Machine learning-aided hybrid technique for dynamics of rail transit stations classification: a case study
Accurate classification of rail transit stations is crucial for successful Transit-Oriented Development (TOD) and sustainable urban growth. This paper introduces a novel classification model integrating traditional methodologies with advanced machine learning algorithms. By employing mathematical mo...
Saved in:
Published in | Scientific reports Vol. 14; no. 1; pp. 23929 - 30 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
13.10.2024
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Accurate classification of rail transit stations is crucial for successful Transit-Oriented Development (TOD) and sustainable urban growth. This paper introduces a novel classification model integrating traditional methodologies with advanced machine learning algorithms. By employing mathematical models, clustering methods, and neural network techniques, the model enhances the precision of station classification, allowing for a refined evaluation of station attributes. A comprehensive case study on the Chengdu rail transit network validates the model’s efficacy, highlighting its value in optimizing TOD strategies and guiding decision-making processes for urban planners and policymakers. The study employs several regression models trained on existing data to generate accurate ridership forecasts, and data clustering using mathematical algorithms reveals distinct categories of stations. Evaluation metrics confirm the rationality and accuracy of the results. Additionally, a neural network achieving high accuracy on labeled data enhances the model’s predictive capabilities for unlabeled instances. The research demonstrates high accuracy, with the Mean Squared Error (MSE) for regression models (Multiple Linear Regression (MLR), Deep-Learning Neural Network (DNN), and K-Nearest Neighbor (KNN)) remaining below 0.012, while the neural networks used for station classification achieve 100% accuracy across seven time intervals and 98.15% accuracy for the eighth, ensuring reliable ridership forecasts and classification outcomes. Accuracy in rail transit station classification is critical, as it not only strengthens the model’s predictive capabilities but also ensures more reliable data-driven decisions for transit planning and development, allowing for more precise ridership forecasts and evidence-based strategies for optimizing TOD. This classification model provides stakeholders with valuable insights into the dynamics and features of rail transit stations, supporting sustainable urban development planning. |
---|---|
AbstractList | Abstract Accurate classification of rail transit stations is crucial for successful Transit-Oriented Development (TOD) and sustainable urban growth. This paper introduces a novel classification model integrating traditional methodologies with advanced machine learning algorithms. By employing mathematical models, clustering methods, and neural network techniques, the model enhances the precision of station classification, allowing for a refined evaluation of station attributes. A comprehensive case study on the Chengdu rail transit network validates the model’s efficacy, highlighting its value in optimizing TOD strategies and guiding decision-making processes for urban planners and policymakers. The study employs several regression models trained on existing data to generate accurate ridership forecasts, and data clustering using mathematical algorithms reveals distinct categories of stations. Evaluation metrics confirm the rationality and accuracy of the results. Additionally, a neural network achieving high accuracy on labeled data enhances the model’s predictive capabilities for unlabeled instances. The research demonstrates high accuracy, with the Mean Squared Error (MSE) for regression models (Multiple Linear Regression (MLR), Deep-Learning Neural Network (DNN), and K-Nearest Neighbor (KNN)) remaining below 0.012, while the neural networks used for station classification achieve 100% accuracy across seven time intervals and 98.15% accuracy for the eighth, ensuring reliable ridership forecasts and classification outcomes. Accuracy in rail transit station classification is critical, as it not only strengthens the model’s predictive capabilities but also ensures more reliable data-driven decisions for transit planning and development, allowing for more precise ridership forecasts and evidence-based strategies for optimizing TOD. This classification model provides stakeholders with valuable insights into the dynamics and features of rail transit stations, supporting sustainable urban development planning. Accurate classification of rail transit stations is crucial for successful Transit-Oriented Development (TOD) and sustainable urban growth. This paper introduces a novel classification model integrating traditional methodologies with advanced machine learning algorithms. By employing mathematical models, clustering methods, and neural network techniques, the model enhances the precision of station classification, allowing for a refined evaluation of station attributes. A comprehensive case study on the Chengdu rail transit network validates the model's efficacy, highlighting its value in optimizing TOD strategies and guiding decision-making processes for urban planners and policymakers. The study employs several regression models trained on existing data to generate accurate ridership forecasts, and data clustering using mathematical algorithms reveals distinct categories of stations. Evaluation metrics confirm the rationality and accuracy of the results. Additionally, a neural network achieving high accuracy on labeled data enhances the model's predictive capabilities for unlabeled instances. The research demonstrates high accuracy, with the Mean Squared Error (MSE) for regression models (Multiple Linear Regression (MLR), Deep-Learning Neural Network (DNN), and K-Nearest Neighbor (KNN)) remaining below 0.012, while the neural networks used for station classification achieve 100% accuracy across seven time intervals and 98.15% accuracy for the eighth, ensuring reliable ridership forecasts and classification outcomes. Accuracy in rail transit station classification is critical, as it not only strengthens the model's predictive capabilities but also ensures more reliable data-driven decisions for transit planning and development, allowing for more precise ridership forecasts and evidence-based strategies for optimizing TOD. This classification model provides stakeholders with valuable insights into the dynamics and features of rail transit stations, supporting sustainable urban development planning. Accurate classification of rail transit stations is crucial for successful Transit-Oriented Development (TOD) and sustainable urban growth. This paper introduces a novel classification model integrating traditional methodologies with advanced machine learning algorithms. By employing mathematical models, clustering methods, and neural network techniques, the model enhances the precision of station classification, allowing for a refined evaluation of station attributes. A comprehensive case study on the Chengdu rail transit network validates the model's efficacy, highlighting its value in optimizing TOD strategies and guiding decision-making processes for urban planners and policymakers. The study employs several regression models trained on existing data to generate accurate ridership forecasts, and data clustering using mathematical algorithms reveals distinct categories of stations. Evaluation metrics confirm the rationality and accuracy of the results. Additionally, a neural network achieving high accuracy on labeled data enhances the model's predictive capabilities for unlabeled instances. The research demonstrates high accuracy, with the Mean Squared Error (MSE) for regression models (Multiple Linear Regression (MLR), Deep-Learning Neural Network (DNN), and K-Nearest Neighbor (KNN)) remaining below 0.012, while the neural networks used for station classification achieve 100% accuracy across seven time intervals and 98.15% accuracy for the eighth, ensuring reliable ridership forecasts and classification outcomes. Accuracy in rail transit station classification is critical, as it not only strengthens the model's predictive capabilities but also ensures more reliable data-driven decisions for transit planning and development, allowing for more precise ridership forecasts and evidence-based strategies for optimizing TOD. This classification model provides stakeholders with valuable insights into the dynamics and features of rail transit stations, supporting sustainable urban development planning.Accurate classification of rail transit stations is crucial for successful Transit-Oriented Development (TOD) and sustainable urban growth. This paper introduces a novel classification model integrating traditional methodologies with advanced machine learning algorithms. By employing mathematical models, clustering methods, and neural network techniques, the model enhances the precision of station classification, allowing for a refined evaluation of station attributes. A comprehensive case study on the Chengdu rail transit network validates the model's efficacy, highlighting its value in optimizing TOD strategies and guiding decision-making processes for urban planners and policymakers. The study employs several regression models trained on existing data to generate accurate ridership forecasts, and data clustering using mathematical algorithms reveals distinct categories of stations. Evaluation metrics confirm the rationality and accuracy of the results. Additionally, a neural network achieving high accuracy on labeled data enhances the model's predictive capabilities for unlabeled instances. The research demonstrates high accuracy, with the Mean Squared Error (MSE) for regression models (Multiple Linear Regression (MLR), Deep-Learning Neural Network (DNN), and K-Nearest Neighbor (KNN)) remaining below 0.012, while the neural networks used for station classification achieve 100% accuracy across seven time intervals and 98.15% accuracy for the eighth, ensuring reliable ridership forecasts and classification outcomes. Accuracy in rail transit station classification is critical, as it not only strengthens the model's predictive capabilities but also ensures more reliable data-driven decisions for transit planning and development, allowing for more precise ridership forecasts and evidence-based strategies for optimizing TOD. This classification model provides stakeholders with valuable insights into the dynamics and features of rail transit stations, supporting sustainable urban development planning. |
ArticleNumber | 23929 |
Author | Zhang, Shiquan Zhang, Zhengrui Rahman, Ali L’Hostis, Alain Hu, Qixiao Hejazi, Farzad Liu, Yuetong Shahpasand, Maryam Oueslati, Abdelbacet Amini Pishro, Ahad |
Author_xml | – sequence: 1 givenname: Ahad surname: Amini Pishro fullname: Amini Pishro, Ahad organization: School of Civil Engineering, Sichuan University of Science and Engineering, Univ. Gustave Eiffel, Ecole des Ponts, LVMT – sequence: 2 givenname: Shiquan surname: Zhang fullname: Zhang, Shiquan organization: School of Mathematics, Sichuan University – sequence: 3 givenname: Alain surname: L’Hostis fullname: L’Hostis, Alain organization: Univ. Gustave Eiffel, Ecole des Ponts, LVMT – sequence: 4 givenname: Yuetong surname: Liu fullname: Liu, Yuetong email: liuyuetong@stu.scu.edu.cn organization: School of Mathematics, Sichuan University – sequence: 5 givenname: Qixiao surname: Hu fullname: Hu, Qixiao organization: School of Mathematics, Sichuan University – sequence: 6 givenname: Farzad surname: Hejazi fullname: Hejazi, Farzad organization: School of Environment and Technology, University of the West of England – sequence: 7 givenname: Maryam surname: Shahpasand fullname: Shahpasand, Maryam organization: Staffordshire University London – sequence: 8 givenname: Ali surname: Rahman fullname: Rahman, Ali organization: School of Civil Engineering, Faculty of Engineering and Physical Sciences, University of Leeds – sequence: 9 givenname: Abdelbacet surname: Oueslati fullname: Oueslati, Abdelbacet organization: Univ. Lille, CNRS, Centrale Lille, UMR 9013 - LaMcube - Laboratoire de mécanique, multiphysique, multiéchelle – sequence: 10 givenname: Zhengrui surname: Zhang fullname: Zhang, Zhengrui organization: School of Civil Engineering, Sichuan University of Science and Engineering |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39397065$$D View this record in MEDLINE/PubMed https://hal.science/hal-04775980$$DView record in HAL |
BookMark | eNp9kstuEzEUhkeoiJbSF2CBLLGBxYCv4zEbVFWUVgpiA2vr-DKJo4ld7EmlvD1Opi1tF3jjy_n9HZ_j_3VzFFP0TfOW4E8Es_5z4USovsWUt1IITtr-RXNCMRctZZQePVofN2elrHEdgipO1KvmmCmmJO7ESbP-AXYVokejhxxDXLYQnHdotTM5ODR5u4rhz9ajIWXkdhE2wRaUBpQhjGjKEEuYUJlgCikWZEcoJQzBHvZfECALxdf41u3eNC8HGIs_u5tPm9-X335dXLWLn9-vL84XreVYirYfALDl0thO9MZQUJRYNuDeK-C9U5gMUkjZi4Fa2RlnFRfUEQ8CekKYY6fN9cx1Cdb6JocN5J1OEPThIOWlhjwFO3pNnek4WOq8N9wIqayHjnhrejoYqkhlfZ1ZN1uz8c76WEsen0CfRmJY6WW61YRwSaToKuHjTFg9u3d1vtD7M8ylrD-Jb_fZPtxly6n2vEx6E4r14wjRp23RjJCOsY7KvkrfP5Ou0zbH2teDCvOOKVpVdFbZnErJfnh4AcF6byM920hXG-mDjfQe_e5xzQ9X7k1TBWwWlBqKS5__5f4P9i8LddV9 |
Cites_doi | 10.1007/s11042-023-14388-z 10.1016/j.trd.2020.102390 10.1088/1755-1315/46/1/012017 10.1002/widm.53 10.1016/j.jrtpm.2022.100341 10.1016/j.jtrangeo.2020.102939 10.1007/s40864-021-00153-8 10.3389/fpubh.2022.820694 10.1016/j.foar.2021.03.005 10.1016/j.jtrangeo.2022.103308 10.1016/j.istruc.2022.10.053 10.1016/j.istruc.2024.106162 10.1016/j.trd.2020.102518 10.5198/jtlu.v4i1.145 10.1016/j.trc.2020.102928 10.1016/j.ins.2021.02.036 10.3390/ma15093213 10.3390/su15021718 10.1007/978-3-319-77682-8_17 10.1016/j.heliyon.2018.e00938 10.1016/j.jtrangeo.2022.103455 10.1016/j.tbs.2024.100792 10.1016/j.patcog.2006.12.019 10.3390/electronics9081295 10.1016/j.jtrangeo.2022.103299 10.3390/buildings13081944 10.3390/ma15144852 10.1145/3068335 10.1016/j.conbuildmat.2020.119942 10.1038/s41598-021-94480-2 10.1016/j.jtrangeo.2010.08.008 10.1016/j.tra.2022.08.006 10.1109/FSKD.2009.788 10.1016/j.jtrangeo.2023.103568 10.1038/s41598-022-20209-4 10.1016/j.apgeog.2022.102862 10.1016/j.ijpe.2020.107920 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Attribution The Author(s) 2024 2024 |
Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Attribution – notice: The Author(s) 2024 2024 |
DBID | C6C NPM AAYXX CITATION 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PIMPY PQEST PQQKQ PQUKI PRINS Q9U 7X8 1XC BXJBU 5PM DOA |
DOI | 10.1038/s41598-024-75541-8 |
DatabaseName | SpringerOpen PubMed CrossRef ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) ProQuest Science Journals Biological Science Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic Hyper Article en Ligne (HAL) HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | PubMed CrossRef Publicly Available Content Database ProQuest Central Student ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 30 |
ExternalDocumentID | oai_doaj_org_article_2db64ac2deeb4b579cea61ecb82fb291 oai_HAL_hal_04775980v1 10_1038_s41598_024_75541_8 39397065 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Science and Technology Department of Sichuan Province grantid: 2022YFWZ0010 funderid: http://dx.doi.org/10.13039/501100004829 – fundername: Bridge Non-destructive Testing (NDT) and Engineering Computation Sichuan Provincial University Key Laboratory grantid: 2022QYY01 – fundername: The Key Laboratory of Colleges and Universities in Sichuan Province grantid: 2020QYJ01 – fundername: Science and Technology Department of Sichuan Province grantid: 2022YFWZ0010 |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ADBBV ADRAZ AENEX AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RIG RNT RNTTT RPM SNYQT UKHRP NPM AAYXX CITATION 7XB 8FK K9. M48 PQEST PQUKI PRINS Q9U 7X8 1XC BXJBU 5PM |
ID | FETCH-LOGICAL-c4075-8faa0c47bc658bb2a921c3f08e9a48d901f757785f2c76bdc9452d1ea5a8113d3 |
IEDL.DBID | RPM |
ISSN | 2045-2322 |
IngestDate | Mon Oct 21 19:33:07 EDT 2024 Tue Oct 15 05:35:14 EDT 2024 Wed Nov 13 07:13:29 EST 2024 Thu Oct 17 16:37:05 EDT 2024 Mon Oct 14 04:41:50 EDT 2024 Wed Oct 23 14:20:07 EDT 2024 Sat Nov 02 12:03:20 EDT 2024 Mon Oct 14 03:43:33 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Rail Transit Station Classification Regression models Transit Oriented Development Clustering methods Machine Learning algorithms |
Language | English |
License | 2024. The Author(s). Attribution: http://creativecommons.org/licenses/by Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4075-8faa0c47bc658bb2a921c3f08e9a48d901f757785f2c76bdc9452d1ea5a8113d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-2334-4127 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11471756/ |
PMID | 39397065 |
PQID | 3116046392 |
PQPubID | 2041939 |
PageCount | 30 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2db64ac2deeb4b579cea61ecb82fb291 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11471756 hal_primary_oai_HAL_hal_04775980v1 proquest_miscellaneous_3116336278 proquest_journals_3116046392 crossref_primary_10_1038_s41598_024_75541_8 pubmed_primary_39397065 springer_journals_10_1038_s41598_024_75541_8 |
PublicationCentury | 2000 |
PublicationDate | 2024-10-13 |
PublicationDateYYYYMMDD | 2024-10-13 |
PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-13 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Shiliang Su, Zhang, Wang, Weng, Kang (CR2) 2021; 90 Chorus, Bertolini (CR20) 2011; 4 Liu Yang, Song (CR31) 2021; 7 Yibin Ren, Chen, Han, Zheng (CR11) 2016; 46 Abiodun, Jantan, Omolara (CR13) 2018; 4 CR19 Fionn Murtagh, Contreras (CR8) 2011 CR17 CR16 Xin Yang (CR35) 2021; 566 CR37 Jingru Huang, Chen, Xu, Chen, Hu (CR30) 2022; 24 CR34 CR10 Pishro (CR27) 2022; 46 Zhenyu Mei, Gong, Feng, Kong, Zhu (CR12) 2024; 36 Shiliang Su, Wang, Li, Kang (CR33) 2022; 104 Zhejing Cao, Asakura (CR18) 2020; 87 Papa, Carpentieri, Angiello, Papa, Fistola, Gargiulo (CR32) 2018 Shiliang Su, Zhao, Zhou, Li, Kang (CR15) 2022; 100 AlKhereibi, Wakjira, Kucukvar, Onat (CR14) 2023; 15 Zhang, Che, Chen, Ma, He (CR36) 2021; 124 CR4 CR3 Zhang, Zhi-Hua Zhou (CR38) 2007; 40 CR6 Ningning Dong (CR5) 2024; 83 CR7 CR28 CR25 CR24 CR23 CR22 Qiang, Zhang, Huang (CR9) 2022; 10 Pishro (CR26) 2024; 62 Bojing Liao, Pauline, van den Berg, van Wesemael, Arentze (CR1) 2020; 85 Shaofei Niu, Shen, Huang, Mou (CR21) 2021; 10 Pishro (CR29) 2022; 15 P Fionn Murtagh (75541_CR8) 2011 G Yibin Ren (75541_CR11) 2016; 46 Q Xin Yang (75541_CR35) 2021; 566 C Shiliang Su (75541_CR15) 2022; 100 AA Pishro (75541_CR29) 2022; 15 75541_CR28 Z Shiliang Su (75541_CR33) 2022; 104 OI Abiodun (75541_CR13) 2018; 4 75541_CR37 75541_CR16 J Zhenyu Mei (75541_CR12) 2024; 36 75541_CR10 P Chorus (75541_CR20) 2011; 4 X Liu Yang (75541_CR31) 2021; 7 AA Pishro (75541_CR26) 2024; 62 75541_CR34 Y Zhejing Cao (75541_CR18) 2020; 87 J Zhang (75541_CR36) 2021; 124 A Shaofei Niu (75541_CR21) 2021; 10 EW Bojing Liao, Pauline (75541_CR1) 2020; 85 D Qiang (75541_CR9) 2022; 10 AA Pishro (75541_CR27) 2022; 46 75541_CR7 ML Zhang (75541_CR38) 2007; 40 75541_CR6 75541_CR17 75541_CR4 75541_CR3 75541_CR19 H Shiliang Su (75541_CR2) 2021; 90 S Jingru Huang (75541_CR30) 2022; 24 E Papa (75541_CR32) 2018 75541_CR24 75541_CR25 T Ningning Dong (75541_CR5) 2024; 83 75541_CR22 75541_CR23 AH AlKhereibi (75541_CR14) 2023; 15 |
References_xml | – volume: 83 start-page: 61621 year: 2024 end-page: 61643 ident: CR5 article-title: A method for short-term passenger flow prediction in urban rail transit based on deep learning publication-title: Multimedia Tools Appl. doi: 10.1007/s11042-023-14388-z contributor: fullname: Ningning Dong – ident: CR22 – volume: 85 start-page: 102390 year: 2020 ident: CR1 article-title: Empirical analysis of walkability using data from the Netherlands publication-title: Transp. Res. Part D doi: 10.1016/j.trd.2020.102390 contributor: fullname: Arentze – volume: 46 start-page: 012017 year: 2016 ident: CR11 article-title: Extracting potential bus lines of Customized City Bus Service based on public transport big data publication-title: IOP Conf. Series: Earth Environ. Sci. doi: 10.1088/1755-1315/46/1/012017 contributor: fullname: Zheng – year: 2011 ident: CR8 article-title: Algorithms for hierarchical clustering: an overview publication-title: WIREs Data Min. Knowl. Discov doi: 10.1002/widm.53 contributor: fullname: Contreras – ident: CR4 – ident: CR16 – ident: CR37 – volume: 24 start-page: 100341 year: 2022 ident: CR30 article-title: Relationship between built environment characteristics of TOD and subway ridership: a causal inference and regression analysis of the Beijing subway publication-title: J. Rail Transp. Plann. Manage. doi: 10.1016/j.jrtpm.2022.100341 contributor: fullname: Hu – volume: 90 start-page: 102939 year: 2021 ident: CR2 article-title: Transit-oriented development (TOD) typologies around metro station areas in urban China: a comparative analysis of five typical megacities for planning implications publication-title: J. Transp. Geogr. doi: 10.1016/j.jtrangeo.2020.102939 contributor: fullname: Kang – ident: CR10 – volume: 7 start-page: 240 issue: 3 year: 2021 end-page: 255 ident: CR31 article-title: TOD Typology based on Urban Renewal: a classification of Metro Stations for Ningbo City publication-title: Urban Rail Transit. doi: 10.1007/s40864-021-00153-8 contributor: fullname: Song – ident: CR6 – volume: 10 start-page: 820694 year: 2022 ident: CR9 article-title: Quantitative evaluation of TOD Performance based on Multi-source Data: a case study of Shanghai publication-title: Front. Public. Health doi: 10.3389/fpubh.2022.820694 contributor: fullname: Huang – volume: 10 start-page: 652e668 year: 2021 ident: CR21 article-title: Measuring the built environment of green transit-oriented development: a factor-cluster analysis of rail station areas in Singapore publication-title: Front. Architectural Res. doi: 10.1016/j.foar.2021.03.005 contributor: fullname: Mou – volume: 100 start-page: 103308 year: 2022 ident: CR15 article-title: Unraveling the relative contribution of TOD structural factors to Metro ridership: a novel localized modeling approach with implications on spatial planning publication-title: J. Transp. Geogr. doi: 10.1016/j.jtrangeo.2022.103308 contributor: fullname: Kang – volume: 46 start-page: 570 year: 2022 end-page: 597 ident: CR27 article-title: Siti Jahara Matlan; UHPC-PINN-Parallel Micro element system for the local bond stress–slip model subjected to monotonic loading publication-title: Structures doi: 10.1016/j.istruc.2022.10.053 contributor: fullname: Pishro – ident: CR25 – volume: 62 start-page: 106162 year: 2024 ident: CR26 article-title: Yuandi Zhao; advancing ultimate bond stress–slip model of UHPC structures through a novel hybrid machine learning approach publication-title: Structures doi: 10.1016/j.istruc.2024.106162 contributor: fullname: Pishro – volume: 87 start-page: 102518 year: 2020 ident: CR18 article-title: Coordination between node, place, and ridership: comparing three transit operators in Tokyo publication-title: Transp. Res. Part D doi: 10.1016/j.trd.2020.102518 contributor: fullname: Asakura – ident: CR23 – ident: CR19 – volume: 4 start-page: 45 issue: 1 year: 2011 end-page: 58 ident: CR20 article-title: An application of the node place model to explore the spatial development dynamics of station areas in Tokyo publication-title: J. Transp. Land. Use doi: 10.5198/jtlu.v4i1.145 contributor: fullname: Bertolini – volume: 124 start-page: 102928 year: 2021 ident: CR36 article-title: Short-term origin-destination demand prediction in urban rail transit systems: a channel-wise attentive split-convolutional neural network method publication-title: Transp. Res. Part C doi: 10.1016/j.trc.2020.102928 contributor: fullname: He – ident: CR3 – volume: 566 start-page: 347 year: 2021 end-page: 363 ident: CR35 article-title: A novel prediction model for the inbound passenger flow of urban rail transit publication-title: Inf. Sci. doi: 10.1016/j.ins.2021.02.036 contributor: fullname: Xin Yang – volume: 15 start-page: 3213 year: 2022 ident: CR29 article-title: Victor Postel; structural behavior of FRP-Retrofitted RC beams under combined torsion and bending publication-title: Materials doi: 10.3390/ma15093213 contributor: fullname: Pishro – volume: 15 start-page: 1718 year: 2023 ident: CR14 article-title: Predictive Machine Learning Algorithms for Metro Ridership based on Urban Land Use policies in support of transit-oriented development publication-title: Sustainability doi: 10.3390/su15021718 contributor: fullname: Onat – year: 2018 ident: CR32 article-title: A TOD classification of Metro stations: an application in Naples publication-title: Smart Planning: Sustainability and Mobility in the Age of Change. Green Energy and Technology doi: 10.1007/978-3-319-77682-8_17 contributor: fullname: Gargiulo – ident: CR17 – volume: 4 start-page: e00938 year: 2018 ident: CR13 article-title: Kemi Victoria Dada, Nachaat AbdElatif Mohamed, Humaira Arshad. State-of-theart in artificial neural network applications: a survey publication-title: Heliyon doi: 10.1016/j.heliyon.2018.e00938 contributor: fullname: Omolara – ident: CR34 – volume: 104 start-page: 103455 year: 2022 ident: CR33 article-title: Deciphering the influence of TOD on Metro ridership: an integrated approach of extended node-place model and interpretable machine learning with planning implications publication-title: J. Transp. Geogr. Volume doi: 10.1016/j.jtrangeo.2022.103455 contributor: fullname: Kang – ident: CR7 – volume: 36 start-page: 100792 year: 2024 ident: CR12 article-title: Assessment of carbon emissions from TOD subway first/last mile trips based on level classification publication-title: Travel Behav. Soc. doi: 10.1016/j.tbs.2024.100792 contributor: fullname: Zhu – ident: CR28 – ident: CR24 – volume: 40 start-page: 2038 year: 2007 end-page: 2048 ident: CR38 article-title: ML-KNN:Alazy learning approach to multi-label learning publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2006.12.019 contributor: fullname: Zhi-Hua Zhou – volume: 36 start-page: 100792 year: 2024 ident: 75541_CR12 publication-title: Travel Behav. Soc. doi: 10.1016/j.tbs.2024.100792 contributor: fullname: J Zhenyu Mei – ident: 75541_CR4 doi: 10.3390/electronics9081295 – volume: 15 start-page: 3213 year: 2022 ident: 75541_CR29 publication-title: Materials doi: 10.3390/ma15093213 contributor: fullname: AA Pishro – ident: 75541_CR23 doi: 10.1016/j.jtrangeo.2022.103299 – ident: 75541_CR7 doi: 10.1016/j.foar.2021.03.005 – ident: 75541_CR16 doi: 10.3390/buildings13081944 – year: 2011 ident: 75541_CR8 publication-title: WIREs Data Min. Knowl. Discov doi: 10.1002/widm.53 contributor: fullname: P Fionn Murtagh – volume: 7 start-page: 240 issue: 3 year: 2021 ident: 75541_CR31 publication-title: Urban Rail Transit. doi: 10.1007/s40864-021-00153-8 contributor: fullname: X Liu Yang – volume: 4 start-page: 45 issue: 1 year: 2011 ident: 75541_CR20 publication-title: J. Transp. Land. Use doi: 10.5198/jtlu.v4i1.145 contributor: fullname: P Chorus – volume: 10 start-page: 820694 year: 2022 ident: 75541_CR9 publication-title: Front. Public. Health doi: 10.3389/fpubh.2022.820694 contributor: fullname: D Qiang – ident: 75541_CR28 doi: 10.3390/ma15144852 – volume: 85 start-page: 102390 year: 2020 ident: 75541_CR1 publication-title: Transp. Res. Part D doi: 10.1016/j.trd.2020.102390 contributor: fullname: EW Bojing Liao, Pauline – ident: 75541_CR10 doi: 10.1145/3068335 – volume: 4 start-page: e00938 year: 2018 ident: 75541_CR13 publication-title: Heliyon doi: 10.1016/j.heliyon.2018.e00938 contributor: fullname: OI Abiodun – volume: 10 start-page: 652e668 year: 2021 ident: 75541_CR21 publication-title: Front. Architectural Res. doi: 10.1016/j.foar.2021.03.005 contributor: fullname: A Shaofei Niu – ident: 75541_CR25 doi: 10.1016/j.conbuildmat.2020.119942 – volume: 46 start-page: 570 year: 2022 ident: 75541_CR27 publication-title: Structures doi: 10.1016/j.istruc.2022.10.053 contributor: fullname: AA Pishro – volume: 104 start-page: 103455 year: 2022 ident: 75541_CR33 publication-title: J. Transp. Geogr. Volume doi: 10.1016/j.jtrangeo.2022.103455 contributor: fullname: Z Shiliang Su – volume-title: Smart Planning: Sustainability and Mobility in the Age of Change. Green Energy and Technology year: 2018 ident: 75541_CR32 doi: 10.1007/978-3-319-77682-8_17 contributor: fullname: E Papa – ident: 75541_CR24 doi: 10.1038/s41598-021-94480-2 – volume: 566 start-page: 347 year: 2021 ident: 75541_CR35 publication-title: Inf. Sci. doi: 10.1016/j.ins.2021.02.036 contributor: fullname: Q Xin Yang – ident: 75541_CR19 doi: 10.1016/j.jtrangeo.2010.08.008 – volume: 87 start-page: 102518 year: 2020 ident: 75541_CR18 publication-title: Transp. Res. Part D doi: 10.1016/j.trd.2020.102518 contributor: fullname: Y Zhejing Cao – ident: 75541_CR37 doi: 10.1016/j.tra.2022.08.006 – volume: 46 start-page: 012017 year: 2016 ident: 75541_CR11 publication-title: IOP Conf. Series: Earth Environ. Sci. doi: 10.1088/1755-1315/46/1/012017 contributor: fullname: G Yibin Ren – volume: 24 start-page: 100341 year: 2022 ident: 75541_CR30 publication-title: J. Rail Transp. Plann. Manage. doi: 10.1016/j.jrtpm.2022.100341 contributor: fullname: S Jingru Huang – volume: 124 start-page: 102928 year: 2021 ident: 75541_CR36 publication-title: Transp. Res. Part C doi: 10.1016/j.trc.2020.102928 contributor: fullname: J Zhang – ident: 75541_CR6 doi: 10.1109/FSKD.2009.788 – ident: 75541_CR3 doi: 10.1016/j.jtrangeo.2023.103568 – volume: 90 start-page: 102939 year: 2021 ident: 75541_CR2 publication-title: J. Transp. Geogr. doi: 10.1016/j.jtrangeo.2020.102939 contributor: fullname: H Shiliang Su – volume: 15 start-page: 1718 year: 2023 ident: 75541_CR14 publication-title: Sustainability doi: 10.3390/su15021718 contributor: fullname: AH AlKhereibi – volume: 83 start-page: 61621 year: 2024 ident: 75541_CR5 publication-title: Multimedia Tools Appl. doi: 10.1007/s11042-023-14388-z contributor: fullname: T Ningning Dong – volume: 40 start-page: 2038 year: 2007 ident: 75541_CR38 publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2006.12.019 contributor: fullname: ML Zhang – ident: 75541_CR17 doi: 10.1038/s41598-022-20209-4 – ident: 75541_CR22 doi: 10.1016/j.apgeog.2022.102862 – volume: 62 start-page: 106162 year: 2024 ident: 75541_CR26 publication-title: Structures doi: 10.1016/j.istruc.2024.106162 contributor: fullname: AA Pishro – ident: 75541_CR34 doi: 10.1016/j.ijpe.2020.107920 – volume: 100 start-page: 103308 year: 2022 ident: 75541_CR15 publication-title: J. Transp. Geogr. doi: 10.1016/j.jtrangeo.2022.103308 contributor: fullname: C Shiliang Su |
SSID | ssj0000529419 |
Score | 2.4746904 |
Snippet | Accurate classification of rail transit stations is crucial for successful Transit-Oriented Development (TOD) and sustainable urban growth. This paper... Abstract Accurate classification of rail transit stations is crucial for successful Transit-Oriented Development (TOD) and sustainable urban growth. This paper... |
SourceID | doaj pubmedcentral hal proquest crossref pubmed springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 23929 |
SubjectTerms | 639/166/986 639/705/1041 639/705/1042 639/705/531 Accuracy Algorithms Architecture, space management Case studies Classification Clustering methods Decision making Humanities and Social Sciences Learning algorithms Machine learning Machine Learning algorithms Mathematical models multidisciplinary Neural networks Rail Transit Station Classification Regression analysis Regression models Science Science (multidisciplinary) Sustainable development Transit Oriented Development Urban development Urban planning Urban sprawl |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxUxFA5SENyIb0erRHGnoTN5TJLuqlguYl1Z6C7k6b0ic6VzK_Tf9ySZe-1YxI3LZMIk5JzwfYecfAehN7YLOvTWEyddIjzZQAAUPMm-IpJlAKn5gfPJl35xyj-dibNrpb5yTliVB64bd0CD67n1NMTouBNS-2j7LnqnaHJU18Cn1deCqarqTTXv9PRKpmXqYASkyq_JKCcSILQjaoZERbAf8GWZ0yFvcs2bKZN_3JsWODq-h-5OPBIf1fXfR7fi8ADdrpUlLx-i7yclSTLiqSrEN5KlIANeXuYXWnin3IqBs-JQq9KPeJ3wuV39wJsMYKsNHus9_Yh95tg5qai0D7HFHtAPF23aR-j0-OPXDwsylVUgHqI3QVSytvVcOg_swzlqNe08S62K2nIVgCAkKaRUIlEvexe85oKGLlphVdexwB6jvWE9xKcIx6gYD7Zvg0g8QksG77kIPvWeBSEb9Ha7xeZnVc8w5dabKVMNYsAgphjEqAa9z1bYjczK16UD_MFM_mD-5Q8Neg02nP1jcfTZ5L6WSwlTtr9g0P7WxGY6s6NhXddn_TRNG_Rq9xlOW75CsUNcX9QxDDBfwmKfVI_YTcU0cDtgdA1SM1-ZrWX-ZVgti6I3BKUQVou-Qe-2bvV7XX_fsGf_Y8Oeozs0n4qcpcP20d7m_CK-AKK1cS_LmboCi_woBA priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k2gIIO4gdX4FTtcUEFUK0Q5UWlvlp_dRWi3bLaV-u87drKpQgXH2FbsZMb-PnvGMwi9szS0obGeOOUSEckGAqDgSdYVmSwHSM0XnI9_NLMT8W0u58OBWze4Ve7WxLJQh7XPZ-QHnNImR7dq2aezPyRnjcrW1SGFxm10h7K6yS5daq7GM5ZsxRK0He7K1FwfdIBX-U4ZE0QBkFKiJ3hUwvYDyiyyU-RNxnnTcfIv62kBpaMH6P7AJvFhL_6H6FZcPUJ3-_ySl4_Rr-PiKhnxkBvilOSAkAEvLvM9LTzGb8XAXHHoc9N3eJ3wxi5_422GseUWd721vsM-M-3sWlSeP2KLPWAgLhFqn6CTo68_v8zIkFyBeNjDSaKTtbUXynngIM4x2zLqeap1bK3QAWhCUlIpLRPzqnHBt0KyQKOVVlPKA3-K9lbrVXyOcIyai2CbOsgkIjyp4L2QwafG8yBVhd7vfrE562NomGL75tr0AjEgEFMEYnSFPmcpjC1z_OtSsN6cmmE6GRZcI6xnIUYnnFStj7ah0TvNkmMtrdBbkOHkHbPD7yaX1UIp6LK-gEb7OxGbYeZ25lrPKvRmrIY5lw0pdhXX530bDsivYLDPeo0Yu-ItMDzgdRXSE12ZjGVas1ouSlxv2JrC5lo2FfqwU6vrcf37h734_2e8RPdY1vfshcP30d52cx5fAZHautdltlwB_i4diA priority: 102 providerName: ProQuest – databaseName: SpringerOpen dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagCIkL4k2gIIO4gcX67XArK6oVopyo1JvlJ7sIZVGzReq_Z-xkg0LhwDGOk1iesb7PmZnPCL1yNLZRuUC89pmI7CIBUAik-IrMjgOklgLnk89qdSo-nsmzUSan1MLM4vfcvO0BYEoRGBNEA_JRYq6jG4DBpqRvLdVy-p9SIlaCtmNdzN8fnWFPlegHRFmXBMir7PJqkuQfkdIKQMd30O2ROeKjwdR30bXU3UM3h7MkL--jbyc1LTLh8RyIr6SIP0a8viw1WXjSasXAUnEczqHv8Tbjc7f5jncFsjY73A-R-R6HwqpLGlG9focdDoB3uKrRPkCnxx--LFdkPEiBBNivSWKyc4sgtA_AN7xnrmU08LwwqXXCRKAEWUutjcwsaOVjaIVkkSYnnaGUR_4QHXTbLj1GOCXDRXRqEWUWCa50DEHIGLIKPErdoNf7KbY_Br0MW-Pc3NjBIBYMYqtBrGnQ-2KFqWfRuq4N4AJ2XDqWRa-ECyym5IWXug3JKZqCNyx71tIGvQQbzt6xOvpkS9tCaA2fXPyETod7E9txlfaWU6qKYlrLGvRiug3rqwRNXJe2F0MfDiivYbCPBo-YPsVbYHPA4RpkZr4yG8v8TrdZVw1v2IbCRlqqBr3Zu9Xvcf17wp78X_en6BYr_l8ycPghOtidX6RnQKJ2_nldPb8Ad70WmA priority: 102 providerName: Springer Nature |
Title | Machine learning-aided hybrid technique for dynamics of rail transit stations classification: a case study |
URI | https://link.springer.com/article/10.1038/s41598-024-75541-8 https://www.ncbi.nlm.nih.gov/pubmed/39397065 https://www.proquest.com/docview/3116046392 https://www.proquest.com/docview/3116336278 https://hal.science/hal-04775980 https://pubmed.ncbi.nlm.nih.gov/PMC11471756 https://doaj.org/article/2db64ac2deeb4b579cea61ecb82fb291 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELbaIiQuiDcLJTKIG2yzfq13ubVRqwiRqkJUys3yswlqN1WSIvXfM_buhoaKC0fvWrG1842-cTzzDUIfNXG1K7XNjTQh50G7HEjB5hErImgGlBoLnCen5ficf52K6Q4q-1qYlLRvzfygubw6aOazlFt5fWWHfZ7Y8GwyghgeTiGiHO6iXUDonTN6q-hNa07qrkKmYNVwBSwVK8kozyXQJ8ljlz5WAxUXkVTuEFLS7QeamcWsyPsh5_3Myb-uTxMrnTxBj7twEh-2236KdnzzDD1sG0zePkc_JylX0uOuOcRFHhUhHZ7dxkItvBFwxRC6Ytc2p1_hRcBLPb_E68hj8zVetdf1K2xjqB1zi9L4C9bYAgniJFH7Ap2fHP8YjfOuu0Ju4RAn8ipoXVgujYUgxBiqa0osC0Xla80rB3FCkELKSgRqZWmcrbmgjngtdEUIc-wl2msWjX-NsPcV406XhROBexhJZy0XzobSMidkhj71n1hdtyIaKl1-s0q1tlFgG5Vso6oMHUUrbGZGAez0YLG8UB0MFHWm5NpS573hRsjael0Sb01Fg6E1ydAHsOHWb4wPv6n4rOBSwpLFL5i035tYda67UoyQMsqo1TRD7zevweniTYpu_OKmncOA-iVs9lWLiM1SPa4yVG1hZWsv228A50nYu8d1hj73sPqzr39_sDf_v9Jb9IhGt4gpOmwf7a2XN_4dRFlrMwDXmsoBenB0fHr2HUajcjRI_1gMkrv9BpauK0o |
link.rule.ids | 230,315,730,783,787,867,888,2109,12068,21400,27936,27937,31731,31732,33756,33757,41132,42201,43322,43817,51588,53804,53806,74073,74630 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCMEF8SyBAgZxA6vxK3a4oIKoFtjtqZV6s_zsLkK7ZbNF6r9n7GS3Wio4JrESJzPO99kz_gaht5aGNjTWE6dcIiLZQAAUPMm-IpPlAKl5g_PkqBmdiG-n8nRYcOuGtMr1P7H8qMPC5zXyfU5pk9WtWvbx_BfJVaNydHUooXET3co6XLmCgTpVmzWWHMUStB32ytRc73eAV3lPGRNEAZBSorfwqMj2A8pMc1LkdcZ5PXHyr-hpAaXD--jewCbxQW_-B-hGnD9Et_v6kpeP0I9JSZWMeKgNcUayIGTA08u8Twtv9FsxMFcc-tr0HV4kvLSzn3iVYWy2wl0fre-wz0w7pxaV4w_YYg8YiItC7WN0cvjl-POIDMUViIc5nCQ6WVt7oZwHDuIcsy2jnqdax9YKHYAmJCWV0jIxrxoXfCskCzRaaTWlPPAnaGe-mMenCMeouQi2qYNMIsKRCt4LGXxqPA9SVejd-hOb815Dw5TYN9emN4gBg5hiEKMr9ClbYdMy61-XE4vlmRmGk2HBNcJ6FmJ0wknV-mgbGr3TLDnW0gq9ARtu3WN0MDb5XC2UgkfWv6HR3trEZhi5nbnyswq93lyGMZcDKXYeFxd9Gw7Ir6Czu71HbB7FW2B4wOsqpLd8Zasv21fms2nR9YapKUyuZVOh92u3uurXvz_Ys_-_xit0Z3Q8GZvx16Pvz9Fdln0_Z-TwPbSzWl7EF0CqVu5lGTl_AHj4IG8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELegE4gXxOcIDDCIN7Aax3bs8II2WFVgmybEpL1Z_lyLUDuaDmn_PefE7VQmeIxjJU7uzr-ffec7hN4Y6htfG0estJHwaDwBUHAk6YqIhgGkpgPOh0f1-IR_ORWnOf6pzWGVqzmxm6j93KU98iGjtE7ZrZpqGHNYxPGn0YfzXyRVkEqe1lxO4ybaktCvHKCtvf2j42_rHZfk0-K0ySdnSqaGLaBXOmFWcSIBVilRG-jUJfEHzJmkEMnr_PN6GOVfvtQOokb30N3MLfFurwz30Y0we4Bu9dUmLx-iH4dd4GTAuVLEGUnpIT2eXKZTW3idzRUDj8W-r1Tf4nnECzP9iZcJ1KZL3Pa--xa7xLtToFF3_R4b7AARcZev9hE6Ge1__zgmudQCcbCiE0RFY0rHpXXASKytTFNRx2KpQmO48kAaohRSKhErJ2vrXcNF5WkwwihKmWeP0WA2n4UnCIegGPemLr2IPMCV9M5x4V2sHfNCFujt6hfr8z6jhu484UzpXiAaBKI7gWhVoL0khXXPlA27a5gvznQ2Ll15W3PjKh-C5VbIxgVT0-CsqqKtGlqg1yDDjWeMdw90aiu5lPDK8jd02lmJWGc7bvWV1hXo1fo2WGByq5hZmF_0fRjwAAmD3e41Yv0q1gDfA5ZXILWhKxtj2bwzm066LN-wUIWltqgL9G6lVlfj-vcPe_r_z3iJboPZ6IPPR1-foTtVUv0UnsN20GC5uAjPgWEt7YtsOn8A-QUmDA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning-aided+hybrid+technique+for+dynamics+of+rail+transit+stations+classification%3A+a+case+study&rft.jtitle=Scientific+reports&rft.au=Amini+Pishro%2C+Ahad&rft.au=Zhang%2C+Shiquan&rft.au=L%E2%80%99Hostis%2C+Alain&rft.au=Liu%2C+Yuetong&rft.date=2024-10-13&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=23929&rft_id=info:doi/10.1038%2Fs41598-024-75541-8&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |