Noninvasive motor cortex stimulation effects on quantitative sensory testing in healthy and chronic pain subjects: a systematic review and meta-analysis

One of the potential mechanisms of motor cortex stimulation by noninvasive brain stimulation (NIBS) effects on pain is through the restoration of the defective endogenous inhibitory pain pathways. However, there are still limited data on quantitative sensory testing (QST), including conditioned pain...

Full description

Saved in:
Bibliographic Details
Published inPain (Amsterdam) Vol. 161; no. 9; pp. 1955 - 1975
Main Authors Giannoni-Luza, Stefano, Pacheco-Barrios, Kevin, Cardenas-Rojas, Alejandra, Mejia-Pando, Piero F., Luna-Cuadros, Maria A., Barouh, Judah L., Gnoatto-Medeiros, Marina, Candido-Santos, Ludmilla, Barra, Alice, Caumo, Wolnei, Fregni, Felipe
Format Journal Article
LanguageEnglish
Published United States Wolters Kluwer 01.09.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract One of the potential mechanisms of motor cortex stimulation by noninvasive brain stimulation (NIBS) effects on pain is through the restoration of the defective endogenous inhibitory pain pathways. However, there are still limited data on quantitative sensory testing (QST), including conditioned pain modulation (CPM), supporting this mechanism. This systematic review and meta-analysis aimed to evaluate the effects of noninvasive motor cortex stimulation on pain perception as indexed by changes in QST outcomes. Database searches were conducted until July 2019 to include randomized controlled trials that performed sham-controlled NIBS on the motor cortex in either the healthy and/or pain population and assessed the QST and CPM. Quality of studies was assessed through the Cochrane tool. We calculated the Hedge's effect sizes of QST and CPM outcomes and their 95% confidence intervals (95% CIs) and performed random-effects meta-analyses. Thirty-eight studies were included (1178 participants). We found significant increases of pain threshold in healthy subjects (ES = 0.16, 95% CI = 0.02-0.31, I 2 = 22.2%) and pain populations (ES = 0.48, 95% CI = 0.15-0.80, I 2 = 68.8%), and homogeneous higher CPM effect (pain ratings reduction) in healthy subjects (ES = −0.39, 95% CI = −0.64 to −0.14, I 2 = 17%) and pain populations (ES = −0.35, 95% CI = −0.60 to −0.11, I 2 = 0%) in the active NIBS group compared with sham. These results support the idea of top-down modulation of endogenous pain pathways by motor cortex stimulation as one of the main mechanisms of pain reduction assessed by QST, which could be a useful predictive and prognostic biomarker for chronic pain personalized treatment with NIBS.
AbstractList One of the potential mechanisms of motor cortex stimulation by noninvasive brain stimulation (NIBS) effects on pain is through the restoration of the defective endogenous inhibitory pain pathways. However, there are still limited data on quantitative sensory testing (QST), including conditioned pain modulation (CPM), supporting this mechanism. This systematic review and meta-analysis aimed to evaluate the effects of noninvasive motor cortex stimulation on pain perception as indexed by changes in QST outcomes. Database searches were conducted until July 2019 to include randomized controlled trials that performed sham-controlled NIBS on the motor cortex in either the healthy and/or pain population and assessed the QST and CPM. Quality of studies was assessed through the Cochrane tool. We calculated the Hedge's effect sizes of QST and CPM outcomes and their 95% confidence intervals (95% CIs) and performed random-effects meta-analyses. Thirty-eight studies were included (1178 participants). We found significant increases of pain threshold in healthy subjects (ES = 0.16, 95% CI = 0.02-0.31, I2 = 22.2%) and pain populations (ES = 0.48, 95% CI = 0.15-0.80, I2 = 68.8%), and homogeneous higher CPM effect (pain ratings reduction) in healthy subjects (ES = -0.39, 95% CI = -0.64 to -0.14, I2 = 17%) and pain populations (ES = -0.35, 95% CI = -0.60 to -0.11, I2 = 0%) in the active NIBS group compared with sham. These results support the idea of top-down modulation of endogenous pain pathways by motor cortex stimulation as one of the main mechanisms of pain reduction assessed by QST, which could be a useful predictive and prognostic biomarker for chronic pain personalized treatment with NIBS.
One of the potential mechanisms of motor cortex stimulation by noninvasive brain stimulation (NIBS) effects on pain is through the restoration of the defective endogenous inhibitory pain pathways. However, there are still limited data on quantitative sensory testing (QST), including conditioned pain modulation (CPM), supporting this mechanism. This systematic review and meta-analysis aimed to evaluate the effects of noninvasive motor cortex stimulation on pain perception as indexed by changes in QST outcomes. Database searches were conducted until July 2019 to include randomized controlled trials that performed sham-controlled NIBS on the motor cortex in either the healthy and/or pain population and assessed the QST and CPM. Quality of studies was assessed through the Cochrane tool. We calculated the Hedge's effect sizes of QST and CPM outcomes and their 95% confidence intervals (95% CIs) and performed random-effects meta-analyses. Thirty-eight studies were included (1178 participants). We found significant increases of pain threshold in healthy subjects (ES = 0.16, 95% CI = 0.02-0.31, I2 = 22.2%) and pain populations (ES = 0.48, 95% CI = 0.15-0.80, I2 = 68.8%), and homogeneous higher CPM effect (pain ratings reduction) in healthy subjects (ES = -0.39, 95% CI = -0.64 to -0.14, I2 = 17%) and pain populations (ES = -0.35, 95% CI = -0.60 to -0.11, I2 = 0%) in the active NIBS group compared with sham. These results support the idea of top-down modulation of endogenous pain pathways by motor cortex stimulation as one of the main mechanisms of pain reduction assessed by QST, which could be a useful predictive and prognostic biomarker for chronic pain personalized treatment with NIBS.ABSTRACTOne of the potential mechanisms of motor cortex stimulation by noninvasive brain stimulation (NIBS) effects on pain is through the restoration of the defective endogenous inhibitory pain pathways. However, there are still limited data on quantitative sensory testing (QST), including conditioned pain modulation (CPM), supporting this mechanism. This systematic review and meta-analysis aimed to evaluate the effects of noninvasive motor cortex stimulation on pain perception as indexed by changes in QST outcomes. Database searches were conducted until July 2019 to include randomized controlled trials that performed sham-controlled NIBS on the motor cortex in either the healthy and/or pain population and assessed the QST and CPM. Quality of studies was assessed through the Cochrane tool. We calculated the Hedge's effect sizes of QST and CPM outcomes and their 95% confidence intervals (95% CIs) and performed random-effects meta-analyses. Thirty-eight studies were included (1178 participants). We found significant increases of pain threshold in healthy subjects (ES = 0.16, 95% CI = 0.02-0.31, I2 = 22.2%) and pain populations (ES = 0.48, 95% CI = 0.15-0.80, I2 = 68.8%), and homogeneous higher CPM effect (pain ratings reduction) in healthy subjects (ES = -0.39, 95% CI = -0.64 to -0.14, I2 = 17%) and pain populations (ES = -0.35, 95% CI = -0.60 to -0.11, I2 = 0%) in the active NIBS group compared with sham. These results support the idea of top-down modulation of endogenous pain pathways by motor cortex stimulation as one of the main mechanisms of pain reduction assessed by QST, which could be a useful predictive and prognostic biomarker for chronic pain personalized treatment with NIBS.
One of the potential mechanisms of motor cortex stimulation by noninvasive brain stimulation (NIBS) effects on pain is through the restoration of the defective endogenous inhibitory pain pathways. However, there are still limited data on quantitative sensory testing (QST), including conditioned pain modulation (CPM), supporting this mechanism. This systematic review and meta-analysis aimed to evaluate the effects of noninvasive motor cortex stimulation on pain perception as indexed by changes in QST outcomes. Database searches were conducted until July 2019 to include randomized controlled trials that performed sham-controlled NIBS on the motor cortex in either the healthy and/or pain population and assessed the QST and CPM. Quality of studies was assessed through the Cochrane tool. We calculated the Hedge's effect sizes of QST and CPM outcomes and their 95% confidence intervals (95% CIs) and performed random-effects meta-analyses. Thirty-eight studies were included (1178 participants). We found significant increases of pain threshold in healthy subjects (ES = 0.16, 95% CI = 0.02-0.31, I 2 = 22.2%) and pain populations (ES = 0.48, 95% CI = 0.15-0.80, I 2 = 68.8%), and homogeneous higher CPM effect (pain ratings reduction) in healthy subjects (ES = −0.39, 95% CI = −0.64 to −0.14, I 2 = 17%) and pain populations (ES = −0.35, 95% CI = −0.60 to −0.11, I 2 = 0%) in the active NIBS group compared with sham. These results support the idea of top-down modulation of endogenous pain pathways by motor cortex stimulation as one of the main mechanisms of pain reduction assessed by QST, which could be a useful predictive and prognostic biomarker for chronic pain personalized treatment with NIBS.
Author Luna-Cuadros, Maria A.
Barra, Alice
Cardenas-Rojas, Alejandra
Pacheco-Barrios, Kevin
Barouh, Judah L.
Fregni, Felipe
Mejia-Pando, Piero F.
Caumo, Wolnei
Giannoni-Luza, Stefano
Candido-Santos, Ludmilla
Gnoatto-Medeiros, Marina
AuthorAffiliation Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Boston, MA, United States
Laboratory of Pain & Neuromodulation, Hospital de Clinicas de Porto Alegre da Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
AuthorAffiliation_xml – name: Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Boston, MA, United States
– name: Laboratory of Pain & Neuromodulation, Hospital de Clinicas de Porto Alegre da Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
Author_xml – sequence: 1
  givenname: Stefano
  surname: Giannoni-Luza
  fullname: Giannoni-Luza, Stefano
  organization: Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Boston, MA, United States
– sequence: 2
  givenname: Kevin
  surname: Pacheco-Barrios
  fullname: Pacheco-Barrios, Kevin
  organization: Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Boston, MA, United States
– sequence: 3
  givenname: Alejandra
  surname: Cardenas-Rojas
  fullname: Cardenas-Rojas, Alejandra
  organization: Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Boston, MA, United States
– sequence: 4
  givenname: Piero F.
  surname: Mejia-Pando
  fullname: Mejia-Pando, Piero F.
  organization: Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Boston, MA, United States
– sequence: 5
  givenname: Maria A.
  surname: Luna-Cuadros
  fullname: Luna-Cuadros, Maria A.
  organization: Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Boston, MA, United States
– sequence: 6
  givenname: Judah L.
  surname: Barouh
  fullname: Barouh, Judah L.
  organization: Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Boston, MA, United States
– sequence: 7
  givenname: Marina
  surname: Gnoatto-Medeiros
  fullname: Gnoatto-Medeiros, Marina
  organization: Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Boston, MA, United States
– sequence: 8
  givenname: Ludmilla
  surname: Candido-Santos
  fullname: Candido-Santos, Ludmilla
  organization: Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Boston, MA, United States
– sequence: 9
  givenname: Alice
  surname: Barra
  fullname: Barra, Alice
  organization: Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, United States
– sequence: 10
  givenname: Wolnei
  surname: Caumo
  fullname: Caumo, Wolnei
  organization: Laboratory of Pain & Neuromodulation, Hospital de Clinicas de Porto Alegre da Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
– sequence: 11
  givenname: Felipe
  surname: Fregni
  fullname: Fregni, Felipe
  organization: Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Boston, MA, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32453135$$D View this record in MEDLINE/PubMed
BookMark eNqNkc2OFCEUhYkZ4_SMvoKydFMtBRRVmLgwE_-SiW50TWjqlk1LQQ9Q3dab-LhS3aMxs5INcPOdEzjnCl344AGhFzVZ10S2r3brvbZ-Tf5ZdSfZI7Squ5ZWQlB2gVaEEV4x2chLdJXSrkCUUvkEXTLKG1azZoV-fQ7e-oNO9gB4DDlEbELM8BOnbMfJ6WyDxzAMYHLC5Xg3aZ9tLvMiSOBTiDPOUGj_HVuPt6Bd3s5Y-x6bbSzuBi9vxWna7BaT11jjNKcMY_EwOMLBwvGEj5B1pb12c7LpKXo8aJfg2f1-jb69f_f15mN1--XDp5u3t5XhpG0q6OuN4JKAIboVsh863bVN15sOWC-Z6GUvCJXCsKFhHBgXNZCemaFpuRElsmv08uy7j-FuKv9Qo00GnNMewpQU5URITgUnBX1-j06bEXq1j3bUcVZ_0ixAewZMDClFGP4iNVFLb2qnlizUw96K8s0DpTllHHyO2rr_0POz_hhchph-uOkIUZ3LOOGCSVFRQgmR5VYto4b9BmPgstc
CitedBy_id crossref_primary_10_1016_j_smhs_2024_12_002
crossref_primary_10_1177_20552076241292677
crossref_primary_10_1111_cen3_70002
crossref_primary_10_1038_s44220_024_00235_z
crossref_primary_10_1016_j_neucli_2023_102845
crossref_primary_10_1016_j_apmr_2022_05_006
crossref_primary_10_1093_pm_pnae030
crossref_primary_10_3390_neurosci5030018
crossref_primary_10_1016_j_neucli_2022_02_001
crossref_primary_10_1016_j_neucli_2023_102894
crossref_primary_10_1111_cns_70110
crossref_primary_10_1002_ejp_2060
crossref_primary_10_1371_journal_pone_0270047
crossref_primary_10_1016_j_jpain_2021_08_004
crossref_primary_10_1186_s13063_023_07082_w
crossref_primary_10_1007_s11916_025_01374_3
crossref_primary_10_1016_j_jpsychores_2024_111868
crossref_primary_10_1097_j_pain_0000000000002157
crossref_primary_10_1097_j_pain_0000000000002158
crossref_primary_10_1097_j_pain_0000000000003488
crossref_primary_10_1186_s44158_024_00167_1
crossref_primary_10_1097_j_pain_0000000000003484
crossref_primary_10_1016_j_jpain_2022_08_010
crossref_primary_10_1016_j_clinph_2021_05_020
crossref_primary_10_1002_acr_25249
crossref_primary_10_1124_jpet_123_002081
crossref_primary_10_1016_j_neulet_2021_136304
crossref_primary_10_3389_fpsyt_2022_768288
crossref_primary_10_1080_17434440_2022_2039623
crossref_primary_10_1016_j_jpain_2022_09_010
crossref_primary_10_3389_fneur_2023_1069434
crossref_primary_10_3390_brainsci14010009
crossref_primary_10_1007_s12311_022_01498_x
crossref_primary_10_1016_j_neucli_2024_102994
crossref_primary_10_1016_j_neurot_2023_10_007
crossref_primary_10_17650_2222_8721_2021_11_2_35_47
crossref_primary_10_2340_jrm_v53_1097
crossref_primary_10_1515_sjpain_2021_0187
crossref_primary_10_1515_sjpain_2021_0149
crossref_primary_10_3389_fnmol_2022_853509
crossref_primary_10_1016_j_brs_2021_07_011
crossref_primary_10_1097_j_pain_0000000000002187
crossref_primary_10_3389_fneur_2024_1486584
crossref_primary_10_1016_j_jpain_2022_01_012
crossref_primary_10_1177_20494637221150333
crossref_primary_10_3389_fncom_2022_946514
crossref_primary_10_1097_PR9_0000000000001240
crossref_primary_10_1093_pm_pnae103
crossref_primary_10_1080_09638288_2024_2399227
crossref_primary_10_1093_psyrad_kkae026
crossref_primary_10_1097_j_pain_0000000000002697
crossref_primary_10_1109_TNSRE_2024_3451015
crossref_primary_10_1097_j_pain_0000000000002690
Cites_doi 10.3390/ijms19082164
10.1016/j.cogbrainres.2005.05.002
10.1620/tjem.234.189
10.7717/peerj.3028
10.1113/JP274165
10.1016/j.jpain.2012.01.005
10.1016/S1474-4422(07)70032-7
10.1016/j.clinph.2016.10.087
10.1186/ar3306
10.1002/ejp.1238
10.1016/j.apnr.2015.03.013
10.1016/j.jpain.2012.12.007
10.1016/j.mehy.2014.06.007
10.1097/SPC.0000000000000126
10.1002/j.1532-2149.2012.00135.x
10.1016/j.jpain.2011.07.001
10.1111/ejn.13043
10.1212/01.wnl.0000242731.10074.3c
10.1016/j.pain.2010.10.032
10.1016/j.pain.2006.02.030
10.1016/j.brs.2016.11.009
10.1016/j.neuron.2007.07.012
10.2217/pmt.15.37
10.3389/fnins.2015.00498
10.1016/j.brs.2017.11.009
10.1159/000099915
10.1097/AJP.0000000000000037
10.1212/01.wnl.0000314649.38527.93
10.1016/j.brs.2014.10.006
10.1016/j.neulet.2012.11.049
10.1016/j.brs.2007.10.001
10.1016/0197-2456(86)90046-2
10.1016/j.jpain.2014.05.001
10.1016/j.clinph.2014.01.020
10.3389/fnbeh.2015.00077
10.1371/journal.pone.0180328
10.1111/j.1468-1331.2008.02270.x
10.1111/ner.12009
10.1016/S0304-3959(99)00114-1
10.1097/j.pain.0000000000000901
10.1016/j.pain.2006.01.041
10.1155/2012/610561
10.1016/j.neubiorev.2017.09.029
10.1097/AJP.0b013e31820d2733
10.1016/j.jpain.2016.01.472
10.1136/bmj.d5928
10.1002/ejp.1220
10.1097/SPC.0000000000000055
10.1111/papr.12276
10.1038/ncpneuro0530
10.3389/fphar.2018.00094
10.2147/JPR.S173080
10.1097/j.pain.0000000000001656
10.1016/j.jpainsymman.2009.09.023
10.1093/pm/pny261
10.1371/journal.pone.0187013
10.1016/j.pain.2014.07.018
10.1097/ALN.0000000000000530
10.1016/j.jpain.2010.12.015
10.1016/j.jpain.2018.01.010
10.2196/11660
10.1080/03009742.2016.1203988
10.1016/j.neulet.2006.12.042
10.1016/j.clinph.2014.05.021
10.1016/j.jpain.2009.02.002
10.1016/j.brs.2017.06.006
10.1371/journal.pmed.1000097
10.3389/fnhum.2015.00303
10.5535/arm.2013.37.6.766
10.1016/j.pain.2013.12.022
10.1080/17434440.2018.1551129
10.2147/JPR.S181019
10.1371/journal.pone.0118340
10.1002/ejp.1052
10.1111/joor.12300
ContentType Journal Article
Copyright Wolters Kluwer
Copyright © 2020 International Association for the Study of Pain.
Copyright_xml – notice: Wolters Kluwer
– notice: Copyright © 2020 International Association for the Study of Pain.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1097/j.pain.0000000000001893
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1872-6623
EndPage 1975
ExternalDocumentID 32453135
10_1097_j_pain_0000000000001893
00006396-202009000-00005
Genre Meta-Analysis
Systematic Review
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCCIH NIH HHS
  grantid: R01 AT009491
GroupedDBID ---
--K
026
0R~
123
1B1
1~5
4.4
71M
AAAAV
AAAXR
AAGIX
AAHPQ
AAIQE
AAMOA
AAQKA
AARTV
AASCR
AASXQ
AAUEB
AAXQO
ABASU
ABBUW
ABDIG
ABIVO
ABJNI
ABLJU
ABOCM
ABPXF
ABVCZ
ABXVJ
ABZAD
ABZZY
ACDDN
ACDOF
ACEWG
ACGFO
ACGFS
ACILI
ACLDA
ACNWC
ACOAL
ACWDW
ACWRI
ACXJB
ACXNZ
ACZKN
ADGGA
ADHPY
AEKER
AENEX
AFBFQ
AFDTB
AFMBP
AFSOK
AGGSO
AHOMT
AHQNM
AHVBC
AHXIK
AIJEX
AINUH
AJCLO
AJIOK
AJNWD
AJZMW
AKCTQ
AKRWK
AKULP
ALKUP
ALMA_UNASSIGNED_HOLDINGS
ALMTX
AMJPA
AMKUR
AMNEI
AOHHW
AOQMC
BOYCO
BQLVK
BYPQX
C45
CS3
DIWNM
DU5
EBS
EEVPB
ERAAH
EX3
F5P
FCALG
FDB
GNXGY
GQDEL
HLJTE
HMQ
HZ~
IHE
IKREB
IKYAY
L-C
L7B
MJL
MO0
N9A
O-L
O9-
OBH
OPUJH
OVD
OVDNE
OVIDH
OVLEI
OVOZU
OXXIT
OZT
P2P
RLZ
RPZ
SCC
SEL
SES
TEORI
TSPGW
TWZ
.55
.GJ
.~1
1CY
1RT
1~.
29O
3O-
4G.
53G
5VS
7-5
9JO
AABNK
AAGUQ
AAIKJ
AALRI
AAQFI
AAQQT
AAXUO
AAYWO
AAYXX
ABBQC
ABCQJ
ABFNM
ABMAC
ABZDS
ACIUM
ACJTP
ACXNI
ADBBV
ADNKB
AEETU
AERZD
AFXBA
AGWIK
AGYEJ
AHHHB
AIGII
AITUG
AJNYG
AJRQY
AKBMS
AKYEP
ALCLG
AMRAJ
CITATION
DUNZO
EJD
EO8
EO9
EP2
EP3
FEDTE
FGOYB
FIRID
FNPLU
G-2
G-Q
HDV
HMK
HMO
HVGLF
H~9
IPNFZ
J1W
J5H
LX1
M29
M2V
M41
OHT
OUVQU
P-8
P-9
PC.
Q38
R2-
RIG
ROL
SAE
SDF
SDG
SDP
SEW
SNS
SSZ
WUQ
X7M
XPP
ZGI
ZZMQN
AACTN
ACIJW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c4075-ed1b6490ec0a769df8a8758dc8e3d936d9d60296c3f534e3461e0d3cf574c6893
ISSN 0304-3959
1872-6623
IngestDate Fri Jul 11 01:08:38 EDT 2025
Thu Apr 03 06:57:58 EDT 2025
Thu Apr 24 22:49:51 EDT 2025
Tue Jul 01 02:34:27 EDT 2025
Fri May 16 03:47:42 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License Copyright © 2020 International Association for the Study of Pain.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4075-ed1b6490ec0a769df8a8758dc8e3d936d9d60296c3f534e3461e0d3cf574c6893
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/7679288
PMID 32453135
PQID 2406942640
PQPubID 23479
PageCount 21
ParticipantIDs proquest_miscellaneous_2406942640
pubmed_primary_32453135
crossref_primary_10_1097_j_pain_0000000000001893
crossref_citationtrail_10_1097_j_pain_0000000000001893
wolterskluwer_health_00006396-202009000-00005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-September-01
2020-09-00
2020-09-01
20200901
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-September-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Pain (Amsterdam)
PublicationTitleAlternate Pain
PublicationYear 2020
Publisher Wolters Kluwer
Publisher_xml – name: Wolters Kluwer
References Duarte (R24-20230818) 2018; 15
Garcia-Larrea (R30-20230818) 1997; 68
Lima (R50-20230818) 2008; 70
Nir (R58-20230818) 2015; 9
Graff-Guerrero (R32-20230818) 2005; 25
Vaseghi (R73-20230818) 2014; 125
Vaseghi (R75-20230818) 2015; 10
Zandieh (R78-20230818) 2012; 16
Arendt-Nielsen (R5-20230818) 2009; 10
Kim (R41-20230818) 2013; 37
Katz (R39-20230818) 2015; 122
Cavaleri (R14-20230818) 2019; 160
Fregni (R29-20230818) 2007; 3
O'Brien (R60-20230818) 2019; 20
Moisset (R55-20230818) 2015; 8
Ihle (R36-20230818) 2014; 155
Kniknik (R42-20230818) 2016; 16
da Graca-Tarrago (R20-20230818) 2019; 12
Yam (R77-20230818) 2018; 19
Lefaucheur (R47-20230818) 2006; 67
Lefaucheur (R45-20230818) 2014; 125
Mylius (R57-20230818) 2007; 415
Souto (R69-20230818) 2014; 30
Borckardt (R10-20230818) 2011; 27
DerSimonian (R23-20230818) 1986; 7
Starkweather (R70-20230818) 2016; 29
Oliveira (R62-20230818) 2015; 42
Flood (R26-20230818) 2017; 5
Antal (R2-20230818) 2008; 1
Chang (R15-20230818) 2017; 12
Lee (R44-20230818) 2011; 13
Arendt-Nielsen (R4-20230818) 2017; 46
Tracey (R72-20230818) 2007; 55
Hurley (R35-20230818) 2017; 83
Khedr (R40-20230818) 2017; 10
O'Connell (R61-20230818) 2018; 4
Moloney (R56-20230818) 2013; 534
Flood (R25-20230818) 2016; 17
Braulio (R11-20230818) 2018; 9
Vaseghi (R74-20230818) 2015; 42
Ribeiro (R65-20230818) 2017; 12
Villamar (R76-20230818) 2013; 14
Garcia-Larrea (R31-20230818) 1999; 83
Brietzke (R12-20230818) 2016; 9
Mendoca (R52-20230818) 2016; 10
Bannister (R7-20230818) 2017; 595
Chervyakov (R16-20230818) 2015; 9
Marcuzzi (R51-20230818) 2017; 158
Bae (R6-20230818) 2014; 234
Mendonca (R53-20230818) 2011; 12
Higgins (R33-20230818) 2011; 343
Tavares (R71-20230818) 2018; 7
Moher (R54-20230818) 2009; 6
O'Brien (R59-20230818) 2018; 19
Ahn (R1-20230818) 2018; 11
Roldan (R67-20230818) 2015; 5
Ciampi de Andrade (R17-20230818) 2011; 152
Fregni (R28-20230818) 2018; 11
Fregni (R27-20230818) 2007; 6
Ciampi de Andrade (R18-20230818) 2014; 155
Lefaucheur (R46-20230818) 2017; 128
Rogatgi (R66-20230818) 2019
Castillo Saavedra (R13-20230818) 2014; 83
Cirillo (R19-20230818) 2017; 10
Reidler (R64-20230818) 2012; 13
Lewis (R49-20230818) 2018; 22
Borckardt (R9-20230818) 2012; 13
Lamusuo (R43-20230818) 2017; 21
Ossipov (R63-20230818) 2014; 8
Boggio (R8-20230818) 2008; 15
Dall'Agnol (R22-20230818) 2014; 15
Jurgens (R38-20230818) 2012; 16
Antal (R3-20230818) 2010; 39
Hughes (R34-20230818) 2018; 22
da Silva (R21-20230818) 2015; 9
Lewis (R48-20230818) 2012; 17
Johnson (R37-20230818) 2006; 123
Rolke (R68-20230818) 2006; 123
33591112 - Pain. 2021 Mar 1;162(3):986
33591113 - Pain. 2021 Mar 1;162(3):986
References_xml – volume: 19
  start-page: E2164
  year: 2018
  ident: R77-20230818
  article-title: General pathways of pain sensation and the major neurotransmitters involved in pain regulation
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms19082164
– volume: 25
  start-page: 153
  year: 2005
  ident: R32-20230818
  article-title: Repetitive transcranial magnetic stimulation of dorsolateral prefrontal cortex increases tolerance to human experimental pain
  publication-title: Brain Res Cogn Brain Res
  doi: 10.1016/j.cogbrainres.2005.05.002
– volume: 234
  start-page: 189
  year: 2014
  ident: R6-20230818
  article-title: Analgesic effect of transcranial direct current stimulation on central post-stroke pain
  publication-title: Tohoku J Exp Med
  doi: 10.1620/tjem.234.189
– volume: 5
  start-page: e3028
  year: 2017
  ident: R26-20230818
  article-title: The effects of elevated pain inhibition on endurance exercise performance
  publication-title: PeerJ
  doi: 10.7717/peerj.3028
– volume: 595
  start-page: 4159
  year: 2017
  ident: R7-20230818
  article-title: The plasticity of descending controls in pain: translational probing
  publication-title: J Physiol
  doi: 10.1113/JP274165
– volume: 13
  start-page: 450
  year: 2012
  ident: R64-20230818
  article-title: Effects of motor cortex modulation and descending inhibitory systems on pain thresholds in healthy subjects
  publication-title: J Pain
  doi: 10.1016/j.jpain.2012.01.005
– volume: 6
  start-page: 188
  year: 2007
  ident: R27-20230818
  article-title: Recent advances in the treatment of chronic pain with non-invasive brain stimulation techniques
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(07)70032-7
– volume: 128
  start-page: 56
  year: 2017
  ident: R46-20230818
  article-title: Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS)
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2016.10.087
– volume: 13
  start-page: 211
  year: 2011
  ident: R44-20230818
  article-title: The role of the central nervous system in the generation and maintenance of chronic pain in rheumatoid arthritis, osteoarthritis and fibromyalgia
  publication-title: Arthritis Res Ther
  doi: 10.1186/ar3306
– volume: 4
  start-page: Cd008208
  year: 2018
  ident: R61-20230818
  article-title: Non-invasive brain stimulation techniques for chronic pain
  publication-title: Cochrane Database Syst Rev
– volume: 22
  start-page: 1494
  year: 2018
  ident: R34-20230818
  article-title: Frequency-dependent top-down modulation of temporal summation by anodal transcranial direct-current stimulation of the primary motor cortex in healthy adults
  publication-title: Eur J Pain
  doi: 10.1002/ejp.1238
– volume: 29
  start-page: 237
  year: 2016
  ident: R70-20230818
  article-title: Methods to measure peripheral and central sensitization using quantitative sensory testing: a focus on individuals with low back pain
  publication-title: Appl Nurs Res
  doi: 10.1016/j.apnr.2015.03.013
– volume: 14
  start-page: 371
  year: 2013
  ident: R76-20230818
  article-title: Focal modulation of the primary motor cortex in fibromyalgia using 4x1-ring high-definition transcranial direct current stimulation (HD-tDCS): immediate and delayed analgesic effects of cathodal and anodal stimulation
  publication-title: J Pain
  doi: 10.1016/j.jpain.2012.12.007
– volume: 83
  start-page: 332
  year: 2014
  ident: R13-20230818
  article-title: Role of the primary motor cortex in the maintenance and treatment of pain in fibromyalgia
  publication-title: Med Hypotheses
  doi: 10.1016/j.mehy.2014.06.007
– volume: 9
  start-page: 131
  year: 2015
  ident: R58-20230818
  article-title: Conditioned pain modulation
  publication-title: Curr Opin Support Palliat Care
  doi: 10.1097/SPC.0000000000000126
– volume: 16
  start-page: 1251
  year: 2012
  ident: R38-20230818
  article-title: Transcranial direct current stimulation does neither modulate results of a quantitative sensory testing protocol nor ratings of suprathreshold heat stimuli in healthy volunteers
  publication-title: Eur J Pain
  doi: 10.1002/j.1532-2149.2012.00135.x
– volume: 13
  start-page: 112
  year: 2012
  ident: R9-20230818
  article-title: A pilot study of the tolerability and effects of high-definition transcranial direct current stimulation (HD-tDCS) on pain perception
  publication-title: J Pain
  doi: 10.1016/j.jpain.2011.07.001
– volume: 42
  start-page: 2426
  year: 2015
  ident: R74-20230818
  article-title: Differential effects of cathodal transcranial direct current stimulation of prefrontal, motor and somatosensory cortices on cortical excitability and pain perception - a double-blind randomised sham-controlled study
  publication-title: Eur J Neurosci
  doi: 10.1111/ejn.13043
– volume: 67
  start-page: 1568
  year: 2006
  ident: R47-20230818
  article-title: Motor cortex rTMS restores defective intracortical inhibition in chronic neuropathic pain
  publication-title: Neurology
  doi: 10.1212/01.wnl.0000242731.10074.3c
– volume: 152
  start-page: 320
  year: 2011
  ident: R17-20230818
  article-title: Neuropharmacological basis of rTMS-induced analgesia: the role of endogenous opioids
  publication-title: PAIN
  doi: 10.1016/j.pain.2010.10.032
– volume: 123
  start-page: 187
  year: 2006
  ident: R37-20230818
  article-title: Changes to somatosensory detection and pain thresholds following high frequency repetitive TMS of the motor cortex in individuals suffering from chronic pain
  publication-title: PAIN
  doi: 10.1016/j.pain.2006.02.030
– volume: 10
  start-page: 1
  year: 2017
  ident: R19-20230818
  article-title: Neurobiological after-effects of non-invasive brain stimulation
  publication-title: Brain stimulation
  doi: 10.1016/j.brs.2016.11.009
– volume: 55
  start-page: 377
  year: 2007
  ident: R72-20230818
  article-title: The cerebral signature for pain perception and its modulation
  publication-title: Neuron
  doi: 10.1016/j.neuron.2007.07.012
– volume: 5
  start-page: 483
  year: 2015
  ident: R67-20230818
  article-title: Quantitative sensory testing in pain management
  publication-title: Pain Manag
  doi: 10.2217/pmt.15.37
– volume: 9
  start-page: 498
  year: 2016
  ident: R12-20230818
  article-title: Neuroplastic effects of transcranial direct current stimulation on painful symptoms reduction in chronic hepatitis C: a phase II randomized, double blind, sham controlled trial
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2015.00498
– volume: 11
  start-page: 299
  year: 2018
  ident: R28-20230818
  article-title: Transcranial direct current stimulation (tDCS) prevents chronic stress-induced hyperalgesia in rats
  publication-title: Brain stimulation
  doi: 10.1016/j.brs.2017.11.009
– volume: 68
  start-page: 141
  year: 1997
  ident: R30-20230818
  article-title: Positron emission tomography during motor cortex stimulation for pain control
  publication-title: Stereotactic Funct Neurosurg
  doi: 10.1159/000099915
– volume: 30
  start-page: 809
  year: 2014
  ident: R69-20230818
  article-title: Effects of tDCS-induced motor cortex modulation on pain in HTLV-1: a blind randomized clinical trial
  publication-title: Clin J Pain
  doi: 10.1097/AJP.0000000000000037
– volume: 70
  start-page: 2329
  year: 2008
  ident: R50-20230818
  article-title: Motor cortex stimulation for chronic pain: systematic review and meta-analysis
  publication-title: Neurology
  doi: 10.1212/01.wnl.0000314649.38527.93
– volume: 8
  start-page: 135
  year: 2015
  ident: R55-20230818
  article-title: Prolonged continuous theta-burst stimulation is more analgesic than 'classical' high frequency repetitive transcranial magnetic stimulation
  publication-title: Brain Stimulation
  doi: 10.1016/j.brs.2014.10.006
– volume: 534
  start-page: 289
  year: 2013
  ident: R56-20230818
  article-title: Transcranial direct current stimulation (tDCS) priming of 1 Hz repetitive transcranial magnetic stimulation (rTMS) modulates experimental pain thresholds
  publication-title: Neurosci Lett
  doi: 10.1016/j.neulet.2012.11.049
– volume: 1
  start-page: 97
  year: 2008
  ident: R2-20230818
  article-title: Comparatively weak after-effects of transcranial alternating current stimulation (tACS) on cortical excitability in humans
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2007.10.001
– volume: 7
  start-page: 177
  year: 1986
  ident: R23-20230818
  article-title: Meta-analysis in clinical trials
  publication-title: Control Clin Trials
  doi: 10.1016/0197-2456(86)90046-2
– volume: 15
  start-page: 845
  year: 2014
  ident: R22-20230818
  article-title: Repetitive transcranial magnetic stimulation increases the corticospinal inhibition and the brain-derived neurotrophic factor in chronic myofascial pain syndrome: an explanatory double-blinded, randomized, sham-controlled trial
  publication-title: J Pain
  doi: 10.1016/j.jpain.2014.05.001
– volume: 125
  start-page: 1847
  year: 2014
  ident: R73-20230818
  article-title: Does anodal transcranial direct current stimulation modulate sensory perception and pain? A meta-analysis study
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2014.01.020
– volume: 9
  start-page: 77
  year: 2015
  ident: R21-20230818
  article-title: Combined neuromodulatory interventions in acute experimental pain: assessment of melatonin and non-invasive brain stimulation
  publication-title: Front Behav Neurosci
  doi: 10.3389/fnbeh.2015.00077
– volume: 12
  start-page: e0180328
  year: 2017
  ident: R15-20230818
  article-title: Addition of transcranial direct current stimulation to quadriceps strengthening exercise in knee osteoarthritis: a pilot randomised controlled trial
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0180328
– volume: 15
  start-page: 1124
  year: 2008
  ident: R8-20230818
  article-title: Modulatory effects of anodal transcranial direct current stimulation on perception and pain thresholds in healthy volunteers
  publication-title: Eur J Neurol
  doi: 10.1111/j.1468-1331.2008.02270.x
– volume: 16
  start-page: 345
  year: 2012
  ident: R78-20230818
  article-title: Modulation of cold pain perception by transcranial direct current stimulation in healthy individuals
  publication-title: Neuromodulation
  doi: 10.1111/ner.12009
– volume: 83
  start-page: 259
  year: 1999
  ident: R31-20230818
  article-title: Electrical stimulation of motor cortex for pain control: a combined PET-scan and electrophysiological study
  publication-title: PAIN
  doi: 10.1016/S0304-3959(99)00114-1
– volume: 158
  start-page: 1217
  year: 2017
  ident: R51-20230818
  article-title: The long-term reliability of static and dynamic quantitative sensory testing in healthy individuals
  publication-title: PAIN
  doi: 10.1097/j.pain.0000000000000901
– volume: 123
  start-page: 231
  year: 2006
  ident: R68-20230818
  article-title: Quantitative sensory testing in the German Research Network on Neuropathic Pain (DFNS): standardized protocol and reference values
  publication-title: PAIN
  doi: 10.1016/j.pain.2006.01.041
– volume: 17
  start-page: 98
  year: 2012
  ident: R48-20230818
  article-title: Reliability of the conditioned pain modulation paradigm to assess endogeneous inhibitory pain pathways
  publication-title: Pain Res Manag
  doi: 10.1155/2012/610561
– volume: 83
  start-page: 155
  year: 2017
  ident: R35-20230818
  article-title: Using tDCS priming to improve brain function: can metaplasticity provide the key to boosting outcomes?
  publication-title: Neurosci Biobehav Rev
  doi: 10.1016/j.neubiorev.2017.09.029
– volume: 27
  start-page: 486
  year: 2011
  ident: R10-20230818
  article-title: A randomized, controlled investigation of motor cortex transcranial magnetic stimulation (TMS) effects on quantitative sensory measures in healthy adults: evaluation of TMS device parameters
  publication-title: Clin J Pain
  doi: 10.1097/AJP.0b013e31820d2733
– volume: 17
  start-page: 600
  year: 2016
  ident: R25-20230818
  article-title: High-Definition transcranial direct current stimulation enhances conditioned pain modulation in healthy volunteers: a randomized trial
  publication-title: J Pain
  doi: 10.1016/j.jpain.2016.01.472
– volume: 343
  start-page: d5928
  year: 2011
  ident: R33-20230818
  article-title: The Cochrane Collaboration's tool for assessing risk of bias in randomised trials
  publication-title: BMJ
  doi: 10.1136/bmj.d5928
– volume: 10
  start-page: 68
  year: 2016
  ident: R52-20230818
  article-title: Transcranial direct current stimulation combined with aerobic exercise to optimize analgesic responses in fibromylagia: a randomized placebo-controlled clinical trial
  publication-title: Front Hum Neurosci
– volume: 22
  start-page: 1312
  year: 2018
  ident: R49-20230818
  article-title: Transcranial direct current stimulation for upper limb neuropathic pain: a double-blind randomized controlled trial
  publication-title: Eur J Pain
  doi: 10.1002/ejp.1220
– volume: 8
  start-page: 143
  year: 2014
  ident: R63-20230818
  article-title: Descending pain modulation and chronification of pain
  publication-title: Curr Opin Support Palliat Care
  doi: 10.1097/SPC.0000000000000055
– volume: 16
  start-page: 294
  year: 2016
  ident: R42-20230818
  article-title: Repetitive transcranial magnetic stimulation for fibromyalgia: systematic review and meta-analysis
  publication-title: Pain Pract
  doi: 10.1111/papr.12276
– volume: 3
  start-page: 383
  year: 2007
  ident: R29-20230818
  article-title: Technology insight: noninvasive brain stimulation in neurology-perspectives on the therapeutic potential of rTMS and tDCS
  publication-title: Nat Clin Pract Neurol
  doi: 10.1038/ncpneuro0530
– volume: 9
  start-page: 94
  year: 2018
  ident: R11-20230818
  article-title: Effects of transcranial direct current stimulation block remifentanil-induced hyperalgesia: a randomized, double-blind clinical trial
  publication-title: Front Pharmacol
  doi: 10.3389/fphar.2018.00094
– volume: 11
  start-page: 2071
  year: 2018
  ident: R1-20230818
  article-title: Bayesian analysis of the effect of transcranial direct current stimulation on experimental pain sensitivity in older adults with knee osteoarthritis: randomized sham-controlled pilot clinical study
  publication-title: J Pain Res
  doi: 10.2147/JPR.S173080
– volume: 160
  start-page: 2624
  year: 2019
  ident: R14-20230818
  article-title: Repetitive transcranial magnetic stimulation of the primary motor cortex expedites recovery in the transition from acute to sustained experimental pain: a randomised, controlled study
  publication-title: PAIN
  doi: 10.1097/j.pain.0000000000001656
– volume: 39
  start-page: 890
  year: 2010
  ident: R3-20230818
  article-title: Anodal transcranial direct current stimulation of the motor cortex ameliorates chronic pain and reduces short intracortical inhibition
  publication-title: J Pain Symptom Manag
  doi: 10.1016/j.jpainsymman.2009.09.023
– volume: 20
  start-page: 1000
  year: 2019
  ident: R60-20230818
  article-title: Impact of therapeutic interventions on pain intensity and endogenous pain modulation in knee osteoarthritis: a systematic review and meta-analysis
  publication-title: Pain Med
  doi: 10.1093/pm/pny261
– volume: 12
  start-page: e0187013
  year: 2017
  ident: R65-20230818
  article-title: Preoperative transcranial direct current stimulation: exploration of a novel strategy to enhance neuroplasticity before surgery to control postoperative pain. A randomized sham-controlled study
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0187013
– volume: 155
  start-page: 2080
  year: 2014
  ident: R36-20230818
  article-title: tDCS modulates cortical nociceptive processing but has little to no impact on pain perception
  publication-title: PAIN
  doi: 10.1016/j.pain.2014.07.018
– volume: 122
  start-page: 677
  year: 2015
  ident: R39-20230818
  article-title: Review of the performance of quantitative sensory testing methods to detect hyperalgesia in chronic pain patients on long-term opioids
  publication-title: Anesthesiology
  doi: 10.1097/ALN.0000000000000530
– volume: 12
  start-page: 610
  year: 2011
  ident: R53-20230818
  article-title: Transcranial DC stimulation in fibromyalgia: optimized cortical target supported by high-resolution computational models
  publication-title: J Pain
  doi: 10.1016/j.jpain.2010.12.015
– volume: 19
  start-page: 819
  year: 2018
  ident: R59-20230818
  article-title: Defective endogenous pain modulation in fibromyalgia: a meta-analysis of temporal summation and conditioned pain modulation paradigms
  publication-title: J Pain
  doi: 10.1016/j.jpain.2018.01.010
– volume: 7
  start-page: e11660
  year: 2018
  ident: R71-20230818
  article-title: Effects of transcranial direct current stimulation on knee osteoarthritis pain in elderly subjects with defective endogenous pain-inhibitory systems: protocol for a randomized controlled trial
  publication-title: JMIR Res Protoc
  doi: 10.2196/11660
– volume: 46
  start-page: 303
  year: 2017
  ident: R4-20230818
  article-title: Intra-articular onabotulinumtoxinA in osteoarthritis knee pain: effect on human mechanistic pain biomarkers and clinical pain
  publication-title: Scand J Rheumatol
  doi: 10.1080/03009742.2016.1203988
– volume: 415
  start-page: 49
  year: 2007
  ident: R57-20230818
  article-title: High-frequency rTMS of the motor cortex does not influence the nociceptive flexion reflex but increases the unpleasantness of electrically induced pain
  publication-title: Neurosci Lett
  doi: 10.1016/j.neulet.2006.12.042
– volume: 125
