Hybrid Elastic Organic Crystals that Respond to Aerial Humidity

Reshaping of elongated organic crystals that can be used as semiconductors, waveguides or soft robotic grippers by application of force or light is now a commonplace, however mechanical response of organic crystals to changes in humidity has not been accomplished yet. Here, we report a universal app...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 61; no. 14; pp. e202200196 - n/a
Main Authors Lan, Linfeng, Yang, Xuesong, Tang, Baolei, Yu, Xu, Liu, Xiaokong, Li, Liang, Naumov, Panče, Zhang, Hongyu
Format Journal Article
LanguageEnglish
Published WEINHEIM Wiley 28.03.2022
Wiley Subscription Services, Inc
Wiley-VCH Verlag
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Reshaping of elongated organic crystals that can be used as semiconductors, waveguides or soft robotic grippers by application of force or light is now a commonplace, however mechanical response of organic crystals to changes in humidity has not been accomplished yet. Here, we report a universal approach to instigating a humidity response into elastically bendable organic crystals that elicits controllable deformation with linear response to aerial humidity while retaining their physical integrity entirely intact. Hygroresponsive bilayer elements are designed by mechanically coupling a humidity‐responsive polymer with elastic molecular crystals that have been mechanically reinforced by a polymer coating. As an illustration of the application of these cladded crystalline actuators, they are tested as active optical transducers of visible light where the position of light output can be precisely controlled by variations in aerial humidity. Within a broader context, the approach described here provides access to a vast range of mechanically robust, lightweight hybrid hygroresponsive crystalline materials. A new class of lightweight, mechanically reinforced, hygroresponsive organic crystalline hybrid materials has been synthesized by a universally applicable approach. The crystals are robust, durable, and moisture‐absorbing, and show a highly linear deformation over a wide range of relative humidity. Such precise spatiotemporal control over the light output in response to air humidity allows the materials to be used as optical waveguides.
AbstractList Reshaping of elongated organic crystals that can be used as semiconductors, waveguides or soft robotic grippers by application of force or light is now a commonplace, however mechanical response of organic crystals to changes in humidity has not been accomplished yet. Here, we report a universal approach to instigating a humidity response into elastically bendable organic crystals that elicits controllable deformation with linear response to aerial humidity while retaining their physical integrity entirely intact. Hygroresponsive bilayer elements are designed by mechanically coupling a humidity-responsive polymer with elastic molecular crystals that have been mechanically reinforced by a polymer coating. As an illustration of the application of these cladded crystalline actuators, they are tested as active optical transducers of visible light where the position of light output can be precisely controlled by variations in aerial humidity. Within a broader context, the approach described here provides access to a vast range of mechanically robust, lightweight hybrid hygroresponsive crystalline materials.
Reshaping of elongated organic crystals that can be used as semiconductors, waveguides or soft robotic grippers by application of force or light is now a commonplace, however mechanical response of organic crystals to changes in humidity has not been accomplished yet. Here, we report a universal approach to instigating a humidity response into elastically bendable organic crystals that elicits controllable deformation with linear response to aerial humidity while retaining their physical integrity entirely intact. Hygroresponsive bilayer elements are designed by mechanically coupling a humidity-responsive polymer with elastic molecular crystals that have been mechanically reinforced by a polymer coating. As an illustration of the application of these cladded crystalline actuators, they are tested as active optical transducers of visible light where the position of light output can be precisely controlled by variations in aerial humidity. Within a broader context, the approach described here provides access to a vast range of mechanically robust, lightweight hybrid hygro-responsive crystalline materials.
Reshaping of elongated organic crystals that can be used as semiconductors, waveguides or soft robotic grippers by application of force or light is now a commonplace, however mechanical response of organic crystals to changes in humidity has not been accomplished yet. Here, we report a universal approach to instigating a humidity response into elastically bendable organic crystals that elicits controllable deformation with linear response to aerial humidity while retaining their physical integrity entirely intact. Hygroresponsive bilayer elements are designed by mechanically coupling a humidity-responsive polymer with elastic molecular crystals that have been mechanically reinforced by a polymer coating. As an illustration of the application of these cladded crystalline actuators, they are tested as active optical transducers of visible light where the position of light output can be precisely controlled by variations in aerial humidity. Within a broader context, the approach described here provides access to a vast range of mechanically robust, lightweight hybrid hygroresponsive crystalline materials.Reshaping of elongated organic crystals that can be used as semiconductors, waveguides or soft robotic grippers by application of force or light is now a commonplace, however mechanical response of organic crystals to changes in humidity has not been accomplished yet. Here, we report a universal approach to instigating a humidity response into elastically bendable organic crystals that elicits controllable deformation with linear response to aerial humidity while retaining their physical integrity entirely intact. Hygroresponsive bilayer elements are designed by mechanically coupling a humidity-responsive polymer with elastic molecular crystals that have been mechanically reinforced by a polymer coating. As an illustration of the application of these cladded crystalline actuators, they are tested as active optical transducers of visible light where the position of light output can be precisely controlled by variations in aerial humidity. Within a broader context, the approach described here provides access to a vast range of mechanically robust, lightweight hybrid hygroresponsive crystalline materials.
Reshaping of elongated organic crystals that can be used as semiconductors, waveguides or soft robotic grippers by application of force or light is now a commonplace, however mechanical response of organic crystals to changes in humidity has not been accomplished yet. Here, we report a universal approach to instigating a humidity response into elastically bendable organic crystals that elicits controllable deformation with linear response to aerial humidity while retaining their physical integrity entirely intact. Hygroresponsive bilayer elements are designed by mechanically coupling a humidity‐responsive polymer with elastic molecular crystals that have been mechanically reinforced by a polymer coating. As an illustration of the application of these cladded crystalline actuators, they are tested as active optical transducers of visible light where the position of light output can be precisely controlled by variations in aerial humidity. Within a broader context, the approach described here provides access to a vast range of mechanically robust, lightweight hybrid hygroresponsive crystalline materials. A new class of lightweight, mechanically reinforced, hygroresponsive organic crystalline hybrid materials has been synthesized by a universally applicable approach. The crystals are robust, durable, and moisture‐absorbing, and show a highly linear deformation over a wide range of relative humidity. Such precise spatiotemporal control over the light output in response to air humidity allows the materials to be used as optical waveguides.
ArticleNumber 202200196
Author Naumov, Panče
Tang, Baolei
Li, Liang
Liu, Xiaokong
Yu, Xu
Lan, Linfeng
Zhang, Hongyu
Yang, Xuesong
Author_xml – sequence: 1
  givenname: Linfeng
  orcidid: 0000-0001-7051-9332
  surname: Lan
  fullname: Lan, Linfeng
  organization: Jilin University
– sequence: 2
  givenname: Xuesong
  surname: Yang
  fullname: Yang, Xuesong
  organization: Jilin University
– sequence: 3
  givenname: Baolei
  surname: Tang
  fullname: Tang, Baolei
  organization: Jilin University
– sequence: 4
  givenname: Xu
  surname: Yu
  fullname: Yu, Xu
  organization: Jilin University
– sequence: 5
  givenname: Xiaokong
  orcidid: 0000-0002-0355-2658
  surname: Liu
  fullname: Liu, Xiaokong
  organization: Jilin University
– sequence: 6
  givenname: Liang
  orcidid: 0000-0002-3577-4343
  surname: Li
  fullname: Li, Liang
  organization: Sorbonne University Abu Dhabi
– sequence: 7
  givenname: Panče
  orcidid: 0000-0003-2416-6569
  surname: Naumov
  fullname: Naumov, Panče
  email: pance.naumov@nyu.edu
  organization: New York University
– sequence: 8
  givenname: Hongyu
  orcidid: 0000-0002-0219-3948
  surname: Zhang
  fullname: Zhang, Hongyu
  email: hongyuzhang@jlu.edu.cn
  organization: Jilin University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35090063$$D View this record in MEDLINE/PubMed
https://hal.science/hal-03955590$$DView record in HAL
BookMark eNqN0s2L1DAYB-AgK-6HXj1KwYsiHd98NElPMpTZnYXBBdFzSNPUzdJpxiRV-t-bYWZHWBA9JSTPL5_vJTob_WgReo1hgQHIRz06uyBACACu-TN0gSuCSyoEPct9RmkpZIXP0WWMD9lLCfwFOqcV1ACcXqBP67kNritWg47JmeIufM9LmqIJc0x6iEW616n4YuPOj12RfLG0wemhWE9b17k0v0TP-8zsq2N7hb5dr74263Jzd3PbLDelYSB42UkuOk61AUtaTCUlHZE9yNYCM1JzDLTt-joL6Fva13mUacYr0KwTAmN6hd4f1r3Xg9oFt9VhVl47tV5u1H4MaF1VVQ0_9_bdwe6C_zHZmNTWRWOHQY_WT1ERTqiUQvIq07dP6IOfwphvkhWDuiKEiKzeHNXUbm132v_xGTP4cAC_bOv7aJwdjT0xABAVqxnLn5S_KWv5_7pxSSfnx8ZPY8pRdoia4GMMtlfmOJ-CdoPCoPZlofZloU5lkWOLJ7HH3f4aqI9HdIOd_6HV8vPt6k_2N9h7xDc
CitedBy_id crossref_primary_10_1039_D2CS00481J
crossref_primary_10_1002_adom_202401922
crossref_primary_10_1039_D2SC06470G
crossref_primary_10_1002_chem_202403293
crossref_primary_10_1021_acs_cgd_3c00866
crossref_primary_10_1002_adfm_202211760
crossref_primary_10_1016_j_ccr_2024_216035
crossref_primary_10_1016_j_dyepig_2023_111527
crossref_primary_10_1002_adma_202200471
crossref_primary_10_1002_smll_202402120
crossref_primary_10_1016_j_dyepig_2023_111531
crossref_primary_10_1002_ange_202417459
crossref_primary_10_1016_j_mtcomm_2024_109102
crossref_primary_10_1038_s41467_022_29959_1
crossref_primary_10_1039_D3SC06469G
crossref_primary_10_1002_chem_202401023
crossref_primary_10_1021_acs_cgd_2c00855
crossref_primary_10_1039_D4SC02918F
crossref_primary_10_1002_agt2_500
crossref_primary_10_1002_smll_202501058
crossref_primary_10_1021_acsmaterialslett_2c00889
crossref_primary_10_1039_D5TC00112A
crossref_primary_10_1038_s41563_025_02133_w
crossref_primary_10_1021_acs_cgd_4c00501
crossref_primary_10_1039_D3CE00296A
crossref_primary_10_1038_s41467_024_53196_3
crossref_primary_10_1002_smll_202407498
crossref_primary_10_1002_anie_202207426
crossref_primary_10_1002_ange_202411405
crossref_primary_10_1021_jacs_4c07370
crossref_primary_10_1021_acs_cgd_4c01111
crossref_primary_10_1021_acs_chemmater_3c01659
crossref_primary_10_1002_anie_202217547
crossref_primary_10_1002_ange_202210128
crossref_primary_10_1021_acs_cgd_3c00473
crossref_primary_10_1002_anie_202417459
crossref_primary_10_1002_adom_202400539
crossref_primary_10_1021_acs_cgd_5c00154
crossref_primary_10_1039_D3CE00227F
crossref_primary_10_1039_D4SC02152E
crossref_primary_10_1002_ange_202207426
crossref_primary_10_1002_ange_202217547
crossref_primary_10_1038_s41467_023_43084_7
crossref_primary_10_1016_j_wees_2024_05_003
crossref_primary_10_1016_j_jlumin_2023_120355
crossref_primary_10_1002_smll_202406184
crossref_primary_10_1007_s12274_023_6092_1
crossref_primary_10_1039_D2CE01592G
crossref_primary_10_1002_adfm_202312478
crossref_primary_10_1002_anie_202300046
crossref_primary_10_1039_D3TC02146G
crossref_primary_10_1002_smm2_1213
crossref_primary_10_1021_acs_cgd_3c00125
crossref_primary_10_1039_D2TC04642C
crossref_primary_10_1002_anie_202210128
crossref_primary_10_34133_research_0259
crossref_primary_10_1002_marc_202300281
crossref_primary_10_1007_s40843_024_3249_x
crossref_primary_10_1002_anie_202411405
crossref_primary_10_1021_acs_jpclett_4c01797
crossref_primary_10_1039_D3CS00116D
crossref_primary_10_1039_D4CE01131G
crossref_primary_10_1007_s40843_022_2383_7
crossref_primary_10_1016_j_cej_2024_157905
crossref_primary_10_1021_acs_cgd_2c01397
crossref_primary_10_1021_acsomega_3c04846
crossref_primary_10_1007_s40843_024_3140_4
crossref_primary_10_1021_acs_cgd_3c01421
crossref_primary_10_1016_j_tet_2024_134245
crossref_primary_10_1002_adom_202200627
crossref_primary_10_1002_ange_202300046
crossref_primary_10_1021_jacs_4c11689
Cites_doi 10.1242/jeb.050567
10.1002/ange.202011857
10.1002/anie.202003820
10.1038/nature08603
10.1002/ange.202002627
10.3390/nano9030422
10.1002/anie.201810422
10.1126/science.1223304
10.1002/anie.201802020
10.1021/acsami.0c17970
10.1246/cl.200693
10.1016/S0924-4247(99)00004-7
10.1016/j.snb.2009.12.021
10.1098/rsif.2009.0184
10.1126/science.1140097
10.1073/pnas.232710999
10.6028/jres.081A.011
10.1002/ange.202102285
10.1002/ange.201802020
10.3390/s140507881
10.1002/anie.201106652
10.1021/jacs.8b00772
10.1002/anie.201914026
10.1038/ncomms1336
10.1039/C9TB00243J
10.1002/adom.202000959
10.2307/2260070
10.1166/sl.2005.045
10.31635/ccschem.020.202000565
10.1016/j.matchemphys.2008.12.010
10.1021/acsami.7b00195
10.1002/ange.201810422
10.1002/ange.202003820
10.1038/37745
10.1002/adom.201200067
10.1021/jacs.9b07645
10.1016/j.snb.2020.129236
10.1016/S0925-4005(00)00448-2
10.1002/adfm.202004116
10.1002/anie.202102285
10.1002/ange.201914026
10.1002/ange.201106652
10.1002/anie.202002627
10.1002/admi.201601002
10.1002/anie.202011857
10.1002/smll.202006795
10.1039/c9tb00243j
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
Copyright
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
– notice: Copyright
DBID AAYXX
CITATION
17B
1KM
AHQBO
BLEPL
DTL
EGQ
NPM
7TM
K9.
7X8
1XC
DOI 10.1002/anie.202200196
DatabaseName CrossRef
Web of Knowledge
Index Chemicus
Web of Science - Science Citation Index Expanded - 2022
Web of Science Core Collection
Science Citation Index Expanded
Web of Science Primary (SCIE, SSCI & AHCI)
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
Web of Science
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList
Web of Science
CrossRef
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 1KM
  name: Index Chemicus
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.IC
  sourceTypes:
    Enrichment Source
    Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID oai_HAL_hal_03955590v1
35090063
000754944200001
10_1002_anie_202200196
ANIE202200196
Genre shortCommunication
Journal Article
GrantInformation_xml – fundername: New York University Abu Dhabi
– fundername: National Natural Science Foundation of China
  funderid: 52173164 and 51773077
– fundername: National Natural Science Foundation of China; National Natural Science Foundation of China (NSFC)
  grantid: 52173164; 51773077
– fundername: National Natural Science Foundation of China
  grantid: 52173164 and 51773077
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
17B
1KM
BLEPL
DTL
GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED
GROUPED_WOS_WEB_OF_SCIENCE
NPM
YIN
7TM
K9.
7X8
.GJ
.HR
.Y3
186
1XC
31~
9M8
AANHP
AASGY
AAYJJ
AAYOK
ABDPE
ABEFU
ACBWZ
ACRPL
ACYXJ
ADNMO
AETEA
AGCDD
AGQPQ
AI.
ASPBG
AVWKF
AZFZN
EJD
FEDTE
HF~
HVGLF
H~9
LW6
MVM
NHB
OHT
PALCI
RIWAO
RJQFR
RWH
S10
SAMSI
UMC
VH1
WHG
XOL
YYP
ZCG
ZE2
ZGI
ZXP
ZY4
ID FETCH-LOGICAL-c4076-d867d63ac0e2b13832d28f08be04c8a6103bdf963a0fb3f904c4a4650a4d77113
IEDL.DBID DR2
ISICitedReferencesCount 81
ISICitedReferencesURI https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000754944200001
ISSN 1433-7851
1521-3773
IngestDate Fri May 09 12:20:49 EDT 2025
Fri Jul 11 15:42:17 EDT 2025
Sun Jul 13 05:09:56 EDT 2025
Wed Feb 19 02:26:23 EST 2025
Wed Jul 09 18:33:22 EDT 2025
Fri Aug 29 15:45:30 EDT 2025
Thu Apr 24 23:12:56 EDT 2025
Tue Jul 01 01:18:15 EDT 2025
Wed Jan 22 16:25:04 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords DISPERSAL
Optical Transducers
Humidity
SELF-BURIAL
Elastic Crystals
PINE-CONES
SENSORS
Hybrid Materials
Language English
License 2022 Wiley-VCH GmbH.
