Machine learning-aided hybrid technique for dynamics of rail transit stations classification: a case study

Accurate classification of rail transit stations is crucial for successful Transit-Oriented Development (TOD) and sustainable urban growth. This paper introduces a novel classification model integrating traditional methodologies with advanced machine learning algorithms. By employing mathematical mo...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 14; no. 1; pp. 23929 - 30
Main Authors Amini Pishro, Ahad, Zhang, Shiquan, L’Hostis, Alain, Liu, Yuetong, Hu, Qixiao, Hejazi, Farzad, Shahpasand, Maryam, Rahman, Ali, Oueslati, Abdelbacet, Zhang, Zhengrui
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 13.10.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Accurate classification of rail transit stations is crucial for successful Transit-Oriented Development (TOD) and sustainable urban growth. This paper introduces a novel classification model integrating traditional methodologies with advanced machine learning algorithms. By employing mathematical models, clustering methods, and neural network techniques, the model enhances the precision of station classification, allowing for a refined evaluation of station attributes. A comprehensive case study on the Chengdu rail transit network validates the model’s efficacy, highlighting its value in optimizing TOD strategies and guiding decision-making processes for urban planners and policymakers. The study employs several regression models trained on existing data to generate accurate ridership forecasts, and data clustering using mathematical algorithms reveals distinct categories of stations. Evaluation metrics confirm the rationality and accuracy of the results. Additionally, a neural network achieving high accuracy on labeled data enhances the model’s predictive capabilities for unlabeled instances. The research demonstrates high accuracy, with the Mean Squared Error (MSE) for regression models (Multiple Linear Regression (MLR), Deep-Learning Neural Network (DNN), and K-Nearest Neighbor (KNN)) remaining below 0.012, while the neural networks used for station classification achieve 100% accuracy across seven time intervals and 98.15% accuracy for the eighth, ensuring reliable ridership forecasts and classification outcomes. Accuracy in rail transit station classification is critical, as it not only strengthens the model’s predictive capabilities but also ensures more reliable data-driven decisions for transit planning and development, allowing for more precise ridership forecasts and evidence-based strategies for optimizing TOD. This classification model provides stakeholders with valuable insights into the dynamics and features of rail transit stations, supporting sustainable urban development planning.
AbstractList Abstract Accurate classification of rail transit stations is crucial for successful Transit-Oriented Development (TOD) and sustainable urban growth. This paper introduces a novel classification model integrating traditional methodologies with advanced machine learning algorithms. By employing mathematical models, clustering methods, and neural network techniques, the model enhances the precision of station classification, allowing for a refined evaluation of station attributes. A comprehensive case study on the Chengdu rail transit network validates the model’s efficacy, highlighting its value in optimizing TOD strategies and guiding decision-making processes for urban planners and policymakers. The study employs several regression models trained on existing data to generate accurate ridership forecasts, and data clustering using mathematical algorithms reveals distinct categories of stations. Evaluation metrics confirm the rationality and accuracy of the results. Additionally, a neural network achieving high accuracy on labeled data enhances the model’s predictive capabilities for unlabeled instances. The research demonstrates high accuracy, with the Mean Squared Error (MSE) for regression models (Multiple Linear Regression (MLR), Deep-Learning Neural Network (DNN), and K-Nearest Neighbor (KNN)) remaining below 0.012, while the neural networks used for station classification achieve 100% accuracy across seven time intervals and 98.15% accuracy for the eighth, ensuring reliable ridership forecasts and classification outcomes. Accuracy in rail transit station classification is critical, as it not only strengthens the model’s predictive capabilities but also ensures more reliable data-driven decisions for transit planning and development, allowing for more precise ridership forecasts and evidence-based strategies for optimizing TOD. This classification model provides stakeholders with valuable insights into the dynamics and features of rail transit stations, supporting sustainable urban development planning.
Accurate classification of rail transit stations is crucial for successful Transit-Oriented Development (TOD) and sustainable urban growth. This paper introduces a novel classification model integrating traditional methodologies with advanced machine learning algorithms. By employing mathematical models, clustering methods, and neural network techniques, the model enhances the precision of station classification, allowing for a refined evaluation of station attributes. A comprehensive case study on the Chengdu rail transit network validates the model's efficacy, highlighting its value in optimizing TOD strategies and guiding decision-making processes for urban planners and policymakers. The study employs several regression models trained on existing data to generate accurate ridership forecasts, and data clustering using mathematical algorithms reveals distinct categories of stations. Evaluation metrics confirm the rationality and accuracy of the results. Additionally, a neural network achieving high accuracy on labeled data enhances the model's predictive capabilities for unlabeled instances. The research demonstrates high accuracy, with the Mean Squared Error (MSE) for regression models (Multiple Linear Regression (MLR), Deep-Learning Neural Network (DNN), and K-Nearest Neighbor (KNN)) remaining below 0.012, while the neural networks used for station classification achieve 100% accuracy across seven time intervals and 98.15% accuracy for the eighth, ensuring reliable ridership forecasts and classification outcomes. Accuracy in rail transit station classification is critical, as it not only strengthens the model's predictive capabilities but also ensures more reliable data-driven decisions for transit planning and development, allowing for more precise ridership forecasts and evidence-based strategies for optimizing TOD. This classification model provides stakeholders with valuable insights into the dynamics and features of rail transit stations, supporting sustainable urban development planning.
Accurate classification of rail transit stations is crucial for successful Transit-Oriented Development (TOD) and sustainable urban growth. This paper introduces a novel classification model integrating traditional methodologies with advanced machine learning algorithms. By employing mathematical models, clustering methods, and neural network techniques, the model enhances the precision of station classification, allowing for a refined evaluation of station attributes. A comprehensive case study on the Chengdu rail transit network validates the model's efficacy, highlighting its value in optimizing TOD strategies and guiding decision-making processes for urban planners and policymakers. The study employs several regression models trained on existing data to generate accurate ridership forecasts, and data clustering using mathematical algorithms reveals distinct categories of stations. Evaluation metrics confirm the rationality and accuracy of the results. Additionally, a neural network achieving high accuracy on labeled data enhances the model's predictive capabilities for unlabeled instances. The research demonstrates high accuracy, with the Mean Squared Error (MSE) for regression models (Multiple Linear Regression (MLR), Deep-Learning Neural Network (DNN), and K-Nearest Neighbor (KNN)) remaining below 0.012, while the neural networks used for station classification achieve 100% accuracy across seven time intervals and 98.15% accuracy for the eighth, ensuring reliable ridership forecasts and classification outcomes. Accuracy in rail transit station classification is critical, as it not only strengthens the model's predictive capabilities but also ensures more reliable data-driven decisions for transit planning and development, allowing for more precise ridership forecasts and evidence-based strategies for optimizing TOD. This classification model provides stakeholders with valuable insights into the dynamics and features of rail transit stations, supporting sustainable urban development planning.Accurate classification of rail transit stations is crucial for successful Transit-Oriented Development (TOD) and sustainable urban growth. This paper introduces a novel classification model integrating traditional methodologies with advanced machine learning algorithms. By employing mathematical models, clustering methods, and neural network techniques, the model enhances the precision of station classification, allowing for a refined evaluation of station attributes. A comprehensive case study on the Chengdu rail transit network validates the model's efficacy, highlighting its value in optimizing TOD strategies and guiding decision-making processes for urban planners and policymakers. The study employs several regression models trained on existing data to generate accurate ridership forecasts, and data clustering using mathematical algorithms reveals distinct categories of stations. Evaluation metrics confirm the rationality and accuracy of the results. Additionally, a neural network achieving high accuracy on labeled data enhances the model's predictive capabilities for unlabeled instances. The research demonstrates high accuracy, with the Mean Squared Error (MSE) for regression models (Multiple Linear Regression (MLR), Deep-Learning Neural Network (DNN), and K-Nearest Neighbor (KNN)) remaining below 0.012, while the neural networks used for station classification achieve 100% accuracy across seven time intervals and 98.15% accuracy for the eighth, ensuring reliable ridership forecasts and classification outcomes. Accuracy in rail transit station classification is critical, as it not only strengthens the model's predictive capabilities but also ensures more reliable data-driven decisions for transit planning and development, allowing for more precise ridership forecasts and evidence-based strategies for optimizing TOD. This classification model provides stakeholders with valuable insights into the dynamics and features of rail transit stations, supporting sustainable urban development planning.
ArticleNumber 23929
Author Zhang, Shiquan
Zhang, Zhengrui
Rahman, Ali
L’Hostis, Alain
Hu, Qixiao
Hejazi, Farzad
Liu, Yuetong
Shahpasand, Maryam
Oueslati, Abdelbacet
Amini Pishro, Ahad
Author_xml – sequence: 1
  givenname: Ahad
  surname: Amini Pishro
  fullname: Amini Pishro, Ahad
  organization: School of Civil Engineering, Sichuan University of Science and Engineering, Univ. Gustave Eiffel, Ecole des Ponts, LVMT
– sequence: 2
  givenname: Shiquan
  surname: Zhang
  fullname: Zhang, Shiquan
  organization: School of Mathematics, Sichuan University
– sequence: 3
  givenname: Alain
  surname: L’Hostis
  fullname: L’Hostis, Alain
  organization: Univ. Gustave Eiffel, Ecole des Ponts, LVMT
– sequence: 4
  givenname: Yuetong
  surname: Liu
  fullname: Liu, Yuetong
  email: liuyuetong@stu.scu.edu.cn
  organization: School of Mathematics, Sichuan University
– sequence: 5
  givenname: Qixiao
  surname: Hu
  fullname: Hu, Qixiao
  organization: School of Mathematics, Sichuan University
– sequence: 6
  givenname: Farzad
  surname: Hejazi
  fullname: Hejazi, Farzad
  organization: School of Environment and Technology, University of the West of England
– sequence: 7
  givenname: Maryam
  surname: Shahpasand
  fullname: Shahpasand, Maryam
  organization: Staffordshire University London
– sequence: 8
  givenname: Ali
  surname: Rahman
  fullname: Rahman, Ali
  organization: School of Civil Engineering, Faculty of Engineering and Physical Sciences, University of Leeds
– sequence: 9
  givenname: Abdelbacet
  surname: Oueslati
  fullname: Oueslati, Abdelbacet
  organization: Univ. Lille, CNRS, Centrale Lille, UMR 9013 - LaMcube - Laboratoire de mécanique, multiphysique, multiéchelle
– sequence: 10
  givenname: Zhengrui
  surname: Zhang
  fullname: Zhang, Zhengrui
  organization: School of Civil Engineering, Sichuan University of Science and Engineering
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39397065$$D View this record in MEDLINE/PubMed
https://hal.science/hal-04775980$$DView record in HAL
BookMark eNp9kstuEzEUhkeoiJbSF2CBLLGBxYCv4zEbVFWUVgpiA2vr-DKJo4ld7EmlvD1Opi1tF3jjy_n9HZ_j_3VzFFP0TfOW4E8Es_5z4USovsWUt1IITtr-RXNCMRctZZQePVofN2elrHEdgipO1KvmmCmmJO7ESbP-AXYVokejhxxDXLYQnHdotTM5ODR5u4rhz9ajIWXkdhE2wRaUBpQhjGjKEEuYUJlgCikWZEcoJQzBHvZfECALxdf41u3eNC8HGIs_u5tPm9-X335dXLWLn9-vL84XreVYirYfALDl0thO9MZQUJRYNuDeK-C9U5gMUkjZi4Fa2RlnFRfUEQ8CekKYY6fN9cx1Cdb6JocN5J1OEPThIOWlhjwFO3pNnek4WOq8N9wIqayHjnhrejoYqkhlfZ1ZN1uz8c76WEsen0CfRmJY6WW61YRwSaToKuHjTFg9u3d1vtD7M8ylrD-Jb_fZPtxly6n2vEx6E4r14wjRp23RjJCOsY7KvkrfP5Ou0zbH2teDCvOOKVpVdFbZnErJfnh4AcF6byM920hXG-mDjfQe_e5xzQ9X7k1TBWwWlBqKS5__5f4P9i8LddV9
Cites_doi 10.1007/s11042-023-14388-z
10.1016/j.trd.2020.102390
10.1088/1755-1315/46/1/012017
10.1002/widm.53
10.1016/j.jrtpm.2022.100341
10.1016/j.jtrangeo.2020.102939
10.1007/s40864-021-00153-8
10.3389/fpubh.2022.820694
10.1016/j.foar.2021.03.005
10.1016/j.jtrangeo.2022.103308
10.1016/j.istruc.2022.10.053
10.1016/j.istruc.2024.106162
10.1016/j.trd.2020.102518
10.5198/jtlu.v4i1.145
10.1016/j.trc.2020.102928
10.1016/j.ins.2021.02.036
10.3390/ma15093213
10.3390/su15021718
10.1007/978-3-319-77682-8_17
10.1016/j.heliyon.2018.e00938
10.1016/j.jtrangeo.2022.103455
10.1016/j.tbs.2024.100792
10.1016/j.patcog.2006.12.019
10.3390/electronics9081295
10.1016/j.jtrangeo.2022.103299
10.3390/buildings13081944
10.3390/ma15144852
10.1145/3068335
10.1016/j.conbuildmat.2020.119942
10.1038/s41598-021-94480-2
10.1016/j.jtrangeo.2010.08.008
10.1016/j.tra.2022.08.006
10.1109/FSKD.2009.788
10.1016/j.jtrangeo.2023.103568
10.1038/s41598-022-20209-4
10.1016/j.apgeog.2022.102862
10.1016/j.ijpe.2020.107920
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Attribution
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Attribution
– notice: The Author(s) 2024 2024
DBID C6C
NPM
AAYXX
CITATION
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
1XC
BXJBU
5PM
DOA
DOI 10.1038/s41598-024-75541-8
DatabaseName SpringerOpen
PubMed
CrossRef
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
ProQuest Science Journals
Biological Science Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
Hyper Article en Ligne (HAL)
HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
PubMed
Publicly Available Content Database



MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 30
ExternalDocumentID oai_doaj_org_article_2db64ac2deeb4b579cea61ecb82fb291
oai_HAL_hal_04775980v1
10_1038_s41598_024_75541_8
39397065
Genre Journal Article
GrantInformation_xml – fundername: Science and Technology Department of Sichuan Province
  grantid: 2022YFWZ0010
  funderid: http://dx.doi.org/10.13039/501100004829
– fundername: Bridge Non-destructive Testing (NDT) and Engineering Computation Sichuan Provincial University Key Laboratory
  grantid: 2022QYY01
– fundername: The Key Laboratory of Colleges and Universities in Sichuan Province
  grantid: 2020QYJ01
– fundername: Science and Technology Department of Sichuan Province
  grantid: 2022YFWZ0010
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ADBBV
ADRAZ
AENEX
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RIG
RNT
RNTTT
RPM
SNYQT
UKHRP
NPM
AAYXX
CITATION
7XB
8FK
K9.
M48
PQEST
PQUKI
PRINS
Q9U
7X8
1XC
BXJBU
5PM
ID FETCH-LOGICAL-c4075-8faa0c47bc658bb2a921c3f08e9a48d901f757785f2c76bdc9452d1ea5a8113d3
IEDL.DBID RPM
ISSN 2045-2322
IngestDate Mon Oct 21 19:33:07 EDT 2024
Tue Oct 15 05:35:14 EDT 2024
Wed Nov 13 07:13:29 EST 2024
Thu Oct 17 16:37:05 EDT 2024
Mon Oct 14 04:41:50 EDT 2024
Wed Oct 23 14:20:07 EDT 2024
Sat Nov 02 12:03:20 EDT 2024
Mon Oct 14 03:43:33 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Rail Transit Station Classification
Regression models
Transit Oriented Development
Clustering methods
Machine Learning algorithms
Language English
License 2024. The Author(s).
Attribution: http://creativecommons.org/licenses/by
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4075-8faa0c47bc658bb2a921c3f08e9a48d901f757785f2c76bdc9452d1ea5a8113d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2334-4127
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11471756/
PMID 39397065
PQID 3116046392
PQPubID 2041939
PageCount 30
ParticipantIDs doaj_primary_oai_doaj_org_article_2db64ac2deeb4b579cea61ecb82fb291
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11471756
hal_primary_oai_HAL_hal_04775980v1
proquest_miscellaneous_3116336278
proquest_journals_3116046392
crossref_primary_10_1038_s41598_024_75541_8
pubmed_primary_39397065
springer_journals_10_1038_s41598_024_75541_8
PublicationCentury 2000
PublicationDate 2024-10-13
PublicationDateYYYYMMDD 2024-10-13
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-13
  day: 13
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Shiliang Su, Zhang, Wang, Weng, Kang (CR2) 2021; 90
Chorus, Bertolini (CR20) 2011; 4
Liu Yang, Song (CR31) 2021; 7
Yibin Ren, Chen, Han, Zheng (CR11) 2016; 46
Abiodun, Jantan, Omolara (CR13) 2018; 4
CR19
Fionn Murtagh, Contreras (CR8) 2011
CR17
CR16
Xin Yang (CR35) 2021; 566
CR37
Jingru Huang, Chen, Xu, Chen, Hu (CR30) 2022; 24
CR34
CR10
Pishro (CR27) 2022; 46
Zhenyu Mei, Gong, Feng, Kong, Zhu (CR12) 2024; 36
Shiliang Su, Wang, Li, Kang (CR33) 2022; 104
Zhejing Cao, Asakura (CR18) 2020; 87
Papa, Carpentieri, Angiello, Papa, Fistola, Gargiulo (CR32) 2018
Shiliang Su, Zhao, Zhou, Li, Kang (CR15) 2022; 100
AlKhereibi, Wakjira, Kucukvar, Onat (CR14) 2023; 15
Zhang, Che, Chen, Ma, He (CR36) 2021; 124
CR4
CR3
Zhang, Zhi-Hua Zhou (CR38) 2007; 40
CR6
Ningning Dong (CR5) 2024; 83
CR7
CR28
CR25
CR24
CR23
CR22
Qiang, Zhang, Huang (CR9) 2022; 10
Pishro (CR26) 2024; 62
Bojing Liao, Pauline, van den Berg, van Wesemael, Arentze (CR1) 2020; 85
Shaofei Niu, Shen, Huang, Mou (CR21) 2021; 10
Pishro (CR29) 2022; 15
P Fionn Murtagh (75541_CR8) 2011
G Yibin Ren (75541_CR11) 2016; 46
Q Xin Yang (75541_CR35) 2021; 566
C Shiliang Su (75541_CR15) 2022; 100
AA Pishro (75541_CR29) 2022; 15
75541_CR28
Z Shiliang Su (75541_CR33) 2022; 104
OI Abiodun (75541_CR13) 2018; 4
75541_CR37
75541_CR16
J Zhenyu Mei (75541_CR12) 2024; 36
75541_CR10
P Chorus (75541_CR20) 2011; 4
X Liu Yang (75541_CR31) 2021; 7
AA Pishro (75541_CR26) 2024; 62
75541_CR34
Y Zhejing Cao (75541_CR18) 2020; 87
J Zhang (75541_CR36) 2021; 124
A Shaofei Niu (75541_CR21) 2021; 10
EW Bojing Liao, Pauline (75541_CR1) 2020; 85
D Qiang (75541_CR9) 2022; 10
AA Pishro (75541_CR27) 2022; 46
75541_CR7
ML Zhang (75541_CR38) 2007; 40
75541_CR6
75541_CR17
75541_CR4
75541_CR3
75541_CR19
H Shiliang Su (75541_CR2) 2021; 90
S Jingru Huang (75541_CR30) 2022; 24
E Papa (75541_CR32) 2018
75541_CR24
75541_CR25
T Ningning Dong (75541_CR5) 2024; 83
75541_CR22
75541_CR23
AH AlKhereibi (75541_CR14) 2023; 15
References_xml – volume: 83
  start-page: 61621
  year: 2024
  end-page: 61643
  ident: CR5
  article-title: A method for short-term passenger flow prediction in urban rail transit based on deep learning
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-023-14388-z
  contributor:
    fullname: Ningning Dong
– ident: CR22
– volume: 85
  start-page: 102390
  year: 2020
  ident: CR1
  article-title: Empirical analysis of walkability using data from the Netherlands
  publication-title: Transp. Res. Part D
  doi: 10.1016/j.trd.2020.102390
  contributor:
    fullname: Arentze
– volume: 46
  start-page: 012017
  year: 2016
  ident: CR11
  article-title: Extracting potential bus lines of Customized City Bus Service based on public transport big data
  publication-title: IOP Conf. Series: Earth Environ. Sci.
  doi: 10.1088/1755-1315/46/1/012017
  contributor:
    fullname: Zheng
– year: 2011
  ident: CR8
  article-title: Algorithms for hierarchical clustering: an overview
  publication-title: WIREs Data Min. Knowl. Discov
  doi: 10.1002/widm.53
  contributor:
    fullname: Contreras
– ident: CR4
– ident: CR16
– ident: CR37
– volume: 24
  start-page: 100341
  year: 2022
  ident: CR30
  article-title: Relationship between built environment characteristics of TOD and subway ridership: a causal inference and regression analysis of the Beijing subway
  publication-title: J. Rail Transp. Plann. Manage.
  doi: 10.1016/j.jrtpm.2022.100341
  contributor:
    fullname: Hu
– volume: 90
  start-page: 102939
  year: 2021
  ident: CR2
  article-title: Transit-oriented development (TOD) typologies around metro station areas in urban China: a comparative analysis of five typical megacities for planning implications
  publication-title: J. Transp. Geogr.
  doi: 10.1016/j.jtrangeo.2020.102939
  contributor:
    fullname: Kang
– ident: CR10
– volume: 7
  start-page: 240
  issue: 3
  year: 2021
  end-page: 255
  ident: CR31
  article-title: TOD Typology based on Urban Renewal: a classification of Metro Stations for Ningbo City
  publication-title: Urban Rail Transit.
  doi: 10.1007/s40864-021-00153-8
  contributor:
    fullname: Song
– ident: CR6
– volume: 10
  start-page: 820694
  year: 2022
  ident: CR9
  article-title: Quantitative evaluation of TOD Performance based on Multi-source Data: a case study of Shanghai
  publication-title: Front. Public. Health
  doi: 10.3389/fpubh.2022.820694
  contributor:
    fullname: Huang
– volume: 10
  start-page: 652e668
  year: 2021
  ident: CR21
  article-title: Measuring the built environment of green transit-oriented development: a factor-cluster analysis of rail station areas in Singapore
  publication-title: Front. Architectural Res.
  doi: 10.1016/j.foar.2021.03.005
  contributor:
    fullname: Mou
– volume: 100
  start-page: 103308
  year: 2022
  ident: CR15
  article-title: Unraveling the relative contribution of TOD structural factors to Metro ridership: a novel localized modeling approach with implications on spatial planning
  publication-title: J. Transp. Geogr.
  doi: 10.1016/j.jtrangeo.2022.103308
  contributor:
    fullname: Kang
– volume: 46
  start-page: 570
  year: 2022
  end-page: 597
  ident: CR27
  article-title: Siti Jahara Matlan; UHPC-PINN-Parallel Micro element system for the local bond stress–slip model subjected to monotonic loading
  publication-title: Structures
  doi: 10.1016/j.istruc.2022.10.053
  contributor:
    fullname: Pishro
– ident: CR25
– volume: 62
  start-page: 106162
  year: 2024
  ident: CR26
  article-title: Yuandi Zhao; advancing ultimate bond stress–slip model of UHPC structures through a novel hybrid machine learning approach
  publication-title: Structures
  doi: 10.1016/j.istruc.2024.106162
  contributor:
    fullname: Pishro
– volume: 87
  start-page: 102518
  year: 2020
  ident: CR18
  article-title: Coordination between node, place, and ridership: comparing three transit operators in Tokyo
  publication-title: Transp. Res. Part D
  doi: 10.1016/j.trd.2020.102518
  contributor:
    fullname: Asakura
– ident: CR23
– ident: CR19
– volume: 4
  start-page: 45
  issue: 1
  year: 2011
  end-page: 58
  ident: CR20
  article-title: An application of the node place model to explore the spatial development dynamics of station areas in Tokyo
  publication-title: J. Transp. Land. Use
  doi: 10.5198/jtlu.v4i1.145
  contributor:
    fullname: Bertolini
– volume: 124
  start-page: 102928
  year: 2021
  ident: CR36
  article-title: Short-term origin-destination demand prediction in urban rail transit systems: a channel-wise attentive split-convolutional neural network method
  publication-title: Transp. Res. Part C
  doi: 10.1016/j.trc.2020.102928
  contributor:
    fullname: He
– ident: CR3
– volume: 566
  start-page: 347
  year: 2021
  end-page: 363
  ident: CR35
  article-title: A novel prediction model for the inbound passenger flow of urban rail transit
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2021.02.036
  contributor:
    fullname: Xin Yang
– volume: 15
  start-page: 3213
  year: 2022
  ident: CR29
  article-title: Victor Postel; structural behavior of FRP-Retrofitted RC beams under combined torsion and bending
  publication-title: Materials
  doi: 10.3390/ma15093213
  contributor:
    fullname: Pishro
– volume: 15
  start-page: 1718
  year: 2023
  ident: CR14
  article-title: Predictive Machine Learning Algorithms for Metro Ridership based on Urban Land Use policies in support of transit-oriented development
  publication-title: Sustainability
  doi: 10.3390/su15021718
  contributor:
    fullname: Onat
– year: 2018
  ident: CR32
  article-title: A TOD classification of Metro stations: an application in Naples
  publication-title: Smart Planning: Sustainability and Mobility in the Age of Change. Green Energy and Technology
  doi: 10.1007/978-3-319-77682-8_17
  contributor:
    fullname: Gargiulo
– ident: CR17
– volume: 4
  start-page: e00938
  year: 2018
  ident: CR13
  article-title: Kemi Victoria Dada, Nachaat AbdElatif Mohamed, Humaira Arshad. State-of-theart in artificial neural network applications: a survey
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2018.e00938
  contributor:
    fullname: Omolara
– ident: CR34
– volume: 104
  start-page: 103455
  year: 2022
  ident: CR33
  article-title: Deciphering the influence of TOD on Metro ridership: an integrated approach of extended node-place model and interpretable machine learning with planning implications
  publication-title: J. Transp. Geogr. Volume
  doi: 10.1016/j.jtrangeo.2022.103455
  contributor:
    fullname: Kang
– ident: CR7
– volume: 36
  start-page: 100792
  year: 2024
  ident: CR12
  article-title: Assessment of carbon emissions from TOD subway first/last mile trips based on level classification
  publication-title: Travel Behav. Soc.
  doi: 10.1016/j.tbs.2024.100792
  contributor:
    fullname: Zhu
– ident: CR28
– ident: CR24
– volume: 40
  start-page: 2038
  year: 2007
  end-page: 2048
  ident: CR38
  article-title: ML-KNN:Alazy learning approach to multi-label learning
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2006.12.019
  contributor:
    fullname: Zhi-Hua Zhou
– volume: 36
  start-page: 100792
  year: 2024
  ident: 75541_CR12
  publication-title: Travel Behav. Soc.
  doi: 10.1016/j.tbs.2024.100792
  contributor:
    fullname: J Zhenyu Mei
– ident: 75541_CR4
  doi: 10.3390/electronics9081295
– volume: 15
  start-page: 3213
  year: 2022
  ident: 75541_CR29
  publication-title: Materials
  doi: 10.3390/ma15093213
  contributor:
    fullname: AA Pishro
– ident: 75541_CR23
  doi: 10.1016/j.jtrangeo.2022.103299
– ident: 75541_CR7
  doi: 10.1016/j.foar.2021.03.005
– ident: 75541_CR16
  doi: 10.3390/buildings13081944
– year: 2011
  ident: 75541_CR8
  publication-title: WIREs Data Min. Knowl. Discov
  doi: 10.1002/widm.53
  contributor:
    fullname: P Fionn Murtagh
– volume: 7
  start-page: 240
  issue: 3
  year: 2021
  ident: 75541_CR31
  publication-title: Urban Rail Transit.
  doi: 10.1007/s40864-021-00153-8
  contributor:
    fullname: X Liu Yang
– volume: 4
  start-page: 45
  issue: 1
  year: 2011
  ident: 75541_CR20
  publication-title: J. Transp. Land. Use
  doi: 10.5198/jtlu.v4i1.145
  contributor:
    fullname: P Chorus
– volume: 10
  start-page: 820694
  year: 2022
  ident: 75541_CR9
  publication-title: Front. Public. Health
  doi: 10.3389/fpubh.2022.820694
  contributor:
    fullname: D Qiang
– ident: 75541_CR28
  doi: 10.3390/ma15144852
– volume: 85
  start-page: 102390
  year: 2020
  ident: 75541_CR1
  publication-title: Transp. Res. Part D
  doi: 10.1016/j.trd.2020.102390
  contributor:
    fullname: EW Bojing Liao, Pauline
– ident: 75541_CR10
  doi: 10.1145/3068335
– volume: 4
  start-page: e00938
  year: 2018
  ident: 75541_CR13
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2018.e00938
  contributor:
    fullname: OI Abiodun
– volume: 10
  start-page: 652e668
  year: 2021
  ident: 75541_CR21
  publication-title: Front. Architectural Res.
  doi: 10.1016/j.foar.2021.03.005
  contributor:
    fullname: A Shaofei Niu
– ident: 75541_CR25
  doi: 10.1016/j.conbuildmat.2020.119942
– volume: 46
  start-page: 570
  year: 2022
  ident: 75541_CR27
  publication-title: Structures
  doi: 10.1016/j.istruc.2022.10.053
  contributor:
    fullname: AA Pishro
– volume: 104
  start-page: 103455
  year: 2022
  ident: 75541_CR33
  publication-title: J. Transp. Geogr. Volume
  doi: 10.1016/j.jtrangeo.2022.103455
  contributor:
    fullname: Z Shiliang Su
– volume-title: Smart Planning: Sustainability and Mobility in the Age of Change. Green Energy and Technology
  year: 2018
  ident: 75541_CR32
  doi: 10.1007/978-3-319-77682-8_17
  contributor:
    fullname: E Papa
– ident: 75541_CR24
  doi: 10.1038/s41598-021-94480-2
– volume: 566
  start-page: 347
  year: 2021
  ident: 75541_CR35
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2021.02.036
  contributor:
    fullname: Q Xin Yang
– ident: 75541_CR19
  doi: 10.1016/j.jtrangeo.2010.08.008
– volume: 87
  start-page: 102518
  year: 2020
  ident: 75541_CR18
  publication-title: Transp. Res. Part D
  doi: 10.1016/j.trd.2020.102518
  contributor:
    fullname: Y Zhejing Cao
– ident: 75541_CR37
  doi: 10.1016/j.tra.2022.08.006
– volume: 46
  start-page: 012017
  year: 2016
  ident: 75541_CR11
  publication-title: IOP Conf. Series: Earth Environ. Sci.
  doi: 10.1088/1755-1315/46/1/012017
  contributor:
    fullname: G Yibin Ren
– volume: 24
  start-page: 100341
  year: 2022
  ident: 75541_CR30
  publication-title: J. Rail Transp. Plann. Manage.
  doi: 10.1016/j.jrtpm.2022.100341
  contributor:
    fullname: S Jingru Huang
– volume: 124
  start-page: 102928
  year: 2021
  ident: 75541_CR36
  publication-title: Transp. Res. Part C
  doi: 10.1016/j.trc.2020.102928
  contributor:
    fullname: J Zhang
– ident: 75541_CR6
  doi: 10.1109/FSKD.2009.788
– ident: 75541_CR3
  doi: 10.1016/j.jtrangeo.2023.103568
– volume: 90
  start-page: 102939
  year: 2021
  ident: 75541_CR2
  publication-title: J. Transp. Geogr.
  doi: 10.1016/j.jtrangeo.2020.102939
  contributor:
    fullname: H Shiliang Su
– volume: 15
  start-page: 1718
  year: 2023
  ident: 75541_CR14
  publication-title: Sustainability
  doi: 10.3390/su15021718
  contributor:
    fullname: AH AlKhereibi
– volume: 83
  start-page: 61621
  year: 2024
  ident: 75541_CR5
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-023-14388-z
  contributor:
    fullname: T Ningning Dong
– volume: 40
  start-page: 2038
  year: 2007
  ident: 75541_CR38
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2006.12.019
  contributor:
    fullname: ML Zhang
– ident: 75541_CR17
  doi: 10.1038/s41598-022-20209-4
– ident: 75541_CR22
  doi: 10.1016/j.apgeog.2022.102862
– volume: 62
  start-page: 106162
  year: 2024
  ident: 75541_CR26
  publication-title: Structures
  doi: 10.1016/j.istruc.2024.106162
  contributor:
    fullname: AA Pishro
– ident: 75541_CR34
  doi: 10.1016/j.ijpe.2020.107920
– volume: 100
  start-page: 103308
  year: 2022
  ident: 75541_CR15
  publication-title: J. Transp. Geogr.
  doi: 10.1016/j.jtrangeo.2022.103308
  contributor:
    fullname: C Shiliang Su
SSID ssj0000529419
Score 2.4746904
Snippet Accurate classification of rail transit stations is crucial for successful Transit-Oriented Development (TOD) and sustainable urban growth. This paper...
Abstract Accurate classification of rail transit stations is crucial for successful Transit-Oriented Development (TOD) and sustainable urban growth. This paper...
SourceID doaj
pubmedcentral
hal
proquest
crossref
pubmed
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 23929
SubjectTerms 639/166/986
639/705/1041
639/705/1042
639/705/531
Accuracy
Algorithms
Architecture, space management
Case studies
Classification
Clustering methods
Decision making
Humanities and Social Sciences
Learning algorithms
Machine learning
Machine Learning algorithms
Mathematical models
multidisciplinary
Neural networks
Rail Transit Station Classification
Regression analysis
Regression models
Science
Science (multidisciplinary)
Sustainable development
Transit Oriented Development
Urban development
Urban planning
Urban sprawl
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxUxFA5SENyIb0erRHGnoTN5TJLuqlguYl1Z6C7k6b0ic6VzK_Tf9ySZe-1YxI3LZMIk5JzwfYecfAehN7YLOvTWEyddIjzZQAAUPMm-IpJlAKn5gfPJl35xyj-dibNrpb5yTliVB64bd0CD67n1NMTouBNS-2j7LnqnaHJU18Cn1deCqarqTTXv9PRKpmXqYASkyq_JKCcSILQjaoZERbAf8GWZ0yFvcs2bKZN_3JsWODq-h-5OPBIf1fXfR7fi8ADdrpUlLx-i7yclSTLiqSrEN5KlIANeXuYXWnin3IqBs-JQq9KPeJ3wuV39wJsMYKsNHus9_Yh95tg5qai0D7HFHtAPF23aR-j0-OPXDwsylVUgHqI3QVSytvVcOg_swzlqNe08S62K2nIVgCAkKaRUIlEvexe85oKGLlphVdexwB6jvWE9xKcIx6gYD7Zvg0g8QksG77kIPvWeBSEb9Ha7xeZnVc8w5dabKVMNYsAgphjEqAa9z1bYjczK16UD_MFM_mD-5Q8Neg02nP1jcfTZ5L6WSwlTtr9g0P7WxGY6s6NhXddn_TRNG_Rq9xlOW75CsUNcX9QxDDBfwmKfVI_YTcU0cDtgdA1SM1-ZrWX-ZVgti6I3BKUQVou-Qe-2bvV7XX_fsGf_Y8Oeozs0n4qcpcP20d7m_CK-AKK1cS_LmboCi_woBA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k2gIIO4gdX4FTtcUEFUK0Q5UWlvlp_dRWi3bLaV-u87drKpQgXH2FbsZMb-PnvGMwi9szS0obGeOOUSEckGAqDgSdYVmSwHSM0XnI9_NLMT8W0u58OBWze4Ve7WxLJQh7XPZ-QHnNImR7dq2aezPyRnjcrW1SGFxm10h7K6yS5daq7GM5ZsxRK0He7K1FwfdIBX-U4ZE0QBkFKiJ3hUwvYDyiyyU-RNxnnTcfIv62kBpaMH6P7AJvFhL_6H6FZcPUJ3-_ySl4_Rr-PiKhnxkBvilOSAkAEvLvM9LTzGb8XAXHHoc9N3eJ3wxi5_422GseUWd721vsM-M-3sWlSeP2KLPWAgLhFqn6CTo68_v8zIkFyBeNjDSaKTtbUXynngIM4x2zLqeap1bK3QAWhCUlIpLRPzqnHBt0KyQKOVVlPKA3-K9lbrVXyOcIyai2CbOsgkIjyp4L2QwafG8yBVhd7vfrE562NomGL75tr0AjEgEFMEYnSFPmcpjC1z_OtSsN6cmmE6GRZcI6xnIUYnnFStj7ah0TvNkmMtrdBbkOHkHbPD7yaX1UIp6LK-gEb7OxGbYeZ25lrPKvRmrIY5lw0pdhXX530bDsivYLDPeo0Yu-ItMDzgdRXSE12ZjGVas1ouSlxv2JrC5lo2FfqwU6vrcf37h734_2e8RPdY1vfshcP30d52cx5fAZHautdltlwB_i4diA
  priority: 102
  providerName: ProQuest
– databaseName: SpringerOpen
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagCIkL4k2gIIO4gcX67XArK6oVopyo1JvlJ7sIZVGzReq_Z-xkg0LhwDGOk1iesb7PmZnPCL1yNLZRuUC89pmI7CIBUAik-IrMjgOklgLnk89qdSo-nsmzUSan1MLM4vfcvO0BYEoRGBNEA_JRYq6jG4DBpqRvLdVy-p9SIlaCtmNdzN8fnWFPlegHRFmXBMir7PJqkuQfkdIKQMd30O2ROeKjwdR30bXU3UM3h7MkL--jbyc1LTLh8RyIr6SIP0a8viw1WXjSasXAUnEczqHv8Tbjc7f5jncFsjY73A-R-R6HwqpLGlG9focdDoB3uKrRPkCnxx--LFdkPEiBBNivSWKyc4sgtA_AN7xnrmU08LwwqXXCRKAEWUutjcwsaOVjaIVkkSYnnaGUR_4QHXTbLj1GOCXDRXRqEWUWCa50DEHIGLIKPErdoNf7KbY_Br0MW-Pc3NjBIBYMYqtBrGnQ-2KFqWfRuq4N4AJ2XDqWRa-ECyym5IWXug3JKZqCNyx71tIGvQQbzt6xOvpkS9tCaA2fXPyETod7E9txlfaWU6qKYlrLGvRiug3rqwRNXJe2F0MfDiivYbCPBo-YPsVbYHPA4RpkZr4yG8v8TrdZVw1v2IbCRlqqBr3Zu9Xvcf17wp78X_en6BYr_l8ycPghOtidX6RnQKJ2_nldPb8Ad70WmA
  priority: 102
  providerName: Springer Nature
Title Machine learning-aided hybrid technique for dynamics of rail transit stations classification: a case study
URI https://link.springer.com/article/10.1038/s41598-024-75541-8
https://www.ncbi.nlm.nih.gov/pubmed/39397065
https://www.proquest.com/docview/3116046392
https://www.proquest.com/docview/3116336278
https://hal.science/hal-04775980
https://pubmed.ncbi.nlm.nih.gov/PMC11471756
https://doaj.org/article/2db64ac2deeb4b579cea61ecb82fb291
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELbaIiQuiDcLJTKIG2yzfq13ubVRqwiRqkJUys3yswlqN1WSIvXfM_buhoaKC0fvWrG1842-cTzzDUIfNXG1K7XNjTQh50G7HEjB5hErImgGlBoLnCen5ficf52K6Q4q-1qYlLRvzfygubw6aOazlFt5fWWHfZ7Y8GwyghgeTiGiHO6iXUDonTN6q-hNa07qrkKmYNVwBSwVK8kozyXQJ8ljlz5WAxUXkVTuEFLS7QeamcWsyPsh5_3Myb-uTxMrnTxBj7twEh-2236KdnzzDD1sG0zePkc_JylX0uOuOcRFHhUhHZ7dxkItvBFwxRC6Ytc2p1_hRcBLPb_E68hj8zVetdf1K2xjqB1zi9L4C9bYAgniJFH7Ap2fHP8YjfOuu0Ju4RAn8ipoXVgujYUgxBiqa0osC0Xla80rB3FCkELKSgRqZWmcrbmgjngtdEUIc-wl2msWjX-NsPcV406XhROBexhJZy0XzobSMidkhj71n1hdtyIaKl1-s0q1tlFgG5Vso6oMHUUrbGZGAez0YLG8UB0MFHWm5NpS573hRsjael0Sb01Fg6E1ydAHsOHWb4wPv6n4rOBSwpLFL5i035tYda67UoyQMsqo1TRD7zevweniTYpu_OKmncOA-iVs9lWLiM1SPa4yVG1hZWsv228A50nYu8d1hj73sPqzr39_sDf_v9Jb9IhGt4gpOmwf7a2XN_4dRFlrMwDXmsoBenB0fHr2HUajcjRI_1gMkrv9BpauK0o
link.rule.ids 230,315,730,783,787,867,888,2109,12068,21400,27936,27937,31731,31732,33756,33757,41132,42201,43322,43817,51588,53804,53806,74073,74630
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCMEF8SyBAgZxA6vxK3a4oIKoFtjtqZV6s_zsLkK7ZbNF6r9n7GS3Wio4JrESJzPO99kz_gaht5aGNjTWE6dcIiLZQAAUPMm-IpPlAKl5g_PkqBmdiG-n8nRYcOuGtMr1P7H8qMPC5zXyfU5pk9WtWvbx_BfJVaNydHUooXET3co6XLmCgTpVmzWWHMUStB32ytRc73eAV3lPGRNEAZBSorfwqMj2A8pMc1LkdcZ5PXHyr-hpAaXD--jewCbxQW_-B-hGnD9Et_v6kpeP0I9JSZWMeKgNcUayIGTA08u8Twtv9FsxMFcc-tr0HV4kvLSzn3iVYWy2wl0fre-wz0w7pxaV4w_YYg8YiItC7WN0cvjl-POIDMUViIc5nCQ6WVt7oZwHDuIcsy2jnqdax9YKHYAmJCWV0jIxrxoXfCskCzRaaTWlPPAnaGe-mMenCMeouQi2qYNMIsKRCt4LGXxqPA9SVejd-hOb815Dw5TYN9emN4gBg5hiEKMr9ClbYdMy61-XE4vlmRmGk2HBNcJ6FmJ0wknV-mgbGr3TLDnW0gq9ARtu3WN0MDb5XC2UgkfWv6HR3trEZhi5nbnyswq93lyGMZcDKXYeFxd9Gw7Ir6Czu71HbB7FW2B4wOsqpLd8Zasv21fms2nR9YapKUyuZVOh92u3uurXvz_Ys_-_xit0Z3Q8GZvx16Pvz9Fdln0_Z-TwPbSzWl7EF0CqVu5lGTl_AHj4IG8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELegE4gXxOcIDDCIN7Aax3bs8II2WFVgmybEpL1Z_lyLUDuaDmn_PefE7VQmeIxjJU7uzr-ffec7hN4Y6htfG0estJHwaDwBUHAk6YqIhgGkpgPOh0f1-IR_ORWnOf6pzWGVqzmxm6j93KU98iGjtE7ZrZpqGHNYxPGn0YfzXyRVkEqe1lxO4ybaktCvHKCtvf2j42_rHZfk0-K0ySdnSqaGLaBXOmFWcSIBVilRG-jUJfEHzJmkEMnr_PN6GOVfvtQOokb30N3MLfFurwz30Y0we4Bu9dUmLx-iH4dd4GTAuVLEGUnpIT2eXKZTW3idzRUDj8W-r1Tf4nnECzP9iZcJ1KZL3Pa--xa7xLtToFF3_R4b7AARcZev9hE6Ge1__zgmudQCcbCiE0RFY0rHpXXASKytTFNRx2KpQmO48kAaohRSKhErJ2vrXcNF5WkwwihKmWeP0WA2n4UnCIegGPemLr2IPMCV9M5x4V2sHfNCFujt6hfr8z6jhu484UzpXiAaBKI7gWhVoL0khXXPlA27a5gvznQ2Ll15W3PjKh-C5VbIxgVT0-CsqqKtGlqg1yDDjWeMdw90aiu5lPDK8jd02lmJWGc7bvWV1hXo1fo2WGByq5hZmF_0fRjwAAmD3e41Yv0q1gDfA5ZXILWhKxtj2bwzm066LN-wUIWltqgL9G6lVlfj-vcPe_r_z3iJboPZ6IPPR1-foTtVUv0UnsN20GC5uAjPgWEt7YtsOn8A-QUmDA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning-aided+hybrid+technique+for+dynamics+of+rail+transit+stations+classification%3A+a+case+study&rft.jtitle=Scientific+reports&rft.au=Amini+Pishro%2C+Ahad&rft.au=Zhang%2C+Shiquan&rft.au=L%E2%80%99Hostis%2C+Alain&rft.au=Liu%2C+Yuetong&rft.date=2024-10-13&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=23929&rft_id=info:doi/10.1038%2Fs41598-024-75541-8&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon