High Energy Density Supercapacitors: An Overview of Efficient Electrode Materials, Electrolytes, Design, and Fabrication
Supercapacitors (SCs) are potentially trustworthy energy storage devices, therefore getting huge attention from researchers. However, due to limited capacitance and low energy density, there is still scope for improvement. The race to develop novel methods for enhancing their electrochemical charact...
Saved in:
Published in | Chemical record Vol. 24; no. 1; pp. e202300236 - n/a |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.01.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Supercapacitors (SCs) are potentially trustworthy energy storage devices, therefore getting huge attention from researchers. However, due to limited capacitance and low energy density, there is still scope for improvement. The race to develop novel methods for enhancing their electrochemical characteristics is still going strong, where the goal of improving their energy density to match that of batteries by increasing their specific capacitance and raising their working voltage while maintaining high power capability and cutting the cost of production. In this light, this paper offers a succinct summary of current developments and fresh insights into the construction of SCs with high energy density which might help new researchers in the field of supercapacitor research. From electrolytes, electrodes, and device modification perspectives, novel applicable methodologies were emphasized and explored. When compared to conventional SCs, the special combination of electrode material/composites and electrolytes along with their fabrication design considerably enhances the electrochemical performance and energy density of the SCs. Emphasis is placed on the dynamic and mechanical variables connected to SCs′ energy storage process. To point the way toward a positive future for the design of high‐energy SCs, the potential and difficulties are finally highlighted. Further, we explore a few important topics for enhancing the energy densities of supercapacitors, as well as some links between major impacting factors. The review also covers the obstacles and prospects in this fascinating subject. This gives a fundamental understanding of supercapacitors as well as a crucial design principle for the next generation of improved supercapacitors being developed for commercial and consumer use.
This review gives the insights to enlarge the energy density of a supercapacitor device by doing numerous modifications in electrode materials, electrolytes, design, and fabrication. Overall, it suggests what combinations of electrode materials, electrolytes and designs should be taken into consideration for a high energy density supercapacitor. |
---|---|
AbstractList | Supercapacitors (SCs) are potentially trustworthy energy storage devices, therefore getting huge attention from researchers. However, due to limited capacitance and low energy density, there is still scope for improvement. The race to develop novel methods for enhancing their electrochemical characteristics is still going strong, where the goal of improving their energy density to match that of batteries by increasing their specific capacitance and raising their working voltage while maintaining high power capability and cutting the cost of production. In this light, this paper offers a succinct summary of current developments and fresh insights into the construction of SCs with high energy density which might help new researchers in the field of supercapacitor research. From electrolytes, electrodes, and device modification perspectives, novel applicable methodologies were emphasized and explored. When compared to conventional SCs, the special combination of electrode material/composites and electrolytes along with their fabrication design considerably enhances the electrochemical performance and energy density of the SCs. Emphasis is placed on the dynamic and mechanical variables connected to SCs′ energy storage process. To point the way toward a positive future for the design of high‐energy SCs, the potential and difficulties are finally highlighted. Further, we explore a few important topics for enhancing the energy densities of supercapacitors, as well as some links between major impacting factors. The review also covers the obstacles and prospects in this fascinating subject. This gives a fundamental understanding of supercapacitors as well as a crucial design principle for the next generation of improved supercapacitors being developed for commercial and consumer use. Supercapacitors (SCs) are potentially trustworthy energy storage devices, therefore getting huge attention from researchers. However, due to limited capacitance and low energy density, there is still scope for improvement. The race to develop novel methods for enhancing their electrochemical characteristics is still going strong, where the goal of improving their energy density to match that of batteries by increasing their specific capacitance and raising their working voltage while maintaining high power capability and cutting the cost of production. In this light, this paper offers a succinct summary of current developments and fresh insights into the construction of SCs with high energy density which might help new researchers in the field of supercapacitor research. From electrolytes, electrodes, and device modification perspectives, novel applicable methodologies were emphasized and explored. When compared to conventional SCs, the special combination of electrode material/composites and electrolytes along with their fabrication design considerably enhances the electrochemical performance and energy density of the SCs. Emphasis is placed on the dynamic and mechanical variables connected to SCs′ energy storage process. To point the way toward a positive future for the design of high‐energy SCs, the potential and difficulties are finally highlighted. Further, we explore a few important topics for enhancing the energy densities of supercapacitors, as well as some links between major impacting factors. The review also covers the obstacles and prospects in this fascinating subject. This gives a fundamental understanding of supercapacitors as well as a crucial design principle for the next generation of improved supercapacitors being developed for commercial and consumer use. This review gives the insights to enlarge the energy density of a supercapacitor device by doing numerous modifications in electrode materials, electrolytes, design, and fabrication. Overall, it suggests what combinations of electrode materials, electrolytes and designs should be taken into consideration for a high energy density supercapacitor. Supercapacitors (SCs) are potentially trustworthy energy storage devices, therefore getting huge attention from researchers. However, due to limited capacitance and low energy density, there is still scope for improvement. The race to develop novel methods for enhancing their electrochemical characteristics is still going strong, where the goal of improving their energy density to match that of batteries by increasing their specific capacitance and raising their working voltage while maintaining high power capability and cutting the cost of production. In this light, this paper offers a succinct summary of current developments and fresh insights into the construction of SCs with high energy density which might help new researchers in the field of supercapacitor research. From electrolytes, electrodes, and device modification perspectives, novel applicable methodologies were emphasized and explored. When compared to conventional SCs, the special combination of electrode material/composites and electrolytes along with their fabrication design considerably enhances the electrochemical performance and energy density of the SCs. Emphasis is placed on the dynamic and mechanical variables connected to SCs' energy storage process. To point the way toward a positive future for the design of high-energy SCs, the potential and difficulties are finally highlighted. Further, we explore a few important topics for enhancing the energy densities of supercapacitors, as well as some links between major impacting factors. The review also covers the obstacles and prospects in this fascinating subject. This gives a fundamental understanding of supercapacitors as well as a crucial design principle for the next generation of improved supercapacitors being developed for commercial and consumer use.Supercapacitors (SCs) are potentially trustworthy energy storage devices, therefore getting huge attention from researchers. However, due to limited capacitance and low energy density, there is still scope for improvement. The race to develop novel methods for enhancing their electrochemical characteristics is still going strong, where the goal of improving their energy density to match that of batteries by increasing their specific capacitance and raising their working voltage while maintaining high power capability and cutting the cost of production. In this light, this paper offers a succinct summary of current developments and fresh insights into the construction of SCs with high energy density which might help new researchers in the field of supercapacitor research. From electrolytes, electrodes, and device modification perspectives, novel applicable methodologies were emphasized and explored. When compared to conventional SCs, the special combination of electrode material/composites and electrolytes along with their fabrication design considerably enhances the electrochemical performance and energy density of the SCs. Emphasis is placed on the dynamic and mechanical variables connected to SCs' energy storage process. To point the way toward a positive future for the design of high-energy SCs, the potential and difficulties are finally highlighted. Further, we explore a few important topics for enhancing the energy densities of supercapacitors, as well as some links between major impacting factors. The review also covers the obstacles and prospects in this fascinating subject. This gives a fundamental understanding of supercapacitors as well as a crucial design principle for the next generation of improved supercapacitors being developed for commercial and consumer use. |
Author | Bhatt, Rajesh Chandra Bohra, Bhashkar Singh Pathak, Mayank Bhatt, Diksha Arya, Mahesh Chandra Rana, Sravendra Sahoo, Nanda Gopal Tatrari, Gaurav |
Author_xml | – sequence: 1 givenname: Mayank surname: Pathak fullname: Pathak, Mayank organization: Kumaun University – sequence: 2 givenname: Diksha surname: Bhatt fullname: Bhatt, Diksha organization: Kumaun University – sequence: 3 givenname: Rajesh Chandra surname: Bhatt fullname: Bhatt, Rajesh Chandra organization: Kumaun University – sequence: 4 givenname: Bhashkar Singh surname: Bohra fullname: Bohra, Bhashkar Singh organization: Kumaun University – sequence: 5 givenname: Gaurav surname: Tatrari fullname: Tatrari, Gaurav organization: Lulea Technology University – sequence: 6 givenname: Sravendra surname: Rana fullname: Rana, Sravendra organization: University of Petroleum & Energy Studies (UPES) – sequence: 7 givenname: Mahesh Chandra surname: Arya fullname: Arya, Mahesh Chandra organization: Kumaun University – sequence: 8 givenname: Nanda Gopal orcidid: 0000-0001-8406-6610 surname: Sahoo fullname: Sahoo, Nanda Gopal email: ngsahoo@yahoo.co.in organization: Kumaun University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37991268$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-103027$$DView record from Swedish Publication Index |
BookMark | eNp9kc1vEzEQxS3Uin7AkSuyxIVDt3jtrL3mFiUprVRUCQpXy-udDa429tb2NuS_x22aVEKCk8ej34zmvXeCDpx3gNC7kpyXhNBPyYRzSijLNeOv0HFZ0bogXJYHT7UoainlETqJ8Y6QspwI8RodMSFlSXl9jH5f2uUvvHAQlhs8Bxdt2uDv4wDB6EEbm3yIn_HU4ZsHCA8W1th3eNF11lhwCS96MCn4FvBXnSBY3cezXbPfJMi_OUS7dGdYuxZf6CZYo5P17g067DINb5_fU_TjYnE7uyyub75czabXhZkQwQtTi65ijDcV0aYSgjIjGt11lWw5zYpJ13AJkreUQlUa3RrNqKm4brraVBPDTlGx3RvXMIyNGoJd6bBRXls1tz-nyoel6tOoSsIIFZn_uOWH4O9HiEmtbDTQ99qBH6OitaScPzqZ0Q9_oXd-DC6rUVSWjApJJzRT75-psVlBuz9gl0EG2BYwwccYoFPZ9iePUtC2z4epx6RVTlrtk37RtZ_aLf4XL7b82vaw-T-sbmffXib_AAWhumE |
CitedBy_id | crossref_primary_10_1039_D5TA00860C crossref_primary_10_1021_acsaem_4c01681 crossref_primary_10_1002_slct_202405536 crossref_primary_10_1016_j_pnsc_2024_10_004 crossref_primary_10_1007_s11356_024_34138_4 crossref_primary_10_1016_j_est_2024_114338 crossref_primary_10_1039_D4DT01366B crossref_primary_10_1039_D4NR04584J crossref_primary_10_1016_j_matchemphys_2025_130362 crossref_primary_10_1016_j_coelec_2024_101640 crossref_primary_10_1016_j_jpowsour_2025_236176 crossref_primary_10_1021_acsanm_4c05378 crossref_primary_10_1155_2024_3149906 crossref_primary_10_1016_j_est_2025_115289 crossref_primary_10_1016_j_synthmet_2025_117838 crossref_primary_10_1016_j_electacta_2025_146047 crossref_primary_10_1002_adsu_202400312 crossref_primary_10_1016_j_colsurfa_2024_134161 crossref_primary_10_1039_D4QI02229G crossref_primary_10_1021_acsanm_5c00180 crossref_primary_10_1016_j_apmate_2024_100246 crossref_primary_10_1039_D4MA00469H crossref_primary_10_3390_electronics14061083 crossref_primary_10_1016_j_inoche_2024_113513 crossref_primary_10_1155_jnt_5551493 crossref_primary_10_3390_en17153853 crossref_primary_10_1007_s11581_025_06168_6 crossref_primary_10_1016_j_est_2025_115291 crossref_primary_10_1016_j_nanoso_2024_101411 crossref_primary_10_1039_D4SU00435C crossref_primary_10_1016_j_jiec_2024_11_018 crossref_primary_10_1007_s11581_025_06192_6 crossref_primary_10_1016_j_colsurfa_2024_135180 crossref_primary_10_1002_advs_202403172 crossref_primary_10_1016_j_cej_2025_159375 crossref_primary_10_1016_j_mssp_2024_109220 crossref_primary_10_1007_s13391_024_00493_0 crossref_primary_10_1016_j_colsurfa_2024_135698 crossref_primary_10_1007_s11664_024_11562_3 crossref_primary_10_1016_j_est_2024_114071 crossref_primary_10_1016_j_ccr_2024_215876 crossref_primary_10_3390_batteries10020054 crossref_primary_10_3390_inorganics12080205 crossref_primary_10_1016_j_est_2024_113554 crossref_primary_10_1016_j_jallcom_2024_176924 crossref_primary_10_1007_s10854_024_12900_1 crossref_primary_10_1016_j_materresbull_2024_113123 crossref_primary_10_1016_j_ceramint_2025_01_187 crossref_primary_10_1016_j_colsurfa_2025_136536 crossref_primary_10_1039_D4TA07111E crossref_primary_10_1002_ente_202401761 crossref_primary_10_1016_j_matchemphys_2024_130014 crossref_primary_10_1155_2024_2329261 crossref_primary_10_1515_ntrev_2024_0047 crossref_primary_10_1002_app_56428 |
Cites_doi | 10.1016/j.jpowsour.2009.01.009 10.1039/D0RA09393A 10.1002/aenm.202001445 10.1021/acssuschemeng.6b01367 10.1039/B802885K 10.1016/j.jpowsour.2009.06.050 10.1016/j.jechem.2020.04.015 10.1021/nn1017457 10.1002/cssc.201100571 10.1016/j.carbon.2014.01.021 10.1016/j.elecom.2010.06.036 10.1039/c3ra23466e 10.1016/j.jpowsour.2016.09.115 10.1016/j.jpowsour.2012.11.014 10.1016/S0008-6223(01)00266-4 10.1016/j.jelechem.2020.113830 10.1016/j.adapen.2021.100011 10.1039/c2ee24203f 10.1039/B811548F 10.1039/C7NR03763E 10.1002/adma.201001029 10.1021/acssuschemeng.8b06486 10.1002/er.8490 10.1039/C1CS15060J 10.1021/am503375h 10.1149/2.0111505jes 10.1016/j.jallcom.2016.05.282 10.1039/c3cp52283k 10.1021/nl802558y 10.1109/IIC.2015.7150826 10.1016/S0379-6779(98)01334-4 10.1126/science.1132195 10.1038/nnano.2006.56 10.1039/C6TA09817G 10.1021/acs.energyfuels.1c00341 10.1088/1361-6528/aa8948 10.1557/mrs.2011.137 10.1016/j.electacta.2019.135277 10.1021/nn101754k 10.1016/j.elecom.2009.03.036 10.1016/j.electacta.2011.05.125 10.1039/C9NA00374F 10.1002/adfm.201100058 10.1016/j.carbon.2018.12.009 10.1007/s10008-016-3431-0 10.1039/C4TA04996A 10.1039/C4TA05565A 10.1039/C6DT01791F 10.1039/c1ee01354h 10.1038/nchem.281 10.3389/fchem.2020.00595 10.1016/j.jpowsour.2013.05.003 10.1149/1.3236500 10.1088/0022-3727/48/31/314007 10.1039/c3ee44164d 10.3389/fchem.2019.00595 10.1016/j.electacta.2019.135236 10.1149/1.1393216 10.1002/1521-4095(200104)13:7<497::AID-ADMA497>3.0.CO;2-H 10.1038/srep20973 10.1016/j.jpowsour.2009.08.048 10.1016/j.electacta.2003.08.007 10.1126/science.1102896 10.1039/C6TA01133K 10.1016/j.jpowsour.2015.12.103 10.1038/ncomms3487 10.1038/srep04518 10.1038/nmat1368 10.1016/j.cej.2018.04.010 10.1149/2.F05081IF 10.1039/C4QI00167B 10.1016/j.electacta.2007.01.011 10.1039/C8TA01184B 10.1016/j.enconman.2010.06.031 10.1016/j.est.2021.102729 10.1039/D2SM00595F 10.1016/j.carbon.2012.05.014 10.20964/2016.12.50 10.1016/j.est.2023.107830 10.1016/j.electacta.2012.07.062 10.1021/acsomega.9b04063 10.1002/adma.200904349 10.1039/C4CP02761B 10.1002/chem.201705555 10.1016/j.mattod.2013.07.002 10.1016/j.nanoen.2015.02.035 10.1016/j.apsusc.2019.07.183 10.1016/j.cej.2020.126352 10.1038/nmat3916 10.1016/j.electacta.2010.01.022 10.1039/c2jm32841k 10.1002/er.8149 10.1038/nmat3260 10.1039/C6TA06848K 10.1002/ange.201411533 10.1021/nl903949m 10.1038/nmat2297 10.1016/j.jpowsour.2018.06.004 10.1016/j.electacta.2012.05.139 10.1016/j.jpowsour.2005.11.063 10.1021/am404196s 10.1016/j.electacta.2006.03.016 10.1063/1.118568 10.1016/j.ijhydene.2016.08.041 10.1002/adma.201301932 10.1016/j.jechem.2022.12.063 10.1039/D2SM00143H 10.1039/c4ra01793e 10.1016/j.electacta.2008.07.079 10.1016/j.est.2022.106023 10.1016/j.ijhydene.2012.07.076 10.1021/la980785a 10.1002/chem.201602389 10.1016/j.nanoen.2017.04.007 10.1016/j.jpowsour.2007.04.034 10.1016/j.scitotenv.2018.12.257 10.1039/D1TA03262C 10.1016/j.elecom.2008.10.026 10.1021/nl8038579 10.1039/c0ee00261e 10.1016/j.electacta.2017.11.092 10.1016/j.jpowsour.2006.02.092 10.1039/c3nr33927k 10.1039/c3cp51210j 10.1149/1.2352197 10.1002/adma.201100984 10.1016/j.ssc.2008.03.034 10.1016/j.carbon.2010.06.047 10.1002/aenm.201702630 10.1039/D0CS00305K 10.1021/jp205133g 10.1126/science.1158736 10.1021/cm0497576 10.1063/5.0106932 10.1039/C4FD00138A 10.1038/nature04233 10.1007/s10008-008-0560-0 10.1039/c2ee03092f 10.1016/j.electacta.2014.12.169 10.1002/chem.200800639 10.1016/j.elecom.2007.09.015 10.1021/acsenergylett.2c00015 10.1016/j.nanoen.2017.06.042 10.1016/j.electacta.2011.03.066 10.1002/aenm.201200088 10.1016/j.est.2022.105729 10.1039/b909779a 10.1002/adfm.201803287 10.1016/j.ijhydene.2013.08.112 10.1016/j.est.2015.03.001 10.1016/j.jpowsour.2013.10.068 10.1021/acsami.8b20246 10.1002/cssc.201200227 10.1016/j.est.2022.105098 10.1002/ange.201006811 10.1021/acs.jpcc.5b02113 10.1002/aenm.201300816 10.1002/aenm.201400500 10.1038/nenergy.2016.216 10.1002/advs.201500286 10.1016/j.electacta.2015.11.053 10.1016/j.polymer.2019.01.058 10.1002/adma.201201948 10.1038/srep09591 10.1021/acsnano.2c06656 10.1002/adma.201202774 10.1039/D1MA01136G 10.1016/j.electacta.2015.10.139 10.1016/j.carbon.2016.11.051 10.1016/j.jpowsour.2020.227771 10.1016/j.apenergy.2013.03.025 10.1149/1.2168298 10.1002/celc.201700421 10.1039/C5TA02701B 10.1038/nenergy.2016.70 10.1007/s12274-011-0129-6 10.1016/j.ijhydene.2016.04.213 10.1016/j.carbon.2012.11.055 10.1038/nmat4318 10.1021/acs.chemrev.1c00978 10.1038/ncomms2446 10.1021/nl400760a 10.1016/S0920-5861(01)00541-7 10.1149/1.1559067 10.1039/c3ee40509e 10.1016/j.jpowsour.2010.09.097 10.1039/c0ee00470g 10.1002/adfm.200900971 10.1016/j.apenergy.2015.02.091 10.1007/s40843-018-9290-y 10.1149/2.038112jes 10.1016/j.electacta.2021.138822 10.1021/cm2021214 10.1039/C5TA03221K 10.1021/am300455d 10.1039/D1TA04642J 10.1002/anie.201203201 10.1021/nl102661q 10.1021/nn3003345 10.1002/aenm.201401401 10.1007/978-3-319-70614-6_66-1 10.1016/j.nanoen.2018.08.013 10.1016/j.jpowsour.2012.05.090 10.1016/j.electacta.2013.07.168 10.1016/j.jelechem.2011.03.025 10.1039/C9SE01298B 10.1021/ja410287s 10.1016/j.jallcom.2013.10.056 10.1016/j.apsusc.2017.04.022 10.1016/j.carbon.2015.11.079 10.1021/jacs.6b02115 10.1016/j.jpcs.2018.04.044 10.1038/ncomms7544 10.1016/j.jpowsour.2010.01.006 10.1016/j.apenergy.2021.116496 10.1039/C8TA00540K 10.3390/catal13020235 10.1039/c3ta12352a 10.1039/c000339e 10.1016/j.jpowsour.2016.11.068 10.1002/aenm.201200380 10.1063/1.3455879 10.1016/j.compscitech.2023.110143 10.1016/j.jpowsour.2014.07.134 10.1016/j.cej.2018.01.022 10.1016/S0169-4332(00)00232-4 10.1016/j.elecom.2005.08.017 10.1002/adma.201202146 10.1002/aenm.201400236 10.1016/j.electacta.2010.05.058 10.1021/ja7106178 10.1002/adfm.201102796 10.1039/b813846j 10.1039/C6NJ04093D 10.1002/slct.201901652 10.1093/nsr/nwx009 10.1038/srep26890 10.1021/nn405192s 10.1016/j.jallcom.2017.10.161 10.1039/D0TA07468C 10.1016/j.rser.2018.10.026 10.1016/j.jpowsour.2012.06.047 10.1021/nn100856y 10.1039/C5EE00142K 10.1021/jp8113094 10.1002/advs.201801797 10.1016/j.ijhydene.2017.10.137 10.1002/adfm.201503662 10.1016/j.electacta.2016.05.030 10.1038/ncomms5554 10.1039/C1EE02262H 10.1039/c3ta14351a 10.1039/c1cc13474d 10.1016/j.apsusc.2017.04.162 10.1016/j.jpowsour.2006.02.065 10.1038/nature13970 10.1039/C7TA00932A 10.1039/C5CS00303B 10.1016/j.matlet.2016.09.051 10.1109/NSTSI.2011.6111793 10.1016/S1002-0071(12)60083-5 |
ContentType | Journal Article |
Copyright | 2023 The Chemical Society of Japan & Wiley‐VCH GmbH 2023 The Chemical Society of Japan & Wiley-VCH GmbH. 2024 The Chemical Society of Japan & Wiley‐VCH GmbH |
Copyright_xml | – notice: 2023 The Chemical Society of Japan & Wiley‐VCH GmbH – notice: 2023 The Chemical Society of Japan & Wiley-VCH GmbH. – notice: 2024 The Chemical Society of Japan & Wiley‐VCH GmbH |
DBID | AAYXX CITATION NPM 7QO 7T7 8FD C1K FR3 P64 7X8 ADTPV AOWAS |
DOI | 10.1002/tcr.202300236 |
DatabaseName | CrossRef PubMed Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic SwePub SwePub Articles |
DatabaseTitle | CrossRef PubMed Engineering Research Database Biotechnology Research Abstracts Technology Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | Engineering Research Database CrossRef MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1528-0691 |
EndPage | n/a |
ExternalDocumentID | oai_DiVA_org_ltu_103027 37991268 10_1002_tcr_202300236 TCR202300236 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: National Mission on Himalayan Studies (NMHS) – fundername: DST INSPIRE Division funderid: IF180347 – fundername: Kosi Katarmal, India funderid: NMHS/2022-23/MG 86/03/279 – fundername: DST INSPIRE Division grantid: IF180347 – fundername: Kosi Katarmal, India grantid: NMHS/2022-23/MG 86/03/279 |
GroupedDBID | --- .3N .Y3 05W 0R~ 10A 123 1OC 29B 31~ 33P 3WU 4.4 50Y 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 53G 5VS 66C 702 7PT 8-1 8UM A00 AAESR AAHHS AAHQN AAMNL AANHP AANLZ AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB ASPBG AVWKF AZFZN AZVAB BDRZF BFHJK BMXJE BROTX BRXPI BY8 CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD F5P FEDTE G-S G.N GODZA HF~ HGLYW HVGLF HZ~ IX1 J0M LATKE LAW LC2 LC3 LEEKS LH- LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MSFUL MSSTM MXFUL MXSTM MY~ N9A O9- OIG P2W P4D Q11 QB0 QRW R.K ROL RX1 SUPJJ V2E W99 WBKPD WOHZO WQJ WXSBR WYJ WYUIH XG1 XV2 ZZTAW ~IA AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION NPM 7QO 7T7 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 P64 7X8 ADTPV AOWAS |
ID | FETCH-LOGICAL-c4076-c87f5336b50ac57723c7baff59d622360fb69e96d22e51cadca32c56abf8c54c3 |
IEDL.DBID | DR2 |
ISSN | 1527-8999 1528-0691 |
IngestDate | Thu Aug 21 06:21:14 EDT 2025 Fri Jul 11 05:11:24 EDT 2025 Fri Jul 25 10:31:23 EDT 2025 Wed Feb 19 02:07:20 EST 2025 Tue Jul 01 02:40:11 EDT 2025 Thu Apr 24 23:04:05 EDT 2025 Wed Jan 22 16:15:33 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Supercapacitors Electrolytes Energy density Electrode materials Fabrication designs |
Language | English |
License | 2023 The Chemical Society of Japan & Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4076-c87f5336b50ac57723c7baff59d622360fb69e96d22e51cadca32c56abf8c54c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-8406-6610 |
PMID | 37991268 |
PQID | 2913279242 |
PQPubID | 1006501 |
PageCount | 37 |
ParticipantIDs | swepub_primary_oai_DiVA_org_ltu_103027 proquest_miscellaneous_2892660114 proquest_journals_2913279242 pubmed_primary_37991268 crossref_citationtrail_10_1002_tcr_202300236 crossref_primary_10_1002_tcr_202300236 wiley_primary_10_1002_tcr_202300236_TCR202300236 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2024 2024-01-00 2024-Jan 20240101 2024 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: January 2024 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Chemical record |
PublicationTitleAlternate | Chem Rec |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2011; 115 2019; 11 2016; 306 2003; 150 2019; 168 2009; 194 2020; 10 2013; 241 2012; 11 2013; 54 2007; 173 2018; 338 2013; 52 2016; 41 2010; 195 2012; 24 2010; 4 2012; 22 2011; 123 2016; 45 2020; 858 2002; 74 2013; 109 2013; 108 2015; 127 2016; 208 2004; 49 2013; 226 2018; 346 2016; 685 1999; 102 2008; 54 2012; 37 2011; 4 2004; 306 2021; 52 2011; 5 2017; 258 2016; 11 2012; 50 2016; 4 2016; 6 2016; 1 2016; 3 2022; 3 2022; 7 2005; 4 2016; 332 2009; 189 2005; 7 2015; 119 2008; 130 2012; 41 2016; 22 2015; 185 2010; 55 2017; 41 2013; 25 2008; 7 2008; 8 2014; 176 2017; 113 2020; 8 2020; 5 2020; 4 2013; 15 2014; 5 2014; 4 2020; 3 2013; 16 2014; 2 2017; 39 2013; 13 2002; 40 1999; 15 2017; 35 2020; 49 2000; 162 2001; 13 2014; 7 2012; 216 2014; 6 2015; 2 2015; 162 2021; 9 2015; 1 2023; 13 2015; 6 2015; 5 2014; 516 2021; 2 2015; 3 2017; 28 2017; 21 2008 2006; 153 2018; 61 2008; 321 2007; 53 2006; 159 2015; 8 2006; 157 1997; 70 2013; 38 2023 2000; 147 2015; 157 2015; 153 2009; 9 2018; 52 2019; 659 2016; 138 2015 2014 2013 2017; 342 2009; 1 2014; 71 2010; 96 2010; 12 2010; 10 2013; 3 2013; 4 2013; 1 2009; 113 2011; 56 2021; 286 2011; 196 2013; 7 2018; 43 2013; 5 2013; 6 2023; 80 2010; 22 2009; 11 2018; 6 2009; 13 2018; 8 2014; 249 2010; 20 2023; 68 2020; 451 2020; 330 2018; 731 2014; 16 2021; 390 2007; 9 2014; 13 2006; 160 2009; 19 2017; 416 2019; 7 2018; 28 2019; 4 2011; 657 2019; 6 2006; 51 2019; 1 2014; 270 2019; 101 2017; 413 2018; 24 2016; 99 2010; 48 2022; 10 2022; 16 2010; 51 2022; 18 2017; 5 2011; 158 2018; 121 2017; 2 2017; 4 2021; 403 2009; 156 2016; 187 2008; 146 2017; 9 2022; 122 2021; 35 2015; 48 2015; 44 2011; 21 2011; 23 2021; 40 2015; 15 2015; 14 2008; 17 2008; 14 2005; 438 2022; 46 2006; 1 2011; 36 2006; 313 2012; 78 2019; 145 2018; 396 2015; 25 2012; 2 2021; 11 2004; 16 2022; 56 2013; 135 2022; 53 2022; 55 2011; 47 2017; 188 2012; 6 2012; 4 2012; 5 2009; 38 2012; 86 2019; 494 2014; 586 e_1_2_10_271_1 e_1_2_10_40_1 e_1_2_10_109_1 e_1_2_10_210_1 e_1_2_10_233_1 e_1_2_10_256_1 e_1_2_10_158_1 e_1_2_10_207_1 e_1_2_10_74_1 e_1_2_10_97_1 e_1_2_10_150_1 e_1_2_10_6_1 e_1_2_10_135_1 e_1_2_10_173_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_112_1 e_1_2_10_196_1 e_1_2_10_13_1 e_1_2_10_260_1 e_1_2_10_51_1 e_1_2_10_222_1 e_1_2_10_245_1 e_1_2_10_268_1 e_1_2_10_147_1 e_1_2_10_219_1 e_1_2_10_63_1 e_1_2_10_86_1 e_1_2_10_124_1 e_1_2_10_162_1 e_1_2_10_25_1 e_1_2_10_101_1 e_1_2_10_185_1 e_1_2_10_41_1 e_1_2_10_211_1 e_1_2_10_257_1 e_1_2_10_234_1 e_1_2_10_159_1 e_1_2_10_90_1 e_1_2_10_208_1 e_1_2_10_52_1 e_1_2_10_75_1 e_1_2_10_113_1 e_1_2_10_136_1 e_1_2_10_151_1 e_1_2_10_197_1 e_1_2_10_38_1 e_1_2_10_98_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_261_1 Zhou X. (e_1_2_10_50_1) 2014 e_1_2_10_269_1 e_1_2_10_200_1 e_1_2_10_246_1 e_1_2_10_223_1 Halper M. S. (e_1_2_10_68_1) 2006; 1 e_1_2_10_148_1 e_1_2_10_64_1 e_1_2_10_102_1 e_1_2_10_125_1 e_1_2_10_140_1 e_1_2_10_163_1 e_1_2_10_186_1 e_1_2_10_49_1 e_1_2_10_87_1 e_1_2_10_26_1 e_1_2_10_250_1 e_1_2_10_42_1 e_1_2_10_190_1 e_1_2_10_258_1 e_1_2_10_212_1 e_1_2_10_235_1 e_1_2_10_91_1 e_1_2_10_209_1 e_1_2_10_4_1 e_1_2_10_53_1 e_1_2_10_137_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_76_1 e_1_2_10_99_1 e_1_2_10_114_1 e_1_2_10_152_1 e_1_2_10_198_1 e_1_2_10_175_1 e_1_2_10_262_1 e_1_2_10_30_1 e_1_2_10_247_1 e_1_2_10_201_1 e_1_2_10_224_1 e_1_2_10_80_1 e_1_2_10_149_1 e_1_2_10_126_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_88_1 e_1_2_10_103_1 e_1_2_10_141_1 e_1_2_10_187_1 e_1_2_10_43_1 e_1_2_10_251_1 e_1_2_10_20_1 e_1_2_10_236_1 e_1_2_10_259_1 e_1_2_10_213_1 e_1_2_10_130_1 e_1_2_10_92_1 e_1_2_10_115_1 e_1_2_10_138_1 e_1_2_10_191_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_77_1 e_1_2_10_153_1 e_1_2_10_176_1 e_1_2_10_263_1 e_1_2_10_240_1 e_1_2_10_31_1 e_1_2_10_225_1 e_1_2_10_248_1 e_1_2_10_202_1 e_1_2_10_188_1 Dou Q. (e_1_2_10_199_1) 2020; 3 e_1_2_10_81_1 e_1_2_10_104_1 e_1_2_10_127_1 e_1_2_10_180_1 e_1_2_10_28_1 e_1_2_10_66_1 e_1_2_10_142_1 e_1_2_10_165_1 e_1_2_10_89_1 e_1_2_10_252_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_214_1 e_1_2_10_237_1 e_1_2_10_131_1 e_1_2_10_177_1 e_1_2_10_70_1 e_1_2_10_93_1 e_1_2_10_2_1 e_1_2_10_139_1 e_1_2_10_18_1 e_1_2_10_116_1 e_1_2_10_192_1 e_1_2_10_55_1 e_1_2_10_78_1 e_1_2_10_154_1 Kim B. K. (e_1_2_10_155_1) 2015 e_1_2_10_241_1 e_1_2_10_264_1 e_1_2_10_32_1 e_1_2_10_203_1 e_1_2_10_226_1 e_1_2_10_249_1 e_1_2_10_120_1 e_1_2_10_166_1 e_1_2_10_189_1 e_1_2_10_82_1 e_1_2_10_128_1 e_1_2_10_29_1 e_1_2_10_105_1 e_1_2_10_181_1 e_1_2_10_67_1 e_1_2_10_143_1 e_1_2_10_45_1 e_1_2_10_253_1 e_1_2_10_22_1 e_1_2_10_230_1 SuongáOu F. (e_1_2_10_48_1) 2008 e_1_2_10_215_1 e_1_2_10_238_1 e_1_2_10_132_1 e_1_2_10_178_1 Serrano E. (e_1_2_10_54_1) 2013 e_1_2_10_71_1 e_1_2_10_117_1 e_1_2_10_170_1 e_1_2_10_193_1 e_1_2_10_94_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_56_1 e_1_2_10_79_1 e_1_2_10_242_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_204_1 e_1_2_10_227_1 e_1_2_10_265_1 e_1_2_10_121_1 e_1_2_10_144_1 e_1_2_10_167_1 e_1_2_10_60_1 e_1_2_10_106_1 e_1_2_10_129_1 e_1_2_10_182_1 e_1_2_10_83_1 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_231_1 Conway B. E. (e_1_2_10_174_1) 2013 e_1_2_10_239_1 e_1_2_10_216_1 e_1_2_10_254_1 e_1_2_10_110_1 e_1_2_10_156_1 e_1_2_10_179_1 e_1_2_10_72_1 e_1_2_10_95_1 e_1_2_10_118_1 e_1_2_10_194_1 e_1_2_10_171_1 e_1_2_10_8_1 e_1_2_10_57_1 e_1_2_10_133_1 e_1_2_10_58_1 e_1_2_10_34_1 e_1_2_10_220_1 e_1_2_10_11_1 e_1_2_10_119_1 e_1_2_10_205_1 e_1_2_10_228_1 e_1_2_10_243_1 e_1_2_10_266_1 e_1_2_10_145_1 e_1_2_10_168_1 e_1_2_10_61_1 e_1_2_10_84_1 e_1_2_10_107_1 e_1_2_10_183_1 e_1_2_10_160_1 e_1_2_10_122_1 e_1_2_10_24_1 e_1_2_10_270_1 e_1_2_10_108_1 e_1_2_10_217_1 e_1_2_10_232_1 e_1_2_10_255_1 e_1_2_10_157_1 e_1_2_10_229_1 e_1_2_10_1_1 e_1_2_10_73_1 e_1_2_10_172_1 e_1_2_10_96_1 e_1_2_10_111_1 e_1_2_10_134_1 e_1_2_10_195_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_206_1 e_1_2_10_221_1 e_1_2_10_267_1 e_1_2_10_244_1 e_1_2_10_146_1 e_1_2_10_169_1 e_1_2_10_218_1 e_1_2_10_62_1 e_1_2_10_161_1 e_1_2_10_85_1 e_1_2_10_100_1 e_1_2_10_123_1 e_1_2_10_184_1 e_1_2_10_47_1 Yu A. (e_1_2_10_164_1) 2013 |
References_xml | – volume: 157 start-page: 11 year: 2006 end-page: 27 publication-title: J. Power Sources – volume: 18 start-page: 7112 year: 2022 end-page: 7122 publication-title: Soft Matter – volume: 19 start-page: 3420 year: 2009 end-page: 3426 publication-title: Adv. Funct. Mater. – volume: 53 start-page: 1083 year: 2007 end-page: 1091 publication-title: Electrochim. Acta – volume: 4 start-page: 3029 year: 2020 end-page: 3041 publication-title: Sustain. Energy Fuels – volume: 51 start-page: 2901 year: 2010 end-page: 2912 publication-title: Energy Convers. Manage. – volume: 37 start-page: 15256 year: 2012 end-page: 15287 publication-title: Int. J. Hydrogen Energy – volume: 17 start-page: 38 year: 2008 publication-title: The electrochemical society interface – volume: 56 year: 2022 publication-title: J. Energy Storage – volume: 13 start-page: 387 year: 2014 end-page: 393 publication-title: Nat. Mater. – volume: 138 start-page: 5731 year: 2016 end-page: 5744 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 845 year: 2008 end-page: 854 publication-title: Nat. Mater. – volume: 11 start-page: 10628 year: 2016 end-page: 10643 publication-title: Int. J. Electrochem. Sci. – volume: 16 start-page: 272 year: 2013 end-page: 280 publication-title: Mater. Today – start-page: 1 year: 2015 end-page: 25 publication-title: Handbook of clean energy systems – volume: 5 start-page: 241 year: 2017 end-page: 251 publication-title: ACS Sustainable Chem. Eng. – volume: 162 start-page: 452 year: 2000 publication-title: Appl. Surf. Sci. – volume: 3 start-page: 16849 year: 2015 end-page: 16859 publication-title: J. Mater. Chem. A – volume: 122 start-page: 10087 year: 2022 end-page: 10125 publication-title: Chem. Rev. – volume: 80 start-page: 110 year: 2023 end-page: 119 publication-title: J. Energy Chem. – volume: 4 start-page: 1592 year: 2011 end-page: 1605 publication-title: Energy Environ. Sci. – volume: 6 start-page: 4020 year: 2012 end-page: 4028 publication-title: ACS Nano – volume: 54 start-page: 403 year: 2013 end-page: 411 publication-title: Carbon – volume: 10 start-page: 1105 year: 2022 end-page: 1149 publication-title: J. Mater. Chem. A – volume: 5 start-page: 9443 year: 2017 end-page: 9464 publication-title: J. Mater. Chem. A – volume: 3 start-page: 2146 year: 2022 end-page: 2157 publication-title: Materials Advances – volume: 35 start-page: 6465 year: 2021 end-page: 6482 publication-title: Energy Fuels – volume: 121 start-page: 93 year: 2018 end-page: 101 publication-title: J. Phys. Chem. Solids – volume: 6 year: 2019 publication-title: Adv. Sci. – volume: 2 start-page: 950 year: 2012 end-page: 955 publication-title: Adv. Energy Mater. – volume: 4 start-page: 2801 year: 2012 end-page: 2810 publication-title: ACS Appl. Mater. Interfaces – volume: 41 start-page: 16230 year: 2016 end-page: 16239 publication-title: Int. J. Hydrogen Energy – volume: 4 start-page: 27022 year: 2014 end-page: 27029 publication-title: RSC Adv. – volume: 306 start-page: 666 year: 2004 end-page: 669 publication-title: Science – volume: 195 start-page: 912 year: 2010 end-page: 918 publication-title: J. Power Sources – volume: 56 start-page: 8122 year: 2011 end-page: 8128 publication-title: Electrochim. Acta – volume: 46 start-page: 18711 year: 2022 end-page: 18726 publication-title: Int. J. Energy Res. – volume: 2 start-page: 177 year: 2015 end-page: 183 publication-title: Inorg. Chem. Front. – volume: 5 start-page: 12168 year: 2013 end-page: 12174 publication-title: ACS Appl. Mater. Interfaces – volume: 55 year: 2022 publication-title: J. Energy Storage – volume: 241 start-page: 572 year: 2013 end-page: 577 publication-title: J. Power Sources – volume: 47 start-page: 10058 year: 2011 end-page: 10060 publication-title: Chem. Commun. – volume: 46 start-page: 13276 year: 2022 end-page: 13307 publication-title: Int. J. Energy Res. – volume: 19 start-page: 246 year: 2009 end-page: 252 publication-title: J. Mater. Chem. – volume: 194 start-page: 1075 year: 2009 end-page: 1080 publication-title: J. Power Sources – volume: 286 year: 2021 publication-title: Appl. Energy – volume: 416 start-page: 918 year: 2017 end-page: 924 publication-title: Appl. Surf. Sci. – volume: 150 start-page: A484 year: 2003 publication-title: J. Electrochem. Soc. – volume: 2 start-page: 1328 year: 2012 end-page: 1332 publication-title: Adv. Energy Mater. – volume: 685 start-page: 507 year: 2016 end-page: 517 publication-title: J. Alloys Compd. – volume: 52 start-page: 1882 year: 2013 end-page: 1889 publication-title: Angew. Chem. Int. Ed. – volume: 6 start-page: 20973 year: 2016 publication-title: Sci. Rep. – volume: 4 start-page: 729 year: 2011 end-page: 736 publication-title: Nano Res. – volume: 3 start-page: 286 year: 2020 end-page: 305 publication-title: Energy Environ. – volume: 4 start-page: 1440 year: 2011 end-page: 1446 publication-title: Energy Environ. Sci. – volume: 159 start-page: 1527 year: 2006 end-page: 1531 publication-title: J. Power Sources – volume: 9 start-page: 15542 year: 2021 end-page: 15585 publication-title: J. Mater. Chem. A – volume: 36 start-page: 513 year: 2011 end-page: 522 publication-title: MRS Bull. – volume: 23 start-page: 4810 year: 2011 end-page: 4816 publication-title: Chem. Mater. – volume: 44 start-page: 7484 year: 2015 end-page: 7539 publication-title: Chem. Soc. Rev. – volume: 86 start-page: 260 year: 2012 end-page: 267 publication-title: Electrochim. Acta – volume: 35 start-page: 331 year: 2017 end-page: 340 publication-title: Nano Energy – volume: 2 start-page: 1 year: 2017 end-page: 7 publication-title: Nat. Energy – volume: 41 start-page: 22134 year: 2016 end-page: 22143 publication-title: Int. J. Hydrogen Energy – volume: 113 start-page: 151 year: 2017 end-page: 158 publication-title: Carbon – volume: 3 start-page: 1364 year: 2015 end-page: 1387 publication-title: J. Mater. Chem. A – volume: 160 start-page: 1487 year: 2006 end-page: 1494 publication-title: J. Power Sources – volume: 176 start-page: 49 year: 2014 end-page: 68 publication-title: Faraday Discuss. – start-page: 2373 year: 2008 end-page: 2375 publication-title: Chem. Commun. – volume: 96 year: 2010 publication-title: Appl. Phys. Lett. – volume: 146 start-page: 380 year: 2008 end-page: 383 publication-title: Solid State Commun. – volume: 13 start-page: 235 year: 2023 publication-title: Catalysts – volume: 19 start-page: 8755 year: 2009 end-page: 8760 publication-title: J. Mater. Chem. – volume: 4 start-page: 1475 year: 2013 publication-title: Nat. Commun. – volume: 6 start-page: 1185 year: 2013 end-page: 1191 publication-title: Energy Environ. Sci. – volume: 21 start-page: 460 year: 2011 end-page: 466 publication-title: Prog. Nat. Sci. – volume: 3 year: 2016 publication-title: Adv. Sci. – volume: 187 start-page: 312 year: 2016 end-page: 322 publication-title: Electrochim. Acta – volume: 1 start-page: 1 year: 2016 end-page: 10 publication-title: Nat. Energy – volume: 3 start-page: 43 year: 2015 end-page: 59 publication-title: J. Mater. Chem. A – volume: 5 start-page: 3801 year: 2020 end-page: 3808 publication-title: ACS Omega – volume: 586 start-page: 191 year: 2014 end-page: 196 publication-title: J. Alloys Compd. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 8 start-page: 3498 year: 2008 end-page: 3502 publication-title: Nano Lett. – volume: 6 start-page: 11007 year: 2014 end-page: 11012 publication-title: ACS Appl. Mater. Interfaces – volume: 7 start-page: 7728 year: 2019 end-page: 7735 publication-title: ACS Sustainable Chem. Eng. – volume: 3 start-page: 13059 year: 2013 end-page: 13084 publication-title: RSC Adv. – volume: 6 start-page: 1623 year: 2013 end-page: 1632 publication-title: Energy Environ. Sci. – volume: 28 year: 2017 publication-title: Nanotechnology – volume: 249 start-page: 1 year: 2014 end-page: 8 publication-title: J. Power Sources – volume: 659 start-page: 851 year: 2019 end-page: 861 publication-title: Sci. Total Environ. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 1 start-page: 1 year: 2015 end-page: 34 publication-title: Nanocarbons for Advanced Energy Storage – volume: 8 start-page: 1339 year: 2015 end-page: 1347 publication-title: Energy Environ. Sci. – volume: 113 start-page: 14020 year: 2009 end-page: 14027 publication-title: J. Phys. Chem. C – volume: 22 start-page: 3723 year: 2010 end-page: 3728 publication-title: Adv. Mater. – volume: 338 start-page: 147 year: 2018 end-page: 156 publication-title: Chem. Eng. J. – volume: 22 start-page: 1272 year: 2012 end-page: 1278 publication-title: Adv. Funct. Mater. – volume: 22 start-page: 16986 year: 2012 end-page: 16993 publication-title: J. Mater. Chem. – volume: 208 start-page: 260 year: 2016 end-page: 266 publication-title: Electrochim. Acta – volume: 48 year: 2015 publication-title: J. Phys. D – volume: 11 start-page: 10891 year: 2021 end-page: 10901 publication-title: RSC Adv. – volume: 5 start-page: 4902 year: 2013 end-page: 4909 publication-title: Nanoscale – volume: 516 start-page: 78 year: 2014 end-page: 81 publication-title: Nature – volume: 71 start-page: 127 year: 2014 end-page: 138 publication-title: Carbon – volume: 78 start-page: 212 year: 2012 end-page: 222 publication-title: Electrochim. Acta – volume: 49 start-page: 257 year: 2004 publication-title: Acta – volume: 22 start-page: E235 year: 2010 end-page: E241 publication-title: Adv. Mater. – volume: 4 start-page: 4403 year: 2010 end-page: 4411 publication-title: ACS Nano – volume: 52 start-page: 243 year: 2021 end-page: 250 publication-title: J. Energy Chem. – volume: 7 start-page: 1597 year: 2014 end-page: 1614 publication-title: Energy Environ. Sci. – volume: 15 start-page: 780 year: 1999 end-page: 785 publication-title: Langmuir – volume: 11 start-page: 87 year: 2009 end-page: 90 publication-title: Electrochem. Commun. – volume: 173 start-page: 606 year: 2007 end-page: 612 publication-title: J. Power Sources – volume: 5 start-page: 6474 year: 2012 end-page: 6479 publication-title: Energy Environ. Sci. – volume: 7 start-page: 11325 year: 2013 end-page: 11332 publication-title: ACS Nano – volume: 657 start-page: 176 year: 2011 end-page: 180 publication-title: J. Electroanal. Chem. – volume: 11 start-page: 6089 year: 2019 end-page: 6096 publication-title: ACS Appl. Mater. Interfaces – volume: 6 start-page: 6544 year: 2015 publication-title: Nat. Commun. – volume: 2 year: 2021 publication-title: Advances in Applied Energy – volume: 1 start-page: 3807 year: 2019 end-page: 3835 publication-title: Nanoscale Advances – volume: 109 start-page: 587 year: 2013 end-page: 594 publication-title: Electrochim. Acta – volume: 13 start-page: 333 year: 2009 end-page: 340 publication-title: J. Solid State Electrochem. – volume: 5 year: 2015 publication-title: Adv. Energy Mater. – volume: 5 start-page: 9591 year: 2015 publication-title: Sci. Rep. – volume: 1 start-page: 112 year: 2006 end-page: 116 publication-title: Nat. Nanotechnol. – volume: 41 start-page: 4974 year: 2017 end-page: 4984 publication-title: New J. Chem. – volume: 10 start-page: 4863 year: 2010 end-page: 4868 publication-title: Nano Lett. – volume: 20 start-page: 3883 year: 2010 end-page: 3889 publication-title: J. Mater. Chem. – volume: 332 start-page: 180 year: 2016 end-page: 186 publication-title: J. Power Sources – volume: 4 start-page: 366 year: 2005 end-page: 377 publication-title: Nat. Mater. – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 313 start-page: 1760 year: 2006 end-page: 1763 publication-title: Science – volume: 4 start-page: 2487 year: 2013 publication-title: Nat. Commun. – volume: 22 start-page: 13402 year: 2016 end-page: 13421 publication-title: Chemistry–A European Journal – volume: 8 start-page: 595 year: 2020 publication-title: Front. Chem. – volume: 5 start-page: 811 year: 2011 end-page: 819 publication-title: ACS Nano – volume: 21 start-page: 2366 year: 2011 end-page: 2375 publication-title: Adv. Funct. Mater. – volume: 55 start-page: 6015 year: 2010 end-page: 6021 publication-title: Electrochim. Acta – volume: 130 start-page: 2730 year: 2008 end-page: 2731 publication-title: J. Am. Chem. Soc. – volume: 102 start-page: 1360 year: 1999 end-page: 1361 publication-title: Synth. Met. – volume: 4 start-page: 18578 year: 2016 end-page: 18584 publication-title: J. Mater. Chem. A – volume: 51 start-page: 5567 year: 2006 end-page: 5580 publication-title: Electrochim. Acta – volume: 99 start-page: 203 year: 2016 end-page: 211 publication-title: Carbon – year: 2023 publication-title: Compos. Sci. Technol. – volume: 15 start-page: 9 year: 2015 end-page: 23 publication-title: Nano Energy – volume: 413 start-page: 83 year: 2017 end-page: 91 publication-title: Appl. Surf. Sci. – volume: 74 start-page: 157 year: 2002 end-page: 189 publication-title: Catal. Today – volume: 5 start-page: 5842 year: 2012 end-page: 5850 publication-title: Energy Environ. Sci. – volume: 38 start-page: 14027 year: 2013 end-page: 14034 publication-title: Int. J. Hydrogen Energy – volume: 168 start-page: 61 year: 2019 end-page: 69 publication-title: Polymer – volume: 494 start-page: 440 year: 2019 end-page: 451 publication-title: Appl. Surf. Sci. – volume: 45 start-page: 13311 year: 2016 end-page: 13316 publication-title: Dalton Trans. – volume: 16 start-page: 15261 year: 2022 end-page: 15272 publication-title: ACS Nano – year: 2013 publication-title: Electrochemical supercapacitors: scientific fundamentals and technological applications. – volume: 123 start-page: 1737 year: 2011 end-page: 1739 publication-title: Angew. Chem. – volume: 25 start-page: 7530 year: 2015 end-page: 7538 publication-title: Adv. Funct. Mater. – volume: 21 start-page: 759 year: 2017 end-page: 766 publication-title: J. Solid State Electrochem. – volume: 115 start-page: 20689 year: 2011 end-page: 20695 publication-title: J. Phys. Chem. C – volume: 108 start-page: 184 year: 2013 end-page: 193 publication-title: Appl. Energy – volume: 5 start-page: 4554 year: 2014 publication-title: Nat. Commun. – volume: 15 start-page: 7722 year: 2013 end-page: 7730 publication-title: Phys. Chem. Chem. Phys. – volume: 53 year: 2022 publication-title: J. Energy Storage – volume: 127 start-page: 4734 year: 2015 end-page: 4739 publication-title: Angew. Chem. – volume: 24 start-page: 5166 year: 2012 end-page: 5180 publication-title: Adv. Mater. – volume: 11 start-page: 1158 year: 2009 end-page: 1161 publication-title: Electrochem. Commun. – volume: 24 start-page: 5130 year: 2012 end-page: 5135 publication-title: Adv. Mater. – volume: 39 start-page: 162 year: 2017 end-page: 171 publication-title: Nano Energy – volume: 451 year: 2020 publication-title: J. Power Sources – volume: 731 start-page: 1151 year: 2018 end-page: 1158 publication-title: J. Alloys Compd. – volume: 185 start-page: 218 year: 2015 end-page: 228 publication-title: Electrochim. Acta – volume: 145 start-page: 529 year: 2019 end-page: 548 publication-title: Carbon – volume: 16 start-page: 19307 year: 2014 end-page: 19313 publication-title: Phys. Chem. Chem. Phys. – volume: 40 start-page: 1193 year: 2002 end-page: 1197 publication-title: Carbon – volume: 50 start-page: 4379 year: 2012 end-page: 4387 publication-title: Carbon – volume: 43 start-page: 1769 year: 2018 end-page: 1780 publication-title: Int. J. Hydrogen Energy – volume: 6 start-page: 8669 year: 2018 end-page: 8681 publication-title: J. Mater. Chem. A – volume: 216 start-page: 290 year: 2012 end-page: 296 publication-title: J. Power Sources – volume: 258 start-page: 504 year: 2017 end-page: 511 publication-title: Electrochim. Acta – volume: 162 start-page: A5054 year: 2015 publication-title: J. Electrochem. Soc. – start-page: 1 year: 2013 end-page: 39 publication-title: Nanotechnology for the Energy Challenge – volume: 14 start-page: 6614 year: 2008 end-page: 6626 publication-title: Chemistry–A European Journal – volume: 13 start-page: 497 year: 2001 publication-title: Adv. Mater. – volume: 7 start-page: 1266 year: 2022 end-page: 1273 publication-title: ACS Energy Lett. – volume: 156 start-page: A1000 year: 2009 publication-title: J. Electrochem. Soc. – volume: 9 start-page: 13747 year: 2017 end-page: 13759 publication-title: Nanoscale – volume: 330 year: 2020 publication-title: Electrochim. Acta – volume: 438 start-page: 197 year: 2005 end-page: 200 publication-title: Nature – volume: 4 start-page: 8142 year: 2019 end-page: 8149 publication-title: ChemistrySelect – volume: 196 start-page: 4117 year: 2011 end-page: 4122 publication-title: J. Power Sources – volume: 153 start-page: A2171 year: 2006 publication-title: J. Electrochem. Soc. – volume: 15 start-page: 15177 year: 2013 end-page: 15184 publication-title: Phys. Chem. Chem. Phys. – volume: 16 start-page: 1845 year: 2004 end-page: 1847 publication-title: Chem. Mater. – volume: 10 year: 2022 publication-title: APL Materials – volume: 13 start-page: 2628 year: 2013 end-page: 2633 publication-title: Nano Lett. – volume: 858 year: 2020 publication-title: J. Electroanal. Chem. – volume: 216 start-page: 508 year: 2012 end-page: 514 publication-title: J. Power Sources – volume: 147 start-page: 444 year: 2000 publication-title: J. Electrochem. Soc. – volume: 158 start-page: A1320 year: 2011 publication-title: J. Electrochem. Soc. – volume: 7 start-page: 1138 year: 2005 end-page: 1142 publication-title: Electrochem. Commun. – volume: 61 start-page: 1517 year: 2018 end-page: 1526 publication-title: Sci. China Mater. – volume: 135 start-page: 18968 year: 2013 end-page: 18980 publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 1275 year: 2010 end-page: 1278 publication-title: Electrochem. Commun. – volume: 4 start-page: 4518 year: 2014 publication-title: Sci. Rep. – volume: 119 start-page: 13413 year: 2015 end-page: 13424 publication-title: J. Phys. Chem. C – volume: 1 year: 2006 publication-title: The MITRE Corporation, McLean, Virginia, USA – year: 2013 publication-title: Electrochemical supercapacitors for energy storage and delivery: fundamentals and applications. – volume: 48 start-page: 3825 year: 2010 end-page: 3833 publication-title: Carbon – volume: 68 year: 2023 publication-title: J. Energy Storage – volume: 226 start-page: 202 year: 2013 end-page: 209 publication-title: J. Power Sources – volume: 3 start-page: 18874 year: 2015 end-page: 18881 publication-title: J. Mater. Chem. A – volume: 9 start-page: 2807 year: 2007 end-page: 2811 publication-title: Electrochem. Commun. – volume: 346 start-page: 104 year: 2018 end-page: 112 publication-title: Chem. Eng. J. – volume: 11 start-page: 306 year: 2012 end-page: 310 publication-title: Nat. Mater. – volume: 52 start-page: 441 year: 2018 end-page: 473 publication-title: Nano Energy – volume: 4 year: 2014 publication-title: Adv. Energy Mater. – volume: 195 start-page: 4234 year: 2010 end-page: 4241 publication-title: J. Power Sources – volume: 396 start-page: 182 year: 2018 end-page: 206 publication-title: J. Power Sources – volume: 270 start-page: 526 year: 2014 end-page: 535 publication-title: J. Power Sources – volume: 5 start-page: 1181 year: 2012 end-page: 1185 publication-title: ChemSusChem – volume: 153 start-page: A649 year: 2006 publication-title: J. Electrochem. Soc. – volume: 56 start-page: 5115 year: 2011 end-page: 5121 publication-title: Electrochim. Acta – volume: 5 start-page: 3039 year: 2017 end-page: 3068 publication-title: J. Mater. Chem. A – volume: 40 year: 2021 publication-title: J. Energy Storage – volume: 49 start-page: 8790 year: 2020 end-page: 8839 publication-title: Chem. Soc. Rev. – volume: 306 start-page: 711 year: 2016 end-page: 717 publication-title: J. Power Sources – volume: 1 start-page: 11698 year: 2013 end-page: 11704 publication-title: J. Mater. Chem. A – volume: 38 start-page: 2520 year: 2009 end-page: 2531 publication-title: Chem. Soc. Rev. – volume: 70 start-page: 1480 year: 1997 end-page: 1482 publication-title: Appl. Phys. Lett. – volume: 38 start-page: 109 year: 2009 end-page: 114 publication-title: Chem. Soc. Rev. – volume: 2 start-page: 4954 year: 2014 end-page: 4960 publication-title: J. Mater. Chem. A – volume: 321 start-page: 651 year: 2008 end-page: 652 publication-title: Science – volume: 54 start-page: 305 year: 2008 end-page: 310 publication-title: Electrochim. Acta – volume: 157 start-page: 290 year: 2015 end-page: 298 publication-title: Electrochim. Acta – volume: 8 start-page: 23059 year: 2020 end-page: 23095 publication-title: J. Mater. Chem. A – start-page: 247 year: 2014 end-page: 278 publication-title: Two-dimensional Carbon: Fundamental Properties, Synthesis, Characterization, and Applications, Taylor & Francis, USA – volume: 342 start-page: 1 year: 2017 end-page: 8 publication-title: J. Power Sources – volume: 403 year: 2021 publication-title: Chem. Eng. J. – volume: 18 start-page: 3981 year: 2022 end-page: 3992 publication-title: Soft Matter – volume: 4 start-page: 453 year: 2017 end-page: 489 publication-title: Natl. Sci. Rev. – volume: 23 start-page: 4828 year: 2011 end-page: 4850 publication-title: Adv. Mater. – volume: 4 start-page: 7700 year: 2016 end-page: 7709 publication-title: J. Mater. Chem. A – volume: 4 start-page: 2660 year: 2017 end-page: 2668 publication-title: ChemElectroChem – volume: 55 start-page: 7479 year: 2010 end-page: 7483 publication-title: Electrochim. Acta – volume: 390 year: 2021 publication-title: Electrochim. Acta – volume: 188 start-page: 1 year: 2017 end-page: 4 publication-title: Mater. Lett. – volume: 24 start-page: 6348 year: 2012 end-page: 6355 publication-title: Adv. Mater. – volume: 9 start-page: 1872 year: 2009 end-page: 1876 publication-title: Nano Lett. – volume: 189 start-page: 1270 year: 2009 end-page: 1277 publication-title: J. Power Sources – volume: 41 start-page: 797 year: 2012 end-page: 828 publication-title: Chem. Soc. Rev. – volume: 7 start-page: 595 year: 2019 publication-title: Front. Chem. – volume: 101 start-page: 123 year: 2019 end-page: 145 publication-title: Renewable Sustainable Energy Rev. – volume: 5 start-page: 818 year: 2012 end-page: 841 publication-title: ChemSusChem – volume: 4 start-page: 5835 year: 2010 end-page: 5842 publication-title: ACS Nano – volume: 6 start-page: 10674 year: 2018 end-page: 10685 publication-title: J. Mater. Chem. A – volume: 1 start-page: 403 year: 2009 end-page: 408 publication-title: Nat. Chem. – volume: 24 start-page: 7312 year: 2018 end-page: 7329 publication-title: Chemistry–A European Journal – volume: 6 start-page: 26890 year: 2016 publication-title: Sci. Rep. – volume: 4 start-page: 4009 year: 2011 end-page: 4015 publication-title: Energy Environ. Sci. – volume: 10 start-page: 708 year: 2010 end-page: 714 publication-title: Nano Lett. – volume: 14 start-page: 812 year: 2015 end-page: 819 publication-title: Nat. Mater. – volume: 25 start-page: 5336 year: 2013 end-page: 5342 publication-title: Adv. Mater. – volume: 153 start-page: 22 year: 2015 end-page: 31 publication-title: Appl. Energy – ident: e_1_2_10_74_1 doi: 10.1016/j.jpowsour.2009.01.009 – ident: e_1_2_10_90_1 doi: 10.1039/D0RA09393A – ident: e_1_2_10_161_1 doi: 10.1002/aenm.202001445 – ident: e_1_2_10_222_1 doi: 10.1021/acssuschemeng.6b01367 – ident: e_1_2_10_3_1 doi: 10.1039/B802885K – ident: e_1_2_10_259_1 doi: 10.1016/j.jpowsour.2009.06.050 – ident: e_1_2_10_146_1 doi: 10.1016/j.jechem.2020.04.015 – ident: e_1_2_10_75_1 doi: 10.1021/nn1017457 – ident: e_1_2_10_255_1 doi: 10.1002/cssc.201100571 – ident: e_1_2_10_170_1 doi: 10.1016/j.carbon.2014.01.021 – ident: e_1_2_10_189_1 doi: 10.1016/j.elecom.2010.06.036 – ident: e_1_2_10_23_1 doi: 10.1039/c3ra23466e – ident: e_1_2_10_61_1 doi: 10.1016/j.jpowsour.2016.09.115 – ident: e_1_2_10_188_1 doi: 10.1016/j.jpowsour.2012.11.014 – ident: e_1_2_10_78_1 doi: 10.1016/S0008-6223(01)00266-4 – ident: e_1_2_10_227_1 doi: 10.1016/j.jelechem.2020.113830 – ident: e_1_2_10_11_1 doi: 10.1016/j.adapen.2021.100011 – ident: e_1_2_10_115_1 doi: 10.1039/c2ee24203f – ident: e_1_2_10_120_1 doi: 10.1039/B811548F – ident: e_1_2_10_135_1 doi: 10.1039/C7NR03763E – ident: e_1_2_10_99_1 doi: 10.1002/adma.201001029 – ident: e_1_2_10_209_1 doi: 10.1021/acssuschemeng.8b06486 – ident: e_1_2_10_118_1 doi: 10.1002/er.8490 – ident: e_1_2_10_2_1 doi: 10.1039/C1CS15060J – ident: e_1_2_10_193_1 doi: 10.1021/am503375h – ident: e_1_2_10_160_1 doi: 10.1149/2.0111505jes – ident: e_1_2_10_224_1 doi: 10.1016/j.jallcom.2016.05.282 – ident: e_1_2_10_34_1 doi: 10.1039/c3cp52283k – ident: e_1_2_10_92_1 doi: 10.1021/nl802558y – ident: e_1_2_10_44_1 doi: 10.1109/IIC.2015.7150826 – ident: e_1_2_10_112_1 doi: 10.1016/S0379-6779(98)01334-4 – ident: e_1_2_10_262_1 doi: 10.1126/science.1132195 – ident: e_1_2_10_82_1 doi: 10.1038/nnano.2006.56 – ident: e_1_2_10_141_1 doi: 10.1039/C6TA09817G – start-page: 247 year: 2014 ident: e_1_2_10_50_1 publication-title: Two-dimensional Carbon: Fundamental Properties, Synthesis, Characterization, and Applications, Taylor & Francis, USA – ident: e_1_2_10_156_1 doi: 10.1021/acs.energyfuels.1c00341 – ident: e_1_2_10_42_1 doi: 10.1088/1361-6528/aa8948 – ident: e_1_2_10_177_1 doi: 10.1557/mrs.2011.137 – ident: e_1_2_10_231_1 doi: 10.1016/j.electacta.2019.135277 – ident: e_1_2_10_27_1 doi: 10.1021/nn101754k – ident: e_1_2_10_85_1 doi: 10.1016/j.elecom.2009.03.036 – ident: e_1_2_10_247_1 doi: 10.1016/j.electacta.2011.05.125 – ident: e_1_2_10_163_1 doi: 10.1039/C9NA00374F – ident: e_1_2_10_237_1 doi: 10.1002/adfm.201100058 – ident: e_1_2_10_198_1 doi: 10.1016/j.carbon.2018.12.009 – ident: e_1_2_10_102_1 doi: 10.1007/s10008-016-3431-0 – ident: e_1_2_10_127_1 doi: 10.1039/C4TA04996A – ident: e_1_2_10_139_1 doi: 10.1039/C4TA05565A – ident: e_1_2_10_150_1 doi: 10.1039/C6DT01791F – ident: e_1_2_10_248_1 doi: 10.1039/c1ee01354h – ident: e_1_2_10_88_1 doi: 10.1038/nchem.281 – ident: e_1_2_10_158_1 doi: 10.3389/fchem.2020.00595 – ident: e_1_2_10_194_1 doi: 10.1016/j.jpowsour.2013.05.003 – ident: e_1_2_10_184_1 doi: 10.1149/1.3236500 – ident: e_1_2_10_70_1 doi: 10.1088/0022-3727/48/31/314007 – ident: e_1_2_10_176_1 doi: 10.1039/c3ee44164d – ident: e_1_2_10_151_1 doi: 10.3389/fchem.2019.00595 – ident: e_1_2_10_230_1 doi: 10.1016/j.electacta.2019.135236 – ident: e_1_2_10_123_1 doi: 10.1149/1.1393216 – ident: e_1_2_10_67_1 doi: 10.1002/1521-4095(200104)13:7<497::AID-ADMA497>3.0.CO;2-H – ident: e_1_2_10_133_1 doi: 10.1038/srep20973 – ident: e_1_2_10_211_1 doi: 10.1016/j.jpowsour.2009.08.048 – ident: e_1_2_10_113_1 doi: 10.1016/j.electacta.2003.08.007 – ident: e_1_2_10_84_1 doi: 10.1126/science.1102896 – ident: e_1_2_10_132_1 doi: 10.1039/C6TA01133K – start-page: 1 year: 2013 ident: e_1_2_10_54_1 publication-title: Nanotechnology for the Energy Challenge – ident: e_1_2_10_210_1 doi: 10.1016/j.jpowsour.2015.12.103 – ident: e_1_2_10_260_1 doi: 10.1038/ncomms3487 – ident: e_1_2_10_191_1 doi: 10.1038/srep04518 – ident: e_1_2_10_1_1 doi: 10.1038/nmat1368 – ident: e_1_2_10_60_1 doi: 10.1016/j.cej.2018.04.010 – ident: e_1_2_10_49_1 doi: 10.1149/2.F05081IF – ident: e_1_2_10_149_1 doi: 10.1039/C4QI00167B – ident: e_1_2_10_47_1 doi: 10.1016/j.electacta.2007.01.011 – ident: e_1_2_10_143_1 doi: 10.1039/C8TA01184B – ident: e_1_2_10_114_1 doi: 10.1016/j.enconman.2010.06.031 – ident: e_1_2_10_167_1 doi: 10.1016/j.est.2021.102729 – ident: e_1_2_10_104_1 doi: 10.1039/D2SM00595F – ident: e_1_2_10_43_1 doi: 10.1016/j.carbon.2012.05.014 – ident: e_1_2_10_45_1 doi: 10.20964/2016.12.50 – ident: e_1_2_10_110_1 doi: 10.1016/j.est.2023.107830 – ident: e_1_2_10_168_1 doi: 10.1016/j.electacta.2012.07.062 – ident: e_1_2_10_159_1 doi: 10.1021/acsomega.9b04063 – ident: e_1_2_10_76_1 doi: 10.1002/adma.200904349 – ident: e_1_2_10_172_1 doi: 10.1039/C4CP02761B – ident: e_1_2_10_25_1 doi: 10.1002/chem.201705555 – ident: e_1_2_10_51_1 doi: 10.1016/j.mattod.2013.07.002 – ident: e_1_2_10_106_1 doi: 10.1016/j.nanoen.2015.02.035 – ident: e_1_2_10_215_1 doi: 10.1016/j.apsusc.2019.07.183 – ident: e_1_2_10_266_1 doi: 10.1016/j.cej.2020.126352 – ident: e_1_2_10_39_1 doi: 10.1038/nmat3916 – ident: e_1_2_10_234_1 doi: 10.1016/j.electacta.2010.01.022 – ident: e_1_2_10_256_1 doi: 10.1039/c2jm32841k – ident: e_1_2_10_271_1 doi: 10.1002/er.8149 – ident: e_1_2_10_32_1 doi: 10.1038/nmat3260 – ident: e_1_2_10_128_1 doi: 10.1039/C6TA06848K – ident: e_1_2_10_130_1 doi: 10.1002/ange.201411533 – ident: e_1_2_10_73_1 doi: 10.1021/nl903949m – ident: e_1_2_10_5_1 doi: 10.1038/nmat2297 – ident: e_1_2_10_10_1 doi: 10.1016/j.jpowsour.2018.06.004 – ident: e_1_2_10_250_1 doi: 10.1016/j.electacta.2012.05.139 – ident: e_1_2_10_119_1 doi: 10.1016/j.jpowsour.2005.11.063 – ident: e_1_2_10_186_1 doi: 10.1021/am404196s – ident: e_1_2_10_162_1 doi: 10.1016/j.electacta.2006.03.016 – ident: e_1_2_10_66_1 doi: 10.1063/1.118568 – ident: e_1_2_10_109_1 doi: 10.1016/j.ijhydene.2016.08.041 – ident: e_1_2_10_22_1 doi: 10.1002/adma.201301932 – ident: e_1_2_10_41_1 doi: 10.1016/j.jechem.2022.12.063 – ident: e_1_2_10_105_1 doi: 10.1039/D2SM00143H – ident: e_1_2_10_216_1 doi: 10.1039/c4ra01793e – ident: e_1_2_10_179_1 doi: 10.1016/j.electacta.2008.07.079 – start-page: 1 year: 2015 ident: e_1_2_10_155_1 publication-title: Handbook of clean energy systems – ident: e_1_2_10_166_1 doi: 10.1016/j.est.2022.106023 – ident: e_1_2_10_17_1 doi: 10.1016/j.ijhydene.2012.07.076 – ident: e_1_2_10_121_1 doi: 10.1021/la980785a – ident: e_1_2_10_137_1 doi: 10.1002/chem.201602389 – ident: e_1_2_10_144_1 doi: 10.1016/j.nanoen.2017.04.007 – ident: e_1_2_10_187_1 doi: 10.1016/j.jpowsour.2007.04.034 – ident: e_1_2_10_16_1 doi: 10.1016/j.scitotenv.2018.12.257 – ident: e_1_2_10_195_1 doi: 10.1039/D1TA03262C – ident: e_1_2_10_206_1 doi: 10.1016/j.elecom.2008.10.026 – ident: e_1_2_10_71_1 doi: 10.1021/nl8038579 – ident: e_1_2_10_72_1 doi: 10.1039/c0ee00261e – ident: e_1_2_10_63_1 doi: 10.1016/j.electacta.2017.11.092 – ident: e_1_2_10_77_1 doi: 10.1016/j.jpowsour.2006.02.092 – ident: e_1_2_10_190_1 doi: 10.1039/c3nr33927k – ident: e_1_2_10_33_1 doi: 10.1039/c3cp51210j – ident: e_1_2_10_122_1 doi: 10.1149/1.2352197 – ident: e_1_2_10_6_1 doi: 10.1002/adma.201100984 – ident: e_1_2_10_81_1 doi: 10.1016/j.ssc.2008.03.034 – ident: e_1_2_10_239_1 doi: 10.1016/j.carbon.2010.06.047 – ident: e_1_2_10_154_1 doi: 10.1002/aenm.201702630 – year: 2013 ident: e_1_2_10_174_1 publication-title: Electrochemical supercapacitors: scientific fundamentals and technological applications. – ident: e_1_2_10_157_1 doi: 10.1039/D0CS00305K – ident: e_1_2_10_95_1 doi: 10.1021/jp205133g – ident: e_1_2_10_7_1 doi: 10.1126/science.1158736 – ident: e_1_2_10_111_1 doi: 10.1021/cm0497576 – ident: e_1_2_10_173_1 doi: 10.1063/5.0106932 – ident: e_1_2_10_36_1 doi: 10.1039/C4FD00138A – ident: e_1_2_10_83_1 doi: 10.1038/nature04233 – ident: e_1_2_10_125_1 doi: 10.1007/s10008-008-0560-0 – ident: e_1_2_10_56_1 doi: 10.1039/c2ee03092f – ident: e_1_2_10_62_1 doi: 10.1016/j.electacta.2014.12.169 – ident: e_1_2_10_169_1 doi: 10.1002/chem.200800639 – ident: e_1_2_10_258_1 doi: 10.1016/j.elecom.2007.09.015 – ident: e_1_2_10_204_1 doi: 10.1021/acsenergylett.2c00015 – ident: e_1_2_10_145_1 doi: 10.1016/j.nanoen.2017.06.042 – year: 2013 ident: e_1_2_10_164_1 publication-title: Electrochemical supercapacitors for energy storage and delivery: fundamentals and applications. – ident: e_1_2_10_96_1 doi: 10.1016/j.electacta.2011.03.066 – ident: e_1_2_10_243_1 doi: 10.1002/aenm.201200088 – ident: e_1_2_10_87_1 doi: 10.1016/j.est.2022.105729 – ident: e_1_2_10_246_1 doi: 10.1039/b909779a – volume: 1 year: 2006 ident: e_1_2_10_68_1 publication-title: The MITRE Corporation, McLean, Virginia, USA – ident: e_1_2_10_136_1 doi: 10.1002/adfm.201803287 – ident: e_1_2_10_228_1 doi: 10.1016/j.ijhydene.2013.08.112 – ident: e_1_2_10_52_1 doi: 10.1016/j.est.2015.03.001 – ident: e_1_2_10_192_1 doi: 10.1016/j.jpowsour.2013.10.068 – ident: e_1_2_10_15_1 doi: 10.1021/acsami.8b20246 – ident: e_1_2_10_208_1 doi: 10.1002/cssc.201200227 – ident: e_1_2_10_91_1 doi: 10.1016/j.est.2022.105098 – ident: e_1_2_10_207_1 doi: 10.1002/ange.201006811 – ident: e_1_2_10_200_1 doi: 10.1021/acs.jpcc.5b02113 – ident: e_1_2_10_4_1 doi: 10.1002/aenm.201300816 – ident: e_1_2_10_238_1 doi: 10.1002/aenm.201400500 – ident: e_1_2_10_31_1 doi: 10.1038/nenergy.2016.216 – ident: e_1_2_10_140_1 doi: 10.1002/advs.201500286 – ident: e_1_2_10_213_1 doi: 10.1016/j.electacta.2015.11.053 – ident: e_1_2_10_226_1 doi: 10.1016/j.polymer.2019.01.058 – ident: e_1_2_10_107_1 doi: 10.1002/adma.201201948 – ident: e_1_2_10_108_1 doi: 10.1038/srep09591 – ident: e_1_2_10_197_1 doi: 10.1021/acsnano.2c06656 – ident: e_1_2_10_94_1 doi: 10.1002/adma.201202774 – ident: e_1_2_10_89_1 doi: 10.1039/D1MA01136G – ident: e_1_2_10_225_1 doi: 10.1016/j.electacta.2015.10.139 – ident: e_1_2_10_251_1 doi: 10.1016/j.carbon.2016.11.051 – ident: e_1_2_10_205_1 doi: 10.1016/j.jpowsour.2020.227771 – ident: e_1_2_10_21_1 doi: 10.1016/j.apenergy.2013.03.025 – ident: e_1_2_10_79_1 doi: 10.1149/1.2168298 – ident: e_1_2_10_203_1 doi: 10.1002/celc.201700421 – ident: e_1_2_10_219_1 doi: 10.1039/C5TA02701B – ident: e_1_2_10_38_1 doi: 10.1038/nenergy.2016.70 – ident: e_1_2_10_46_1 – ident: e_1_2_10_240_1 doi: 10.1007/s12274-011-0129-6 – ident: e_1_2_10_13_1 doi: 10.1016/j.ijhydene.2016.04.213 – ident: e_1_2_10_100_1 doi: 10.1016/j.carbon.2012.11.055 – ident: e_1_2_10_35_1 doi: 10.1038/nmat4318 – ident: e_1_2_10_267_1 doi: 10.1021/acs.chemrev.1c00978 – ident: e_1_2_10_261_1 doi: 10.1038/ncomms2446 – ident: e_1_2_10_221_1 doi: 10.1021/nl400760a – ident: e_1_2_10_9_1 – ident: e_1_2_10_201_1 doi: 10.1016/S0920-5861(01)00541-7 – ident: e_1_2_10_180_1 doi: 10.1149/1.1559067 – ident: e_1_2_10_253_1 doi: 10.1039/c3ee40509e – ident: e_1_2_10_175_1 doi: 10.1016/j.jpowsour.2010.09.097 – ident: e_1_2_10_19_1 doi: 10.1039/c0ee00470g – ident: e_1_2_10_242_1 doi: 10.1002/adfm.200900971 – ident: e_1_2_10_182_1 doi: 10.1016/j.apenergy.2015.02.091 – ident: e_1_2_10_270_1 doi: 10.1007/s40843-018-9290-y – ident: e_1_2_10_269_1 doi: 10.1149/2.038112jes – ident: e_1_2_10_14_1 doi: 10.1016/j.electacta.2021.138822 – ident: e_1_2_10_97_1 doi: 10.1021/cm2021214 – ident: e_1_2_10_223_1 doi: 10.1039/C5TA03221K – ident: e_1_2_10_232_1 doi: 10.1021/am300455d – ident: e_1_2_10_196_1 doi: 10.1039/D1TA04642J – ident: e_1_2_10_264_1 doi: 10.1002/anie.201203201 – ident: e_1_2_10_86_1 doi: 10.1021/nl102661q – ident: e_1_2_10_236_1 doi: 10.1021/nn3003345 – ident: e_1_2_10_55_1 doi: 10.1002/aenm.201401401 – ident: e_1_2_10_98_1 doi: 10.1007/978-3-319-70614-6_66-1 – ident: e_1_2_10_69_1 doi: 10.1016/j.nanoen.2018.08.013 – ident: e_1_2_10_171_1 doi: 10.1016/j.jpowsour.2012.05.090 – ident: e_1_2_10_229_1 doi: 10.1016/j.electacta.2013.07.168 – ident: e_1_2_10_53_1 doi: 10.1016/j.jelechem.2011.03.025 – ident: e_1_2_10_30_1 doi: 10.1039/C9SE01298B – ident: e_1_2_10_40_1 doi: 10.1021/ja410287s – ident: e_1_2_10_131_1 doi: 10.1016/j.jallcom.2013.10.056 – ident: e_1_2_10_214_1 doi: 10.1016/j.apsusc.2017.04.022 – ident: e_1_2_10_59_1 doi: 10.1016/j.carbon.2015.11.079 – ident: e_1_2_10_37_1 doi: 10.1021/jacs.6b02115 – ident: e_1_2_10_218_1 doi: 10.1016/j.jpcs.2018.04.044 – ident: e_1_2_10_138_1 doi: 10.1038/ncomms7544 – ident: e_1_2_10_178_1 doi: 10.1016/j.jpowsour.2010.01.006 – ident: e_1_2_10_12_1 doi: 10.1016/j.apenergy.2021.116496 – ident: e_1_2_10_153_1 doi: 10.1039/C8TA00540K – ident: e_1_2_10_101_1 doi: 10.3390/catal13020235 – ident: e_1_2_10_124_1 doi: 10.1039/c3ta12352a – ident: e_1_2_10_235_1 doi: 10.1039/c000339e – ident: e_1_2_10_117_1 doi: 10.1016/j.jpowsour.2016.11.068 – ident: e_1_2_10_244_1 doi: 10.1002/aenm.201200380 – ident: e_1_2_10_93_1 doi: 10.1063/1.3455879 – ident: e_1_2_10_103_1 doi: 10.1016/j.compscitech.2023.110143 – ident: e_1_2_10_185_1 doi: 10.1016/j.jpowsour.2014.07.134 – ident: e_1_2_10_220_1 doi: 10.1016/j.cej.2018.01.022 – ident: e_1_2_10_80_1 doi: 10.1016/S0169-4332(00)00232-4 – ident: e_1_2_10_257_1 doi: 10.1016/j.elecom.2005.08.017 – ident: e_1_2_10_265_1 doi: 10.1002/adma.201202146 – ident: e_1_2_10_252_1 doi: 10.1002/aenm.201400236 – ident: e_1_2_10_249_1 doi: 10.1016/j.electacta.2010.05.058 – ident: e_1_2_10_263_1 doi: 10.1021/ja7106178 – ident: e_1_2_10_241_1 doi: 10.1002/adfm.201102796 – ident: e_1_2_10_28_1 doi: 10.1039/b813846j – ident: e_1_2_10_152_1 doi: 10.1039/C6NJ04093D – ident: e_1_2_10_147_1 doi: 10.1002/slct.201901652 – ident: e_1_2_10_24_1 doi: 10.1093/nsr/nwx009 – ident: e_1_2_10_254_1 doi: 10.1038/srep26890 – volume: 3 start-page: 286 year: 2020 ident: e_1_2_10_199_1 publication-title: Energy Environ. – ident: e_1_2_10_183_1 doi: 10.1021/nn405192s – ident: e_1_2_10_217_1 doi: 10.1016/j.jallcom.2017.10.161 – ident: e_1_2_10_268_1 doi: 10.1039/D0TA07468C – ident: e_1_2_10_18_1 doi: 10.1016/j.rser.2018.10.026 – ident: e_1_2_10_65_1 doi: 10.1016/j.jpowsour.2012.06.047 – ident: e_1_2_10_26_1 doi: 10.1021/nn100856y – ident: e_1_2_10_116_1 doi: 10.1039/C5EE00142K – ident: e_1_2_10_233_1 doi: 10.1021/jp8113094 – ident: e_1_2_10_126_1 doi: 10.1002/advs.201801797 – ident: e_1_2_10_20_1 doi: 10.1016/j.ijhydene.2017.10.137 – ident: e_1_2_10_142_1 doi: 10.1002/adfm.201503662 – ident: e_1_2_10_212_1 doi: 10.1016/j.electacta.2016.05.030 – ident: e_1_2_10_202_1 doi: 10.1038/ncomms5554 – ident: e_1_2_10_165_1 doi: 10.1039/C1EE02262H – ident: e_1_2_10_129_1 doi: 10.1039/c3ta14351a – ident: e_1_2_10_245_1 doi: 10.1039/c1cc13474d – ident: e_1_2_10_58_1 doi: 10.1016/j.apsusc.2017.04.162 – ident: e_1_2_10_29_1 doi: 10.1016/j.jpowsour.2006.02.065 – ident: e_1_2_10_134_1 doi: 10.1038/nature13970 – ident: e_1_2_10_8_1 doi: 10.1039/C7TA00932A – ident: e_1_2_10_181_1 doi: 10.1039/C5CS00303B – ident: e_1_2_10_148_1 doi: 10.1016/j.matlet.2016.09.051 – start-page: 2373 year: 2008 ident: e_1_2_10_48_1 publication-title: Chem. Commun. – ident: e_1_2_10_64_1 doi: 10.1109/NSTSI.2011.6111793 – ident: e_1_2_10_57_1 doi: 10.1016/S1002-0071(12)60083-5 |
SSID | ssj0011477 |
Score | 2.598252 |
SecondaryResourceType | review_article |
Snippet | Supercapacitors (SCs) are potentially trustworthy energy storage devices, therefore getting huge attention from researchers. However, due to limited... |
SourceID | swepub proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202300236 |
SubjectTerms | Capacitance Chemistry of Interfaces Design Electrochemical analysis Electrochemistry Electrode materials Electrodes Electrolytes Energy density Energy storage Fabrication Fabrication designs Gränsytors kemi Supercapacitors |
Title | High Energy Density Supercapacitors: An Overview of Efficient Electrode Materials, Electrolytes, Design, and Fabrication |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ftcr.202300236 https://www.ncbi.nlm.nih.gov/pubmed/37991268 https://www.proquest.com/docview/2913279242 https://www.proquest.com/docview/2892660114 https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-103027 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLbQXuCFy7gVBjIS4qnpWid2Yt6qrtWENJDGhvZmfJ0mqnTqko3x6zm2E08dGhLiLRc7sZ1j-zvO8fch9F5xJSkpWDYx4Tcj4xl31GXakNIaygzP_X7ng89s_7j4dEJPOp1Tvxcm8kOkBTffM8J47Tu4VBe7N6ShMFCNvPZ34ECHMdjHa3lQdJjoowDqB-VFr9yagV_BO45NyLG7kXtzTvoDaCYW0U0AG2agxSP0vS97DDz5MWobNdK_btE6_kflHqOHHTrF02hOT9A9W2-j-7NeFO4p-unjQvA8bBjEez74vbnGX9tzu9Yw6-ozr93zEU9r_OXSD0L2Cq8cngeaCpjd8DyK7hiLD2QTbX_YX1xeA-odwkN9SMkQy9rghVTrbk3xGTpezI9m-1kn3pBp8BFZpqvSAZRkio6lpoDhc10q6RzlhgEkYWOnGLecGUIsnWhptMyJpkwqV2la6Pw52qpXtX2JsNTagBcqmQGryieGFxNNc6VsxZ1WeTlAw_7zCd0xm3uBjaWInMxEQHOK1JwD9CElP4-UHncl3OltQXQ9-0IQDv57CV4rGaB36TZ8Bf-jRdZ21UKaigPu8fY3QC-iDaU35SUgcsIqKEU0qnTHE33vnX2bitX6VCybVngFOAK1GwdL-XtZxdHsMJ28-vcsr9EDOC7i4tIO2mrWrX0DcKtRb0Of-g3ovSIE |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLbGeBgv3C-FAUYCnpqucWKnRuKh6kUdW4c0OrQ341umaVU6dQmj_Cr-Cv-I4zgJKggkHvbAYxInceJz7O_Yx9-H0EvFlaQkZkFoymVGxgOe0jTQhiTWUGZ45PY7Tw_Y5Ch-d0yPN9C3ei-M54doJtycZ5T9tXNwNyG985M1FHqqjhP_LknQq7TKPbu6hKDt4u3uEFr4FSHj0WwwCSpdgUBD-MIC3UtSQDlM0a7UFOBlpBMl05Ryw2C0ZN1UMW45M4RYGmpptIyIpkyqtKdprCN47jV03amIO7b-4WFDWAXBRan16LRiA4hkeMXqCVXcWavu-ij4G7RteEvXIXM55o1voe_13_KpLmedIlcd_fUXIsn_6XfeRjcrAI773mPuoA2b3UVbg1r37h764lJf8KjcE4mHLr8_X-EPxbldagAW-tTJE73B_Qy__-z6WXuJFykelUwcMIDjkdcVMhZPZe7du12fnK8A2LfhoS5rpo1lZvBYqmU1bXofHV3Jhz9Am9kis48QllobCLQlM-A4UWh4HGoaKWV7PNUqSlqoXduL0BV5u9MQmQtPO00ENJ9omq-FXjfFzz1ryZ8KbtfGJ6rO60IQHkaOVzImLfSiuQyt4NaSZGYXBZTpcYB2zuBb6KE32uZNUQJBB2E9qIW34uaK4zIfnn7si8XyRMzzQjiROwJf1y1N8-91FbPBYXPw-N9veY62JrPpvtjfPdh7gm7A-djPpW2jzXxZ2KeALnP1rHRojD5dtcn_AL3AgPo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLbGkGAv3C-FAUYCnpqucWInRuKhalptjA00NrQ34-s0UaVVlzLKn-Kv8JM4zg0VBBIPe-AxiZM48Tn2d-zj70PomeJKUhKzIDTlMiPjAXfUBdqQxBrKDI_8fue9fbZ9FL8-psdr6FuzF6bih2gn3LxnlP21d_CZcVs_SUOho-p57e-SA73Oqty1y3OI2c5e7WTQwM8JGY8Oh9tBLSsQaIheWKDTxAHIYYr2paaALiOdKOkc5YbBYMn6TjFuOTOEWBpqabSMiKZMKpdqGusInnsJXY5Zn3utiOyg5auC2KKUevRSsQEEMrwm9YQqbq1Ud3UQ_A3ZtrSlq4i5HPLG19H35mdVmS6feotC9fTXX3gk_6O_eQNdq-E3HlT-chOt2fwWujpsVO9uoy8-8QWPyh2ROPPZ_cUSv1_M7FwDrNCnXpzoJR7k-O1n38vaczx1eFTycMDwjUeVqpCxeE8WlXN3m5OTJcD6LjzU58x0scwNHks1rydN76CjC_nwu2g9n-b2PsJSawNhtmQG3CYKDY9DTSOlbMqdVlHSQd3GXISuqdu9gshEVKTTREDzibb5OuhFW3xWcZb8qeBmY3ui7rrOBOFh5FklY9JBT9vL0Ap-JUnmdrqAMikHYOftvYPuVTbbvilKIOQgLIVaVEbcXvFM5tnph4GYzk_EpFgIL3FH4Ov6pWX-va7icHjQHjz491ueoCvvsrF4s7O_-xBtwOm4mkjbROvFfGEfAbQs1OPSnTH6eNEW_wOjp3-p |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+Energy+Density+Supercapacitors%3A+An+Overview+of+Efficient+Electrode+Materials%2C+Electrolytes%2C+Design%2C+and+Fabrication&rft.jtitle=Chemical+record&rft.au=Pathak%2C+Mayank&rft.au=Bhatt%2C+Diksha&rft.au=Bhatt%2C+Rajesh+Chandra&rft.au=Bohra%2C+Bhashkar+Singh&rft.date=2024&rft.issn=1528-0691&rft.volume=24&rft.issue=1&rft_id=info:doi/10.1002%2Ftcr.202300236&rft.externalDocID=oai_DiVA_org_ltu_103027 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1527-8999&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1527-8999&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1527-8999&client=summon |