Copyright: http://hal.archives-ouvertes.fr/licences/copyright
LinkModel DirectLink
LogoURL https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg
MergedId FETCHMERGED-LOGICAL-c4076-d867d63ac0e2b13832d28f08be04c8a6103bdf963a0fb3f904c4a4650a4d77113
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0219-3948
0000-0003-2416-6569
0000-0001-7051-9332
0000-0002-3577-4343
0000-0002-0355-2658
PMID 35090063
PQID 2640952227
PQPubID 946352
PageCount 7
ParticipantIDs hal_primary_oai_HAL_hal_03955590v1
webofscience_primary_000754944200001CitationCount
proquest_miscellaneous_2623887865
wiley_primary_10_1002_anie_202200196_ANIE202200196
crossref_citationtrail_10_1002_anie_202200196
webofscience_primary_000754944200001
crossref_primary_10_1002_anie_202200196
proquest_journals_2640952227
pubmed_primary_35090063
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 28, 2022
PublicationDateYYYYMMDD 2022-03-28
PublicationDate_xml – month: 03
  year: 2022
  text: March 28, 2022
  day: 28
PublicationDecade 2020
PublicationPlace WEINHEIM
PublicationPlace_xml – name: WEINHEIM
– name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAbbrev ANGEW CHEM INT EDIT
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2022
Publisher Wiley
Wiley Subscription Services, Inc
Wiley-VCH Verlag
Publisher_xml – name: Wiley
– name: Wiley Subscription Services, Inc
– name: Wiley-VCH Verlag
References 2011; 214
2019; 7
2019; 9
2011; 2
2018; 140
2013; 1
2017; 4
2000; 68
2010; 145
2020 2020; 59 132
2020; 12
2021; 50
2019; 141
2017; 9
2009; 115
1977; 81
1984; 72
2020; 8
2007; 316
2020; 2
2020; 30
2018 2018; 57 130
2012 2012; 51 124
2021; 17
2009; 462
2021 2021; 60 133
2014; 14
1999; 76
2009; 6
2005; 3
2014
1997; 390
2021; 330
2012; 337
2003; 100
e_1_2_3_1_1
e_1_2_3_2_1
e_1_2_3_6_1
e_1_2_3_16_1
e_1_2_3_39_1
e_1_2_3_5_1
e_1_2_3_17_1
e_1_2_3_37_2
e_1_2_3_38_1
e_1_2_3_4_1
e_1_2_3_17_2
e_1_2_3_18_1
e_1_2_3_3_1
e_1_2_3_18_2
e_1_2_3_19_1
e_1_2_3_12_1
e_1_2_3_34_2
e_1_2_3_35_1
e_1_2_3_9_1
e_1_2_3_13_1
e_1_2_3_34_1
e_1_2_3_8_1
e_1_2_3_14_1
Zhao Y. (e_1_2_3_27_1) 2014
e_1_2_3_36_2
e_1_2_3_37_1
e_1_2_3_7_1
e_1_2_3_15_1
e_1_2_3_36_1
e_1_2_3_30_1
e_1_2_3_31_1
e_1_2_3_30_2
e_1_2_3_10_1
e_1_2_3_32_2
e_1_2_3_33_1
e_1_2_3_11_1
e_1_2_3_31_2
e_1_2_3_32_1
e_1_2_3_28_1
e_1_2_3_29_1
e_1_2_3_23_1
e_1_2_3_24_1
e_1_2_3_25_1
e_1_2_3_26_1
e_1_2_3_20_1
e_1_2_3_21_1
e_1_2_3_22_1
Penza, M (WOS:000083925200027) 1999; 76
Chiba, H (WOS:000598378400014) 2021; 50
Farahani, H (WOS:000337112200013) 2014; 14
Evangelista, D (WOS:000286597000005) 2011; 214
Chandrasekhar, N (WOS:000320998600006) 2013; 1
(000754944200001.43) 2012; 124
Liu, HP (WOS:000437668700012) 2018; 57
(000754944200001.35) 2018; 130
Halabi, JM (WOS:000488322500004) 2019; 141
STAMP, NE (WOS:A1984TD55300018) 1984; 72
HAYASHI (000754944200001.33) 2018; 130
Lu, ZQ (WOS:000509769100001) 2020; 59
Cao, JC (WOS:000794234500008) 2021; 3
Sun, YQ (WOS:000433404000001) 2018; 140
Annadhasan, M (WOS:000538584600001) 2020; 59
Li, P (WOS:000264841900069) 2009; 115
Gerbode, SJ (WOS:000308125800045) 2012; 337
Agudelo, JID (WOS:000472892600011) 2019; 7
(000754944200001.37) 2020; 132
(000754944200001.40) 2020; 132
LAN, LF (000754944200001.18) 2021; 133
Wang, YR (WOS:000612159400003) 2021; 330
Dawson, J (WOS:A1997YM50800024) 1997; 390
Chandrasekhar, N (WOS:000302348200005) 2012; 51
Lv, C (WOS:000401009400004) 2017; 4
Li, ZX (WOS:000599505200094) 2020; 12
Elbaum, R (WOS:000246369800036) 2007; 316
GREENSPAN, L (WOS:A1977DM87500006) 1977; 81
Fratzl, P (WOS:000272144200032) 2009; 462
Westphal, AJ (WOS:000181675200087) 2003; 100
Harrington, MJ (WOS:000294804400003) 2011; 2
(WOS:000754944200001.29) 2015
Hayashi, S (WOS:000454575500008) 2018; 57
Chen, Z (WOS:000234767100002) 2005; 3
Yao, W (WOS:000275763100051) 2010; 145
Tang, BL (WOS:000557394800001) 2020; 30
Annadhasan, M (WOS:000537136700001) 2020; 59
Liu, B (WOS:000577744300001) 2020; 59
ANNADHASAN (000754944200001.45) 2020; 132
Penza, M (WOS:000089218000047) 2000; 68
LV C (WOS:000754944200001.10) 2019; 9
Reyssat, E (WOS:000269197900011) 2009; 6
Pradeep, VV (WOS:000600915600001) 2021; 17
Lan, LF (WOS:000637829200001) 2021; 60
ANNADHASAN M (WOS:000754944200001.31) 2020; 8
Li, Y (WOS:000396801200053) 2017; 9
LIU (000754944200001.20) 2020; 132
References_xml – volume: 9
  start-page: 422
  year: 2019
  publication-title: Nanomaterials
– volume: 76
  start-page: 162
  year: 1999
  end-page: 166
  publication-title: Sens. Actuators A
– volume: 51 124
  start-page: 3556 3616
  year: 2012 2012
  end-page: 3561 3621
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 72
  start-page: 611
  year: 1984
  end-page: 620
  publication-title: J. Ecol.
– volume: 60 133
  start-page: 11283 11383
  year: 2021 2021
  end-page: 11287 11387
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 59 132
  start-page: 23117 23317
  year: 2020 2020
  end-page: 23121 23321
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 59 132
  start-page: 4299 4329
  year: 2020 2020
  end-page: 4303 4333
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 2
  start-page: 337
  year: 2011
  publication-title: Nat. Commun.
– volume: 50
  start-page: 84
  year: 2021
  end-page: 86
  publication-title: Chem. Lett.
– volume: 12
  start-page: 55205
  year: 2020
  end-page: 55214
  publication-title: ACS Appl. Mater. Interfaces
– volume: 337
  start-page: 1087
  year: 2012
  end-page: 1091
  publication-title: Science
– volume: 8
  year: 2020
  publication-title: Adv. Opt. Mater.
– volume: 7
  start-page: 4049
  year: 2019
  end-page: 4054
  publication-title: J. Mater. Chem. B
– volume: 3
  start-page: 274
  year: 2005
  end-page: 295
  publication-title: Sens. Lett.
– volume: 17
  year: 2021
  publication-title: Small
– volume: 57 130
  start-page: 17002 17248
  year: 2018 2018
  end-page: 17008 17254
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 1
  start-page: 305
  year: 2013
  end-page: 311
  publication-title: Adv. Opt. Mater.
– volume: 2
  start-page: 2569
  year: 2020
  end-page: 2575
  publication-title: CCS Chem.
– volume: 59 132
  start-page: 13852 13956
  year: 2020 2020
  end-page: 13858 13962
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 330
  year: 2021
  publication-title: Sens. Actuators B
– volume: 145
  start-page: 327
  year: 2010
  end-page: 333
  publication-title: Sens. Actuators B
– year: 2014
– volume: 68
  start-page: 300
  year: 2000
  end-page: 306
  publication-title: Sens. Actuators B
– volume: 390
  start-page: 668
  year: 1997
  publication-title: Nature
– volume: 4
  year: 2017
  publication-title: Adv. Mater. Interfaces
– volume: 14
  start-page: 7881
  year: 2014
  end-page: 7939
  publication-title: Sensors
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 57 130
  start-page: 8448 8584
  year: 2018 2018
  end-page: 8452 8588
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 214
  start-page: 521
  year: 2011
  end-page: 529
  publication-title: J. Exp. Biol.
– volume: 140
  start-page: 6186
  year: 2018
  end-page: 6189
  publication-title: J. Am. Chem. Soc.
– volume: 316
  start-page: 884
  year: 2007
  end-page: 886
  publication-title: Science
– volume: 100
  start-page: 3461
  year: 2003
  end-page: 3466
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 59 132
  start-page: 13821 13925
  year: 2020 2020
  end-page: 13830 13934
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 115
  start-page: 395
  year: 2009
  end-page: 399
  publication-title: Mater. Chem. Phys.
– volume: 81
  start-page: 89
  year: 1977
  end-page: 96
  publication-title: J. Res. Natl. Bur. Stand. Sect. A
– volume: 141
  start-page: 14966
  year: 2019
  end-page: 14970
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 951
  year: 2009
  end-page: 957
  publication-title: J. R. Soc. Interface
– volume: 9
  start-page: 8910
  year: 2017
  end-page: 8918
  publication-title: ACS Appl. Mater. Interfaces
– volume: 462
  start-page: 442
  year: 2009
  end-page: 448
  publication-title: Nature
– ident: e_1_2_3_7_1
  doi: 10.1242/jeb.050567
– ident: e_1_2_3_18_2
  doi: 10.1002/ange.202011857
– ident: e_1_2_3_32_1
  doi: 10.1002/anie.202003820
– ident: e_1_2_3_1_1
  doi: 10.1038/nature08603
– ident: e_1_2_3_37_2
  doi: 10.1002/ange.202002627
– ident: e_1_2_3_10_1
  doi: 10.3390/nano9030422
– ident: e_1_2_3_30_1
  doi: 10.1002/anie.201810422
– ident: e_1_2_3_3_1
  doi: 10.1126/science.1223304
– ident: e_1_2_3_31_1
  doi: 10.1002/anie.201802020
– ident: e_1_2_3_9_1
  doi: 10.1021/acsami.0c17970
– ident: e_1_2_3_16_1
  doi: 10.1246/cl.200693
– ident: e_1_2_3_22_1
  doi: 10.1016/S0924-4247(99)00004-7
– ident: e_1_2_3_24_1
  doi: 10.1016/j.snb.2009.12.021
– ident: e_1_2_3_2_1
  doi: 10.1098/rsif.2009.0184
– ident: e_1_2_3_6_1
  doi: 10.1126/science.1140097
– ident: e_1_2_3_13_1
  doi: 10.1073/pnas.232710999
– ident: e_1_2_3_26_1
  doi: 10.6028/jres.081A.011
– ident: e_1_2_3_17_2
  doi: 10.1002/ange.202102285
– ident: e_1_2_3_31_2
  doi: 10.1002/ange.201802020
– ident: e_1_2_3_11_1
  doi: 10.3390/s140507881
– ident: e_1_2_3_36_1
  doi: 10.1002/anie.201106652
– ident: e_1_2_3_15_1
  doi: 10.1021/jacs.8b00772
– ident: e_1_2_3_34_1
  doi: 10.1002/anie.201914026
– ident: e_1_2_3_5_1
  doi: 10.1038/ncomms1336
– ident: e_1_2_3_20_1
  doi: 10.1039/C9TB00243J
– ident: e_1_2_3_29_1
  doi: 10.1002/adom.202000959
– ident: e_1_2_3_8_1
  doi: 10.2307/2260070
– ident: e_1_2_3_12_1
  doi: 10.1166/sl.2005.045
– ident: e_1_2_3_19_1
  doi: 10.31635/ccschem.020.202000565
– ident: e_1_2_3_25_1
  doi: 10.1016/j.matchemphys.2008.12.010
– ident: e_1_2_3_39_1
  doi: 10.1021/acsami.7b00195
– ident: e_1_2_3_30_2
  doi: 10.1002/ange.201810422
– ident: e_1_2_3_32_2
  doi: 10.1002/ange.202003820
– ident: e_1_2_3_4_1
  doi: 10.1038/37745
– ident: e_1_2_3_28_1
  doi: 10.1002/adom.201200067
– ident: e_1_2_3_35_1
  doi: 10.1021/jacs.9b07645
– ident: e_1_2_3_23_1
  doi: 10.1016/j.snb.2020.129236
– volume-title: Organic Nanophotonics: Fundamentals and Applications
  year: 2014
  ident: e_1_2_3_27_1
– ident: e_1_2_3_21_1
  doi: 10.1016/S0925-4005(00)00448-2
– ident: e_1_2_3_33_1
  doi: 10.1002/adfm.202004116
– ident: e_1_2_3_17_1
  doi: 10.1002/anie.202102285
– ident: e_1_2_3_34_2
  doi: 10.1002/ange.201914026
– ident: e_1_2_3_36_2
  doi: 10.1002/ange.201106652
– ident: e_1_2_3_37_1
  doi: 10.1002/anie.202002627
– ident: e_1_2_3_14_1
  doi: 10.1002/admi.201601002
– ident: e_1_2_3_18_1
  doi: 10.1002/anie.202011857
– ident: e_1_2_3_38_1
  doi: 10.1002/smll.202006795
– volume: 130
  start-page: 17248
  year: 2018
  ident: 000754944200001.33
  publication-title: Angew. Chem
– volume: 330
  year: 2021
  ident: WOS:000612159400003
  article-title: Rational design of a porous nanofibrous actuator with highly sensitive, ultrafast, and large deformation driven by humidity
  publication-title: SENSORS AND ACTUATORS B-CHEMICAL
  doi: 10.1016/j.snb.2020.129236
– volume: 30
  start-page: ARTN 2004116
  year: 2020
  ident: WOS:000557394800001
  article-title: Naturally and Elastically Bent Organic Polymorphs for Multifunctional Optical Applications
  publication-title: ADVANCED FUNCTIONAL MATERIALS
  doi: 10.1002/adfm.202004116
– volume: 72
  start-page: 611
  year: 1984
  ident: WOS:A1984TD55300018
  article-title: SELF-BURIAL BEHAVIOR OF ERODIUM-CICUTARIUM SEEDS
  publication-title: JOURNAL OF ECOLOGY
– volume: 132
  start-page: 4329
  year: 2020
  ident: 000754944200001.40
  publication-title: Angew. Chem
– volume: 9
  year: 2019
  ident: WOS:000754944200001.10
  publication-title: NANOMATERIALS-BASEL
– volume: 68
  start-page: 300
  year: 2000
  ident: WOS:000089218000047
  article-title: Relative humidity sensing by PVA-coated dual resonator SAW oscillator
  publication-title: SENSORS AND ACTUATORS B-CHEMICAL
– volume: 4
  start-page: ARTN 1601002
  year: 2017
  ident: WOS:000401009400004
  article-title: Sensitively Humidity-Driven Actuator Based on Photopolymerizable PEG-DA Films
  publication-title: ADVANCED MATERIALS INTERFACES
  doi: 10.1002/admi.201601002
– volume: 337
  start-page: 1087
  year: 2012
  ident: WOS:000308125800045
  article-title: How the Cucumber Tendril Coils and Overwinds
  publication-title: SCIENCE
  doi: 10.1126/science.1223304
– volume: 115
  start-page: 395
  year: 2009
  ident: WOS:000264841900069
  article-title: The electrical responses to humidity of a composite of polyaniline and polyelectrolyte
  publication-title: MATERIALS CHEMISTRY AND PHYSICS
  doi: 10.1016/j.matchemphys.2008.12.010
– volume: 124
  start-page: 3616
  year: 2012
  ident: 000754944200001.43
  publication-title: Angew. Chem
– volume: 81
  start-page: 89
  year: 1977
  ident: WOS:A1977DM87500006
  article-title: HUMIDITY FIXED-POINTS OF BINARY SATURATED AQUEOUS-SOLUTIONS
  publication-title: JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS SECTION A-PHYSICS AND CHEMISTRY
  doi: 10.6028/jres.081A.011
– volume: 145
  start-page: 327
  year: 2010
  ident: WOS:000275763100051
  article-title: A capacitive humidity sensor based on gold-PVA core-shell nanocomposites
  publication-title: SENSORS AND ACTUATORS B-CHEMICAL
  doi: 10.1016/j.snb.2009.12.021
– volume: 133
  start-page: 11383
  year: 2021
  ident: 000754944200001.18
  publication-title: Angew. Chem
– volume: 100
  start-page: 3461
  year: 2003
  ident: WOS:000181675200087
  article-title: Kinetics of size changes of individual Bacillus thuringiensis spores in response to changes in relative humidity
  publication-title: PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
  doi: 10.1073/pnas.232710999
– volume: 59
  start-page: 13852
  year: 2020
  ident: WOS:000538584600001
  article-title: Mechanophotonics: Flexible Single-Crystal Organic Waveguides and Circuits
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202003820
– volume: 132
  start-page: 13925
  year: 2020
  ident: 000754944200001.45
  publication-title: Angew. Chem
– volume: 316
  start-page: 884
  year: 2007
  ident: WOS:000246369800036
  article-title: The role of wheat awns in the seed dispersal unit
  publication-title: SCIENCE
  doi: 10.1126/science.1140097
– volume: 1
  start-page: 305
  year: 2013
  ident: WOS:000320998600006
  article-title: Organic Submicro Tubular Optical Waveguides: Self-Assembly, Diverse Geometries, Efficiency, and Remote Sensing Properties
  publication-title: ADVANCED OPTICAL MATERIALS
  doi: 10.1002/adom.201200067
– volume: 462
  start-page: 442
  year: 2009
  ident: WOS:000272144200032
  article-title: Biomaterial systems for mechanosensing and actuation
  publication-title: NATURE
  doi: 10.1038/nature08603
– volume: 6
  start-page: 951
  year: 2009
  ident: WOS:000269197900011
  article-title: Hygromorphs: from pine cones to biomimetic bilayers
  publication-title: JOURNAL OF THE ROYAL SOCIETY INTERFACE
  doi: 10.1098/rsif.2009.0184
– volume: 130
  start-page: 8584
  year: 2018
  ident: 000754944200001.35
  publication-title: Angew. Chem
– volume: 9
  start-page: 8910
  year: 2017
  ident: WOS:000396801200053
  article-title: A Single Crystal with Multiple Functions of Optical Waveguide, Aggregation-Induced Emission, and Mechanochromism
  publication-title: ACS APPLIED MATERIALS & INTERFACES
  doi: 10.1021/acsami.7b00195
– start-page: 1
  year: 2015
  ident: WOS:000754944200001.29
  publication-title: NANOPT NANOPHOTO
– volume: 51
  start-page: 3556
  year: 2012
  ident: WOS:000302348200005
  article-title: Reversibly Shape-Shifting Organic Optical Waveguides: Formation of Organic Nanorings, Nanotubes, and Nanosheets
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201106652
– volume: 390
  start-page: 668
  year: 1997
  ident: WOS:A1997YM50800024
  article-title: How pine cones open
  publication-title: NATURE
– volume: 141
  start-page: 14966
  year: 2019
  ident: WOS:000488322500004
  article-title: Spatial Photocontrol of the Optical Output from an Organic Crystal Waveguide
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.9b07645
– volume: 132
  start-page: 13956
  year: 2020
  ident: 000754944200001.37
  publication-title: Angew. Chem
– volume: 3
  start-page: 274
  year: 2005
  ident: WOS:000234767100002
  article-title: Humidity sensors: A review of materials and mechanisms
  publication-title: SENSOR LETTERS
  doi: 10.1166/sl.2005.045
– volume: 132
  start-page: 23317
  year: 2020
  ident: 000754944200001.20
  publication-title: Angew. Chem
– volume: 50
  start-page: 84
  year: 2021
  ident: WOS:000598378400014
  article-title: Stepwise Assembly of Ultrathin Poly(vinyl alcohol) Films on Photoresponsive Diarylethene Crystals
  publication-title: CHEMISTRY LETTERS
  doi: 10.1246/cl.200693
– volume: 8
  year: 2020
  ident: WOS:000754944200001.31
  publication-title: ADV OPT MATER
– volume: 214
  start-page: 521
  year: 2011
  ident: WOS:000286597000005
  article-title: The mechanics of explosive dispersal and self-burial in the seeds of the filaree, Erodium cicutarium (Geraniaceae)
  publication-title: JOURNAL OF EXPERIMENTAL BIOLOGY
  doi: 10.1242/jeb.050567
– volume: 14
  start-page: 7881
  year: 2014
  ident: WOS:000337112200013
  article-title: Humidity Sensors Principle, Mechanism, and Fabrication Technologies: A Comprehensive Review
  publication-title: SENSORS
  doi: 10.3390/s140507881
– volume: 59
  start-page: 4299
  year: 2020
  ident: WOS:000509769100001
  article-title: Optical Waveguiding Organic Single Crystals Exhibiting Physical and Chemical Bending Features
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201914026
– volume: 57
  start-page: 17002
  year: 2018
  ident: WOS:000454575500008
  article-title: Creating Elastic Organic Crystals of π-Conjugated Molecules with Bending Mechanofluorochromism and Flexible Optical Waveguide
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201810422
– volume: 76
  start-page: 162
  year: 1999
  ident: WOS:000083925200027
  article-title: Surface acoustic wave humidity sensor using polyvinyl-alcohol film
  publication-title: SENSORS AND ACTUATORS A-PHYSICAL
– volume: 57
  start-page: 8448
  year: 2018
  ident: WOS:000437668700012
  article-title: Highly Elastic Organic Crystals for Flexible Optical Waveguides
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201802020
– volume: 3
  start-page: 2569
  year: 2021
  ident: WOS:000794234500008
  article-title: An Optical Waveguiding Organic Crystal with Phase-Dependent Elasticity and Thermoplasticity over Wide Temperature Ranges
  publication-title: CCS CHEMISTRY
  doi: 10.31635/ccschem.020.202000565
– volume: 7
  start-page: 4049
  year: 2019
  ident: WOS:000472892600011
  article-title: Modelling of swelling of PVA hydrogels considering non-ideal mixing behaviour of PVA and water
  publication-title: JOURNAL OF MATERIALS CHEMISTRY B
  doi: 10.1039/c9tb00243j
– volume: 140
  start-page: 6186
  year: 2018
  ident: WOS:000433404000001
  article-title: Solvatomechanical Bending of Organic Charge Transfer Cocrystal
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.8b00772
– volume: 2
  start-page: ARTN 337
  year: 2011
  ident: WOS:000294804400003
  article-title: Origami-like unfolding of hydro-actuated ice plant seed capsules
  publication-title: NATURE COMMUNICATIONS
  doi: 10.1038/ncomms1336
– volume: 59
  start-page: 23117
  year: 2020
  ident: WOS:000577744300001
  article-title: Self-Waveguide Single-Benzene Organic Crystal with Ultralow-Temperature Elasticity as a Potential Flexible Material
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202011857
– volume: 60
  start-page: 11283
  year: 2021
  ident: WOS:000637829200001
  article-title: Polymer-Coated Organic Crystals with Solvent-Resistant Capacity and Optical Waveguiding Function
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202102285
– volume: 59
  start-page: 13821
  year: 2020
  ident: WOS:000537136700001
  article-title: Micromanipulation of Mechanically Compliant Organic Single-Crystal Optical Microwaveguides
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202002627
– volume: 17
  start-page: ARTN 2006795
  year: 2021
  ident: WOS:000600915600001
  article-title: Mechanical Processing of Naturally Bent Organic Crystalline Microoptical Waveguides and Junctions
  publication-title: SMALL
  doi: 10.1002/smll.202006795
– volume: 12
  start-page: 55205
  year: 2020
  ident: WOS:000599505200094
  article-title: Asymmetrically Patterned Cellulose Nanofibers/Graphene Oxide Composite Film for Humidity Sensing and Moist-Induced Electricity Generation
  publication-title: ACS APPLIED MATERIALS & INTERFACES
  doi: 10.1021/acsami.0c17970
SSID ssj0028806
Score 2.612815
Snippet Reshaping of elongated organic crystals that can be used as semiconductors, waveguides or soft robotic grippers by application of force or light is now a...
Source Web of Science
SourceID hal
proquest
pubmed
webofscience
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202200196
SubjectTerms Actuators
Bilayers
Chemical Sciences
Chemistry
Chemistry, Multidisciplinary
Coupling (molecular)
Crystal structure
Crystallinity
Crystals
Elastic Crystals
Grippers
Humidity
Hybrid Materials
Mechanical analysis
Optical Transducers
Organic crystals
Physical Sciences
Polymer coatings
Polymers
Science & Technology
Transducers
Waveguides
Title Hybrid Elastic Organic Crystals that Respond to Aerial Humidity
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202200196
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000754944200001
https://www.ncbi.nlm.nih.gov/pubmed/35090063
https://www.proquest.com/docview/2640952227
https://www.proquest.com/docview/2623887865
https://hal.science/hal-03955590
Volume 61
WOS 000754944200001
WOSCitedRecordID wos000754944200001
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB1BL3Dh-yO0RQZV4uTWsZ3EOaHVaqsFQQ8VlXqL7DhREdUu6maRyq_vjJO43SIEglsSTxR58iZ-jmeeAfZMbhtViJoLpyXXpXfc5i7lhRPOqqz0sqAC589H-fxEfzzNTm9U8ff6EPGHG0VG-F5TgFu3OrgWDaUKbJzfSRkkXvAjTAlbxIqOo36URHD25UVKcdqFflRtFPJg8_aNUenuGeVE_ko4b41Nm3Q2jEeHD8GOPenTUL7trzu3X_-8JfL4P119BA8GssomPboew51m8QTuTcc94p7C-_klVXyxGXJwtGF9ZWfNpheXyDrPV6w7sx07Dnm4nnVLNgmAZwiirx75_zM4OZx9mc75sCUDr3Hml3Nv8sLnytaikS7F2a300rTCuEbo2ljkYsr5FoPaitaptsSr2mpkgVb7okhT9Ry2FstF8xJY25I0fi0zl5XaOqQ5qrCImKxtBULEJMDHV1LVg145bZtxXvVKy7Iit1TRLQm8i_bfe6WO31q-xTccjUhgez75VNE1ocoM51jiR5rAzgiAagjrVYXsESkplQ8n8CY2o89plcUumuWabJAFmcLkWQIveuDERymkZ0QKE9i7iaTYHhicLrWWYdUlgfRvzKaDd0jFoEtABij9wQfV5OjDLJ69-pebtuE-HVNCnjQ7sNVdrJtdZGidex2i8ArQ2CzZ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB615VAuUN6BAgYVcUrr2E7iHBBabbfK0u0eqlbqLdh5qIhqF3WzoOVf9a_0F3UmL9giBELqgWOcyUPjGfubZOYbgC0dmFyGPHW5VcJVUWZdE1jPDS23RvpRJkIqcD4YB_Gx-nDin6zARVsLU_NDdB_cyDOq9ZocnD5I7_xgDaUSbAzwhKg4Xpq8yv188Q2jttm74S5O8Rsh9gZH_dhtGgu4KcYvgZvpIMwCaVKeC-thjCYyoQuubc5Vqg0iCmmzAk3T8MLKIsJRZRRiGaOyMPQ8ifddhVvURpzo-ncPO8Yqge5QFzRJ6VLf-5Ynkoud5fdd2gdXTykL81eIe203XAbQ1Q64dxcuW93ViS-ft-el3U6_X6OV_K-UuwF3GjzOerUD3YOVfHIf1vttG7wH8D5eUFEbG2CYgTKsLl5NWf98gcD6bMbKU1OywyrVOGPllPUqn2boJ58yDHEewvGNvP8jWJtMJ_kTYEVB7P-p8K0fKWMRycnQoFP4RcHRC7QDbmsDSdpQslNnkLOkJpMWCU1D0k2DA287-S81GclvJV-jSXVCxCEe90YJjXEZ-RhG8q-eA5utxSXNyjVLECAj6qYKaQdedadR5_QjyUzy6ZxkEOjpUAe-A49rS-0eJRGBEu51YOtn0-3OVyBVRUqJ6seSA97fiPUb7RBRQ-mAqGz3DzpIeuPhoDt6-i8XvYT1-OhglIyG4_1ncJvGKf9Q6E1YK8_n-XMEpKV9US0BDD7etFtcATA_iUQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB61RYJeeFNCCxhUxCmtYzuvA0KrfWiXlhWqqNRbsONErVrtVt0saPlV_Sv8I2bygi1CIKQeOMaZPDSesb9JZr4B2I4CncmQpy43SrgqtsbVgfHc0HCjpR9bEVKB8_txMDxU7478oxW4bGphKn6I9oMbeUa5XpODn9t89wdpKFVgY3wnREnxUqdV7mWLLxi0zd6MejjDr4QY9D92h27dV8BNMXwJXBsFoQ2kTnkmjIchmrAiynlkMq7SSCOgkMbmaJma50bmMY4qrRDKaGXD0PMk3ncVbqiAx9QsonfQElYJ9IaqnklKl9reNzSRXOwuv-_SNrh6TEmYvyLcK5vhMn4uN8DBHfjWqK7KezndmRdmJ_16hVXyf9LtXbhdo3HWqdznHqxkk_twq9s0wXsAb4cLKmljfQwyUIZVpasp614sEFafzVhxrAt2UCYaW1ZMWaf0aIZecmIxwHkIh9fy_o9gbTKdZI-B5Tlx_6fCN36stEEcJ0ONLuHnOUcfiBxwGxNI0pqQnfqCnCUVlbRIaBqSdhoceN3Kn1dUJL-VfIkW1QoRg_iws5_QGJexj0Ek_-w5sNUYXFKvW7ME4TFibqqPduBFexp1Tr-R9CSbzkkGYV4URoHvwEZlqO2jJOJPQr0ObP9sue35EqKqWClR_lZywPsbsW6tHaJpKBwQpen-QQdJZzzqt0dP_uWi53DzQ2-Q7I_Ge5uwTsOUfCiiLVgrLubZU0SjhXlWLgAMPl23V3wH306H8w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+Elastic+Organic+Crystals+that+Respond+to+Aerial+Humidity&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Lan%2C+Linfeng&rft.au=Yang%2C+Xuesong&rft.au=Tang%2C+Baolei&rft.au=Yu%2C+Xu&rft.date=2022-03-28&rft.pub=Wiley-VCH+Verlag&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=61&rft.issue=14&rft_id=info:doi/10.1002%2Fanie.202200196&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_03955590v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon