An Empirical Calibration for Heat‐Balance Sap‐Flow Sensors in Maize
Core Ideas Sap flow errors with heat‐balance sap‐flow sensors are quantified. An empirical equation is established for correcting heat‐balance sap‐flow measurements in maize. Independent tests proved the usefulness of the calibration equation in maize. Sap flow measurements with heat‐balance sap‐flo...
Saved in:
Published in | Agronomy journal Vol. 109; no. 3; pp. 1122 - 1128 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
The American Society of Agronomy, Inc
01.05.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Core Ideas
Sap flow errors with heat‐balance sap‐flow sensors are quantified.
An empirical equation is established for correcting heat‐balance sap‐flow measurements in maize.
Independent tests proved the usefulness of the calibration equation in maize.
Sap flow measurements with heat‐balance sap‐flow (HBSF) sensors are subject to errors due to temperature heterogeneity across the plant stem. Here we develop and evaluate an empirical calibration for HBSF sensors to measure transpiration rates (T) of maize (Zea mays L.). A pot experiment was used to establish an empirical calibration equation relating T determined by a mass balance method and sap flow velocity (V) measured with HBSF sensors. The calibration equation was tested in a field weighing lysimeter study, a pot study from the literature, and an additional dataset where V was measured with HBSF sensors, and T was determined from independent measurements of evapotranspiration and evaporation. In all studies, HBSF sensor measured V overestimated T, and the errors displayed diurnal dynamics: small in the evening and early morning, became larger with increasing T, and reached a maximum when solar irradiance was the largest. A linear calibration equation, T’ = 0.65V + 0.39, was established to convert measured V (g plant−1 h−1) values to corrected transpiration rates T’ (g plant−1 h−1). Using this equation, the largest sap flow error was reduced by 60, 50, and 50% in the lysimeter experiment, pot experiment, and field study, respectively. |
---|---|
AbstractList | Core Ideas
Sap flow errors with heat‐balance sap‐flow sensors are quantified.
An empirical equation is established for correcting heat‐balance sap‐flow measurements in maize.
Independent tests proved the usefulness of the calibration equation in maize.
Sap flow measurements with heat‐balance sap‐flow (HBSF) sensors are subject to errors due to temperature heterogeneity across the plant stem. Here we develop and evaluate an empirical calibration for HBSF sensors to measure transpiration rates (T) of maize (Zea mays L.). A pot experiment was used to establish an empirical calibration equation relating T determined by a mass balance method and sap flow velocity (V) measured with HBSF sensors. The calibration equation was tested in a field weighing lysimeter study, a pot study from the literature, and an additional dataset where V was measured with HBSF sensors, and T was determined from independent measurements of evapotranspiration and evaporation. In all studies, HBSF sensor measured V overestimated T, and the errors displayed diurnal dynamics: small in the evening and early morning, became larger with increasing T, and reached a maximum when solar irradiance was the largest. A linear calibration equation, T’ = 0.65V + 0.39, was established to convert measured V (g plant−1 h−1) values to corrected transpiration rates T’ (g plant−1 h−1). Using this equation, the largest sap flow error was reduced by 60, 50, and 50% in the lysimeter experiment, pot experiment, and field study, respectively. CORE IDEAS: Sap flow errors with heat‐balance sap‐flow sensors are quantified. An empirical equation is established for correcting heat‐balance sap‐flow measurements in maize. Independent tests proved the usefulness of the calibration equation in maize. Sap flow measurements with heat‐balance sap‐flow (HBSF) sensors are subject to errors due to temperature heterogeneity across the plant stem. Here we develop and evaluate an empirical calibration for HBSF sensors to measure transpiration rates (T) of maize (Zea mays L.). A pot experiment was used to establish an empirical calibration equation relating T determined by a mass balance method and sap flow velocity (V) measured with HBSF sensors. The calibration equation was tested in a field weighing lysimeter study, a pot study from the literature, and an additional dataset where V was measured with HBSF sensors, and T was determined from independent measurements of evapotranspiration and evaporation. In all studies, HBSF sensor measured V overestimated T, and the errors displayed diurnal dynamics: small in the evening and early morning, became larger with increasing T, and reached a maximum when solar irradiance was the largest. A linear calibration equation, T’ = 0.65V + 0.39, was established to convert measured V (g plant⁻¹ h⁻¹) values to corrected transpiration rates T’ (g plant⁻¹ h⁻¹). Using this equation, the largest sap flow error was reduced by 60, 50, and 50% in the lysimeter experiment, pot experiment, and field study, respectively. |
Author | Zhang, Xiao Horton, Robert Ren, Tusheng Xiao, Xinhua Wang, Yueyue Heitman, Joshua |
Author_xml | – sequence: 1 givenname: Yueyue surname: Wang fullname: Wang, Yueyue organization: China Agricultural University – sequence: 2 givenname: Xiao surname: Zhang fullname: Zhang, Xiao organization: Chinese Academy of Forestry – sequence: 3 givenname: Xinhua surname: Xiao fullname: Xiao, Xinhua organization: Alabama A&M University – sequence: 4 givenname: Joshua surname: Heitman fullname: Heitman, Joshua organization: North Carolina State University – sequence: 5 givenname: Robert surname: Horton fullname: Horton, Robert organization: Iowa State University – sequence: 6 givenname: Tusheng surname: Ren fullname: Ren, Tusheng email: tsren@cau.edu.cn organization: China Agricultural University |
BookMark | eNqNkE1OwzAQhS1UJMrPBVhlySbgcWwnWZbSBlABiZ91NDUTZJTGxU5VwYojcEZOQtoiIbFArEbz9L6nmbfLeo1riLFD4McCEnmCT941z4KDPu4krgG2WB9komKupeqxPudcxJBrscN2Q3jmHCCX0GfFoIlGs7n11mAdDbG2U4-tdU1UOR-dE7af7x-nWGNjKLrDebeNa7eM7qgJzofINtEV2jfaZ9sV1oEOvuceexiP7ofn8eSmuBgOJrGRPIX4sTKk9JQAJGqTZtoolWQppDJTkFeEGRBIiak2mKQKcxQktFaZpFwrmiZ77GiTO_fuZUGhLWc2GKq7A8ktQimUkELqDHRnzTZW410InqrS2Hb9W-vR1iXwctVd-dPdSlp116HiFzr3dob-9W_obAMtbU2v_yDKQXEpBsXtzfXlSga-jvkCDdOKfQ |
CitedBy_id | crossref_primary_10_1016_j_agwat_2017_11_024 crossref_primary_10_1016_j_jhydrol_2024_132085 crossref_primary_10_1016_j_agwat_2020_106547 crossref_primary_10_17221_186_2018_PSE crossref_primary_10_1016_j_agwat_2021_106799 crossref_primary_10_1016_j_agwat_2024_108764 crossref_primary_10_1016_j_agwat_2021_106883 crossref_primary_10_1016_j_agwat_2020_106473 crossref_primary_10_1016_j_rse_2019_111413 |
Cites_doi | 10.1016/j.agwat.2011.03.006 10.2134/agronj1990.00021962008200010032x 10.2136/sssaj2013.08.0371 10.1029/2008WR006961 10.1023/A:1004756002983 10.2134/agronj1993.00021962008500050023x 10.1007/s00271-011-0279-z 10.1016/0168-1923(91)90103-W 10.2480/agrmet.37.9 10.13031/2013.21251 10.2134/agronj2007.0201 10.1016/j.agrformet.2007.04.015 10.1016/S0168-1923(98)00083-5 10.1016/S0168-1923(96)02397-0 10.1016/j.agrformet.2013.11.007 |
ContentType | Journal Article |
Copyright | Copyright © 2017 by the American Society of Agronomy, Inc. |
