: 10.1002/anie.201914026 – ident: e_1_2_3_5_1 doi: 10.1038/ncomms1336 – ident: e_1_2_3_20_1 doi: 10.1039/C9TB00243J – ident: e_1_2_3_29_1 doi: 10.1002/adom.202000959 – ident: e_1_2_3_8_1 doi: 10.2307/2260070 – ident: e_1_2_3_12_1 doi: 10.1166/sl.2005.045 – ident: e_1_2_3_19_1 doi: 10.31635/ccschem.020.202000565 – ident: e_1_2_3_25_1 doi: 10.1016/j.matchemphys.2008.12.010 – ident: e_1_2_3_39_1 doi: 10.1021/acsami.7b00195 – ident: e_1_2_3_30_2 doi: 10.1002/ange.201810422 – ident: e_1_2_3_32_2 doi: 10.1002/ange.202003820 – ident: e_1_2_3_4_1 doi: 10.1038/37745 – ident: e_1_2_3_28_1 doi: 10.1002/adom.201200067 – ident: e_1_2_3_35_1 doi: 10.1021/jacs.9b07645 – ident: e_1_2_3_23_1 doi: 10.1016/j.snb.2020.129236 – volume-title: Organic Nanophotonics: Fundamentals and Applications year: 2014 ident: e_1_2_3_27_1 – ident: e_1_2_3_21_1 doi: 10.1016/S0925-4005(00)00448-2 – ident: e_1_2_3_33_1 doi: 10.1002/adfm.202004116 – ident: e_1_2_3_17_1 doi: 10.1002/anie.202102285 – ident: e_1_2_3_34_2 doi: 10.1002/ange.201914026 – ident: e_1_2_3_36_2 doi: 10.1002/ange.201106652 – ident: e_1_2_3_37_1 doi: 10.1002/anie.202002627 – ident: e_1_2_3_14_1 doi: 10.1002/admi.201601002 – ident: e_1_2_3_18_1 doi: 10.1002/anie.202011857 – ident: e_1_2_3_38_1 doi: 10.1002/smll.202006795 – volume: 130 start-page: 17248 year: 2018 ident: 000754944200001.33 publication-title: Angew. Chem – volume: 330 year: 2021 ident: WOS:000612159400003 article-title: Rational design of a porous nanofibrous actuator with highly sensitive, ultrafast, and large deformation driven by humidity publication-title: SENSORS AND ACTUATORS B-CHEMICAL doi: 10.1016/j.snb.2020.129236 – volume: 30 start-page: ARTN 2004116 year: 2020 ident: WOS:000557394800001 article-title: Naturally and Elastically Bent Organic Polymorphs for Multifunctional Optical Applications publication-title: ADVANCED FUNCTIONAL MATERIALS doi: 10.1002/adfm.202004116 – volume: 72 start-page: 611 year: 1984 ident: WOS:A1984TD55300018 article-title: SELF-BURIAL BEHAVIOR OF ERODIUM-CICUTARIUM SEEDS publication-title: JOURNAL OF ECOLOGY – volume: 132 start-page: 4329 year: 2020 ident: 000754944200001.40 publication-title: Angew. Chem – volume: 9 year: 2019 ident: WOS:000754944200001.10 publication-title: NANOMATERIALS-BASEL – volume: 68 start-page: 300 year: 2000 ident: WOS:000089218000047 article-title: Relative humidity sensing by PVA-coated dual resonator SAW oscillator publication-title: SENSORS AND ACTUATORS B-CHEMICAL – volume: 4 start-page: ARTN 1601002 year: 2017 ident: WOS:000401009400004 article-title: Sensitively Humidity-Driven Actuator Based on Photopolymerizable PEG-DA Films publication-title: ADVANCED MATERIALS INTERFACES doi: 10.1002/admi.201601002 – volume: 337 start-page: 1087 year: 2012 ident: WOS:000308125800045 article-title: How the Cucumber Tendril Coils and Overwinds publication-title: SCIENCE doi: 10.1126/science.1223304 – volume: 115 start-page: 395 year: 2009 ident: WOS:000264841900069 article-title: The electrical responses to humidity of a composite of polyaniline and polyelectrolyte publication-title: MATERIALS CHEMISTRY AND PHYSICS doi: 10.1016/j.matchemphys.2008.12.010 – volume: 124 start-page: 3616 year: 2012 ident: 000754944200001.43 publication-title: Angew. Chem – volume: 81 start-page: 89 year: 1977 ident: WOS:A1977DM87500006 article-title: HUMIDITY FIXED-POINTS OF BINARY SATURATED AQUEOUS-SOLUTIONS publication-title: JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS SECTION A-PHYSICS AND CHEMISTRY doi: 10.6028/jres.081A.011 – volume: 145 start-page: 327 year: 2010 ident: WOS:000275763100051 article-title: A capacitive humidity sensor based on gold-PVA core-shell nanocomposites publication-title: SENSORS AND ACTUATORS B-CHEMICAL doi: 10.1016/j.snb.2009.12.021 – volume: 133 start-page: 11383 year: 2021 ident: 000754944200001.18 publication-title: Angew. Chem – volume: 100 start-page: 3461 year: 2003 ident: WOS:000181675200087 article-title: Kinetics of size changes of individual Bacillus thuringiensis spores in response to changes in relative humidity publication-title: PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA doi: 10.1073/pnas.232710999 – volume: 59 start-page: 13852 year: 2020 ident: WOS:000538584600001 article-title: Mechanophotonics: Flexible Single-Crystal Organic Waveguides and Circuits publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202003820 – volume: 132 start-page: 13925 year: 2020 ident: 000754944200001.45 publication-title: Angew. Chem – volume: 316 start-page: 884 year: 2007 ident: WOS:000246369800036 article-title: The role of wheat awns in the seed dispersal unit publication-title: SCIENCE doi: 10.1126/science.1140097 – volume: 1 start-page: 305 year: 2013 ident: WOS:000320998600006 article-title: Organic Submicro Tubular Optical Waveguides: Self-Assembly, Diverse Geometries, Efficiency, and Remote Sensing Properties publication-title: ADVANCED OPTICAL MATERIALS doi: 10.1002/adom.201200067 – volume: 462 start-page: 442 year: 2009 ident: WOS:000272144200032 article-title: Biomaterial systems for mechanosensing and actuation publication-title: NATURE doi: 10.1038/nature08603 – volume: 6 start-page: 951 year: 2009 ident: WOS:000269197900011 article-title: Hygromorphs: from pine cones to biomimetic bilayers publication-title: JOURNAL OF THE ROYAL SOCIETY INTERFACE doi: 10.1098/rsif.2009.0184 – volume: 130 start-page: 8584 year: 2018 ident: 000754944200001.35 publication-title: Angew. Chem – volume: 9 start-page: 8910 year: 2017 ident: WOS:000396801200053 article-title: A Single Crystal with Multiple Functions of Optical Waveguide, Aggregation-Induced Emission, and Mechanochromism publication-title: ACS APPLIED MATERIALS & INTERFACES doi: 10.1021/acsami.7b00195 – start-page: 1 year: 2015 ident: WOS:000754944200001.29 publication-title: NANOPT NANOPHOTO – volume: 51 start-page: 3556 year: 2012 ident: WOS:000302348200005 article-title: Reversibly Shape-Shifting Organic Optical Waveguides: Formation of Organic Nanorings, Nanotubes, and Nanosheets publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201106652 – volume: 390 start-page: 668 year: 1997 ident: WOS:A1997YM50800024 article-title: How pine cones open publication-title: NATURE – volume: 141 start-page: 14966 year: 2019 ident: WOS:000488322500004 article-title: Spatial Photocontrol of the Optical Output from an Organic Crystal Waveguide publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.9b07645 – volume: 132 start-page: 13956 year: 2020 ident: 000754944200001.37 publication-title: Angew. Chem – volume: 3 start-page: 274 year: 2005 ident: WOS:000234767100002 article-title: Humidity sensors: A review of materials and mechanisms publication-title: SENSOR LETTERS doi: 10.1166/sl.2005.045 – volume: 132 start-page: 23317 year: 2020 ident: 000754944200001.20 publication-title: Angew. Chem – volume: 50 start-page: 84 year: 2021 ident: WOS:000598378400014 article-title: Stepwise Assembly of Ultrathin Poly(vinyl alcohol) Films on Photoresponsive Diarylethene Crystals publication-title: CHEMISTRY LETTERS doi: 10.1246/cl.200693 – volume: 8 year: 2020 ident: WOS:000754944200001.31 publication-title: ADV OPT MATER – volume: 214 start-page: 521 year: 2011 ident: WOS:000286597000005 article-title: The mechanics of explosive dispersal and self-burial in the seeds of the filaree, Erodium cicutarium (Geraniaceae) publication-title: JOURNAL OF EXPERIMENTAL BIOLOGY doi: 10.1242/jeb.050567 – volume: 14 start-page: 7881 year: 2014 ident: WOS:000337112200013 article-title: Humidity Sensors Principle, Mechanism, and Fabrication Technologies: A Comprehensive Review publication-title: SENSORS doi: 10.3390/s140507881 – volume: 59 start-page: 4299 year: 2020 ident: WOS:000509769100001 article-title: Optical Waveguiding Organic Single Crystals Exhibiting Physical and Chemical Bending Features publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201914026 – volume: 57 start-page: 17002 year: 2018 ident: WOS:000454575500008 article-title: Creating Elastic Organic Crystals of π-Conjugated Molecules with Bending Mechanofluorochromism and Flexible Optical Waveguide publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201810422 – volume: 76 start-page: 162 year: 1999 ident: WOS:000083925200027 article-title: Surface acoustic wave humidity sensor using polyvinyl-alcohol film publication-title: SENSORS AND ACTUATORS A-PHYSICAL – volume: 57 start-page: 8448 year: 2018 ident: WOS:000437668700012 article-title: Highly Elastic Organic Crystals for Flexible Optical Waveguides publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201802020 – volume: 3 start-page: 2569 year: 2021 ident: WOS:000794234500008 article-title: An Optical Waveguiding Organic Crystal with Phase-Dependent Elasticity and Thermoplasticity over Wide Temperature Ranges publication-title: CCS CHEMISTRY doi: 10.31635/ccschem.020.202000565 – volume: 7 start-page: 4049 year: 2019 ident: WOS:000472892600011 article-title: Modelling of swelling of PVA hydrogels considering non-ideal mixing behaviour of PVA and water publication-title: JOURNAL OF MATERIALS CHEMISTRY B doi: 10.1039/c9tb00243j – volume: 140 start-page: 6186 year: 2018 ident: WOS:000433404000001 article-title: Solvatomechanical Bending of Organic Charge Transfer Cocrystal publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.8b00772 – volume: 2 start-page: ARTN 337 year: 2011 ident: WOS:000294804400003 article-title: Origami-like unfolding of hydro-actuated ice plant seed capsules publication-title: NATURE COMMUNICATIONS doi: 10.1038/ncomms1336 – volume: 59 start-page: 23117 year: 2020 ident: WOS:000577744300001 article-title: Self-Waveguide Single-Benzene Organic Crystal with Ultralow-Temperature Elasticity as a Potential Flexible Material publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202011857 – volume: 60 start-page: 11283 year: 2021 ident: WOS:000637829200001 article-title: Polymer-Coated Organic Crystals with Solvent-Resistant Capacity and Optical Waveguiding Function publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202102285 – volume: 59 start-page: 13821 year: 2020 ident: WOS:000537136700001 article-title: Micromanipulation of Mechanically Compliant Organic Single-Crystal Optical Microwaveguides publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202002627 – volume: 17 start-page: ARTN 2006795 year: 2021 ident: WOS:000600915600001 article-title: Mechanical Processing of Naturally Bent Organic Crystalline Microoptical Waveguides and Junctions publication-title: SMALL doi: 10.1002/smll.202006795 – volume: 12 start-page: 55205 year: 2020 ident: WOS:000599505200094 article-title: Asymmetrically Patterned Cellulose Nanofibers/Graphene Oxide Composite Film for Humidity Sensing and Moist-Induced Electricity Generation publication-title: ACS APPLIED MATERIALS & INTERFACES doi: 10.1021/acsami.0c17970 |
SSID | ssj0028806 |
Score | 2.612815 |
Snippet | Reshaping of elongated organic crystals that can be used as semiconductors, waveguides or soft robotic grippers by application of force or light is now a... |
Source | Web of Science |
SourceID | hal proquest pubmed webofscience crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202200196 |
SubjectTerms | Actuators Bilayers Chemical Sciences Chemistry Chemistry, Multidisciplinary Coupling (molecular) Crystal structure Crystallinity Crystals Elastic Crystals Grippers Humidity Hybrid Materials Mechanical analysis Optical Transducers Organic crystals Physical Sciences Polymer coatings Polymers Science & Technology Transducers Waveguides |
Title | Hybrid Elastic Organic Crystals that Respond to Aerial Humidity |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202200196 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000754944200001 https://www.ncbi.nlm.nih.gov/pubmed/35090063 https://www.proquest.com/docview/2640952227 https://www.proquest.com/docview/2623887865 https://hal.science/hal-03955590 |
Volume | 61 |
WOS | 000754944200001 |
WOSCitedRecordID | wos000754944200001 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB1BL3Dh-yO0RQZV4uTWsZ3EOaHVaqsFQQ8VlXqL7DhREdUu6maRyq_vjJO43SIEglsSTxR58iZ-jmeeAfZMbhtViJoLpyXXpXfc5i7lhRPOqqz0sqAC589H-fxEfzzNTm9U8ff6EPGHG0VG-F5TgFu3OrgWDaUKbJzfSRkkXvAjTAlbxIqOo36URHD25UVKcdqFflRtFPJg8_aNUenuGeVE_ko4b41Nm3Q2jEeHD8GOPenTUL7trzu3X_-8JfL4P119BA8GssomPboew51m8QTuTcc94p7C-_klVXyxGXJwtGF9ZWfNpheXyDrPV6w7sx07Dnm4nnVLNgmAZwiirx75_zM4OZx9mc75sCUDr3Hml3Nv8sLnytaikS7F2a300rTCuEbo2ljkYsr5FoPaitaptsSr2mpkgVb7okhT9Ry2FstF8xJY25I0fi0zl5XaOqQ5qrCImKxtBULEJMDHV1LVg145bZtxXvVKy7Iit1TRLQm8i_bfe6WO31q-xTccjUhgez75VNE1ocoM51jiR5rAzgiAagjrVYXsESkplQ8n8CY2o89plcUumuWabJAFmcLkWQIveuDERymkZ0QKE9i7iaTYHhicLrWWYdUlgfRvzKaDd0jFoEtABij9wQfV5OjDLJ69-pebtuE-HVNCnjQ7sNVdrJtdZGidex2i8ArQ2CzZ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB615VAuUN6BAgYVcUrr2E7iHBBabbfK0u0eqlbqLdh5qIhqF3WzoOVf9a_0F3UmL9giBELqgWOcyUPjGfubZOYbgC0dmFyGPHW5VcJVUWZdE1jPDS23RvpRJkIqcD4YB_Gx-nDin6zARVsLU_NDdB_cyDOq9ZocnD5I7_xgDaUSbAzwhKg4Xpq8yv188Q2jttm74S5O8Rsh9gZH_dhtGgu4KcYvgZvpIMwCaVKeC-thjCYyoQuubc5Vqg0iCmmzAk3T8MLKIsJRZRRiGaOyMPQ8ifddhVvURpzo-ncPO8Yqge5QFzRJ6VLf-5Ynkoud5fdd2gdXTykL81eIe203XAbQ1Q64dxcuW93ViS-ft-el3U6_X6OV_K-UuwF3GjzOerUD3YOVfHIf1vttG7wH8D5eUFEbG2CYgTKsLl5NWf98gcD6bMbKU1OywyrVOGPllPUqn2boJ58yDHEewvGNvP8jWJtMJ_kTYEVB7P-p8K0fKWMRycnQoFP4RcHRC7QDbmsDSdpQslNnkLOkJpMWCU1D0k2DA287-S81GclvJV-jSXVCxCEe90YJjXEZ-RhG8q-eA5utxSXNyjVLECAj6qYKaQdedadR5_QjyUzy6ZxkEOjpUAe-A49rS-0eJRGBEu51YOtn0-3OVyBVRUqJ6seSA97fiPUb7RBRQ-mAqGz3DzpIeuPhoDt6-i8XvYT1-OhglIyG4_1ncJvGKf9Q6E1YK8_n-XMEpKV9US0BDD7etFtcATA_iUQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB61RYJeeFNCCxhUxCmtYzuvA0KrfWiXlhWqqNRbsONErVrtVt0saPlV_Sv8I2bygi1CIKQeOMaZPDSesb9JZr4B2I4CncmQpy43SrgqtsbVgfHc0HCjpR9bEVKB8_txMDxU7478oxW4bGphKn6I9oMbeUa5XpODn9t89wdpKFVgY3wnREnxUqdV7mWLLxi0zd6MejjDr4QY9D92h27dV8BNMXwJXBsFoQ2kTnkmjIchmrAiynlkMq7SSCOgkMbmaJma50bmMY4qrRDKaGXD0PMk3ncVbqiAx9QsonfQElYJ9IaqnklKl9reNzSRXOwuv-_SNrh6TEmYvyLcK5vhMn4uN8DBHfjWqK7KezndmRdmJ_16hVXyf9LtXbhdo3HWqdznHqxkk_twq9s0wXsAb4cLKmljfQwyUIZVpasp614sEFafzVhxrAt2UCYaW1ZMWaf0aIZecmIxwHkIh9fy_o9gbTKdZI-B5Tlx_6fCN36stEEcJ0ONLuHnOUcfiBxwGxNI0pqQnfqCnCUVlbRIaBqSdhoceN3Kn1dUJL-VfIkW1QoRg_iws5_QGJexj0Ek_-w5sNUYXFKvW7ME4TFibqqPduBFexp1Tr-R9CSbzkkGYV4URoHvwEZlqO2jJOJPQr0ObP9sue35EqKqWClR_lZywPsbsW6tHaJpKBwQpen-QQdJZzzqt0dP_uWi53DzQ2-Q7I_Ge5uwTsOUfCiiLVgrLubZU0SjhXlWLgAMPl23V3wH306H8w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+Elastic+Organic+Crystals+that+Respond+to+Aerial+Humidity&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Lan%2C+Linfeng&rft.au=Yang%2C+Xuesong&rft.au=Tang%2C+Baolei&rft.au=Yu%2C+Xu&rft.date=2022-03-28&rft.pub=Wiley-VCH+Verlag&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=61&rft.issue=14&rft_id=info:doi/10.1002%2Fanie.202200196&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_03955590v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |