High Energy Density Supercapacitors: An Overview of Efficient Electrode Materials, Electrolytes, Design, and Fabrication

Supercapacitors (SCs) are potentially trustworthy energy storage devices, therefore getting huge attention from researchers. However, due to limited capacitance and low energy density, there is still scope for improvement. The race to develop novel methods for enhancing their electrochemical charact...

Full description

Saved in:
Bibliographic Details
Published inChemical record Vol. 24; no. 1; pp. e202300236 - n/a
Main Authors Pathak, Mayank, Bhatt, Diksha, Bhatt, Rajesh Chandra, Bohra, Bhashkar Singh, Tatrari, Gaurav, Rana, Sravendra, Arya, Mahesh Chandra, Sahoo, Nanda Gopal
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.01.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Supercapacitors (SCs) are potentially trustworthy energy storage devices, therefore getting huge attention from researchers. However, due to limited capacitance and low energy density, there is still scope for improvement. The race to develop novel methods for enhancing their electrochemical characteristics is still going strong, where the goal of improving their energy density to match that of batteries by increasing their specific capacitance and raising their working voltage while maintaining high power capability and cutting the cost of production. In this light, this paper offers a succinct summary of current developments and fresh insights into the construction of SCs with high energy density which might help new researchers in the field of supercapacitor research. From electrolytes, electrodes, and device modification perspectives, novel applicable methodologies were emphasized and explored. When compared to conventional SCs, the special combination of electrode material/composites and electrolytes along with their fabrication design considerably enhances the electrochemical performance and energy density of the SCs. Emphasis is placed on the dynamic and mechanical variables connected to SCs′ energy storage process. To point the way toward a positive future for the design of high‐energy SCs, the potential and difficulties are finally highlighted. Further, we explore a few important topics for enhancing the energy densities of supercapacitors, as well as some links between major impacting factors. The review also covers the obstacles and prospects in this fascinating subject. This gives a fundamental understanding of supercapacitors as well as a crucial design principle for the next generation of improved supercapacitors being developed for commercial and consumer use. This review gives the insights to enlarge the energy density of a supercapacitor device by doing numerous modifications in electrode materials, electrolytes, design, and fabrication. Overall, it suggests what combinations of electrode materials, electrolytes and designs should be taken into consideration for a high energy density supercapacitor.
AbstractList Supercapacitors (SCs) are potentially trustworthy energy storage devices, therefore getting huge attention from researchers. However, due to limited capacitance and low energy density, there is still scope for improvement. The race to develop novel methods for enhancing their electrochemical characteristics is still going strong, where the goal of improving their energy density to match that of batteries by increasing their specific capacitance and raising their working voltage while maintaining high power capability and cutting the cost of production. In this light, this paper offers a succinct summary of current developments and fresh insights into the construction of SCs with high energy density which might help new researchers in the field of supercapacitor research. From electrolytes, electrodes, and device modification perspectives, novel applicable methodologies were emphasized and explored. When compared to conventional SCs, the special combination of electrode material/composites and electrolytes along with their fabrication design considerably enhances the electrochemical performance and energy density of the SCs. Emphasis is placed on the dynamic and mechanical variables connected to SCs′ energy storage process. To point the way toward a positive future for the design of high‐energy SCs, the potential and difficulties are finally highlighted. Further, we explore a few important topics for enhancing the energy densities of supercapacitors, as well as some links between major impacting factors. The review also covers the obstacles and prospects in this fascinating subject. This gives a fundamental understanding of supercapacitors as well as a crucial design principle for the next generation of improved supercapacitors being developed for commercial and consumer use.
Supercapacitors (SCs) are potentially trustworthy energy storage devices, therefore getting huge attention from researchers. However, due to limited capacitance and low energy density, there is still scope for improvement. The race to develop novel methods for enhancing their electrochemical characteristics is still going strong, where the goal of improving their energy density to match that of batteries by increasing their specific capacitance and raising their working voltage while maintaining high power capability and cutting the cost of production. In this light, this paper offers a succinct summary of current developments and fresh insights into the construction of SCs with high energy density which might help new researchers in the field of supercapacitor research. From electrolytes, electrodes, and device modification perspectives, novel applicable methodologies were emphasized and explored. When compared to conventional SCs, the special combination of electrode material/composites and electrolytes along with their fabrication design considerably enhances the electrochemical performance and energy density of the SCs. Emphasis is placed on the dynamic and mechanical variables connected to SCs′ energy storage process. To point the way toward a positive future for the design of high‐energy SCs, the potential and difficulties are finally highlighted. Further, we explore a few important topics for enhancing the energy densities of supercapacitors, as well as some links between major impacting factors. The review also covers the obstacles and prospects in this fascinating subject. This gives a fundamental understanding of supercapacitors as well as a crucial design principle for the next generation of improved supercapacitors being developed for commercial and consumer use. This review gives the insights to enlarge the energy density of a supercapacitor device by doing numerous modifications in electrode materials, electrolytes, design, and fabrication. Overall, it suggests what combinations of electrode materials, electrolytes and designs should be taken into consideration for a high energy density supercapacitor.
Supercapacitors (SCs) are potentially trustworthy energy storage devices, therefore getting huge attention from researchers. However, due to limited capacitance and low energy density, there is still scope for improvement. The race to develop novel methods for enhancing their electrochemical characteristics is still going strong, where the goal of improving their energy density to match that of batteries by increasing their specific capacitance and raising their working voltage while maintaining high power capability and cutting the cost of production. In this light, this paper offers a succinct summary of current developments and fresh insights into the construction of SCs with high energy density which might help new researchers in the field of supercapacitor research. From electrolytes, electrodes, and device modification perspectives, novel applicable methodologies were emphasized and explored. When compared to conventional SCs, the special combination of electrode material/composites and electrolytes along with their fabrication design considerably enhances the electrochemical performance and energy density of the SCs. Emphasis is placed on the dynamic and mechanical variables connected to SCs' energy storage process. To point the way toward a positive future for the design of high-energy SCs, the potential and difficulties are finally highlighted. Further, we explore a few important topics for enhancing the energy densities of supercapacitors, as well as some links between major impacting factors. The review also covers the obstacles and prospects in this fascinating subject. This gives a fundamental understanding of supercapacitors as well as a crucial design principle for the next generation of improved supercapacitors being developed for commercial and consumer use.Supercapacitors (SCs) are potentially trustworthy energy storage devices, therefore getting huge attention from researchers. However, due to limited capacitance and low energy density, there is still scope for improvement. The race to develop novel methods for enhancing their electrochemical characteristics is still going strong, where the goal of improving their energy density to match that of batteries by increasing their specific capacitance and raising their working voltage while maintaining high power capability and cutting the cost of production. In this light, this paper offers a succinct summary of current developments and fresh insights into the construction of SCs with high energy density which might help new researchers in the field of supercapacitor research. From electrolytes, electrodes, and device modification perspectives, novel applicable methodologies were emphasized and explored. When compared to conventional SCs, the special combination of electrode material/composites and electrolytes along with their fabrication design considerably enhances the electrochemical performance and energy density of the SCs. Emphasis is placed on the dynamic and mechanical variables connected to SCs' energy storage process. To point the way toward a positive future for the design of high-energy SCs, the potential and difficulties are finally highlighted. Further, we explore a few important topics for enhancing the energy densities of supercapacitors, as well as some links between major impacting factors. The review also covers the obstacles and prospects in this fascinating subject. This gives a fundamental understanding of supercapacitors as well as a crucial design principle for the next generation of improved supercapacitors being developed for commercial and consumer use.
Author Bhatt, Rajesh Chandra
Bohra, Bhashkar Singh
Pathak, Mayank
Bhatt, Diksha
Arya, Mahesh Chandra
Rana, Sravendra
Sahoo, Nanda Gopal
Tatrari, Gaurav
Author_xml – sequence: 1
  givenname: Mayank
  surname: Pathak