Copyright_xml | – notice: Copyright © 2017 by the American Society of Agronomy, Inc. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.2134/agronj2016.10.0611 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1435-0645 |
EndPage | 1128 |
ExternalDocumentID | 10_2134_agronj2016_10_0611 AGJ2AGRONJ2016100611 |
Genre | article |
GrantInformation_xml | – fundername: U.S. National Science Foundation funderid: 1623806 – fundername: Natural Science Foundation of China funderid: 41671223 – fundername: National Key Technology Research and Development Program of China funderid: 2015CB150403 |
GroupedDBID | -~X .86 .~0 0R~ 186 1OB 1OC 23M 2WC 33P 3V. 5GY 6J9 6KN 7X2 7XC 88I 8FE 8FG 8FH 8FW 8G5 8R4 8R5 AABCJ AAHBH AAHHS AAHQN AAMNL AANLZ AAYCA ABCQX ABCUV ABEFU ABJCF ABJNI ABRSH ABUWG ACAWQ ACCFJ ACCZN ACGFO ACGOD ACIWK ACPOU ACQAM ACXQS ADFRT ADKYN ADMHG ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYN AEUYR AFFPM AFKRA AFRAH AFWVQ AHBTC AI. AIDBO AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB ATCPS AZQEC BCR BCU BEC BENPR BES BFHJK BGLVJ BHPHI BLC BPHCQ C1A CCPQU D0L DCZOG DROCM DWQXO E3Z EBS ECGQY EJD F5P GNUQQ GUQSH H13 HCIFZ HF~ HGLYW L6V L7B LAS LATKE LEEKS LPU M0K M2O M2P M7S MEWTI MV1 NEJ NHAZY NHB O9- P2P PATMY PEA PQQKQ PROAC PTHSS PYCSY Q2X QF4 QM4 QN7 ROL RPX RWL S0X SAMSI SJFOW SJN SUPJJ TAE TR2 TWZ U2A VH1 VOH WOQ WXSBR Y6R YR5 YYP ZCG ~02 ~KM AAYXX AETEA AEYWJ AGHNM AGYGG CITATION PHGZM PHGZT 7S9 AAMMB AEFGJ AGXDD AIDQK AIDYY L.6 |
ID | FETCH-LOGICAL-c4071-dfce56be114a6c786c553871748519fea81e144a76ca375a9a2e266584e965eb3 |
ISSN | 0002-1962 |
IngestDate | Fri Jul 11 18:28:35 EDT 2025 Thu Apr 24 23:05:54 EDT 2025 Tue Jul 01 02:17:05 EDT 2025 Wed Jan 22 17:23:13 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4071-dfce56be114a6c786c553871748519fea81e144a76ca375a9a2e266584e965eb3 |
Notes | All rights reserved ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2524246816 |
PQPubID | 24069 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2524246816 crossref_citationtrail_10_2134_agronj2016_10_0611 crossref_primary_10_2134_agronj2016_10_0611 wiley_primary_10_2134_agronj2016_10_0611_AGJ2AGRONJ2016100611 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May–June 2017 2017-05-00 20170501 |
PublicationDateYYYYMMDD | 2017-05-01 |
PublicationDate_xml | – month: 05 year: 2017 text: May–June 2017 |
PublicationDecade | 2010 |
PublicationTitle | Agronomy journal |
PublicationYear | 2017 |
Publisher | The American Society of Agronomy, Inc |
Publisher_xml | – name: The American Society of Agronomy, Inc |
References | 2007; 145 1997; 40 1991; 56 1997; 85 1993; 85 1998 1981; 37 2011; 98 2005 1998; 92 2016 2008; 44 2008; 100 1999; 215 2014; 186 2014; 78 2012; 30 1990; 82 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_16_1 Allen R.G. (e_1_2_7_2_1) 1998 e_1_2_7_15_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 Xiao X. (e_1_2_7_17_1) 2016 Dynamax (e_1_2_7_6_1) 2005 |
References_xml | – volume: 30 start-page: 259 issue: 4 year: 2012 end-page: 273 article-title: Soil water content on drip irrigated cotton: Comparison of measured and simulated values obtained with the Hydrus 2‐D model publication-title: Irrig. Sci. – volume: 98 start-page: 1207 year: 2011 end-page: 1214 article-title: Evapotranspiration components determined by sap flow and microlysimetry techniques of a vineyard in northwest China: Dynamics and influential factors publication-title: Agric. Water Manage. – volume: 44 start-page: W00D05 year: 2008 article-title: Sensible heat measurement indicating depth and magnitude of subsurface soil water evaporation publication-title: Water Resour. Res. – volume: 186 start-page: 34 year: 2014 end-page: 42 article-title: Improving the stem heat balance method for determining sap‐flow in wheat publication-title: Agric. For. Meteorol. – volume: 215 start-page: 39 year: 1999 end-page: 45 article-title: Sap flow measurements in grapevines ( L.) 1. Stem morphology and use of the heat balance method publication-title: Plant Soil – volume: 56 start-page: 35 year: 1991 end-page: 48 article-title: Improved heat balance method for determining sap flow rate publication-title: Agric. For. Meteorol. – year: 2016 article-title: Partitioning evaporation and transpiration in a maize field using heat‐pulse sensors for evaporation measurement publication-title: Trans. ASABE – start-page: 45 year: 2005 – volume: 85 start-page: 1080 year: 1993 end-page: 1086 article-title: Accuracy of sap flow measurement using heat balance and heat pulse methods publication-title: Agron. J. – volume: 145 start-page: 206 year: 2007 end-page: 214 article-title: Radiation balance and evaporation partitioning in a narrow‐row soybean canopy publication-title: Agric. For. Meteorol. – volume: 100 start-page: 988 year: 2008 end-page: 996 article-title: A Bowen ratio technique for partitioning energy fluxes between maize transpiration and soil surface evaporation publication-title: Agron. J. – volume: 92 start-page: 131 year: 1998 end-page: 145 article-title: Measurement of evapotranspiration and its components in a corn ( L.) field publication-title: Agric. For. Meteorol. – volume: 78 start-page: 361 year: 2014 end-page: 368 article-title: Sensible heat balance measurements of soil water evaporation beneath a maize canopy publication-title: Soil Sci. Soc. Am. J. – volume: 40 start-page: 81 year: 1997 end-page: 88 article-title: Testing of a water loss distribution model for moving sprinkler systems publication-title: Trans. ASAE – volume: 37 start-page: 9 issue: 1 year: 1981 end-page: 17 article-title: A heat balance method for measuring water flux in the stem of intact plants publication-title: J. Agric. Meteorol. – volume: 82 start-page: 147 year: 1990 end-page: 152 article-title: Dynamics of a heat balance stem flow gauge during high flow publication-title: Agron. J. – volume: 85 start-page: 239 year: 1997 end-page: 250 article-title: Measuring sap flow with the heat balance method approach using constant and variable heat inputs publication-title: Agric. For. Meteorol. – year: 1998 – start-page: 45 volume-title: Dynagage sap flow sensor user manual year: 2005 ident: e_1_2_7_6_1 – ident: e_1_2_7_19_1 doi: 10.1016/j.agwat.2011.03.006 – ident: e_1_2_7_7_1 doi: 10.2134/agronj1990.00021962008200010032x – ident: e_1_2_7_16_1 doi: 10.2136/sssaj2013.08.0371 – ident: e_1_2_7_8_1 doi: 10.1029/2008WR006961 – ident: e_1_2_7_3_1 doi: 10.1023/A:1004756002983 – ident: e_1_2_7_5_1 doi: 10.2134/agronj1993.00021962008500050023x – ident: e_1_2_7_4_1 doi: 10.1007/s00271-011-0279-z – ident: e_1_2_7_9_1 doi: 10.1016/0168-1923(91)90103-W – volume-title: Irrig. Drain. year: 1998 ident: e_1_2_7_2_1 – ident: e_1_2_7_13_1 doi: 10.2480/agrmet.37.9 – ident: e_1_2_7_15_1 doi: 10.13031/2013.21251 – ident: e_1_2_7_18_1 doi: 10.2134/agronj2007.0201 – ident: e_1_2_7_14_1 doi: 10.1016/j.agrformet.2007.04.015 – ident: e_1_2_7_10_1 doi: 10.1016/S0168-1923(98)00083-5 – ident: e_1_2_7_11_1 doi: 10.1016/S0168-1923(96)02397-0 – ident: e_1_2_7_12_1 doi: 10.1016/j.agrformet.2013.11.007 – year: 2016 ident: e_1_2_7_17_1 article-title: Partitioning evaporation and transpiration in a maize field using heat‐pulse sensors for evaporation measurement publication-title: Trans. ASABE |
SSID | ssj0011941 |
Score | 2.2310927 |
Snippet | Core Ideas
Sap flow errors with heat‐balance sap‐flow sensors are quantified.
An empirical equation is established for correcting heat‐balance sap‐flow... CORE IDEAS: Sap flow errors with heat‐balance sap‐flow sensors are quantified. An empirical equation is established for correcting heat‐balance sap‐flow... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1122 |
SubjectTerms | agronomy calibration corn data collection equations evaporation evapotranspiration lysimeters sap flow solar radiation temperature transpiration Zea mays |
Title | An Empirical Calibration for Heat‐Balance Sap‐Flow Sensors in Maize |
URI | https://onlinelibrary.wiley.com/doi/abs/10.2134%2Fagronj2016.10.0611 https://www.proquest.com/docview/2524246816 |
Volume | 109 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEF6F9gIHxK8IBbRI3CKX-G8dHzi4KE0UiYCqVgony7uZgFFZR0msip54BJ6RJ2HGXm8cKKjlYtnjZLX2fP5mZnd2lrFXEHlysPCFAzL2nSCWviNdF5xqjioSgCaBxjveTcX4LJjMwlmn085aKjfyUF1eua7kf7SKMtQrrZK9gWZtoyjAc9QvHlHDeLyWjhPdG35d5nWVD1plJVfb3MExsqxNZTiiDEYqupktrez4vLhArtBr2m8n15RucbmTGJR8WlVLHnrtzlSD7zVBfCzhW2mBYYeeZ3lWNEI6r2X6c2ktwBjyjRl5nRTr5oYZe0B7ZjP9WnyK33DNp1BTKDpgDlXB2-HYftwCk99iTPT3vJb1xcvBVcxOhefIbNGDf8GuiEPKyROGqHfKaP9m3mzSIYY71Eq6bSNFEbVxi-17GGUgTe4fDacfTuw0lBsHbhM_0WPWq66oldd_9mTXs9mGK-2gp_JaTu-xuybc4EmNnfusA_oBu4OKNSVX4CEbJZpbFPEWijiiiBOKfn7_YfDDET94RcjhBjk817xCziN2djw8fTt2zPYajqIo3pkvFIRCAkbEmVDRQKgQrR-G9wF64fECsoELGG5nkVCZH4VZnHmA7hx6rBCLEKT_mO3pQsMTxmUAc_SzlZAyDOZzIWlUQsRBH919JUS_y9zm1aTK1J6nLVDO078rpct69j_LuvLKP3_9snnjKRIkzXplGopynXohrYASyD1d9qZSxTWaS5PRxEtGJ--nExK75Om7T2_UowN2e_vJPGN7m1UJz9GB3cgXBma_ABOOk34 |
linkProvider | ProQuest |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Empirical+Calibration+for+Heat%E2%80%90Balance+Sap%E2%80%90Flow+Sensors+in+Maize&rft.jtitle=Agronomy+journal&rft.au=Wang%2C+Yueyue&rft.au=Zhang%2C+Xiao&rft.au=Xiao%2C+Xinhua&rft.au=Heitman%2C+Joshua&rft.date=2017-05-01&rft.issn=0002-1962&rft.eissn=1435-0645&rft.volume=109&rft.issue=3&rft.spage=1122&rft.epage=1128&rft_id=info:doi/10.2134%2Fagronj2016.10.0611&rft.externalDBID=n%2Fa&rft.externalDocID=10_2134_agronj2016_10_0611 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-1962&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-1962&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-1962&client=summon |