Noninvasive motor cortex stimulation effects on quantitative sensory testing in healthy and chronic pain subjects: a systematic review and meta-analysis
One of the potential mechanisms of motor cortex stimulation by noninvasive brain stimulation (NIBS) effects on pain is through the restoration of the defective endogenous inhibitory pain pathways. However, there are still limited data on quantitative sensory testing (QST), including conditioned pain...
Saved in:
Published in | Pain (Amsterdam) Vol. 161; no. 9; pp. 1955 - 1975 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wolters Kluwer
01.09.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | One of the potential mechanisms of motor cortex stimulation by noninvasive brain stimulation (NIBS) effects on pain is through the restoration of the defective endogenous inhibitory pain pathways. However, there are still limited data on quantitative sensory testing (QST), including conditioned pain modulation (CPM), supporting this mechanism. This systematic review and meta-analysis aimed to evaluate the effects of noninvasive motor cortex stimulation on pain perception as indexed by changes in QST outcomes. Database searches were conducted until July 2019 to include randomized controlled trials that performed sham-controlled NIBS on the motor cortex in either the healthy and/or pain population and assessed the QST and CPM. Quality of studies was assessed through the Cochrane tool. We calculated the Hedge's effect sizes of QST and CPM outcomes and their 95% confidence intervals (95% CIs) and performed random-effects meta-analyses. Thirty-eight studies were included (1178 participants). We found significant increases of pain threshold in healthy subjects (ES = 0.16, 95% CI = 0.02-0.31, I
2
= 22.2%) and pain populations (ES = 0.48, 95% CI = 0.15-0.80, I
2
= 68.8%), and homogeneous higher CPM effect (pain ratings reduction) in healthy subjects (ES = −0.39, 95% CI = −0.64 to −0.14, I
2
= 17%) and pain populations (ES = −0.35, 95% CI = −0.60 to −0.11, I
2
= 0%) in the active NIBS group compared with sham. These results support the idea of top-down modulation of endogenous pain pathways by motor cortex stimulation as one of the main mechanisms of pain reduction assessed by QST, which could be a useful predictive and prognostic biomarker for chronic pain personalized treatment with NIBS. |
---|---|
AbstractList | One of the potential mechanisms of motor cortex stimulation by noninvasive brain stimulation (NIBS) effects on pain is through the restoration of the defective endogenous inhibitory pain pathways. However, there are still limited data on quantitative sensory testing (QST), including conditioned pain modulation (CPM), supporting this mechanism. This systematic review and meta-analysis aimed to evaluate the effects of noninvasive motor cortex stimulation on pain perception as indexed by changes in QST outcomes. Database searches were conducted until July 2019 to include randomized controlled trials that performed sham-controlled NIBS on the motor cortex in either the healthy and/or pain population and assessed the QST and CPM. Quality of studies was assessed through the Cochrane tool. We calculated the Hedge's effect sizes of QST and CPM outcomes and their 95% confidence intervals (95% CIs) and performed random-effects meta-analyses. Thirty-eight studies were included (1178 participants). We found significant increases of pain threshold in healthy subjects (ES = 0.16, 95% CI = 0.02-0.31, I2 = 22.2%) and pain populations (ES = 0.48, 95% CI = 0.15-0.80, I2 = 68.8%), and homogeneous higher CPM effect (pain ratings reduction) in healthy subjects (ES = -0.39, 95% CI = -0.64 to -0.14, I2 = 17%) and pain populations (ES = -0.35, 95% CI = -0.60 to -0.11, I2 = 0%) in the active NIBS group compared with sham. These results support the idea of top-down modulation of endogenous pain pathways by motor cortex stimulation as one of the main mechanisms of pain reduction assessed by QST, which could be a useful predictive and prognostic biomarker for chronic pain personalized treatment with NIBS. One of the potential mechanisms of motor cortex stimulation by noninvasive brain stimulation (NIBS) effects on pain is through the restoration of the defective endogenous inhibitory pain pathways. However, there are still limited data on quantitative sensory testing (QST), including conditioned pain modulation (CPM), supporting this mechanism. This systematic review and meta-analysis aimed to evaluate the effects of noninvasive motor cortex stimulation on pain perception as indexed by changes in QST outcomes. Database searches were conducted until July 2019 to include randomized controlled trials that performed sham-controlled NIBS on the motor cortex in either the healthy and/or pain population and assessed the QST and CPM. Quality of studies was assessed through the Cochrane tool. We calculated the Hedge's effect sizes of QST and CPM outcomes and their 95% confidence intervals (95% CIs) and performed random-effects meta-analyses. Thirty-eight studies were included (1178 participants). We found significant increases of pain threshold in healthy subjects (ES = 0.16, 95% CI = 0.02-0.31, I2 = 22.2%) and pain populations (ES = 0.48, 95% CI = 0.15-0.80, I2 = 68.8%), and homogeneous higher CPM effect (pain ratings reduction) in healthy subjects (ES = -0.39, 95% CI = -0.64 to -0.14, I2 = 17%) and pain populations (ES = -0.35, 95% CI = -0.60 to -0.11, I2 = 0%) in the active NIBS group compared with sham. These results support the idea of top-down modulation of endogenous pain pathways by motor cortex stimulation as one of the main mechanisms of pain reduction assessed by QST, which could be a useful predictive and prognostic biomarker for chronic pain personalized treatment with NIBS.ABSTRACTOne of the potential mechanisms of motor cortex stimulation by noninvasive brain stimulation (NIBS) effects on pain is through the restoration of the defective endogenous inhibitory pain pathways. However, there are still limited data on quantitative sensory testing (QST), including conditioned pain modulation (CPM), supporting this mechanism. This systematic review and meta-analysis aimed to evaluate the effects of noninvasive motor cortex stimulation on pain perception as indexed by changes in QST outcomes. Database searches were conducted until July 2019 to include randomized controlled trials that performed sham-controlled NIBS on the motor cortex in either the healthy and/or pain population and assessed the QST and CPM. Quality of studies was assessed through the Cochrane tool. We calculated the Hedge's effect sizes of QST and CPM outcomes and their 95% confidence intervals (95% CIs) and performed random-effects meta-analyses. Thirty-eight studies were included (1178 participants). We found significant increases of pain threshold in healthy subjects (ES = 0.16, 95% CI = 0.02-0.31, I2 = 22.2%) and pain populations (ES = 0.48, 95% CI = 0.15-0.80, I2 = 68.8%), and homogeneous higher CPM effect (pain ratings reduction) in healthy subjects (ES = -0.39, 95% CI = -0.64 to -0.14, I2 = 17%) and pain populations (ES = -0.35, 95% CI = -0.60 to -0.11, I2 = 0%) in the active NIBS group compared with sham. These results support the idea of top-down modulation of endogenous pain pathways by motor cortex stimulation as one of the main mechanisms of pain reduction assessed by QST, which could be a useful predictive and prognostic biomarker for chronic pain personalized treatment with NIBS. One of the potential mechanisms of motor cortex stimulation by noninvasive brain stimulation (NIBS) effects on pain is through the restoration of the defective endogenous inhibitory pain pathways. However, there are still limited data on quantitative sensory testing (QST), including conditioned pain modulation (CPM), supporting this mechanism. This systematic review and meta-analysis aimed to evaluate the effects of noninvasive motor cortex stimulation on pain perception as indexed by changes in QST outcomes. Database searches were conducted until July 2019 to include randomized controlled trials that performed sham-controlled NIBS on the motor cortex in either the healthy and/or pain population and assessed the QST and CPM. Quality of studies was assessed through the Cochrane tool. We calculated the Hedge's effect sizes of QST and CPM outcomes and their 95% confidence intervals (95% CIs) and performed random-effects meta-analyses. Thirty-eight studies were included (1178 participants). We found significant increases of pain threshold in healthy subjects (ES = 0.16, 95% CI = 0.02-0.31, I 2 = 22.2%) and pain populations (ES = 0.48, 95% CI = 0.15-0.80, I 2 = 68.8%), and homogeneous higher CPM effect (pain ratings reduction) in healthy subjects (ES = −0.39, 95% CI = −0.64 to −0.14, I 2 = 17%) and pain populations (ES = −0.35, 95% CI = −0.60 to −0.11, I 2 = 0%) in the active NIBS group compared with sham. These results support the idea of top-down modulation of endogenous pain pathways by motor cortex stimulation as one of the main mechanisms of pain reduction assessed by QST, which could be a useful predictive and prognostic biomarker for chronic pain personalized treatment with NIBS. |
Author | Luna-Cuadros, Maria A. Barra, Alice Cardenas-Rojas, Alejandra Pacheco-Barrios, Kevin Barouh, Judah L. Fregni, Felipe Mejia-Pando, Piero F. Caumo, Wolnei Giannoni-Luza, Stefano Candido-Santos, Ludmilla Gnoatto-Medeiros, Marina |
AuthorAffiliation | Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Boston, MA, United States Laboratory of Pain & Neuromodulation, Hospital de Clinicas de Porto Alegre da Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil |
AuthorAffiliation_xml | – name: Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Boston, MA, United States – name: Laboratory of Pain & Neuromodulation, Hospital de Clinicas de Porto Alegre da Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil |
Author_xml | – sequence: 1 givenname: Stefano surname: Giannoni-Luza fullname: Giannoni-Luza, Stefano organization: Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Boston, MA, United States – sequence: 2 givenname: Kevin surname: Pacheco-Barrios fullname: Pacheco-Barrios, Kevin organization: Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Boston, MA, United States – sequence: 3 givenname: Alejandra surname: Cardenas-Rojas fullname: Cardenas-Rojas, Alejandra organization: Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Boston, MA, United States – sequence: 4 givenname: Piero F. surname: Mejia-Pando fullname: Mejia-Pando, Piero F. organization: Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Boston, MA, United States – sequence: 5 givenname: Maria A. surname: Luna-Cuadros fullname: Luna-Cuadros, Maria A. organization: Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Boston, MA, United States – sequence: 6 givenname: Judah L. surname: Barouh fullname: Barouh, Judah L. organization: Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Boston, MA, United States – sequence: 7 givenname: Marina surname: Gnoatto-Medeiros fullname: Gnoatto-Medeiros, Marina organization: Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Boston, MA, United States – sequence: 8 givenname: Ludmilla surname: Candido-Santos fullname: Candido-Santos, Ludmilla organization: Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Boston, MA, United States – sequence: 9 givenname: Alice surname: Barra fullname: Barra, Alice organization: Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, United States – sequence: 10 givenname: Wolnei surname: Caumo fullname: Caumo, Wolnei organization: Laboratory of Pain & Neuromodulation, Hospital de Clinicas de Porto Alegre da Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil – sequence: 11 givenname: Felipe surname: Fregni fullname: Fregni, Felipe organization: Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Boston, MA, United States |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32453135$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc2OFCEUhYkZ4_SMvoKydFMtBRRVmLgwE_-SiW50TWjqlk1LQQ9Q3dab-LhS3aMxs5INcPOdEzjnCl344AGhFzVZ10S2r3brvbZ-Tf5ZdSfZI7Squ5ZWQlB2gVaEEV4x2chLdJXSrkCUUvkEXTLKG1azZoV-fQ7e-oNO9gB4DDlEbELM8BOnbMfJ6WyDxzAMYHLC5Xg3aZ9tLvMiSOBTiDPOUGj_HVuPt6Bd3s5Y-x6bbSzuBi9vxWna7BaT11jjNKcMY_EwOMLBwvGEj5B1pb12c7LpKXo8aJfg2f1-jb69f_f15mN1--XDp5u3t5XhpG0q6OuN4JKAIboVsh863bVN15sOWC-Z6GUvCJXCsKFhHBgXNZCemaFpuRElsmv08uy7j-FuKv9Qo00GnNMewpQU5URITgUnBX1-j06bEXq1j3bUcVZ_0ixAewZMDClFGP4iNVFLb2qnlizUw96K8s0DpTllHHyO2rr_0POz_hhchph-uOkIUZ3LOOGCSVFRQgmR5VYto4b9BmPgstc |
CitedBy_id | crossref_primary_10_1016_j_smhs_2024_12_002 crossref_primary_10_1177_20552076241292677 crossref_primary_10_1111_cen3_70002 crossref_primary_10_1038_s44220_024_00235_z crossref_primary_10_1016_j_neucli_2023_102845 crossref_primary_10_1016_j_apmr_2022_05_006 crossref_primary_10_1093_pm_pnae030 crossref_primary_10_3390_neurosci5030018 crossref_primary_10_1016_j_neucli_2022_02_001 crossref_primary_10_1016_j_neucli_2023_102894 crossref_primary_10_1111_cns_70110 crossref_primary_10_1002_ejp_2060 crossref_primary_10_1371_journal_pone_0270047 crossref_primary_10_1016_j_jpain_2021_08_004 crossref_primary_10_1186_s13063_023_07082_w crossref_primary_10_1007_s11916_025_01374_3 crossref_primary_10_1016_j_jpsychores_2024_111868 crossref_primary_10_1097_j_pain_0000000000002157 crossref_primary_10_1097_j_pain_0000000000002158 crossref_primary_10_1097_j_pain_0000000000003488 crossref_primary_10_1186_s44158_024_00167_1 crossref_primary_10_1097_j_pain_0000000000003484 crossref_primary_10_1016_j_jpain_2022_08_010 crossref_primary_10_1016_j_clinph_2021_05_020 crossref_primary_10_1002_acr_25249 crossref_primary_10_1124_jpet_123_002081 crossref_primary_10_1016_j_neulet_2021_136304 crossref_primary_10_3389_fpsyt_2022_768288 crossref_primary_10_1080_17434440_2022_2039623 crossref_primary_10_1016_j_jpain_2022_09_010 crossref_primary_10_3389_fneur_2023_1069434 crossref_primary_10_3390_brainsci14010009 crossref_primary_10_1007_s12311_022_01498_x crossref_primary_10_1016_j_neucli_2024_102994 crossref_primary_10_1016_j_neurot_2023_10_007 crossref_primary_10_17650_2222_8721_2021_11_2_35_47 crossref_primary_10_2340_jrm_v53_1097 crossref_primary_10_1515_sjpain_2021_0187 crossref_primary_10_1515_sjpain_2021_0149 crossref_primary_10_3389_fnmol_2022_853509 crossref_primary_10_1016_j_brs_2021_07_011 crossref_primary_10_1097_j_pain_0000000000002187 crossref_primary_10_3389_fneur_2024_1486584 crossref_primary_10_1016_j_jpain_2022_01_012 crossref_primary_10_1177_20494637221150333 crossref_primary_10_3389_fncom_2022_946514 crossref_primary_10_1097_PR9_0000000000001240 crossref_primary_10_1093_pm_pnae103 crossref_primary_10_1080_09638288_2024_2399227 crossref_primary_10_1093_psyrad_kkae026 crossref_primary_10_1097_j_pain_0000000000002697 crossref_primary_10_1109_TNSRE_2024_3451015 crossref_primary_10_1097_j_pain_0000000000002690 |
Cites_doi | 10.3390/ijms19082164 10.1016/j.cogbrainres.2005.05.002 10.1620/tjem.234.189 10.7717/peerj.3028 10.1113/JP274165 10.1016/j.jpain.2012.01.005 10.1016/S1474-4422(07)70032-7 10.1016/j.clinph.2016.10.087 10.1186/ar3306 10.1002/ejp.1238 10.1016/j.apnr.2015.03.013 10.1016/j.jpain.2012.12.007 10.1016/j.mehy.2014.06.007 10.1097/SPC.0000000000000126 10.1002/j.1532-2149.2012.00135.x 10.1016/j.jpain.2011.07.001 10.1111/ejn.13043 10.1212/01.wnl.0000242731.10074.3c 10.1016/j.pain.2010.10.032 10.1016/j.pain.2006.02.030 10.1016/j.brs.2016.11.009 10.1016/j.neuron.2007.07.012 10.2217/pmt.15.37 10.3389/fnins.2015.00498 10.1016/j.brs.2017.11.009 10.1159/000099915 10.1097/AJP.0000000000000037 10.1212/01.wnl.0000314649.38527.93 10.1016/j.brs.2014.10.006 10.1016/j.neulet.2012.11.049 10.1016/j.brs.2007.10.001 10.1016/0197-2456(86)90046-2 10.1016/j.jpain.2014.05.001 10.1016/j.clinph.2014.01.020 10.3389/fnbeh.2015.00077 10.1371/journal.pone.0180328 10.1111/j.1468-1331.2008.02270.x 10.1111/ner.12009 10.1016/S0304-3959(99)00114-1 10.1097/j.pain.0000000000000901 10.1016/j.pain.2006.01.041 10.1155/2012/610561 10.1016/j.neubiorev.2017.09.029 10.1097/AJP.0b013e31820d2733 10.1016/j.jpain.2016.01.472 10.1136/bmj.d5928 10.1002/ejp.1220 10.1097/SPC.0000000000000055 10.1111/papr.12276 10.1038/ncpneuro0530 10.3389/fphar.2018.00094 10.2147/JPR.S173080 10.1097/j.pain.0000000000001656 10.1016/j.jpainsymman.2009.09.023 10.1093/pm/pny261 10.1371/journal.pone.0187013 10.1016/j.pain.2014.07.018 10.1097/ALN.0000000000000530 10.1016/j.jpain.2010.12.015 10.1016/j.jpain.2018.01.010 10.2196/11660 10.1080/03009742.2016.1203988 10.1016/j.neulet.2006.12.042 10.1016/j.clinph.2014.05.021 10.1016/j.jpain.2009.02.002 10.1016/j.brs.2017.06.006 10.1371/journal.pmed.1000097 10.3389/fnhum.2015.00303 10.5535/arm.2013.37.6.766 10.1016/j.pain.2013.12.022 10.1080/17434440.2018.1551129 10.2147/JPR.S181019 10.1371/journal.pone.0118340 10.1002/ejp.1052 10.1111/joor.12300 |
ContentType | Journal Article |
Copyright | Wolters Kluwer Copyright © 2020 International Association for the Study of Pain. |
Copyright_xml | – notice: Wolters Kluwer – notice: Copyright © 2020 International Association for the Study of Pain. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1097/j.pain.0000000000001893 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1872-6623 |
EndPage | 1975 |
ExternalDocumentID | 32453135 10_1097_j_pain_0000000000001893 00006396-202009000-00005 |
Genre | Meta-Analysis Systematic Review Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCCIH NIH HHS grantid: R01 AT009491 |
GroupedDBID | --- --K 026 0R~ 123 1B1 1~5 4.4 71M AAAAV AAAXR AAGIX AAHPQ AAIQE AAMOA AAQKA AARTV AASCR AASXQ AAUEB AAXQO ABASU ABBUW ABDIG ABIVO ABJNI ABLJU ABOCM ABPXF ABVCZ ABXVJ ABZAD ABZZY ACDDN ACDOF ACEWG ACGFO ACGFS ACILI ACLDA ACNWC ACOAL ACWDW ACWRI ACXJB ACXNZ ACZKN ADGGA ADHPY AEKER AENEX AFBFQ AFDTB AFMBP AFSOK AGGSO AHOMT AHQNM AHVBC AHXIK AIJEX AINUH AJCLO AJIOK AJNWD AJZMW AKCTQ AKRWK AKULP ALKUP ALMA_UNASSIGNED_HOLDINGS ALMTX AMJPA AMKUR AMNEI AOHHW AOQMC BOYCO BQLVK BYPQX C45 CS3 DIWNM DU5 EBS EEVPB ERAAH EX3 F5P FCALG FDB GNXGY GQDEL HLJTE HMQ HZ~ IHE IKREB IKYAY L-C L7B MJL MO0 N9A O-L O9- OBH OPUJH OVD OVDNE OVIDH OVLEI OVOZU OXXIT OZT P2P RLZ RPZ SCC SEL SES TEORI TSPGW TWZ .55 .GJ .~1 1CY 1RT 1~. 29O 3O- 4G. 53G 5VS 7-5 9JO AABNK AAGUQ AAIKJ AALRI AAQFI AAQQT AAXUO AAYWO AAYXX ABBQC ABCQJ ABFNM ABMAC ABZDS ACIUM ACJTP ACXNI ADBBV ADNKB AEETU AERZD AFXBA AGWIK AGYEJ AHHHB AIGII AITUG AJNYG AJRQY AKBMS AKYEP ALCLG AMRAJ CITATION DUNZO EJD EO8 EO9 EP2 EP3 FEDTE FGOYB FIRID FNPLU G-2 G-Q HDV HMK HMO HVGLF H~9 IPNFZ J1W J5H LX1 M29 M2V M41 OHT OUVQU P-8 P-9 PC. Q38 R2- RIG ROL SAE SDF SDG SDP SEW SNS SSZ WUQ X7M XPP ZGI ZZMQN AACTN ACIJW CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c4075-ed1b6490ec0a769df8a8758dc8e3d936d9d60296c3f534e3461e0d3cf574c6893 |
ISSN | 0304-3959 1872-6623 |
IngestDate | Fri Jul 11 01:08:38 EDT 2025 Thu Apr 03 06:57:58 EDT 2025 Thu Apr 24 22:49:51 EDT 2025 Tue Jul 01 02:34:27 EDT 2025 Fri May 16 03:47:42 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | Copyright © 2020 International Association for the Study of Pain. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4075-ed1b6490ec0a769df8a8758dc8e3d936d9d60296c3f534e3461e0d3cf574c6893 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-3 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/7679288 |
PMID | 32453135 |
PQID | 2406942640 |
PQPubID | 23479 |
PageCount | 21 |
ParticipantIDs | proquest_miscellaneous_2406942640 pubmed_primary_32453135 crossref_primary_10_1097_j_pain_0000000000001893 crossref_citationtrail_10_1097_j_pain_0000000000001893 wolterskluwer_health_00006396-202009000-00005 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-September-01 2020-09-00 2020-09-01 20200901 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-September-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Pain (Amsterdam) |
PublicationTitleAlternate | Pain |
PublicationYear | 2020 |
Publisher | Wolters Kluwer |
Publisher_xml | – name: Wolters Kluwer |
References | Duarte (R24-20230818) 2018; 15 Garcia-Larrea (R30-20230818) 1997; 68 Lima (R50-20230818) 2008; 70 Nir (R58-20230818) 2015; 9 Graff-Guerrero (R32-20230818) 2005; 25 Vaseghi (R73-20230818) 2014; 125 Vaseghi (R75-20230818) 2015; 10 Zandieh (R78-20230818) 2012; 16 Arendt-Nielsen (R5-20230818) 2009; 10 Kim (R41-20230818) 2013; 37 Katz (R39-20230818) 2015; 122 Cavaleri (R14-20230818) 2019; 160 Fregni (R29-20230818) 2007; 3 O'Brien (R60-20230818) 2019; 20 Moisset (R55-20230818) 2015; 8 Ihle (R36-20230818) 2014; 155 Kniknik (R42-20230818) 2016; 16 da Graca-Tarrago (R20-20230818) 2019; 12 Yam (R77-20230818) 2018; 19 Lefaucheur (R47-20230818) 2006; 67 Lefaucheur (R45-20230818) 2014; 125 Mylius (R57-20230818) 2007; 415 Souto (R69-20230818) 2014; 30 Borckardt (R10-20230818) 2011; 27 DerSimonian (R23-20230818) 1986; 7 Starkweather (R70-20230818) 2016; 29 Oliveira (R62-20230818) 2015; 42 Flood (R26-20230818) 2017; 5 Antal (R2-20230818) 2008; 1 Chang (R15-20230818) 2017; 12 Lee (R44-20230818) 2011; 13 Arendt-Nielsen (R4-20230818) 2017; 46 Tracey (R72-20230818) 2007; 55 Hurley (R35-20230818) 2017; 83 Khedr (R40-20230818) 2017; 10 O'Connell (R61-20230818) 2018; 4 Moloney (R56-20230818) 2013; 534 Flood (R25-20230818) 2016; 17 Braulio (R11-20230818) 2018; 9 Vaseghi (R74-20230818) 2015; 42 Ribeiro (R65-20230818) 2017; 12 Villamar (R76-20230818) 2013; 14 Garcia-Larrea (R31-20230818) 1999; 83 Brietzke (R12-20230818) 2016; 9 Mendoca (R52-20230818) 2016; 10 Bannister (R7-20230818) 2017; 595 Chervyakov (R16-20230818) 2015; 9 Marcuzzi (R51-20230818) 2017; 158 Bae (R6-20230818) 2014; 234 Mendonca (R53-20230818) 2011; 12 Higgins (R33-20230818) 2011; 343 Tavares (R71-20230818) 2018; 7 Moher (R54-20230818) 2009; 6 O'Brien (R59-20230818) 2018; 19 Ahn (R1-20230818) 2018; 11 Roldan (R67-20230818) 2015; 5 Ciampi de Andrade (R17-20230818) 2011; 152 Fregni (R28-20230818) 2018; 11 Fregni (R27-20230818) 2007; 6 Ciampi de Andrade (R18-20230818) 2014; 155 Lefaucheur (R46-20230818) 2017; 128 Rogatgi (R66-20230818) 2019 Castillo Saavedra (R13-20230818) 2014; 83 Cirillo (R19-20230818) 2017; 10 Reidler (R64-20230818) 2012; 13 Lewis (R49-20230818) 2018; 22 Borckardt (R9-20230818) 2012; 13 Lamusuo (R43-20230818) 2017; 21 Ossipov (R63-20230818) 2014; 8 Boggio (R8-20230818) 2008; 15 Dall'Agnol (R22-20230818) 2014; 15 Jurgens (R38-20230818) 2012; 16 Antal (R3-20230818) 2010; 39 Hughes (R34-20230818) 2018; 22 da Silva (R21-20230818) 2015; 9 Lewis (R48-20230818) 2012; 17 Johnson (R37-20230818) 2006; 123 Rolke (R68-20230818) 2006; 123 33591112 - Pain. 2021 Mar 1;162(3):986 33591113 - Pain. 2021 Mar 1;162(3):986 |
References_xml | – volume: 19 start-page: E2164 year: 2018 ident: R77-20230818 article-title: General pathways of pain sensation and the major neurotransmitters involved in pain regulation publication-title: Int J Mol Sci doi: 10.3390/ijms19082164 – volume: 25 start-page: 153 year: 2005 ident: R32-20230818 article-title: Repetitive transcranial magnetic stimulation of dorsolateral prefrontal cortex increases tolerance to human experimental pain publication-title: Brain Res Cogn Brain Res doi: 10.1016/j.cogbrainres.2005.05.002 – volume: 234 start-page: 189 year: 2014 ident: R6-20230818 article-title: Analgesic effect of transcranial direct current stimulation on central post-stroke pain publication-title: Tohoku J Exp Med doi: 10.1620/tjem.234.189 – volume: 5 start-page: e3028 year: 2017 ident: R26-20230818 article-title: The effects of elevated pain inhibition on endurance exercise performance publication-title: PeerJ doi: 10.7717/peerj.3028 – volume: 595 start-page: 4159 year: 2017 ident: R7-20230818 article-title: The plasticity of descending controls in pain: translational probing publication-title: J Physiol doi: 10.1113/JP274165 – volume: 13 start-page: 450 year: 2012 ident: R64-20230818 article-title: Effects of motor cortex modulation and descending inhibitory systems on pain thresholds in healthy subjects publication-title: J Pain doi: 10.1016/j.jpain.2012.01.005 – volume: 6 start-page: 188 year: 2007 ident: R27-20230818 article-title: Recent advances in the treatment of chronic pain with non-invasive brain stimulation techniques publication-title: Lancet Neurol doi: 10.1016/S1474-4422(07)70032-7 – volume: 128 start-page: 56 year: 2017 ident: R46-20230818 article-title: Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS) publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2016.10.087 – volume: 13 start-page: 211 year: 2011 ident: R44-20230818 article-title: The role of the central nervous system in the generation and maintenance of chronic pain in rheumatoid arthritis, osteoarthritis and fibromyalgia publication-title: Arthritis Res Ther doi: 10.1186/ar3306 – volume: 4 start-page: Cd008208 year: 2018 ident: R61-20230818 article-title: Non-invasive brain stimulation techniques for chronic pain publication-title: Cochrane Database Syst Rev – volume: 22 start-page: 1494 year: 2018 ident: R34-20230818 article-title: Frequency-dependent top-down modulation of temporal summation by anodal transcranial direct-current stimulation of the primary motor cortex in healthy adults publication-title: Eur J Pain doi: 10.1002/ejp.1238 – volume: 29 start-page: 237 year: 2016 ident: R70-20230818 article-title: Methods to measure peripheral and central sensitization using quantitative sensory testing: a focus on individuals with low back pain publication-title: Appl Nurs Res doi: 10.1016/j.apnr.2015.03.013 – volume: 14 start-page: 371 year: 2013 ident: R76-20230818 article-title: Focal modulation of the primary motor cortex in fibromyalgia using 4x1-ring high-definition transcranial direct current stimulation (HD-tDCS): immediate and delayed analgesic effects of cathodal and anodal stimulation publication-title: J Pain doi: 10.1016/j.jpain.2012.12.007 – volume: 83 start-page: 332 year: 2014 ident: R13-20230818 article-title: Role of the primary motor cortex in the maintenance and treatment of pain in fibromyalgia publication-title: Med Hypotheses doi: 10.1016/j.mehy.2014.06.007 – volume: 9 start-page: 131 year: 2015 ident: R58-20230818 article-title: Conditioned pain modulation publication-title: Curr Opin Support Palliat Care doi: 10.1097/SPC.0000000000000126 – volume: 16 start-page: 1251 year: 2012 ident: R38-20230818 article-title: Transcranial direct current stimulation does neither modulate results of a quantitative sensory testing protocol nor ratings of suprathreshold heat stimuli in healthy volunteers publication-title: Eur J Pain doi: 10.1002/j.1532-2149.2012.00135.x – volume: 13 start-page: 112 year: 2012 ident: R9-20230818 article-title: A pilot study of the tolerability and effects of high-definition transcranial direct current stimulation (HD-tDCS) on pain perception publication-title: J Pain doi: 10.1016/j.jpain.2011.07.001 – volume: 42 start-page: 2426 year: 2015 ident: R74-20230818 article-title: Differential effects of cathodal transcranial direct current stimulation of prefrontal, motor and somatosensory cortices on cortical excitability and pain perception - a double-blind randomised sham-controlled study publication-title: Eur J Neurosci doi: 10.1111/ejn.13043 – volume: 67 start-page: 1568 year: 2006 ident: R47-20230818 article-title: Motor cortex rTMS restores defective intracortical inhibition in chronic neuropathic pain publication-title: Neurology doi: 10.1212/01.wnl.0000242731.10074.3c – volume: 152 start-page: 320 year: 2011 ident: R17-20230818 article-title: Neuropharmacological basis of rTMS-induced analgesia: the role of endogenous opioids publication-title: PAIN doi: 10.1016/j.pain.2010.10.032 – volume: 123 start-page: 187 year: 2006 ident: R37-20230818 article-title: Changes to somatosensory detection and pain thresholds following high frequency repetitive TMS of the motor cortex in individuals suffering from chronic pain publication-title: PAIN doi: 10.1016/j.pain.2006.02.030 – volume: 10 start-page: 1 year: 2017 ident: R19-20230818 article-title: Neurobiological after-effects of non-invasive brain stimulation publication-title: Brain stimulation doi: 10.1016/j.brs.2016.11.009 – volume: 55 start-page: 377 year: 2007 ident: R72-20230818 article-title: The cerebral signature for pain perception and its modulation publication-title: Neuron doi: 10.1016/j.neuron.2007.07.012 – volume: 5 start-page: 483 year: 2015 ident: R67-20230818 article-title: Quantitative sensory testing in pain management publication-title: Pain Manag doi: 10.2217/pmt.15.37 – volume: 9 start-page: 498 year: 2016 ident: R12-20230818 article-title: Neuroplastic effects of transcranial direct current stimulation on painful symptoms reduction in chronic hepatitis C: a phase II randomized, double blind, sham controlled trial publication-title: Front Neurosci doi: 10.3389/fnins.2015.00498 – volume: 11 start-page: 299 year: 2018 ident: R28-20230818 article-title: Transcranial direct current stimulation (tDCS) prevents chronic stress-induced hyperalgesia in rats publication-title: Brain stimulation doi: 10.1016/j.brs.2017.11.009 – volume: 68 start-page: 141 year: 1997 ident: R30-20230818 article-title: Positron emission tomography during motor cortex stimulation for pain control publication-title: Stereotactic Funct Neurosurg doi: 10.1159/000099915 – volume: 30 start-page: 809 year: 2014 ident: R69-20230818 article-title: Effects of tDCS-induced motor cortex modulation on pain in HTLV-1: a blind randomized clinical trial publication-title: Clin J Pain doi: 10.1097/AJP.0000000000000037 – volume: 70 start-page: 2329 year: 2008 ident: R50-20230818 article-title: Motor cortex stimulation for chronic pain: systematic review and meta-analysis publication-title: Neurology doi: 10.1212/01.wnl.0000314649.38527.93 – volume: 8 start-page: 135 year: 2015 ident: R55-20230818 article-title: Prolonged continuous theta-burst stimulation is more analgesic than 'classical' high frequency repetitive transcranial magnetic stimulation publication-title: Brain Stimulation doi: 10.1016/j.brs.2014.10.006 – volume: 534 start-page: 289 year: 2013 ident: R56-20230818 article-title: Transcranial direct current stimulation (tDCS) priming of 1 Hz repetitive transcranial magnetic stimulation (rTMS) modulates experimental pain thresholds publication-title: Neurosci Lett doi: 10.1016/j.neulet.2012.11.049 – volume: 1 start-page: 97 year: 2008 ident: R2-20230818 article-title: Comparatively weak after-effects of transcranial alternating current stimulation (tACS) on cortical excitability in humans publication-title: Brain Stimul doi: 10.1016/j.brs.2007.10.001 – volume: 7 start-page: 177 year: 1986 ident: R23-20230818 article-title: Meta-analysis in clinical trials publication-title: Control Clin Trials doi: 10.1016/0197-2456(86)90046-2 – volume: 15 start-page: 845 year: 2014 ident: R22-20230818 article-title: Repetitive transcranial magnetic stimulation increases the corticospinal inhibition and the brain-derived neurotrophic factor in chronic myofascial pain syndrome: an explanatory double-blinded, randomized, sham-controlled trial publication-title: J Pain doi: 10.1016/j.jpain.2014.05.001 – volume: 125 start-page: 1847 year: 2014 ident: R73-20230818 article-title: Does anodal transcranial direct current stimulation modulate sensory perception and pain? A meta-analysis study publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2014.01.020 – volume: 9 start-page: 77 year: 2015 ident: R21-20230818 article-title: Combined neuromodulatory interventions in acute experimental pain: assessment of melatonin and non-invasive brain stimulation publication-title: Front Behav Neurosci doi: 10.3389/fnbeh.2015.00077 – volume: 12 start-page: e0180328 year: 2017 ident: R15-20230818 article-title: Addition of transcranial direct current stimulation to quadriceps strengthening exercise in knee osteoarthritis: a pilot randomised controlled trial publication-title: PLoS One doi: 10.1371/journal.pone.0180328 – volume: 15 start-page: 1124 year: 2008 ident: R8-20230818 article-title: Modulatory effects of anodal transcranial direct current stimulation on perception and pain thresholds in healthy volunteers publication-title: Eur J Neurol doi: 10.1111/j.1468-1331.2008.02270.x – volume: 16 start-page: 345 year: 2012 ident: R78-20230818 article-title: Modulation of cold pain perception by transcranial direct current stimulation in healthy individuals publication-title: Neuromodulation doi: 10.1111/ner.12009 – volume: 83 start-page: 259 year: 1999 ident: R31-20230818 article-title: Electrical stimulation of motor cortex for pain control: a combined PET-scan and electrophysiological study publication-title: PAIN doi: 10.1016/S0304-3959(99)00114-1 – volume: 158 start-page: 1217 year: 2017 ident: R51-20230818 article-title: The long-term reliability of static and dynamic quantitative sensory testing in healthy individuals publication-title: PAIN doi: 10.1097/j.pain.0000000000000901 – volume: 123 start-page: 231 year: 2006 ident: R68-20230818 article-title: Quantitative sensory testing in the German Research Network on Neuropathic Pain (DFNS): standardized protocol and reference values publication-title: PAIN doi: 10.1016/j.pain.2006.01.041 – volume: 17 start-page: 98 year: 2012 ident: R48-20230818 article-title: Reliability of the conditioned pain modulation paradigm to assess endogeneous inhibitory pain pathways publication-title: Pain Res Manag doi: 10.1155/2012/610561 – volume: 83 start-page: 155 year: 2017 ident: R35-20230818 article-title: Using tDCS priming to improve brain function: can metaplasticity provide the key to boosting outcomes? publication-title: Neurosci Biobehav Rev doi: 10.1016/j.neubiorev.2017.09.029 – volume: 27 start-page: 486 year: 2011 ident: R10-20230818 article-title: A randomized, controlled investigation of motor cortex transcranial magnetic stimulation (TMS) effects on quantitative sensory measures in healthy adults: evaluation of TMS device parameters publication-title: Clin J Pain doi: 10.1097/AJP.0b013e31820d2733 – volume: 17 start-page: 600 year: 2016 ident: R25-20230818 article-title: High-Definition transcranial direct current stimulation enhances conditioned pain modulation in healthy volunteers: a randomized trial publication-title: J Pain doi: 10.1016/j.jpain.2016.01.472 – volume: 343 start-page: d5928 year: 2011 ident: R33-20230818 article-title: The Cochrane Collaboration's tool for assessing risk of bias in randomised trials publication-title: BMJ doi: 10.1136/bmj.d5928 – volume: 10 start-page: 68 year: 2016 ident: R52-20230818 article-title: Transcranial direct current stimulation combined with aerobic exercise to optimize analgesic responses in fibromylagia: a randomized placebo-controlled clinical trial publication-title: Front Hum Neurosci – volume: 22 start-page: 1312 year: 2018 ident: R49-20230818 article-title: Transcranial direct current stimulation for upper limb neuropathic pain: a double-blind randomized controlled trial publication-title: Eur J Pain doi: 10.1002/ejp.1220 – volume: 8 start-page: 143 year: 2014 ident: R63-20230818 article-title: Descending pain modulation and chronification of pain publication-title: Curr Opin Support Palliat Care doi: 10.1097/SPC.0000000000000055 – volume: 16 start-page: 294 year: 2016 ident: R42-20230818 article-title: Repetitive transcranial magnetic stimulation for fibromyalgia: systematic review and meta-analysis publication-title: Pain Pract doi: 10.1111/papr.12276 – volume: 3 start-page: 383 year: 2007 ident: R29-20230818 article-title: Technology insight: noninvasive brain stimulation in neurology-perspectives on the therapeutic potential of rTMS and tDCS publication-title: Nat Clin Pract Neurol doi: 10.1038/ncpneuro0530 – volume: 9 start-page: 94 year: 2018 ident: R11-20230818 article-title: Effects of transcranial direct current stimulation block remifentanil-induced hyperalgesia: a randomized, double-blind clinical trial publication-title: Front Pharmacol doi: 10.3389/fphar.2018.00094 – volume: 11 start-page: 2071 year: 2018 ident: R1-20230818 article-title: Bayesian analysis of the effect of transcranial direct current stimulation on experimental pain sensitivity in older adults with knee osteoarthritis: randomized sham-controlled pilot clinical study publication-title: J Pain Res doi: 10.2147/JPR.S173080 – volume: 160 start-page: 2624 year: 2019 ident: R14-20230818 article-title: Repetitive transcranial magnetic stimulation of the primary motor cortex expedites recovery in the transition from acute to sustained experimental pain: a randomised, controlled study publication-title: PAIN doi: 10.1097/j.pain.0000000000001656 – volume: 39 start-page: 890 year: 2010 ident: R3-20230818 article-title: Anodal transcranial direct current stimulation of the motor cortex ameliorates chronic pain and reduces short intracortical inhibition publication-title: J Pain Symptom Manag doi: 10.1016/j.jpainsymman.2009.09.023 – volume: 20 start-page: 1000 year: 2019 ident: R60-20230818 article-title: Impact of therapeutic interventions on pain intensity and endogenous pain modulation in knee osteoarthritis: a systematic review and meta-analysis publication-title: Pain Med doi: 10.1093/pm/pny261 – volume: 12 start-page: e0187013 year: 2017 ident: R65-20230818 article-title: Preoperative transcranial direct current stimulation: exploration of a novel strategy to enhance neuroplasticity before surgery to control postoperative pain. A randomized sham-controlled study publication-title: PLoS One doi: 10.1371/journal.pone.0187013 – volume: 155 start-page: 2080 year: 2014 ident: R36-20230818 article-title: tDCS modulates cortical nociceptive processing but has little to no impact on pain perception publication-title: PAIN doi: 10.1016/j.pain.2014.07.018 – volume: 122 start-page: 677 year: 2015 ident: R39-20230818 article-title: Review of the performance of quantitative sensory testing methods to detect hyperalgesia in chronic pain patients on long-term opioids publication-title: Anesthesiology doi: 10.1097/ALN.0000000000000530 – volume: 12 start-page: 610 year: 2011 ident: R53-20230818 article-title: Transcranial DC stimulation in fibromyalgia: optimized cortical target supported by high-resolution computational models publication-title: J Pain doi: 10.1016/j.jpain.2010.12.015 – volume: 19 start-page: 819 year: 2018 ident: R59-20230818 article-title: Defective endogenous pain modulation in fibromyalgia: a meta-analysis of temporal summation and conditioned pain modulation paradigms publication-title: J Pain doi: 10.1016/j.jpain.2018.01.010 – volume: 7 start-page: e11660 year: 2018 ident: R71-20230818 article-title: Effects of transcranial direct current stimulation on knee osteoarthritis pain in elderly subjects with defective endogenous pain-inhibitory systems: protocol for a randomized controlled trial publication-title: JMIR Res Protoc doi: 10.2196/11660 – volume: 46 start-page: 303 year: 2017 ident: R4-20230818 article-title: Intra-articular onabotulinumtoxinA in osteoarthritis knee pain: effect on human mechanistic pain biomarkers and clinical pain publication-title: Scand J Rheumatol doi: 10.1080/03009742.2016.1203988 – volume: 415 start-page: 49 year: 2007 ident: R57-20230818 article-title: High-frequency rTMS of the motor cortex does not influence the nociceptive flexion reflex but increases the unpleasantness of electrically induced pain publication-title: Neurosci Lett doi: 10.1016/j.neulet.2006.12.042 – volume: 125 start-page: 2150 year: 2014 ident: R45-20230818 article-title: Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS) publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2014.05.021 – volume: 10 start-page: 556 year: 2009 ident: R5-20230818 article-title: Experimental and clinical applications of quantitative sensory testing applied to skin, muscles and viscera publication-title: J Pain doi: 10.1016/j.jpain.2009.02.002 – volume: 10 start-page: 893 year: 2017 ident: R40-20230818 article-title: Effects of transcranial direct current stimulation on pain, mood and serum endorphin level in the treatment of fibromyalgia: a double blinded, randomized clinical trial publication-title: Brain Stimulation doi: 10.1016/j.brs.2017.06.006 – year: 2019 ident: R66-20230818 article-title: WebPlotDigitalizer: based online tool to extract numerical data from plot images – volume: 6 start-page: e1000097 year: 2009 ident: R54-20230818 article-title: Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement publication-title: PLOS Med doi: 10.1371/journal.pmed.1000097 – volume: 9 start-page: 303 year: 2015 ident: R16-20230818 article-title: Possible mechanisms underlying the therapeutic effects of transcranial magnetic stimulation publication-title: Front Hum Neurosci doi: 10.3389/fnhum.2015.00303 – volume: 37 start-page: 766 year: 2013 ident: R41-20230818 article-title: Randomized, sham controlled trial of transcranial direct current stimulation for painful diabetic polyneuropathy publication-title: Ann Rehabil Med doi: 10.5535/arm.2013.37.6.766 – volume: 155 start-page: 598 year: 2014 ident: R18-20230818 article-title: Repetitive transcranial magnetic stimulation induced analgesia depends on N-methyl-D-aspartate glutamate receptors publication-title: PAIN doi: 10.1016/j.pain.2013.12.022 – volume: 15 start-page: 863 year: 2018 ident: R24-20230818 article-title: Developing an optimized strategy with transcranial direct current stimulation to enhance the endogenous pain control system in fibromyalgia publication-title: Expert Rev Med Devices doi: 10.1080/17434440.2018.1551129 – volume: 12 start-page: 209 year: 2019 ident: R20-20230818 article-title: Intramuscular electrical stimulus potentiates motor cortex modulation effects on pain and descending inhibitory systems in knee osteoarthritis: a randomized, factorial, sham-controlled study publication-title: J Pain Res doi: 10.2147/JPR.S181019 – volume: 10 start-page: e0118340 year: 2015 ident: R75-20230818 article-title: How does anodal transcranial direct current stimulation of the pain neuromatrix affect brain excitability and pain perception? A randomised, double-blind, sham-control study publication-title: PLoS One doi: 10.1371/journal.pone.0118340 – volume: 21 start-page: 1505 year: 2017 ident: R43-20230818 article-title: Neurotransmitters behind pain relief with transcranial magnetic stimulation - positron emission tomography evidence for release of endogenous opioids publication-title: Eur J Pain doi: 10.1002/ejp.1052 – volume: 42 start-page: 723 year: 2015 ident: R62-20230818 article-title: Transcranial direct current stimulation and exercises for treatment of chronic temporomandibular disorders: a blind randomised-controlled trial publication-title: J Oral Rehabil doi: 10.1111/joor.12300 – reference: 33591113 - Pain. 2021 Mar 1;162(3):986 – reference: 33591112 - Pain. 2021 Mar 1;162(3):986 |
SSID | ssj0002229 |
Score | 2.5372288 |
SecondaryResourceType | review_article |
Snippet | One of the potential mechanisms of motor cortex stimulation by noninvasive brain stimulation (NIBS) effects on pain is through the restoration of the defective... |
SourceID | proquest pubmed crossref wolterskluwer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1955 |
SubjectTerms | Chronic Pain - therapy Humans Motor Cortex Pain Management Pain Measurement Pain Threshold |
Title | Noninvasive motor cortex stimulation effects on quantitative sensory testing in healthy and chronic pain subjects: a systematic review and meta-analysis |
URI | https://ovidsp.ovid.com/ovidweb.cgi?T=JS&NEWS=n&CSC=Y&PAGE=fulltext&D=ovft&AN=00006396-202009000-00005 https://www.ncbi.nlm.nih.gov/pubmed/32453135 https://www.proquest.com/docview/2406942640 |
Volume | 161 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLaqTkIghLiOcpOReKtcnJvT8FYmxkTZVE2b2Fvk2K7UsiZTL4D2S_h3_BWOc5w07Zhg9CGK0sRJfL7Y59jf-UzIm1BJLrkxTEP3wELheyzTccQE2D8GBz_2TUmQPRIHp-Gns-is1frVYC2tlllPXf4xr-R_rArHwK42S_YGlq0LhQOwD_aFLVgYtv9k4yM7lvpNlgx0qPJi3lWWO_ujC9_tzK3LtWZs5DaDMi-TyuwFCwhg7QT70upsYGILJkWiIpNC1dzuhYQ_FqvMjtcsMDV6W_0ZScUzs5RMOo2Tps87siWAIzuYWVEGbRFYjz58BHTmcB_2eXUpHetsLPNiPbMFoFIFey_n8wkyAodwyxrRe9JmYcgFOy6mmJo2ODdTeJx53d0cmulEshEcK0eFR-AHFN39XnO4A2Lbis_lGtXCkggWXUwiaDSWgZ3hSZy6eNWyo867g3DSaKe9BMWBXZ_vJbh8y5X-BHWKpz1b1yh16X5eHxd23BLr5ujzCWYfnScubd9q7O74EMf4bbIzGB5_GdbOgl1OHSe68PErCmISv73mrpsO1JWo6A65-x3r6GtZRQ1v6eQ-uefCHDpAzD4gLZM_JLcOHZHjEfnZgC4toUsRurQBXeqgS2G3CV3qoEsddOkkpw66FMxMHXSpfTFaQfcdlXQNXIrALU_fAO5jcrr_4WTvgLlFQpgKwd1lRnuZCBNuFJexSPS4LyEE72vVN4FOAqETLbifCBWMoyA0QSg8w3WgxlEcKgH1-YS0AefmKaGGx0KPVZQpT4VwhuyHlsOp_XJ2nccdIqqaT5VT0LcLuZynFZNjmto3S7dN1iG8vvACRWT-fsnryrQpNPh2Fk_mplgtUsxVhziGd8gu2rwuFKIj6FODqEPYBghSNEJ6HTyf3fD85-T2-tt8QdrL-cq8BOd8mb1yAP8Nr_vklA |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Noninvasive+motor+cortex+stimulation+effects+on+quantitative+sensory+testing+in+healthy+and+chronic+pain+subjects%3A+a+systematic+review+and+meta-analysis&rft.jtitle=Pain+%28Amsterdam%29&rft.au=Giannoni-Luza%2C+Stefano&rft.au=Pacheco-Barrios%2C+Kevin&rft.au=Cardenas-Rojas%2C+Alejandra&rft.au=Mejia-Pando%2C+Piero+F.&rft.date=2020-09-01&rft.pub=Wolters+Kluwer&rft.issn=0304-3959&rft.volume=161&rft.issue=9&rft.spage=1955&rft.epage=1975&rft_id=info:doi/10.1097%2Fj.pain.0000000000001893&rft.externalDocID=00006396-202009000-00005 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3959&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3959&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3959&client=summon |