  start-page: 2150
  year: 2014
  ident: R45-20230818
  article-title: Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS)
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2014.05.021
– volume: 10
  start-page: 556
  year: 2009
  ident: R5-20230818
  article-title: Experimental and clinical applications of quantitative sensory testing applied to skin, muscles and viscera
  publication-title: J Pain
  doi: 10.1016/j.jpain.2009.02.002
– volume: 10
  start-page: 893
  year: 2017
  ident: R40-20230818
  article-title: Effects of transcranial direct current stimulation on pain, mood and serum endorphin level in the treatment of fibromyalgia: a double blinded, randomized clinical trial
  publication-title: Brain Stimulation
  doi: 10.1016/j.brs.2017.06.006
– year: 2019
  ident: R66-20230818
  article-title: WebPlotDigitalizer: based online tool to extract numerical data from plot images
– volume: 6
  start-page: e1000097
  year: 2009
  ident: R54-20230818
  article-title: Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement
  publication-title: PLOS Med
  doi: 10.1371/journal.pmed.1000097
– volume: 9
  start-page: 303
  year: 2015
  ident: R16-20230818
  article-title: Possible mechanisms underlying the therapeutic effects of transcranial magnetic stimulation
  publication-title: Front Hum Neurosci
  doi: 10.3389/fnhum.2015.00303
– volume: 37
  start-page: 766
  year: 2013
  ident: R41-20230818
  article-title: Randomized, sham controlled trial of transcranial direct current stimulation for painful diabetic polyneuropathy
  publication-title: Ann Rehabil Med
  doi: 10.5535/arm.2013.37.6.766
– volume: 155
  start-page: 598
  year: 2014
  ident: R18-20230818
  article-title: Repetitive transcranial magnetic stimulation induced analgesia depends on N-methyl-D-aspartate glutamate receptors
  publication-title: PAIN
  doi: 10.1016/j.pain.2013.12.022
– volume: 15
  start-page: 863
  year: 2018
  ident: R24-20230818
  article-title: Developing an optimized strategy with transcranial direct current stimulation to enhance the endogenous pain control system in fibromyalgia
  publication-title: Expert Rev Med Devices
  doi: 10.1080/17434440.2018.1551129
– volume: 12
  start-page: 209
  year: 2019
  ident: R20-20230818
  article-title: Intramuscular electrical stimulus potentiates motor cortex modulation effects on pain and descending inhibitory systems in knee osteoarthritis: a randomized, factorial, sham-controlled study
  publication-title: J Pain Res
  doi: 10.2147/JPR.S181019
– volume: 10
  start-page: e0118340
  year: 2015
  ident: R75-20230818
  article-title: How does anodal transcranial direct current stimulation of the pain neuromatrix affect brain excitability and pain perception? A randomised, double-blind, sham-control study
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0118340
– volume: 21
  start-page: 1505
  year: 2017
  ident: R43-20230818
  article-title: Neurotransmitters behind pain relief with transcranial magnetic stimulation - positron emission tomography evidence for release of endogenous opioids
  publication-title: Eur J Pain
  doi: 10.1002/ejp.1052
– volume: 42
  start-page: 723
  year: 2015
  ident: R62-20230818
  article-title: Transcranial direct current stimulation and exercises for treatment of chronic temporomandibular disorders: a blind randomised-controlled trial
  publication-title: J Oral Rehabil
  doi: 10.1111/joor.12300
– reference: 33591113 - Pain. 2021 Mar 1;162(3):986
– reference: 33591112 - Pain. 2021 Mar 1;162(3):986
SSID ssj0002229
Score 2.5372288
SecondaryResourceType review_article
Snippet One of the potential mechanisms of motor cortex stimulation by noninvasive brain stimulation (NIBS) effects on pain is through the restoration of the defective...
SourceID proquest
pubmed
crossref
wolterskluwer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1955
SubjectTerms Chronic Pain - therapy
Humans
Motor Cortex
Pain Management
Pain Measurement
Pain Threshold
Title Noninvasive motor cortex stimulation effects on quantitative sensory testing in healthy and chronic pain subjects: a systematic review and meta-analysis
URI https://ovidsp.ovid.com/ovidweb.cgi?T=JS&NEWS=n&CSC=Y&PAGE=fulltext&D=ovft&AN=00006396-202009000-00005
https://www.ncbi.nlm.nih.gov/pubmed/32453135
https://www.proquest.com/docview/2406942640
Volume 161
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLaqTkIghLiOcpOReKtcnJvT8FYmxkTZVE2b2Fvk2K7UsiZTL4D2S_h3_BWOc5w07Zhg9CGK0sRJfL7Y59jf-UzIm1BJLrkxTEP3wELheyzTccQE2D8GBz_2TUmQPRIHp-Gns-is1frVYC2tlllPXf4xr-R_rArHwK42S_YGlq0LhQOwD_aFLVgYtv9k4yM7lvpNlgx0qPJi3lWWO_ujC9_tzK3LtWZs5DaDMi-TyuwFCwhg7QT70upsYGILJkWiIpNC1dzuhYQ_FqvMjtcsMDV6W_0ZScUzs5RMOo2Tps87siWAIzuYWVEGbRFYjz58BHTmcB_2eXUpHetsLPNiPbMFoFIFey_n8wkyAodwyxrRe9JmYcgFOy6mmJo2ODdTeJx53d0cmulEshEcK0eFR-AHFN39XnO4A2Lbis_lGtXCkggWXUwiaDSWgZ3hSZy6eNWyo867g3DSaKe9BMWBXZ_vJbh8y5X-BHWKpz1b1yh16X5eHxd23BLr5ujzCWYfnScubd9q7O74EMf4bbIzGB5_GdbOgl1OHSe68PErCmISv73mrpsO1JWo6A65-x3r6GtZRQ1v6eQ-uefCHDpAzD4gLZM_JLcOHZHjEfnZgC4toUsRurQBXeqgS2G3CV3qoEsddOkkpw66FMxMHXSpfTFaQfcdlXQNXIrALU_fAO5jcrr_4WTvgLlFQpgKwd1lRnuZCBNuFJexSPS4LyEE72vVN4FOAqETLbifCBWMoyA0QSg8w3WgxlEcKgH1-YS0AefmKaGGx0KPVZQpT4VwhuyHlsOp_XJ2nccdIqqaT5VT0LcLuZynFZNjmto3S7dN1iG8vvACRWT-fsnryrQpNPh2Fk_mplgtUsxVhziGd8gu2rwuFKIj6FODqEPYBghSNEJ6HTyf3fD85-T2-tt8QdrL-cq8BOd8mb1yAP8Nr_vklA
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Noninvasive+motor+cortex+stimulation+effects+on+quantitative+sensory+testing+in+healthy+and+chronic+pain+subjects%3A+a+systematic+review+and+meta-analysis&rft.jtitle=Pain+%28Amsterdam%29&rft.au=Giannoni-Luza%2C+Stefano&rft.au=Pacheco-Barrios%2C+Kevin&rft.au=Cardenas-Rojas%2C+Alejandra&rft.au=Mejia-Pando%2C+Piero+F.&rft.date=2020-09-01&rft.pub=Wolters+Kluwer&rft.issn=0304-3959&rft.volume=161&rft.issue=9&rft.spage=1955&rft.epage=1975&rft_id=info:doi/10.1097%2Fj.pain.0000000000001893&rft.externalDocID=00006396-202009000-00005
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3959&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3959&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3959&client=summon