  fullname: Pathak, Mayank
  organization: Kumaun University
– sequence: 2
  givenname: Diksha
  surname: Bhatt
  fullname: Bhatt, Diksha
  organization: Kumaun University
– sequence: 3
  givenname: Rajesh Chandra
  surname: Bhatt
  fullname: Bhatt, Rajesh Chandra
  organization: Kumaun University
– sequence: 4
  givenname: Bhashkar Singh
  surname: Bohra
  fullname: Bohra, Bhashkar Singh
  organization: Kumaun University
– sequence: 5
  givenname: Gaurav
  surname: Tatrari
  fullname: Tatrari, Gaurav
  organization: Lulea Technology University
– sequence: 6
  givenname: Sravendra
  surname: Rana
  fullname: Rana, Sravendra
  organization: University of Petroleum & Energy Studies (UPES)
– sequence: 7
  givenname: Mahesh Chandra
  surname: Arya
  fullname: Arya, Mahesh Chandra
  organization: Kumaun University
– sequence: 8
  givenname: Nanda Gopal
  orcidid: 0000-0001-8406-6610
  surname: Sahoo
  fullname: Sahoo, Nanda Gopal
  email: ngsahoo@yahoo.co.in
  organization: Kumaun University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37991268$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-103027$$DView record from Swedish Publication Index
BookMark eNp9kc1vEzEQxS3Uin7AkSuyxIVDt3jtrL3mFiUprVRUCQpXy-udDa429tb2NuS_x22aVEKCk8ej34zmvXeCDpx3gNC7kpyXhNBPyYRzSijLNeOv0HFZ0bogXJYHT7UoainlETqJ8Y6QspwI8RodMSFlSXl9jH5f2uUvvHAQlhs8Bxdt2uDv4wDB6EEbm3yIn_HU4ZsHCA8W1th3eNF11lhwCS96MCn4FvBXnSBY3cezXbPfJMi_OUS7dGdYuxZf6CZYo5P17g067DINb5_fU_TjYnE7uyyub75czabXhZkQwQtTi65ijDcV0aYSgjIjGt11lWw5zYpJ13AJkreUQlUa3RrNqKm4brraVBPDTlGx3RvXMIyNGoJd6bBRXls1tz-nyoel6tOoSsIIFZn_uOWH4O9HiEmtbDTQ99qBH6OitaScPzqZ0Q9_oXd-DC6rUVSWjApJJzRT75-psVlBuz9gl0EG2BYwwccYoFPZ9iePUtC2z4epx6RVTlrtk37RtZ_aLf4XL7b82vaw-T-sbmffXib_AAWhumE
CitedBy_id crossref_primary_10_1039_D5TA00860C
crossref_primary_10_1021_acsaem_4c01681
crossref_primary_10_1002_slct_202405536
crossref_primary_10_1016_j_pnsc_2024_10_004
crossref_primary_10_1007_s11356_024_34138_4
crossref_primary_10_1016_j_est_2024_114338
crossref_primary_10_1039_D4DT01366B
crossref_primary_10_1039_D4NR04584J
crossref_primary_10_1016_j_matchemphys_2025_130362
crossref_primary_10_1016_j_coelec_2024_101640
crossref_primary_10_1016_j_jpowsour_2025_236176
crossref_primary_10_1021_acsanm_4c05378
crossref_primary_10_1155_2024_3149906
crossref_primary_10_1016_j_est_2025_115289
crossref_primary_10_1016_j_synthmet_2025_117838
crossref_primary_10_1016_j_electacta_2025_146047
crossref_primary_10_1002_adsu_202400312
crossref_primary_10_1016_j_colsurfa_2024_134161
crossref_primary_10_1039_D4QI02229G
crossref_primary_10_1021_acsanm_5c00180
crossref_primary_10_1016_j_apmate_2024_100246
crossref_primary_10_1039_D4MA00469H
crossref_primary_10_3390_electronics14061083
crossref_primary_10_1016_j_inoche_2024_113513
crossref_primary_10_1155_jnt_5551493
crossref_primary_10_3390_en17153853
crossref_primary_10_1007_s11581_025_06168_6
crossref_primary_10_1016_j_est_2025_115291
crossref_primary_10_1016_j_nanoso_2024_101411
crossref_primary_10_1039_D4SU00435C
crossref_primary_10_1016_j_jiec_2024_11_018
crossref_primary_10_1007_s11581_025_06192_6
crossref_primary_10_1016_j_colsurfa_2024_135180
crossref_primary_10_1002_advs_202403172
crossref_primary_10_1016_j_cej_2025_159375
crossref_primary_10_1016_j_mssp_2024_109220
crossref_primary_10_1007_s13391_024_00493_0
crossref_primary_10_1016_j_colsurfa_2024_135698
crossref_primary_10_1007_s11664_024_11562_3
crossref_primary_10_1016_j_est_2024_114071
crossref_primary_10_1016_j_ccr_2024_215876
crossref_primary_10_3390_batteries10020054
crossref_primary_10_3390_inorganics12080205
crossref_primary_10_1016_j_est_2024_113554
crossref_primary_10_1016_j_jallcom_2024_176924
crossref_primary_10_1007_s10854_024_12900_1
crossref_primary_10_1016_j_materresbull_2024_113123
crossref_primary_10_1016_j_ceramint_2025_01_187
crossref_primary_10_1016_j_colsurfa_2025_136536
crossref_primary_10_1039_D4TA07111E
crossref_primary_10_1002_ente_202401761
crossref_primary_10_1016_j_matchemphys_2024_130014
crossref_primary_10_1155_2024_2329261
crossref_primary_10_1515_ntrev_2024_0047
crossref_primary_10_1002_app_56428
Cites_doi 10.1016/j.jpowsour.2009.01.009
10.1039/D0RA09393A
10.1002/aenm.202001445
10.1021/acssuschemeng.6b01367
10.1039/B802885K
10.1016/j.jpowsour.2009.06.050
10.1016/j.jechem.2020.04.015
10.1021/nn1017457
10.1002/cssc.201100571
10.1016/j.carbon.2014.01.021
10.1016/j.elecom.2010.06.036
10.1039/c3ra23466e
10.1016/j.jpowsour.2016.09.115
10.1016/j.jpowsour.2012.11.014
10.1016/S0008-6223(01)00266-4
10.1016/j.jelechem.2020.113830
10.1016/j.adapen.2021.100011
10.1039/c2ee24203f
10.1039/B811548F
10.1039/C7NR03763E
10.1002/adma.201001029
10.1021/acssuschemeng.8b06486
10.1002/er.8490
10.1039/C1CS15060J
10.1021/am503375h
10.1149/2.0111505jes
10.1016/j.jallcom.2016.05.282
10.1039/c3cp52283k
10.1021/nl802558y
10.1109/IIC.2015.7150826
10.1016/S0379-6779(98)01334-4
10.1126/science.1132195
10.1038/nnano.2006.56
10.1039/C6TA09817G
10.1021/acs.energyfuels.1c00341
10.1088/1361-6528/aa8948
10.1557/mrs.2011.137
10.1016/j.electacta.2019.135277
10.1021/nn101754k
10.1016/j.elecom.2009.03.036
10.1016/j.electacta.2011.05.125
10.1039/C9NA00374F
10.1002/adfm.201100058
10.1016/j.carbon.2018.12.009
10.1007/s10008-016-3431-0
10.1039/C4TA04996A
10.1039/C4TA05565A
10.1039/C6DT01791F
10.1039/c1ee01354h
10.1038/nchem.281
10.3389/fchem.2020.00595
10.1016/j.jpowsour.2013.05.003
10.1149/1.3236500
10.1088/0022-3727/48/31/314007
10.1039/c3ee44164d
10.3389/fchem.2019.00595
10.1016/j.electacta.2019.135236
10.1149/1.1393216
10.1002/1521-4095(200104)13:7<497::AID-ADMA497>3.0.CO;2-H
10.1038/srep20973
10.1016/j.jpowsour.2009.08.048
10.1016/j.electacta.2003.08.007
10.1126/science.1102896
10.1039/C6TA01133K
10.1016/j.jpowsour.2015.12.103
10.1038/ncomms3487
10.1038/srep04518
10.1038/nmat1368
10.1016/j.cej.2018.04.010
10.1149/2.F05081IF
10.1039/C4QI00167B
10.1016/j.electacta.2007.01.011
10.1039/C8TA01184B
10.1016/j.enconman.2010.06.031
10.1016/j.est.2021.102729
10.1039/D2SM00595F
10.1016/j.carbon.2012.05.014
10.20964/2016.12.50
10.1016/j.est.2023.107830
10.1016/j.electacta.2012.07.062
10.1021/acsomega.9b04063
10.1002/adma.200904349
10.1039/C4CP02761B
10.1002/chem.201705555
10.1016/j.mattod.2013.07.002
10.1016/j.nanoen.2015.02.035
10.1016/j.apsusc.2019.07.183
10.1016/j.cej.2020.126352
10.1038/nmat3916
10.1016/j.electacta.2010.01.022
10.1039/c2jm32841k
10.1002/er.8149
10.1038/nmat3260
10.1039/C6TA06848K
10.1002/ange.201411533
10.1021/nl903949m
10.1038/nmat2297
10.1016/j.jpowsour.2018.06.004
10.1016/j.electacta.2012.05.139
10.1016/j.jpowsour.2005.11.063
10.1021/am404196s
10.1016/j.electacta.2006.03.016
10.1063/1.118568
10.1016/j.ijhydene.2016.08.041
10.1002/adma.201301932
10.1016/j.jechem.2022.12.063
10.1039/D2SM00143H
10.1039/c4ra01793e
10.1016/j.electacta.2008.07.079
10.1016/j.est.2022.106023
10.1016/j.ijhydene.2012.07.076
10.1021/la980785a
10.1002/chem.201602389
10.1016/j.nanoen.2017.04.007
10.1016/j.jpowsour.2007.04.034
10.1016/j.scitotenv.2018.12.257
10.1039/D1TA03262C
10.1016/j.elecom.2008.10.026
10.1021/nl8038579
10.1039/c0ee00261e
10.1016/j.electacta.2017.11.092
10.1016/j.jpowsour.2006.02.092
10.1039/c3nr33927k
10.1039/c3cp51210j
10.1149/1.2352197
10.1002/adma.201100984
10.1016/j.ssc.2008.03.034
10.1016/j.carbon.2010.06.047
10.1002/aenm.201702630
10.1039/D0CS00305K
10.1021/jp205133g
10.1126/science.1158736
10.1021/cm0497576
10.1063/5.0106932
10.1039/C4FD00138A
10.1038/nature04233
10.1007/s10008-008-0560-0
10.1039/c2ee03092f
10.1016/j.electacta.2014.12.169
10.1002/chem.200800639
10.1016/j.elecom.2007.09.015
10.1021/acsenergylett.2c00015
10.1016/j.nanoen.2017.06.042
10.1016/j.electacta.2011.03.066
10.1002/aenm.201200088
10.1016/j.est.2022.105729
10.1039/b909779a
10.1002/adfm.201803287
10.1016/j.ijhydene.2013.08.112
10.1016/j.est.2015.03.001
10.1016/j.jpowsour.2013.10.068
10.1021/acsami.8b20246
10.1002/cssc.201200227
10.1016/j.est.2022.105098
10.1002/ange.201006811
10.1021/acs.jpcc.5b02113
10.1002/aenm.201300816
10.1002/aenm.201400500
10.1038/nenergy.2016.216
10.1002/advs.201500286
10.1016/j.electacta.2015.11.053
10.1016/j.polymer.2019.01.058
10.1002/adma.201201948
10.1038/srep09591
10.1021/acsnano.2c06656
10.1002/adma.201202774
10.1039/D1MA01136G
10.1016/j.electacta.2015.10.139
10.1016/j.carbon.2016.11.051
10.1016/j.jpowsour.2020.227771
10.1016/j.apenergy.2013.03.025
10.1149/1.2168298
10.1002/celc.201700421
10.1039/C5TA02701B
10.1038/nenergy.2016.70
10.1007/s12274-011-0129-6
10.1016/j.ijhydene.2016.04.213
10.1016/j.carbon.2012.11.055
10.1038/nmat4318
10.1021/acs.chemrev.1c00978
10.1038/ncomms2446
10.1021/nl400760a
10.1016/S0920-5861(01)00541-7
10.1149/1.1559067
10.1039/c3ee40509e
10.1016/j.jpowsour.2010.09.097
10.1039/c0ee00470g
10.1002/adfm.200900971
10.1016/j.apenergy.2015.02.091
10.1007/s40843-018-9290-y
10.1149/2.038112jes
10.1016/j.electacta.2021.138822
10.1021/cm2021214
10.1039/C5TA03221K
10.1021/am300455d
10.1039/D1TA04642J
10.1002/anie.201203201
10.1021/nl102661q
10.1021/nn3003345
10.1002/aenm.201401401
10.1007/978-3-319-70614-6_66-1
10.1016/j.nanoen.2018.08.013
10.1016/j.jpowsour.2012.05.090
10.1016/j.electacta.2013.07.168
10.1016/j.jelechem.2011.03.025
10.1039/C9SE01298B
10.1021/ja410287s
10.1016/j.jallcom.2013.10.056
10.1016/j.apsusc.2017.04.022
10.1016/j.carbon.2015.11.079
10.1021/jacs.6b02115
10.1016/j.jpcs.2018.04.044
10.1038/ncomms7544
10.1016/j.jpowsour.2010.01.006
10.1016/j.apenergy.2021.116496
10.1039/C8TA00540K
10.3390/catal13020235
10.1039/c3ta12352a
10.1039/c000339e
10.1016/j.jpowsour.2016.11.068
10.1002/aenm.201200380
10.1063/1.3455879
10.1016/j.compscitech.2023.110143
10.1016/j.jpowsour.2014.07.134
10.1016/j.cej.2018.01.022
10.1016/S0169-4332(00)00232-4
10.1016/j.elecom.2005.08.017
10.1002/adma.201202146
10.1002/aenm.201400236
10.1016/j.electacta.2010.05.058
10.1021/ja7106178
10.1002/adfm.201102796
10.1039/b813846j
10.1039/C6NJ04093D
10.1002/slct.201901652
10.1093/nsr/nwx009
10.1038/srep26890
10.1021/nn405192s
10.1016/j.jallcom.2017.10.161
10.1039/D0TA07468C
10.1016/j.rser.2018.10.026
10.1016/j.jpowsour.2012.06.047
10.1021/nn100856y
10.1039/C5EE00142K
10.1021/jp8113094
10.1002/advs.201801797
10.1016/j.ijhydene.2017.10.137
10.1002/adfm.201503662
10.1016/j.electacta.2016.05.030
10.1038/ncomms5554
10.1039/C1EE02262H
10.1039/c3ta14351a
10.1039/c1cc13474d
10.1016/j.apsusc.2017.04.162
10.1016/j.jpowsour.2006.02.065
10.1038/nature13970
10.1039/C7TA00932A
10.1039/C5CS00303B
10.1016/j.matlet.2016.09.051
10.1109/NSTSI.2011.6111793
10.1016/S1002-0071(12)60083-5
ContentType Journal Article
Copyright 2023 The Chemical Society of Japan & Wiley‐VCH GmbH
2023 The Chemical Society of Japan & Wiley-VCH GmbH.
2024 The Chemical Society of Japan & Wiley‐VCH GmbH
Copyright_xml – notice: 2023 The Chemical Society of Japan & Wiley‐VCH GmbH
– notice: 2023 The Chemical Society of Japan & Wiley-VCH GmbH.
– notice: 2024 The Chemical Society of Japan & Wiley‐VCH GmbH
DBID AAYXX
CITATION
NPM
7QO
7T7
8FD
C1K
FR3
P64
7X8
ADTPV
AOWAS
DOI 10.1002/tcr.202300236
DatabaseName CrossRef
PubMed
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
SwePub
SwePub Articles
DatabaseTitle CrossRef
PubMed
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList Engineering Research Database
CrossRef

MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1528-0691
EndPage n/a
ExternalDocumentID oai_DiVA_org_ltu_103027
37991268
10_1002_tcr_202300236
TCR202300236
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: National Mission on Himalayan Studies (NMHS)
– fundername: DST INSPIRE Division
  funderid: IF180347
– fundername: Kosi Katarmal, India
  funderid: NMHS/2022-23/MG 86/03/279
– fundername: DST INSPIRE Division
  grantid: IF180347
– fundername: Kosi Katarmal, India
  grantid: NMHS/2022-23/MG 86/03/279
GroupedDBID ---
.3N
.Y3
05W
0R~
10A
123
1OC
29B
31~
33P
3WU
4.4
50Y
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
53G
5VS
66C
702
7PT
8-1
8UM
A00
AAESR
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ASPBG
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BMXJE
BROTX
BRXPI
BY8
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
F5P
FEDTE
G-S
G.N
GODZA
HF~
HGLYW
HVGLF
HZ~
IX1
J0M
LATKE
LAW
LC2
LC3
LEEKS
LH-
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MSFUL
MSSTM
MXFUL
MXSTM
MY~
N9A
O9-
OIG
P2W
P4D
Q11
QB0
QRW
R.K
ROL
RX1
SUPJJ
V2E
W99
WBKPD
WOHZO
WQJ
WXSBR
WYJ
WYUIH
XG1
XV2
ZZTAW
~IA
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
NPM
7QO
7T7
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
P64
7X8
ADTPV
AOWAS
ID FETCH-LOGICAL-c4076-c87f5336b50ac57723c7baff59d622360fb69e96d22e51cadca32c56abf8c54c3
IEDL.DBID DR2
ISSN 1527-8999
1528-0691
IngestDate Thu Aug 21 06:21:14 EDT 2025
Fri Jul 11 05:11:24 EDT 2025
Fri Jul 25 10:31:23 EDT 2025
Wed Feb 19 02:07:20 EST 2025
Tue Jul 01 02:40:11 EDT 2025
Thu Apr 24 23:04:05 EDT 2025
Wed Jan 22 16:15:33 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Supercapacitors
Electrolytes
Energy density
Electrode materials
Fabrication designs
Language English
License 2023 The Chemical Society of Japan & Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4076-c87f5336b50ac57723c7baff59d622360fb69e96d22e51cadca32c56abf8c54c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-8406-6610
PMID 37991268
PQID 2913279242
PQPubID 1006501
PageCount 37
ParticipantIDs swepub_primary_oai_DiVA_org_ltu_103027
proquest_miscellaneous_2892660114
proquest_journals_2913279242
pubmed_primary_37991268
crossref_citationtrail_10_1002_tcr_202300236
crossref_primary_10_1002_tcr_202300236
wiley_primary_10_1002_tcr_202300236_TCR202300236
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2024
2024-01-00
2024-Jan
20240101
2024
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: January 2024
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Chemical record
PublicationTitleAlternate Chem Rec
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2011; 115
2019; 11
2016; 306
2003; 150
2019; 168
2009; 194
2020; 10
2013; 241
2012; 11
2013; 54
2007; 173
2018; 338
2013; 52
2016; 41
2010; 195
2012; 24
2010; 4
2012; 22
2011; 123
2016; 45
2020; 858
2002; 74
2013; 109
2013; 108
2015; 127
2016; 208
2004; 49
2013; 226
2018; 346
2016; 685
1999; 102
2008; 54
2012; 37
2011; 4
2004; 306
2021; 52
2011; 5
2017; 258
2016; 11
2012; 50
2016; 4
2016; 6
2016; 1
2016; 3
2022; 3
2022; 7
2005; 4
2016; 332
2009; 189
2005; 7
2015; 119
2008; 130
2012; 41
2016; 22
2015; 185
2010; 55
2017; 41
2013; 25
2008; 7
2008; 8
2014; 176
2017; 113
2020; 8
2020; 5
2020; 4
2013; 15
2014; 5
2014; 4
2020; 3
2013; 16
2014; 2
2017; 39
2013; 13
2002; 40
1999; 15
2017; 35
2020; 49
2000; 162
2001; 13
2014; 7
2012; 216
2014; 6
2015; 2
2015; 162
2021; 9
2015; 1
2023; 13
2015; 6
2015; 5
2014; 516
2021; 2
2015; 3
2017; 28
2017; 21
2008
2006; 153
2018; 61
2008; 321
2007; 53
2006; 159
2015; 8
2006; 157
1997; 70
2013; 38
2023
2000; 147
2015; 157
2015; 153
2009; 9
2018; 52
2019; 659
2016; 138
2015
2014
2013
2017; 342
2009; 1
2014; 71
2010; 96
2010; 12
2010; 10
2013; 3
2013; 4
2013; 1
2009; 113
2011; 56
2021; 286
2011; 196
2013; 7
2018; 43
2013; 5
2013; 6
2023; 80
2010; 22
2009; 11
2018; 6
2009; 13
2018; 8
2014; 249
2010; 20
2023; 68
2020; 451
2020; 330
2018; 731
2014; 16
2021; 390
2007; 9
2014; 13
2006; 160
2009; 19
2017; 416
2019; 7
2018; 28
2019; 4
2011; 657
2019; 6
2006; 51
2019; 1
2014; 270
2019; 101
2017; 413
2018; 24
2016; 99
2010; 48
2022; 10
2022; 16
2010; 51
2022; 18
2017; 5
2011; 158
2018; 121
2017; 2
2017; 4
2021; 403
2009; 156
2016; 187
2008; 146
2017; 9
2022; 122
2021; 35
2015; 48
2015; 44
2011; 21
2011; 23
2021; 40
2015; 15
2015; 14
2008; 17
2008; 14
2005; 438
2022; 46
2006; 1
2011; 36
2006; 313
2012; 78
2019; 145
2018; 396
2015; 25
2012; 2
2021; 11
2004; 16
2022; 56
2013; 135
2022; 53
2022; 55
2011; 47
2017; 188
2012; 6
2012; 4
2012; 5
2009; 38
2012; 86
2019; 494
2014; 586
e_1_2_10_271_1
e_1_2_10_40_1
e_1_2_10_109_1
e_1_2_10_210_1
e_1_2_10_233_1
e_1_2_10_256_1
e_1_2_10_158_1
e_1_2_10_207_1
e_1_2_10_74_1
e_1_2_10_97_1
e_1_2_10_150_1
e_1_2_10_6_1
e_1_2_10_135_1
e_1_2_10_173_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_112_1
e_1_2_10_196_1
e_1_2_10_13_1
e_1_2_10_260_1
e_1_2_10_51_1
e_1_2_10_222_1
e_1_2_10_245_1
e_1_2_10_268_1
e_1_2_10_147_1
e_1_2_10_219_1
e_1_2_10_63_1
e_1_2_10_86_1
e_1_2_10_124_1
e_1_2_10_162_1
e_1_2_10_25_1
e_1_2_10_101_1
e_1_2_10_185_1
e_1_2_10_41_1
e_1_2_10_211_1
e_1_2_10_257_1
e_1_2_10_234_1
e_1_2_10_159_1
e_1_2_10_90_1
e_1_2_10_208_1
e_1_2_10_52_1
e_1_2_10_75_1
e_1_2_10_113_1
e_1_2_10_136_1
e_1_2_10_151_1
e_1_2_10_197_1
e_1_2_10_38_1
e_1_2_10_98_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_261_1
Zhou X. (e_1_2_10_50_1) 2014
e_1_2_10_269_1
e_1_2_10_200_1
e_1_2_10_246_1
e_1_2_10_223_1
Halper M. S. (e_1_2_10_68_1) 2006; 1
e_1_2_10_148_1
e_1_2_10_64_1
e_1_2_10_102_1
e_1_2_10_125_1
e_1_2_10_140_1
e_1_2_10_163_1
e_1_2_10_186_1
e_1_2_10_49_1
e_1_2_10_87_1
e_1_2_10_26_1
e_1_2_10_250_1
e_1_2_10_42_1
e_1_2_10_190_1
e_1_2_10_258_1
e_1_2_10_212_1
e_1_2_10_235_1
e_1_2_10_91_1
e_1_2_10_209_1
e_1_2_10_4_1
e_1_2_10_53_1
e_1_2_10_137_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_99_1
e_1_2_10_114_1
e_1_2_10_152_1
e_1_2_10_198_1
e_1_2_10_175_1
e_1_2_10_262_1
e_1_2_10_30_1
e_1_2_10_247_1
e_1_2_10_201_1
e_1_2_10_224_1
e_1_2_10_80_1
e_1_2_10_149_1
e_1_2_10_126_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_88_1
e_1_2_10_103_1
e_1_2_10_141_1
e_1_2_10_187_1
e_1_2_10_43_1
e_1_2_10_251_1
e_1_2_10_20_1
e_1_2_10_236_1
e_1_2_10_259_1
e_1_2_10_213_1
e_1_2_10_130_1
e_1_2_10_92_1
e_1_2_10_115_1
e_1_2_10_138_1
e_1_2_10_191_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_77_1
e_1_2_10_153_1
e_1_2_10_176_1
e_1_2_10_263_1
e_1_2_10_240_1
e_1_2_10_31_1
e_1_2_10_225_1
e_1_2_10_248_1
e_1_2_10_202_1
e_1_2_10_188_1
Dou Q. (e_1_2_10_199_1) 2020; 3
e_1_2_10_81_1
e_1_2_10_104_1
e_1_2_10_127_1
e_1_2_10_180_1
e_1_2_10_28_1
e_1_2_10_66_1
e_1_2_10_142_1
e_1_2_10_165_1
e_1_2_10_89_1
e_1_2_10_252_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_214_1
e_1_2_10_237_1
e_1_2_10_131_1
e_1_2_10_177_1
e_1_2_10_70_1
e_1_2_10_93_1
e_1_2_10_2_1
e_1_2_10_139_1
e_1_2_10_18_1
e_1_2_10_116_1
e_1_2_10_192_1
e_1_2_10_55_1
e_1_2_10_78_1
e_1_2_10_154_1
Kim B. K. (e_1_2_10_155_1) 2015
e_1_2_10_241_1
e_1_2_10_264_1
e_1_2_10_32_1
e_1_2_10_203_1
e_1_2_10_226_1
e_1_2_10_249_1
e_1_2_10_120_1
e_1_2_10_166_1
e_1_2_10_189_1
e_1_2_10_82_1
e_1_2_10_128_1
e_1_2_10_29_1
e_1_2_10_105_1
e_1_2_10_181_1
e_1_2_10_67_1
e_1_2_10_143_1
e_1_2_10_45_1
e_1_2_10_253_1
e_1_2_10_22_1
e_1_2_10_230_1
SuongáOu F. (e_1_2_10_48_1) 2008
e_1_2_10_215_1
e_1_2_10_238_1
e_1_2_10_132_1
e_1_2_10_178_1
Serrano E. (e_1_2_10_54_1) 2013
e_1_2_10_71_1
e_1_2_10_117_1
e_1_2_10_170_1
e_1_2_10_193_1
e_1_2_10_94_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_56_1
e_1_2_10_79_1
e_1_2_10_242_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_204_1
e_1_2_10_227_1
e_1_2_10_265_1
e_1_2_10_121_1
e_1_2_10_144_1
e_1_2_10_167_1
e_1_2_10_60_1
e_1_2_10_106_1
e_1_2_10_129_1
e_1_2_10_182_1
e_1_2_10_83_1
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_231_1
Conway B. E. (e_1_2_10_174_1) 2013
e_1_2_10_239_1
e_1_2_10_216_1
e_1_2_10_254_1
e_1_2_10_110_1
e_1_2_10_156_1
e_1_2_10_179_1
e_1_2_10_72_1
e_1_2_10_95_1
e_1_2_10_118_1
e_1_2_10_194_1
e_1_2_10_171_1
e_1_2_10_8_1
e_1_2_10_57_1
e_1_2_10_133_1
e_1_2_10_58_1
e_1_2_10_34_1
e_1_2_10_220_1
e_1_2_10_11_1
e_1_2_10_119_1
e_1_2_10_205_1
e_1_2_10_228_1
e_1_2_10_243_1
e_1_2_10_266_1
e_1_2_10_145_1
e_1_2_10_168_1
e_1_2_10_61_1
e_1_2_10_84_1
e_1_2_10_107_1
e_1_2_10_183_1
e_1_2_10_160_1
e_1_2_10_122_1
e_1_2_10_24_1
e_1_2_10_270_1
e_1_2_10_108_1
e_1_2_10_217_1
e_1_2_10_232_1
e_1_2_10_255_1
e_1_2_10_157_1
e_1_2_10_229_1
e_1_2_10_1_1
e_1_2_10_73_1
e_1_2_10_172_1
e_1_2_10_96_1
e_1_2_10_111_1
e_1_2_10_134_1
e_1_2_10_195_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_206_1
e_1_2_10_221_1
e_1_2_10_267_1
e_1_2_10_244_1
e_1_2_10_146_1
e_1_2_10_169_1
e_1_2_10_218_1
e_1_2_10_62_1
e_1_2_10_161_1
e_1_2_10_85_1
e_1_2_10_100_1
e_1_2_10_123_1
e_1_2_10_184_1
e_1_2_10_47_1
Yu A. (e_1_2_10_164_1) 2013
References_xml – volume: 157
  start-page: 11
  year: 2006
  end-page: 27
  publication-title: J. Power Sources
– volume: 18
  start-page: 7112
  year: 2022
  end-page: 7122
  publication-title: Soft Matter
– volume: 19
  start-page: 3420
  year: 2009
  end-page: 3426
  publication-title: Adv. Funct. Mater.
– volume: 53
  start-page: 1083
  year: 2007
  end-page: 1091
  publication-title: Electrochim. Acta
– volume: 4
  start-page: 3029
  year: 2020
  end-page: 3041
  publication-title: Sustain. Energy Fuels
– volume: 51
  start-page: 2901
  year: 2010
  end-page: 2912
  publication-title: Energy Convers. Manage.
– volume: 37
  start-page: 15256
  year: 2012
  end-page: 15287
  publication-title: Int. J. Hydrogen Energy
– volume: 17
  start-page: 38
  year: 2008
  publication-title: The electrochemical society interface
– volume: 56
  year: 2022
  publication-title: J. Energy Storage
– volume: 13
  start-page: 387
  year: 2014
  end-page: 393
  publication-title: Nat. Mater.
– volume: 138
  start-page: 5731
  year: 2016
  end-page: 5744
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 845
  year: 2008
  end-page: 854
  publication-title: Nat. Mater.
– volume: 11
  start-page: 10628
  year: 2016
  end-page: 10643
  publication-title: Int. J. Electrochem. Sci.
– volume: 16
  start-page: 272
  year: 2013
  end-page: 280
  publication-title: Mater. Today
– start-page: 1
  year: 2015
  end-page: 25
  publication-title: Handbook of clean energy systems
– volume: 5
  start-page: 241
  year: 2017
  end-page: 251
  publication-title: ACS Sustainable Chem. Eng.
– volume: 162
  start-page: 452
  year: 2000
  publication-title: Appl. Surf. Sci.
– volume: 3
  start-page: 16849
  year: 2015
  end-page: 16859
  publication-title: J. Mater. Chem. A
– volume: 122
  start-page: 10087
  year: 2022
  end-page: 10125
  publication-title: Chem. Rev.
– volume: 80
  start-page: 110
  year: 2023
  end-page: 119
  publication-title: J. Energy Chem.
– volume: 4
  start-page: 1592
  year: 2011
  end-page: 1605
  publication-title: Energy Environ. Sci.
– volume: 6
  start-page: 4020
  year: 2012
  end-page: 4028
  publication-title: ACS Nano
– volume: 54
  start-page: 403
  year: 2013
  end-page: 411
  publication-title: Carbon
– volume: 10
  start-page: 1105
  year: 2022
  end-page: 1149
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 9443
  year: 2017
  end-page: 9464
  publication-title: J. Mater. Chem. A
– volume: 3
  start-page: 2146
  year: 2022
  end-page: 2157
  publication-title: Materials Advances
– volume: 35
  start-page: 6465
  year: 2021
  end-page: 6482
  publication-title: Energy Fuels
– volume: 121
  start-page: 93
  year: 2018
  end-page: 101
  publication-title: J. Phys. Chem. Solids
– volume: 6
  year: 2019
  publication-title: Adv. Sci.
– volume: 2
  start-page: 950
  year: 2012
  end-page: 955
  publication-title: Adv. Energy Mater.
– volume: 4
  start-page: 2801
  year: 2012
  end-page: 2810
  publication-title: ACS Appl. Mater. Interfaces
– volume: 41
  start-page: 16230
  year: 2016
  end-page: 16239
  publication-title: Int. J. Hydrogen Energy
– volume: 4
  start-page: 27022
  year: 2014
  end-page: 27029
  publication-title: RSC Adv.
– volume: 306
  start-page: 666
  year: 2004
  end-page: 669
  publication-title: Science
– volume: 195
  start-page: 912
  year: 2010
  end-page: 918
  publication-title: J. Power Sources
– volume: 56
  start-page: 8122
  year: 2011
  end-page: 8128
  publication-title: Electrochim. Acta
– volume: 46
  start-page: 18711
  year: 2022
  end-page: 18726
  publication-title: Int. J. Energy Res.
– volume: 2
  start-page: 177
  year: 2015
  end-page: 183
  publication-title: Inorg. Chem. Front.
– volume: 5
  start-page: 12168
  year: 2013
  end-page: 12174
  publication-title: ACS Appl. Mater. Interfaces
– volume: 55
  year: 2022
  publication-title: J. Energy Storage
– volume: 241
  start-page: 572
  year: 2013
  end-page: 577
  publication-title: J. Power Sources
– volume: 47
  start-page: 10058
  year: 2011
  end-page: 10060
  publication-title: Chem. Commun.
– volume: 46
  start-page: 13276
  year: 2022
  end-page: 13307
  publication-title: Int. J. Energy Res.
– volume: 19
  start-page: 246
  year: 2009
  end-page: 252
  publication-title: J. Mater. Chem.
– volume: 194
  start-page: 1075
  year: 2009
  end-page: 1080
  publication-title: J. Power Sources
– volume: 286
  year: 2021
  publication-title: Appl. Energy
– volume: 416
  start-page: 918
  year: 2017
  end-page: 924
  publication-title: Appl. Surf. Sci.
– volume: 150
  start-page: A484
  year: 2003
  publication-title: J. Electrochem. Soc.
– volume: 2
  start-page: 1328
  year: 2012
  end-page: 1332
  publication-title: Adv. Energy Mater.
– volume: 685
  start-page: 507
  year: 2016
  end-page: 517
  publication-title: J. Alloys Compd.
– volume: 52
  start-page: 1882
  year: 2013
  end-page: 1889
  publication-title: Angew. Chem. Int. Ed.
– volume: 6
  start-page: 20973
  year: 2016
  publication-title: Sci. Rep.
– volume: 4
  start-page: 729
  year: 2011
  end-page: 736
  publication-title: Nano Res.
– volume: 3
  start-page: 286
  year: 2020
  end-page: 305
  publication-title: Energy Environ.
– volume: 4
  start-page: 1440
  year: 2011
  end-page: 1446
  publication-title: Energy Environ. Sci.
– volume: 159
  start-page: 1527
  year: 2006
  end-page: 1531
  publication-title: J. Power Sources
– volume: 9
  start-page: 15542
  year: 2021
  end-page: 15585
  publication-title: J. Mater. Chem. A
– volume: 36
  start-page: 513
  year: 2011
  end-page: 522
  publication-title: MRS Bull.
– volume: 23
  start-page: 4810
  year: 2011
  end-page: 4816
  publication-title: Chem. Mater.
– volume: 44
  start-page: 7484
  year: 2015
  end-page: 7539
  publication-title: Chem. Soc. Rev.
– volume: 86
  start-page: 260
  year: 2012
  end-page: 267
  publication-title: Electrochim. Acta
– volume: 35
  start-page: 331
  year: 2017
  end-page: 340
  publication-title: Nano Energy
– volume: 2
  start-page: 1
  year: 2017
  end-page: 7
  publication-title: Nat. Energy
– volume: 41
  start-page: 22134
  year: 2016
  end-page: 22143
  publication-title: Int. J. Hydrogen Energy
– volume: 113
  start-page: 151
  year: 2017
  end-page: 158
  publication-title: Carbon
– volume: 3
  start-page: 1364
  year: 2015
  end-page: 1387
  publication-title: J. Mater. Chem. A
– volume: 160
  start-page: 1487
  year: 2006
  end-page: 1494
  publication-title: J. Power Sources
– volume: 176
  start-page: 49
  year: 2014
  end-page: 68
  publication-title: Faraday Discuss.
– start-page: 2373
  year: 2008
  end-page: 2375
  publication-title: Chem. Commun.
– volume: 96
  year: 2010
  publication-title: Appl. Phys. Lett.
– volume: 146
  start-page: 380
  year: 2008
  end-page: 383
  publication-title: Solid State Commun.
– volume: 13
  start-page: 235
  year: 2023
  publication-title: Catalysts
– volume: 19
  start-page: 8755
  year: 2009
  end-page: 8760
  publication-title: J. Mater. Chem.
– volume: 4
  start-page: 1475
  year: 2013
  publication-title: Nat. Commun.
– volume: 6
  start-page: 1185
  year: 2013
  end-page: 1191
  publication-title: Energy Environ. Sci.
– volume: 21
  start-page: 460
  year: 2011
  end-page: 466
  publication-title: Prog. Nat. Sci.
– volume: 3
  year: 2016
  publication-title: Adv. Sci.
– volume: 187
  start-page: 312
  year: 2016
  end-page: 322
  publication-title: Electrochim. Acta
– volume: 1
  start-page: 1
  year: 2016
  end-page: 10
  publication-title: Nat. Energy
– volume: 3
  start-page: 43
  year: 2015
  end-page: 59
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 3801
  year: 2020
  end-page: 3808
  publication-title: ACS Omega
– volume: 586
  start-page: 191
  year: 2014
  end-page: 196
  publication-title: J. Alloys Compd.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 8
  start-page: 3498
  year: 2008
  end-page: 3502
  publication-title: Nano Lett.
– volume: 6
  start-page: 11007
  year: 2014
  end-page: 11012
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  start-page: 7728
  year: 2019
  end-page: 7735
  publication-title: ACS Sustainable Chem. Eng.
– volume: 3
  start-page: 13059
  year: 2013
  end-page: 13084
  publication-title: RSC Adv.
– volume: 6
  start-page: 1623
  year: 2013
  end-page: 1632
  publication-title: Energy Environ. Sci.
– volume: 28
  year: 2017
  publication-title: Nanotechnology
– volume: 249
  start-page: 1
  year: 2014
  end-page: 8
  publication-title: J. Power Sources
– volume: 659
  start-page: 851
  year: 2019
  end-page: 861
  publication-title: Sci. Total Environ.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 1
  start-page: 1
  year: 2015
  end-page: 34
  publication-title: Nanocarbons for Advanced Energy Storage
– volume: 8
  start-page: 1339
  year: 2015
  end-page: 1347
  publication-title: Energy Environ. Sci.
– volume: 113
  start-page: 14020
  year: 2009
  end-page: 14027
  publication-title: J. Phys. Chem. C
– volume: 22
  start-page: 3723
  year: 2010
  end-page: 3728
  publication-title: Adv. Mater.
– volume: 338
  start-page: 147
  year: 2018
  end-page: 156
  publication-title: Chem. Eng. J.
– volume: 22
  start-page: 1272
  year: 2012
  end-page: 1278
  publication-title: Adv. Funct. Mater.
– volume: 22
  start-page: 16986
  year: 2012
  end-page: 16993
  publication-title: J. Mater. Chem.
– volume: 208
  start-page: 260
  year: 2016
  end-page: 266
  publication-title: Electrochim. Acta
– volume: 48
  year: 2015
  publication-title: J. Phys. D
– volume: 11
  start-page: 10891
  year: 2021
  end-page: 10901
  publication-title: RSC Adv.
– volume: 5
  start-page: 4902
  year: 2013
  end-page: 4909
  publication-title: Nanoscale
– volume: 516
  start-page: 78
  year: 2014
  end-page: 81
  publication-title: Nature
– volume: 71
  start-page: 127
  year: 2014
  end-page: 138
  publication-title: Carbon
– volume: 78
  start-page: 212
  year: 2012
  end-page: 222
  publication-title: Electrochim. Acta
– volume: 49
  start-page: 257
  year: 2004
  publication-title: Acta
– volume: 22
  start-page: E235
  year: 2010
  end-page: E241
  publication-title: Adv. Mater.
– volume: 4
  start-page: 4403
  year: 2010
  end-page: 4411
  publication-title: ACS Nano
– volume: 52
  start-page: 243
  year: 2021
  end-page: 250
  publication-title: J. Energy Chem.
– volume: 7
  start-page: 1597
  year: 2014
  end-page: 1614
  publication-title: Energy Environ. Sci.
– volume: 15
  start-page: 780
  year: 1999
  end-page: 785
  publication-title: Langmuir
– volume: 11
  start-page: 87
  year: 2009
  end-page: 90
  publication-title: Electrochem. Commun.
– volume: 173
  start-page: 606
  year: 2007
  end-page: 612
  publication-title: J. Power Sources
– volume: 5
  start-page: 6474
  year: 2012
  end-page: 6479
  publication-title: Energy Environ. Sci.
– volume: 7
  start-page: 11325
  year: 2013
  end-page: 11332
  publication-title: ACS Nano
– volume: 657
  start-page: 176
  year: 2011
  end-page: 180
  publication-title: J. Electroanal. Chem.
– volume: 11
  start-page: 6089
  year: 2019
  end-page: 6096
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  start-page: 6544
  year: 2015
  publication-title: Nat. Commun.
– volume: 2
  year: 2021
  publication-title: Advances in Applied Energy
– volume: 1
  start-page: 3807
  year: 2019
  end-page: 3835
  publication-title: Nanoscale Advances
– volume: 109
  start-page: 587
  year: 2013
  end-page: 594
  publication-title: Electrochim. Acta
– volume: 13
  start-page: 333
  year: 2009
  end-page: 340
  publication-title: J. Solid State Electrochem.
– volume: 5
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 5
  start-page: 9591
  year: 2015
  publication-title: Sci. Rep.
– volume: 1
  start-page: 112
  year: 2006
  end-page: 116
  publication-title: Nat. Nanotechnol.
– volume: 41
  start-page: 4974
  year: 2017
  end-page: 4984
  publication-title: New J. Chem.
– volume: 10
  start-page: 4863
  year: 2010
  end-page: 4868
  publication-title: Nano Lett.
– volume: 20
  start-page: 3883
  year: 2010
  end-page: 3889
  publication-title: J. Mater. Chem.
– volume: 332
  start-page: 180
  year: 2016
  end-page: 186
  publication-title: J. Power Sources
– volume: 4
  start-page: 366
  year: 2005
  end-page: 377
  publication-title: Nat. Mater.
– volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 313
  start-page: 1760
  year: 2006
  end-page: 1763
  publication-title: Science
– volume: 4
  start-page: 2487
  year: 2013
  publication-title: Nat. Commun.
– volume: 22
  start-page: 13402
  year: 2016
  end-page: 13421
  publication-title: Chemistry–A European Journal
– volume: 8
  start-page: 595
  year: 2020
  publication-title: Front. Chem.
– volume: 5
  start-page: 811
  year: 2011
  end-page: 819
  publication-title: ACS Nano
– volume: 21
  start-page: 2366
  year: 2011
  end-page: 2375
  publication-title: Adv. Funct. Mater.
– volume: 55
  start-page: 6015
  year: 2010
  end-page: 6021
  publication-title: Electrochim. Acta
– volume: 130
  start-page: 2730
  year: 2008
  end-page: 2731
  publication-title: J. Am. Chem. Soc.
– volume: 102
  start-page: 1360
  year: 1999
  end-page: 1361
  publication-title: Synth. Met.
– volume: 4
  start-page: 18578
  year: 2016
  end-page: 18584
  publication-title: J. Mater. Chem. A
– volume: 51
  start-page: 5567
  year: 2006
  end-page: 5580
  publication-title: Electrochim. Acta
– volume: 99
  start-page: 203
  year: 2016
  end-page: 211
  publication-title: Carbon
– year: 2023
  publication-title: Compos. Sci. Technol.
– volume: 15
  start-page: 9
  year: 2015
  end-page: 23
  publication-title: Nano Energy
– volume: 413
  start-page: 83
  year: 2017
  end-page: 91
  publication-title: Appl. Surf. Sci.
– volume: 74
  start-page: 157
  year: 2002
  end-page: 189
  publication-title: Catal. Today
– volume: 5
  start-page: 5842
  year: 2012
  end-page: 5850
  publication-title: Energy Environ. Sci.
– volume: 38
  start-page: 14027
  year: 2013
  end-page: 14034
  publication-title: Int. J. Hydrogen Energy
– volume: 168
  start-page: 61
  year: 2019
  end-page: 69
  publication-title: Polymer
– volume: 494
  start-page: 440
  year: 2019
  end-page: 451
  publication-title: Appl. Surf. Sci.
– volume: 45
  start-page: 13311
  year: 2016
  end-page: 13316
  publication-title: Dalton Trans.
– volume: 16
  start-page: 15261
  year: 2022
  end-page: 15272
  publication-title: ACS Nano
– year: 2013
  publication-title: Electrochemical supercapacitors: scientific fundamentals and technological applications.
– volume: 123
  start-page: 1737
  year: 2011
  end-page: 1739
  publication-title: Angew. Chem.
– volume: 25
  start-page: 7530
  year: 2015
  end-page: 7538
  publication-title: Adv. Funct. Mater.
– volume: 21
  start-page: 759
  year: 2017
  end-page: 766
  publication-title: J. Solid State Electrochem.
– volume: 115
  start-page: 20689
  year: 2011
  end-page: 20695
  publication-title: J. Phys. Chem. C
– volume: 108
  start-page: 184
  year: 2013
  end-page: 193
  publication-title: Appl. Energy
– volume: 5
  start-page: 4554
  year: 2014
  publication-title: Nat. Commun.
– volume: 15
  start-page: 7722
  year: 2013
  end-page: 7730
  publication-title: Phys. Chem. Chem. Phys.
– volume: 53
  year: 2022
  publication-title: J. Energy Storage
– volume: 127
  start-page: 4734
  year: 2015
  end-page: 4739
  publication-title: Angew. Chem.
– volume: 24
  start-page: 5166
  year: 2012
  end-page: 5180
  publication-title: Adv. Mater.
– volume: 11
  start-page: 1158
  year: 2009
  end-page: 1161
  publication-title: Electrochem. Commun.
– volume: 24
  start-page: 5130
  year: 2012
  end-page: 5135
  publication-title: Adv. Mater.
– volume: 39
  start-page: 162
  year: 2017
  end-page: 171
  publication-title: Nano Energy
– volume: 451
  year: 2020
  publication-title: J. Power Sources
– volume: 731
  start-page: 1151
  year: 2018
  end-page: 1158
  publication-title: J. Alloys Compd.
– volume: 185
  start-page: 218
  year: 2015
  end-page: 228
  publication-title: Electrochim. Acta
– volume: 145
  start-page: 529
  year: 2019
  end-page: 548
  publication-title: Carbon
– volume: 16
  start-page: 19307
  year: 2014
  end-page: 19313
  publication-title: Phys. Chem. Chem. Phys.
– volume: 40
  start-page: 1193
  year: 2002
  end-page: 1197
  publication-title: Carbon
– volume: 50
  start-page: 4379
  year: 2012
  end-page: 4387
  publication-title: Carbon
– volume: 43
  start-page: 1769
  year: 2018
  end-page: 1780
  publication-title: Int. J. Hydrogen Energy
– volume: 6
  start-page: 8669
  year: 2018
  end-page: 8681
  publication-title: J. Mater. Chem. A
– volume: 216
  start-page: 290
  year: 2012
  end-page: 296
  publication-title: J. Power Sources
– volume: 258
  start-page: 504
  year: 2017
  end-page: 511
  publication-title: Electrochim. Acta
– volume: 162
  start-page: A5054
  year: 2015
  publication-title: J. Electrochem. Soc.
– start-page: 1
  year: 2013
  end-page: 39
  publication-title: Nanotechnology for the Energy Challenge
– volume: 14
  start-page: 6614
  year: 2008
  end-page: 6626
  publication-title: Chemistry–A European Journal
– volume: 13
  start-page: 497
  year: 2001
  publication-title: Adv. Mater.
– volume: 7
  start-page: 1266
  year: 2022
  end-page: 1273
  publication-title: ACS Energy Lett.
– volume: 156
  start-page: A1000
  year: 2009
  publication-title: J. Electrochem. Soc.
– volume: 9
  start-page: 13747
  year: 2017
  end-page: 13759
  publication-title: Nanoscale
– volume: 330
  year: 2020
  publication-title: Electrochim. Acta
– volume: 438
  start-page: 197
  year: 2005
  end-page: 200
  publication-title: Nature
– volume: 4
  start-page: 8142
  year: 2019
  end-page: 8149
  publication-title: ChemistrySelect
– volume: 196
  start-page: 4117
  year: 2011
  end-page: 4122
  publication-title: J. Power Sources
– volume: 153
  start-page: A2171
  year: 2006
  publication-title: J. Electrochem. Soc.
– volume: 15
  start-page: 15177
  year: 2013
  end-page: 15184
  publication-title: Phys. Chem. Chem. Phys.
– volume: 16
  start-page: 1845
  year: 2004
  end-page: 1847
  publication-title: Chem. Mater.
– volume: 10
  year: 2022
  publication-title: APL Materials
– volume: 13
  start-page: 2628
  year: 2013
  end-page: 2633
  publication-title: Nano Lett.
– volume: 858
  year: 2020
  publication-title: J. Electroanal. Chem.
– volume: 216
  start-page: 508
  year: 2012
  end-page: 514
  publication-title: J. Power Sources
– volume: 147
  start-page: 444
  year: 2000
  publication-title: J. Electrochem. Soc.
– volume: 158
  start-page: A1320
  year: 2011
  publication-title: J. Electrochem. Soc.
– volume: 7
  start-page: 1138
  year: 2005
  end-page: 1142
  publication-title: Electrochem. Commun.
– volume: 61
  start-page: 1517
  year: 2018
  end-page: 1526
  publication-title: Sci. China Mater.
– volume: 135
  start-page: 18968
  year: 2013
  end-page: 18980
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 1275
  year: 2010
  end-page: 1278
  publication-title: Electrochem. Commun.
– volume: 4
  start-page: 4518
  year: 2014
  publication-title: Sci. Rep.
– volume: 119
  start-page: 13413
  year: 2015
  end-page: 13424
  publication-title: J. Phys. Chem. C
– volume: 1
  year: 2006
  publication-title: The MITRE Corporation, McLean, Virginia, USA
– year: 2013
  publication-title: Electrochemical supercapacitors for energy storage and delivery: fundamentals and applications.
– volume: 48
  start-page: 3825
  year: 2010
  end-page: 3833
  publication-title: Carbon
– volume: 68
  year: 2023
  publication-title: J. Energy Storage
– volume: 226
  start-page: 202
  year: 2013
  end-page: 209
  publication-title: J. Power Sources
– volume: 3
  start-page: 18874
  year: 2015
  end-page: 18881
  publication-title: J. Mater. Chem. A
– volume: 9
  start-page: 2807
  year: 2007
  end-page: 2811
  publication-title: Electrochem. Commun.
– volume: 346
  start-page: 104
  year: 2018
  end-page: 112
  publication-title: Chem. Eng. J.
– volume: 11
  start-page: 306
  year: 2012
  end-page: 310
  publication-title: Nat. Mater.
– volume: 52
  start-page: 441
  year: 2018
  end-page: 473
  publication-title: Nano Energy
– volume: 4
  year: 2014
  publication-title: Adv. Energy Mater.
– volume: 195
  start-page: 4234
  year: 2010
  end-page: 4241
  publication-title: J. Power Sources
– volume: 396
  start-page: 182
  year: 2018
  end-page: 206
  publication-title: J. Power Sources
– volume: 270
  start-page: 526
  year: 2014
  end-page: 535
  publication-title: J. Power Sources
– volume: 5
  start-page: 1181
  year: 2012
  end-page: 1185
  publication-title: ChemSusChem
– volume: 153
  start-page: A649
  year: 2006
  publication-title: J. Electrochem. Soc.
– volume: 56
  start-page: 5115
  year: 2011
  end-page: 5121
  publication-title: Electrochim. Acta
– volume: 5
  start-page: 3039
  year: 2017
  end-page: 3068
  publication-title: J. Mater. Chem. A
– volume: 40
  year: 2021
  publication-title: J. Energy Storage
– volume: 49
  start-page: 8790
  year: 2020
  end-page: 8839
  publication-title: Chem. Soc. Rev.
– volume: 306
  start-page: 711
  year: 2016
  end-page: 717
  publication-title: J. Power Sources
– volume: 1
  start-page: 11698
  year: 2013
  end-page: 11704
  publication-title: J. Mater. Chem. A
– volume: 38
  start-page: 2520
  year: 2009
  end-page: 2531
  publication-title: Chem. Soc. Rev.
– volume: 70
  start-page: 1480
  year: 1997
  end-page: 1482
  publication-title: Appl. Phys. Lett.
– volume: 38
  start-page: 109
  year: 2009
  end-page: 114
  publication-title: Chem. Soc. Rev.
– volume: 2
  start-page: 4954
  year: 2014
  end-page: 4960
  publication-title: J. Mater. Chem. A
– volume: 321
  start-page: 651
  year: 2008
  end-page: 652
  publication-title: Science
– volume: 54
  start-page: 305
  year: 2008
  end-page: 310
  publication-title: Electrochim. Acta
– volume: 157
  start-page: 290
  year: 2015
  end-page: 298
  publication-title: Electrochim. Acta
– volume: 8
  start-page: 23059
  year: 2020
  end-page: 23095
  publication-title: J. Mater. Chem. A
– start-page: 247
  year: 2014
  end-page: 278
  publication-title: Two-dimensional Carbon: Fundamental Properties, Synthesis, Characterization, and Applications, Taylor & Francis, USA
– volume: 342
  start-page: 1
  year: 2017
  end-page: 8
  publication-title: J. Power Sources
– volume: 403
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 18
  start-page: 3981
  year: 2022
  end-page: 3992
  publication-title: Soft Matter
– volume: 4
  start-page: 453
  year: 2017
  end-page: 489
  publication-title: Natl. Sci. Rev.
– volume: 23
  start-page: 4828
  year: 2011
  end-page: 4850
  publication-title: Adv. Mater.
– volume: 4
  start-page: 7700
  year: 2016
  end-page: 7709
  publication-title: J. Mater. Chem. A
– volume: 4
  start-page: 2660
  year: 2017
  end-page: 2668
  publication-title: ChemElectroChem
– volume: 55
  start-page: 7479
  year: 2010
  end-page: 7483
  publication-title: Electrochim. Acta
– volume: 390
  year: 2021
  publication-title: Electrochim. Acta
– volume: 188
  start-page: 1
  year: 2017
  end-page: 4
  publication-title: Mater. Lett.
– volume: 24
  start-page: 6348
  year: 2012
  end-page: 6355
  publication-title: Adv. Mater.
– volume: 9
  start-page: 1872
  year: 2009
  end-page: 1876
  publication-title: Nano Lett.
– volume: 189
  start-page: 1270
  year: 2009
  end-page: 1277
  publication-title: J. Power Sources
– volume: 41
  start-page: 797
  year: 2012
  end-page: 828
  publication-title: Chem. Soc. Rev.
– volume: 7
  start-page: 595
  year: 2019
  publication-title: Front. Chem.
– volume: 101
  start-page: 123
  year: 2019
  end-page: 145
  publication-title: Renewable Sustainable Energy Rev.
– volume: 5
  start-page: 818
  year: 2012
  end-page: 841
  publication-title: ChemSusChem
– volume: 4
  start-page: 5835
  year: 2010
  end-page: 5842
  publication-title: ACS Nano
– volume: 6
  start-page: 10674
  year: 2018
  end-page: 10685
  publication-title: J. Mater. Chem. A
– volume: 1
  start-page: 403
  year: 2009
  end-page: 408
  publication-title: Nat. Chem.
– volume: 24
  start-page: 7312
  year: 2018
  end-page: 7329
  publication-title: Chemistry–A European Journal
– volume: 6
  start-page: 26890
  year: 2016
  publication-title: Sci. Rep.
– volume: 4
  start-page: 4009
  year: 2011
  end-page: 4015
  publication-title: Energy Environ. Sci.
– volume: 10
  start-page: 708
  year: 2010
  end-page: 714
  publication-title: Nano Lett.
– volume: 14
  start-page: 812
  year: 2015
  end-page: 819
  publication-title: Nat. Mater.
– volume: 25
  start-page: 5336
  year: 2013
  end-page: 5342
  publication-title: Adv. Mater.
– volume: 153
  start-page: 22
  year: 2015
  end-page: 31
  publication-title: Appl. Energy
– ident: e_1_2_10_74_1
  doi: 10.1016/j.jpowsour.2009.01.009
– ident: e_1_2_10_90_1
  doi: 10.1039/D0RA09393A
– ident: e_1_2_10_161_1
  doi: 10.1002/aenm.202001445
– ident: e_1_2_10_222_1
  doi: 10.1021/acssuschemeng.6b01367
– ident: e_1_2_10_3_1
  doi: 10.1039/B802885K
– ident: e_1_2_10_259_1
  doi: 10.1016/j.jpowsour.2009.06.050
– ident: e_1_2_10_146_1
  doi: 10.1016/j.jechem.2020.04.015
– ident: e_1_2_10_75_1
  doi: 10.1021/nn1017457
– ident: e_1_2_10_255_1
  doi: 10.1002/cssc.201100571
– ident: e_1_2_10_170_1
  doi: 10.1016/j.carbon.2014.01.021
– ident: e_1_2_10_189_1
  doi: 10.1016/j.elecom.2010.06.036
– ident: e_1_2_10_23_1
  doi: 10.1039/c3ra23466e
– ident: e_1_2_10_61_1
  doi: 10.1016/j.jpowsour.2016.09.115
– ident: e_1_2_10_188_1
  doi: 10.1016/j.jpowsour.2012.11.014
– ident: e_1_2_10_78_1
  doi: 10.1016/S0008-6223(01)00266-4
– ident: e_1_2_10_227_1
  doi: 10.1016/j.jelechem.2020.113830
– ident: e_1_2_10_11_1
  doi: 10.1016/j.adapen.2021.100011
– ident: e_1_2_10_115_1
  doi: 10.1039/c2ee24203f
– ident: e_1_2_10_120_1
  doi: 10.1039/B811548F
– ident: e_1_2_10_135_1
  doi: 10.1039/C7NR03763E
– ident: e_1_2_10_99_1
  doi: 10.1002/adma.201001029
– ident: e_1_2_10_209_1
  doi: 10.1021/acssuschemeng.8b06486
– ident: e_1_2_10_118_1
  doi: 10.1002/er.8490
– ident: e_1_2_10_2_1
  doi: 10.1039/C1CS15060J
– ident: e_1_2_10_193_1
  doi: 10.1021/am503375h
– ident: e_1_2_10_160_1
  doi: 10.1149/2.0111505jes
– ident: e_1_2_10_224_1
  doi: 10.1016/j.jallcom.2016.05.282
– ident: e_1_2_10_34_1
  doi: 10.1039/c3cp52283k
– ident: e_1_2_10_92_1
  doi: 10.1021/nl802558y
– ident: e_1_2_10_44_1
  doi: 10.1109/IIC.2015.7150826
– ident: e_1_2_10_112_1
  doi: 10.1016/S0379-6779(98)01334-4
– ident: e_1_2_10_262_1
  doi: 10.1126/science.1132195
– ident: e_1_2_10_82_1
  doi: 10.1038/nnano.2006.56
– ident: e_1_2_10_141_1
  doi: 10.1039/C6TA09817G
– start-page: 247
  year: 2014
  ident: e_1_2_10_50_1
  publication-title: Two-dimensional Carbon: Fundamental Properties, Synthesis, Characterization, and Applications, Taylor & Francis, USA
– ident: e_1_2_10_156_1
  doi: 10.1021/acs.energyfuels.1c00341
– ident: e_1_2_10_42_1
  doi: 10.1088/1361-6528/aa8948
– ident: e_1_2_10_177_1
  doi: 10.1557/mrs.2011.137
– ident: e_1_2_10_231_1
  doi: 10.1016/j.electacta.2019.135277
– ident: e_1_2_10_27_1
  doi: 10.1021/nn101754k
– ident: e_1_2_10_85_1
  doi: 10.1016/j.elecom.2009.03.036
– ident: e_1_2_10_247_1
  doi: 10.1016/j.electacta.2011.05.125
– ident: e_1_2_10_163_1
  doi: 10.1039/C9NA00374F
– ident: e_1_2_10_237_1
  doi: 10.1002/adfm.201100058
– ident: e_1_2_10_198_1
  doi: 10.1016/j.carbon.2018.12.009
– ident: e_1_2_10_102_1
  doi: 10.1007/s10008-016-3431-0
– ident: e_1_2_10_127_1
  doi: 10.1039/C4TA04996A
– ident: e_1_2_10_139_1
  doi: 10.1039/C4TA05565A
– ident: e_1_2_10_150_1
  doi: 10.1039/C6DT01791F
– ident: e_1_2_10_248_1
  doi: 10.1039/c1ee01354h
– ident: e_1_2_10_88_1
  doi: 10.1038/nchem.281
– ident: e_1_2_10_158_1
  doi: 10.3389/fchem.2020.00595
– ident: e_1_2_10_194_1
  doi: 10.1016/j.jpowsour.2013.05.003
– ident: e_1_2_10_184_1
  doi: 10.1149/1.3236500
– ident: e_1_2_10_70_1
  doi: 10.1088/0022-3727/48/31/314007
– ident: e_1_2_10_176_1
  doi: 10.1039/c3ee44164d
– ident: e_1_2_10_151_1
  doi: 10.3389/fchem.2019.00595
– ident: e_1_2_10_230_1
  doi: 10.1016/j.electacta.2019.135236
– ident: e_1_2_10_123_1
  doi: 10.1149/1.1393216
– ident: e_1_2_10_67_1
  doi: 10.1002/1521-4095(200104)13:7<497::AID-ADMA497>3.0.CO;2-H
– ident: e_1_2_10_133_1
  doi: 10.1038/srep20973
– ident: e_1_2_10_211_1
  doi: 10.1016/j.jpowsour.2009.08.048
– ident: e_1_2_10_113_1
  doi: 10.1016/j.electacta.2003.08.007
– ident: e_1_2_10_84_1
  doi: 10.1126/science.1102896
– ident: e_1_2_10_132_1
  doi: 10.1039/C6TA01133K
– start-page: 1
  year: 2013
  ident: e_1_2_10_54_1
  publication-title: Nanotechnology for the Energy Challenge
– ident: e_1_2_10_210_1
  doi: 10.1016/j.jpowsour.2015.12.103
– ident: e_1_2_10_260_1
  doi: 10.1038/ncomms3487
– ident: e_1_2_10_191_1
  doi: 10.1038/srep04518
– ident: e_1_2_10_1_1
  doi: 10.1038/nmat1368
– ident: e_1_2_10_60_1
  doi: 10.1016/j.cej.2018.04.010
– ident: e_1_2_10_49_1
  doi: 10.1149/2.F05081IF
– ident: e_1_2_10_149_1
  doi: 10.1039/C4QI00167B
– ident: e_1_2_10_47_1
  doi: 10.1016/j.electacta.2007.01.011
– ident: e_1_2_10_143_1
  doi: 10.1039/C8TA01184B
– ident: e_1_2_10_114_1
  doi: 10.1016/j.enconman.2010.06.031
– ident: e_1_2_10_167_1
  doi: 10.1016/j.est.2021.102729
– ident: e_1_2_10_104_1
  doi: 10.1039/D2SM00595F
– ident: e_1_2_10_43_1
  doi: 10.1016/j.carbon.2012.05.014
– ident: e_1_2_10_45_1
  doi: 10.20964/2016.12.50
– ident: e_1_2_10_110_1
  doi: 10.1016/j.est.2023.107830
– ident: e_1_2_10_168_1
  doi: 10.1016/j.electacta.2012.07.062
– ident: e_1_2_10_159_1
  doi: 10.1021/acsomega.9b04063
– ident: e_1_2_10_76_1
  doi: 10.1002/adma.200904349
– ident: e_1_2_10_172_1
  doi: 10.1039/C4CP02761B
– ident: e_1_2_10_25_1
  doi: 10.1002/chem.201705555
– ident: e_1_2_10_51_1
  doi: 10.1016/j.mattod.2013.07.002
– ident: e_1_2_10_106_1
  doi: 10.1016/j.nanoen.2015.02.035
– ident: e_1_2_10_215_1
  doi: 10.1016/j.apsusc.2019.07.183
– ident: e_1_2_10_266_1
  doi: 10.1016/j.cej.2020.126352
– ident: e_1_2_10_39_1
  doi: 10.1038/nmat3916
– ident: e_1_2_10_234_1
  doi: 10.1016/j.electacta.2010.01.022
– ident: e_1_2_10_256_1
  doi: 10.1039/c2jm32841k
– ident: e_1_2_10_271_1
  doi: 10.1002/er.8149
– ident: e_1_2_10_32_1
  doi: 10.1038/nmat3260
– ident: e_1_2_10_128_1
  doi: 10.1039/C6TA06848K
– ident: e_1_2_10_130_1
  doi: 10.1002/ange.201411533
– ident: e_1_2_10_73_1
  doi: 10.1021/nl903949m
– ident: e_1_2_10_5_1
  doi: 10.1038/nmat2297
– ident: e_1_2_10_10_1
  doi: 10.1016/j.jpowsour.2018.06.004
– ident: e_1_2_10_250_1
  doi: 10.1016/j.electacta.2012.05.139
– ident: e_1_2_10_119_1
  doi: 10.1016/j.jpowsour.2005.11.063
– ident: e_1_2_10_186_1
  doi: 10.1021/am404196s
– ident: e_1_2_10_162_1
  doi: 10.1016/j.electacta.2006.03.016
– ident: e_1_2_10_66_1
  doi: 10.1063/1.118568
– ident: e_1_2_10_109_1
  doi: 10.1016/j.ijhydene.2016.08.041
– ident: e_1_2_10_22_1
  doi: 10.1002/adma.201301932
– ident: e_1_2_10_41_1
  doi: 10.1016/j.jechem.2022.12.063
– ident: e_1_2_10_105_1
  doi: 10.1039/D2SM00143H
– ident: e_1_2_10_216_1
  doi: 10.1039/c4ra01793e
– ident: e_1_2_10_179_1
  doi: 10.1016/j.electacta.2008.07.079
– start-page: 1
  year: 2015
  ident: e_1_2_10_155_1
  publication-title: Handbook of clean energy systems
– ident: e_1_2_10_166_1
  doi: 10.1016/j.est.2022.106023
– ident: e_1_2_10_17_1
  doi: 10.1016/j.ijhydene.2012.07.076
– ident: e_1_2_10_121_1
  doi: 10.1021/la980785a
– ident: e_1_2_10_137_1
  doi: 10.1002/chem.201602389
– ident: e_1_2_10_144_1
  doi: 10.1016/j.nanoen.2017.04.007
– ident: e_1_2_10_187_1
  doi: 10.1016/j.jpowsour.2007.04.034
– ident: e_1_2_10_16_1
  doi: 10.1016/j.scitotenv.2018.12.257
– ident: e_1_2_10_195_1
  doi: 10.1039/D1TA03262C
– ident: e_1_2_10_206_1
  doi: 10.1016/j.elecom.2008.10.026
– ident: e_1_2_10_71_1
  doi: 10.1021/nl8038579
– ident: e_1_2_10_72_1
  doi: 10.1039/c0ee00261e
– ident: e_1_2_10_63_1
  doi: 10.1016/j.electacta.2017.11.092
– ident: e_1_2_10_77_1
  doi: 10.1016/j.jpowsour.2006.02.092
– ident: e_1_2_10_190_1
  doi: 10.1039/c3nr33927k
– ident: e_1_2_10_33_1
  doi: 10.1039/c3cp51210j
– ident: e_1_2_10_122_1
  doi: 10.1149/1.2352197
– ident: e_1_2_10_6_1
  doi: 10.1002/adma.201100984
– ident: e_1_2_10_81_1
  doi: 10.1016/j.ssc.2008.03.034
– ident: e_1_2_10_239_1
  doi: 10.1016/j.carbon.2010.06.047
– ident: e_1_2_10_154_1
  doi: 10.1002/aenm.201702630
– year: 2013
  ident: e_1_2_10_174_1
  publication-title: Electrochemical supercapacitors: scientific fundamentals and technological applications.
– ident: e_1_2_10_157_1
  doi: 10.1039/D0CS00305K
– ident: e_1_2_10_95_1
  doi: 10.1021/jp205133g
– ident: e_1_2_10_7_1
  doi: 10.1126/science.1158736
– ident: e_1_2_10_111_1
  doi: 10.1021/cm0497576
– ident: e_1_2_10_173_1
  doi: 10.1063/5.0106932
– ident: e_1_2_10_36_1
  doi: 10.1039/C4FD00138A
– ident: e_1_2_10_83_1
  doi: 10.1038/nature04233
– ident: e_1_2_10_125_1
  doi: 10.1007/s10008-008-0560-0
– ident: e_1_2_10_56_1
  doi: 10.1039/c2ee03092f
– ident: e_1_2_10_62_1
  doi: 10.1016/j.electacta.2014.12.169
– ident: e_1_2_10_169_1
  doi: 10.1002/chem.200800639
– ident: e_1_2_10_258_1
  doi: 10.1016/j.elecom.2007.09.015
– ident: e_1_2_10_204_1
  doi: 10.1021/acsenergylett.2c00015
– ident: e_1_2_10_145_1
  doi: 10.1016/j.nanoen.2017.06.042
– year: 2013
  ident: e_1_2_10_164_1
  publication-title: Electrochemical supercapacitors for energy storage and delivery: fundamentals and applications.
– ident: e_1_2_10_96_1
  doi: 10.1016/j.electacta.2011.03.066
– ident: e_1_2_10_243_1
  doi: 10.1002/aenm.201200088
– ident: e_1_2_10_87_1
  doi: 10.1016/j.est.2022.105729
– ident: e_1_2_10_246_1
  doi: 10.1039/b909779a
– volume: 1
  year: 2006
  ident: e_1_2_10_68_1
  publication-title: The MITRE Corporation, McLean, Virginia, USA
– ident: e_1_2_10_136_1
  doi: 10.1002/adfm.201803287
– ident: e_1_2_10_228_1
  doi: 10.1016/j.ijhydene.2013.08.112
– ident: e_1_2_10_52_1
  doi: 10.1016/j.est.2015.03.001
– ident: e_1_2_10_192_1
  doi: 10.1016/j.jpowsour.2013.10.068
– ident: e_1_2_10_15_1
  doi: 10.1021/acsami.8b20246
– ident: e_1_2_10_208_1
  doi: 10.1002/cssc.201200227
– ident: e_1_2_10_91_1
  doi: 10.1016/j.est.2022.105098
– ident: e_1_2_10_207_1
  doi: 10.1002/ange.201006811
– ident: e_1_2_10_200_1
  doi: 10.1021/acs.jpcc.5b02113
– ident: e_1_2_10_4_1
  doi: 10.1002/aenm.201300816
– ident: e_1_2_10_238_1
  doi: 10.1002/aenm.201400500
– ident: e_1_2_10_31_1
  doi: 10.1038/nenergy.2016.216
– ident: e_1_2_10_140_1
  doi: 10.1002/advs.201500286
– ident: e_1_2_10_213_1
  doi: 10.1016/j.electacta.2015.11.053
– ident: e_1_2_10_226_1
  doi: 10.1016/j.polymer.2019.01.058
– ident: e_1_2_10_107_1
  doi: 10.1002/adma.201201948
– ident: e_1_2_10_108_1
  doi: 10.1038/srep09591
– ident: e_1_2_10_197_1
  doi: 10.1021/acsnano.2c06656
– ident: e_1_2_10_94_1
  doi: 10.1002/adma.201202774
– ident: e_1_2_10_89_1
  doi: 10.1039/D1MA01136G
– ident: e_1_2_10_225_1
  doi: 10.1016/j.electacta.2015.10.139
– ident: e_1_2_10_251_1
  doi: 10.1016/j.carbon.2016.11.051
– ident: e_1_2_10_205_1
  doi: 10.1016/j.jpowsour.2020.227771
– ident: e_1_2_10_21_1
  doi: 10.1016/j.apenergy.2013.03.025
– ident: e_1_2_10_79_1
  doi: 10.1149/1.2168298
– ident: e_1_2_10_203_1
  doi: 10.1002/celc.201700421
– ident: e_1_2_10_219_1
  doi: 10.1039/C5TA02701B
– ident: e_1_2_10_38_1
  doi: 10.1038/nenergy.2016.70
– ident: e_1_2_10_46_1
– ident: e_1_2_10_240_1
  doi: 10.1007/s12274-011-0129-6
– ident: e_1_2_10_13_1
  doi: 10.1016/j.ijhydene.2016.04.213
– ident: e_1_2_10_100_1
  doi: 10.1016/j.carbon.2012.11.055
– ident: e_1_2_10_35_1
  doi: 10.1038/nmat4318
– ident: e_1_2_10_267_1
  doi: 10.1021/acs.chemrev.1c00978
– ident: e_1_2_10_261_1
  doi: 10.1038/ncomms2446
– ident: e_1_2_10_221_1
  doi: 10.1021/nl400760a
– ident: e_1_2_10_9_1
– ident: e_1_2_10_201_1
  doi: 10.1016/S0920-5861(01)00541-7
– ident: e_1_2_10_180_1
  doi: 10.1149/1.1559067
– ident: e_1_2_10_253_1
  doi: 10.1039/c3ee40509e
– ident: e_1_2_10_175_1
  doi: 10.1016/j.jpowsour.2010.09.097
– ident: e_1_2_10_19_1
  doi: 10.1039/c0ee00470g
– ident: e_1_2_10_242_1
  doi: 10.1002/adfm.200900971
– ident: e_1_2_10_182_1
  doi: 10.1016/j.apenergy.2015.02.091
– ident: e_1_2_10_270_1
  doi: 10.1007/s40843-018-9290-y
– ident: e_1_2_10_269_1
  doi: 10.1149/2.038112jes
– ident: e_1_2_10_14_1
  doi: 10.1016/j.electacta.2021.138822
– ident: e_1_2_10_97_1
  doi: 10.1021/cm2021214
– ident: e_1_2_10_223_1
  doi: 10.1039/C5TA03221K
– ident: e_1_2_10_232_1
  doi: 10.1021/am300455d
– ident: e_1_2_10_196_1
  doi: 10.1039/D1TA04642J
– ident: e_1_2_10_264_1
  doi: 10.1002/anie.201203201
– ident: e_1_2_10_86_1
  doi: 10.1021/nl102661q
– ident: e_1_2_10_236_1
  doi: 10.1021/nn3003345
– ident: e_1_2_10_55_1
  doi: 10.1002/aenm.201401401
– ident: e_1_2_10_98_1
  doi: 10.1007/978-3-319-70614-6_66-1
– ident: e_1_2_10_69_1
  doi: 10.1016/j.nanoen.2018.08.013
– ident: e_1_2_10_171_1
  doi: 10.1016/j.jpowsour.2012.05.090
– ident: e_1_2_10_229_1
  doi: 10.1016/j.electacta.2013.07.168
– ident: e_1_2_10_53_1
  doi: 10.1016/j.jelechem.2011.03.025
– ident: e_1_2_10_30_1
  doi: 10.1039/C9SE01298B
– ident: e_1_2_10_40_1
  doi: 10.1021/ja410287s
– ident: e_1_2_10_131_1
  doi: 10.1016/j.jallcom.2013.10.056
– ident: e_1_2_10_214_1
  doi: 10.1016/j.apsusc.2017.04.022
– ident: e_1_2_10_59_1
  doi: 10.1016/j.carbon.2015.11.079
– ident: e_1_2_10_37_1
  doi: 10.1021/jacs.6b02115
– ident: e_1_2_10_218_1
  doi: 10.1016/j.jpcs.2018.04.044
– ident: e_1_2_10_138_1
  doi: 10.1038/ncomms7544
– ident: e_1_2_10_178_1
  doi: 10.1016/j.jpowsour.2010.01.006
– ident: e_1_2_10_12_1
  doi: 10.1016/j.apenergy.2021.116496
– ident: e_1_2_10_153_1
  doi: 10.1039/C8TA00540K
– ident: e_1_2_10_101_1
  doi: 10.3390/catal13020235
– ident: e_1_2_10_124_1
  doi: 10.1039/c3ta12352a
– ident: e_1_2_10_235_1
  doi: 10.1039/c000339e
– ident: e_1_2_10_117_1
  doi: 10.1016/j.jpowsour.2016.11.068
– ident: e_1_2_10_244_1
  doi: 10.1002/aenm.201200380
– ident: e_1_2_10_93_1
  doi: 10.1063/1.3455879
– ident: e_1_2_10_103_1
  doi: 10.1016/j.compscitech.2023.110143
– ident: e_1_2_10_185_1
  doi: 10.1016/j.jpowsour.2014.07.134
– ident: e_1_2_10_220_1
  doi: 10.1016/j.cej.2018.01.022
– ident: e_1_2_10_80_1
  doi: 10.1016/S0169-4332(00)00232-4
– ident: e_1_2_10_257_1
  doi: 10.1016/j.elecom.2005.08.017
– ident: e_1_2_10_265_1
  doi: 10.1002/adma.201202146
– ident: e_1_2_10_252_1
  doi: 10.1002/aenm.201400236
– ident: e_1_2_10_249_1
  doi: 10.1016/j.electacta.2010.05.058
– ident: e_1_2_10_263_1
  doi: 10.1021/ja7106178
– ident: e_1_2_10_241_1
  doi: 10.1002/adfm.201102796
– ident: e_1_2_10_28_1
  doi: 10.1039/b813846j
– ident: e_1_2_10_152_1
  doi: 10.1039/C6NJ04093D
– ident: e_1_2_10_147_1
  doi: 10.1002/slct.201901652
– ident: e_1_2_10_24_1
  doi: 10.1093/nsr/nwx009
– ident: e_1_2_10_254_1
  doi: 10.1038/srep26890
– volume: 3
  start-page: 286
  year: 2020
  ident: e_1_2_10_199_1
  publication-title: Energy Environ.
– ident: e_1_2_10_183_1
  doi: 10.1021/nn405192s
– ident: e_1_2_10_217_1
  doi: 10.1016/j.jallcom.2017.10.161
– ident: e_1_2_10_268_1
  doi: 10.1039/D0TA07468C
– ident: e_1_2_10_18_1
  doi: 10.1016/j.rser.2018.10.026
– ident: e_1_2_10_65_1
  doi: 10.1016/j.jpowsour.2012.06.047
– ident: e_1_2_10_26_1
  doi: 10.1021/nn100856y
– ident: e_1_2_10_116_1
  doi: 10.1039/C5EE00142K
– ident: e_1_2_10_233_1
  doi: 10.1021/jp8113094
– ident: e_1_2_10_126_1
  doi: 10.1002/advs.201801797
– ident: e_1_2_10_20_1
  doi: 10.1016/j.ijhydene.2017.10.137
– ident: e_1_2_10_142_1
  doi: 10.1002/adfm.201503662
– ident: e_1_2_10_212_1
  doi: 10.1016/j.electacta.2016.05.030
– ident: e_1_2_10_202_1
  doi: 10.1038/ncomms5554
– ident: e_1_2_10_165_1
  doi: 10.1039/C1EE02262H
– ident: e_1_2_10_129_1
  doi: 10.1039/c3ta14351a
– ident: e_1_2_10_245_1
  doi: 10.1039/c1cc13474d
– ident: e_1_2_10_58_1
  doi: 10.1016/j.apsusc.2017.04.162
– ident: e_1_2_10_29_1
  doi: 10.1016/j.jpowsour.2006.02.065
– ident: e_1_2_10_134_1
  doi: 10.1038/nature13970
– ident: e_1_2_10_8_1
  doi: 10.1039/C7TA00932A
– ident: e_1_2_10_181_1
  doi: 10.1039/C5CS00303B
– ident: e_1_2_10_148_1
  doi: 10.1016/j.matlet.2016.09.051
– start-page: 2373
  year: 2008
  ident: e_1_2_10_48_1
  publication-title: Chem. Commun.
– ident: e_1_2_10_64_1
  doi: 10.1109/NSTSI.2011.6111793
– ident: e_1_2_10_57_1
  doi: 10.1016/S1002-0071(12)60083-5
SSID ssj0011477
Score 2.598252
SecondaryResourceType review_article
Snippet Supercapacitors (SCs) are potentially trustworthy energy storage devices, therefore getting huge attention from researchers. However, due to limited...
SourceID swepub
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202300236
SubjectTerms Capacitance
Chemistry of Interfaces
Design
Electrochemical analysis
Electrochemistry
Electrode materials
Electrodes
Electrolytes
Energy density
Energy storage
Fabrication
Fabrication designs
Gränsytors kemi
Supercapacitors
Title High Energy Density Supercapacitors: An Overview of Efficient Electrode Materials, Electrolytes, Design, and Fabrication
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ftcr.202300236
https://www.ncbi.nlm.nih.gov/pubmed/37991268
https://www.proquest.com/docview/2913279242
https://www.proquest.com/docview/2892660114
https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-103027
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLbQXuCFy7gVBjIS4qnpWid2Yt6qrtWENJDGhvZmfJ0mqnTqko3x6zm2E08dGhLiLRc7sZ1j-zvO8fch9F5xJSkpWDYx4Tcj4xl31GXakNIaygzP_X7ng89s_7j4dEJPOp1Tvxcm8kOkBTffM8J47Tu4VBe7N6ShMFCNvPZ34ECHMdjHa3lQdJjoowDqB-VFr9yagV_BO45NyLG7kXtzTvoDaCYW0U0AG2agxSP0vS97DDz5MWobNdK_btE6_kflHqOHHTrF02hOT9A9W2-j-7NeFO4p-unjQvA8bBjEez74vbnGX9tzu9Yw6-ozr93zEU9r_OXSD0L2Cq8cngeaCpjd8DyK7hiLD2QTbX_YX1xeA-odwkN9SMkQy9rghVTrbk3xGTpezI9m-1kn3pBp8BFZpqvSAZRkio6lpoDhc10q6RzlhgEkYWOnGLecGUIsnWhptMyJpkwqV2la6Pw52qpXtX2JsNTagBcqmQGryieGFxNNc6VsxZ1WeTlAw_7zCd0xm3uBjaWInMxEQHOK1JwD9CElP4-UHncl3OltQXQ9-0IQDv57CV4rGaB36TZ8Bf-jRdZ21UKaigPu8fY3QC-iDaU35SUgcsIqKEU0qnTHE33vnX2bitX6VCybVngFOAK1GwdL-XtZxdHsMJ28-vcsr9EDOC7i4tIO2mrWrX0DcKtRb0Of-g3ovSIE
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLbGeBgv3C-FAUYCnpqucWKnRuKh6kUdW4c0OrQ341umaVU6dQmj_Cr-Cv-I4zgJKggkHvbAYxInceJz7O_Yx9-H0EvFlaQkZkFoymVGxgOe0jTQhiTWUGZ45PY7Tw_Y5Ch-d0yPN9C3ei-M54doJtycZ5T9tXNwNyG985M1FHqqjhP_LknQq7TKPbu6hKDt4u3uEFr4FSHj0WwwCSpdgUBD-MIC3UtSQDlM0a7UFOBlpBMl05Ryw2C0ZN1UMW45M4RYGmpptIyIpkyqtKdprCN47jV03amIO7b-4WFDWAXBRan16LRiA4hkeMXqCVXcWavu-ij4G7RteEvXIXM55o1voe_13_KpLmedIlcd_fUXIsn_6XfeRjcrAI773mPuoA2b3UVbg1r37h764lJf8KjcE4mHLr8_X-EPxbldagAW-tTJE73B_Qy__-z6WXuJFykelUwcMIDjkdcVMhZPZe7du12fnK8A2LfhoS5rpo1lZvBYqmU1bXofHV3Jhz9Am9kis48QllobCLQlM-A4UWh4HGoaKWV7PNUqSlqoXduL0BV5u9MQmQtPO00ENJ9omq-FXjfFzz1ryZ8KbtfGJ6rO60IQHkaOVzImLfSiuQyt4NaSZGYXBZTpcYB2zuBb6KE32uZNUQJBB2E9qIW34uaK4zIfnn7si8XyRMzzQjiROwJf1y1N8-91FbPBYXPw-N9veY62JrPpvtjfPdh7gm7A-djPpW2jzXxZ2KeALnP1rHRojD5dtcn_AL3AgPo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLbGkGAv3C-FAUYCnpqucWInRuKhalptjA00NrQ34-s0UaVVlzLKn-Kv8JM4zg0VBBIPe-AxiZM48Tn2d-zj70PomeJKUhKzIDTlMiPjAXfUBdqQxBrKDI_8fue9fbZ9FL8-psdr6FuzF6bih2gn3LxnlP21d_CZcVs_SUOho-p57e-SA73Oqty1y3OI2c5e7WTQwM8JGY8Oh9tBLSsQaIheWKDTxAHIYYr2paaALiOdKOkc5YbBYMn6TjFuOTOEWBpqabSMiKZMKpdqGusInnsJXY5Zn3utiOyg5auC2KKUevRSsQEEMrwm9YQqbq1Ud3UQ_A3ZtrSlq4i5HPLG19H35mdVmS6feotC9fTXX3gk_6O_eQNdq-E3HlT-chOt2fwWujpsVO9uoy8-8QWPyh2ROPPZ_cUSv1_M7FwDrNCnXpzoJR7k-O1n38vaczx1eFTycMDwjUeVqpCxeE8WlXN3m5OTJcD6LjzU58x0scwNHks1rydN76CjC_nwu2g9n-b2PsJSawNhtmQG3CYKDY9DTSOlbMqdVlHSQd3GXISuqdu9gshEVKTTREDzibb5OuhFW3xWcZb8qeBmY3ui7rrOBOFh5FklY9JBT9vL0Ap-JUnmdrqAMikHYOftvYPuVTbbvilKIOQgLIVaVEbcXvFM5tnph4GYzk_EpFgIL3FH4Ov6pWX-va7icHjQHjz491ueoCvvsrF4s7O_-xBtwOm4mkjbROvFfGEfAbQs1OPSnTH6eNEW_wOjp3-p
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+Energy+Density+Supercapacitors%3A+An+Overview+of+Efficient+Electrode+Materials%2C+Electrolytes%2C+Design%2C+and+Fabrication&rft.jtitle=Chemical+record&rft.au=Pathak%2C+Mayank&rft.au=Bhatt%2C+Diksha&rft.au=Bhatt%2C+Rajesh+Chandra&rft.au=Bohra%2C+Bhashkar+Singh&rft.date=2024&rft.issn=1528-0691&rft.volume=24&rft.issue=1&rft_id=info:doi/10.1002%2Ftcr.202300236&rft.externalDocID=oai_DiVA_org_ltu_103027
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1527-8999&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1527-8999&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1527-8999&client=summon