An Empirical Calibration for Heat‐Balance Sap‐Flow Sensors in Maize

Core Ideas Sap flow errors with heat‐balance sap‐flow sensors are quantified. An empirical equation is established for correcting heat‐balance sap‐flow measurements in maize. Independent tests proved the usefulness of the calibration equation in maize. Sap flow measurements with heat‐balance sap‐flo...

Full description

Saved in:
Bibliographic Details
Published inAgronomy journal Vol. 109; no. 3; pp. 1122 - 1128
Main Authors Wang, Yueyue, Zhang, Xiao, Xiao, Xinhua, Heitman, Joshua, Horton, Robert, Ren, Tusheng
Format Journal Article
LanguageEnglish
Published The American Society of Agronomy, Inc 01.05.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Core Ideas Sap flow errors with heat‐balance sap‐flow sensors are quantified. An empirical equation is established for correcting heat‐balance sap‐flow measurements in maize. Independent tests proved the usefulness of the calibration equation in maize. Sap flow measurements with heat‐balance sap‐flow (HBSF) sensors are subject to errors due to temperature heterogeneity across the plant stem. Here we develop and evaluate an empirical calibration for HBSF sensors to measure transpiration rates (T) of maize (Zea mays L.). A pot experiment was used to establish an empirical calibration equation relating T determined by a mass balance method and sap flow velocity (V) measured with HBSF sensors. The calibration equation was tested in a field weighing lysimeter study, a pot study from the literature, and an additional dataset where V was measured with HBSF sensors, and T was determined from independent measurements of evapotranspiration and evaporation. In all studies, HBSF sensor measured V overestimated T, and the errors displayed diurnal dynamics: small in the evening and early morning, became larger with increasing T, and reached a maximum when solar irradiance was the largest. A linear calibration equation, T’ = 0.65V + 0.39, was established to convert measured V (g plant−1 h−1) values to corrected transpiration rates T’ (g plant−1 h−1). Using this equation, the largest sap flow error was reduced by 60, 50, and 50% in the lysimeter experiment, pot experiment, and field study, respectively.
AbstractList Core Ideas Sap flow errors with heat‐balance sap‐flow sensors are quantified. An empirical equation is established for correcting heat‐balance sap‐flow measurements in maize. Independent tests proved the usefulness of the calibration equation in maize. Sap flow measurements with heat‐balance sap‐flow (HBSF) sensors are subject to errors due to temperature heterogeneity across the plant stem. Here we develop and evaluate an empirical calibration for HBSF sensors to measure transpiration rates (T) of maize (Zea mays L.). A pot experiment was used to establish an empirical calibration equation relating T determined by a mass balance method and sap flow velocity (V) measured with HBSF sensors. The calibration equation was tested in a field weighing lysimeter study, a pot study from the literature, and an additional dataset where V was measured with HBSF sensors, and T was determined from independent measurements of evapotranspiration and evaporation. In all studies, HBSF sensor measured V overestimated T, and the errors displayed diurnal dynamics: small in the evening and early morning, became larger with increasing T, and reached a maximum when solar irradiance was the largest. A linear calibration equation, T’ = 0.65V + 0.39, was established to convert measured V (g plant−1 h−1) values to corrected transpiration rates T’ (g plant−1 h−1). Using this equation, the largest sap flow error was reduced by 60, 50, and 50% in the lysimeter experiment, pot experiment, and field study, respectively.
CORE IDEAS: Sap flow errors with heat‐balance sap‐flow sensors are quantified. An empirical equation is established for correcting heat‐balance sap‐flow measurements in maize. Independent tests proved the usefulness of the calibration equation in maize. Sap flow measurements with heat‐balance sap‐flow (HBSF) sensors are subject to errors due to temperature heterogeneity across the plant stem. Here we develop and evaluate an empirical calibration for HBSF sensors to measure transpiration rates (T) of maize (Zea mays L.). A pot experiment was used to establish an empirical calibration equation relating T determined by a mass balance method and sap flow velocity (V) measured with HBSF sensors. The calibration equation was tested in a field weighing lysimeter study, a pot study from the literature, and an additional dataset where V was measured with HBSF sensors, and T was determined from independent measurements of evapotranspiration and evaporation. In all studies, HBSF sensor measured V overestimated T, and the errors displayed diurnal dynamics: small in the evening and early morning, became larger with increasing T, and reached a maximum when solar irradiance was the largest. A linear calibration equation, T’ = 0.65V + 0.39, was established to convert measured V (g plant⁻¹ h⁻¹) values to corrected transpiration rates T’ (g plant⁻¹ h⁻¹). Using this equation, the largest sap flow error was reduced by 60, 50, and 50% in the lysimeter experiment, pot experiment, and field study, respectively.
Author Zhang, Xiao
Horton, Robert
Ren, Tusheng
Xiao, Xinhua
Wang, Yueyue
Heitman, Joshua
Author_xml – sequence: 1
  givenname: Yueyue
  surname: Wang
  fullname: Wang, Yueyue
  organization: China Agricultural University
– sequence: 2
  givenname: Xiao
  surname: Zhang
  fullname: Zhang, Xiao
  organization: Chinese Academy of Forestry
– sequence: 3
  givenname: Xinhua
  surname: Xiao
  fullname: Xiao, Xinhua
  organization: Alabama A&M University
– sequence: 4
  givenname: Joshua
  surname: Heitman
  fullname: Heitman, Joshua
  organization: North Carolina State University
– sequence: 5
  givenname: Robert
  surname: Horton
  fullname: Horton, Robert
  organization: Iowa State University
– sequence: 6
  givenname: Tusheng
  surname: Ren
  fullname: Ren, Tusheng
  email: tsren@cau.edu.cn
  organization: China Agricultural University
BookMark eNqNkE1OwzAQhS1UJMrPBVhlySbgcWwnWZbSBlABiZ91NDUTZJTGxU5VwYojcEZOQtoiIbFArEbz9L6nmbfLeo1riLFD4McCEnmCT941z4KDPu4krgG2WB9komKupeqxPudcxJBrscN2Q3jmHCCX0GfFoIlGs7n11mAdDbG2U4-tdU1UOR-dE7af7x-nWGNjKLrDebeNa7eM7qgJzofINtEV2jfaZ9sV1oEOvuceexiP7ofn8eSmuBgOJrGRPIX4sTKk9JQAJGqTZtoolWQppDJTkFeEGRBIiak2mKQKcxQktFaZpFwrmiZ77GiTO_fuZUGhLWc2GKq7A8ktQimUkELqDHRnzTZW410InqrS2Hb9W-vR1iXwctVd-dPdSlp116HiFzr3dob-9W_obAMtbU2v_yDKQXEpBsXtzfXlSga-jvkCDdOKfQ
CitedBy_id crossref_primary_10_1016_j_agwat_2017_11_024
crossref_primary_10_1016_j_jhydrol_2024_132085
crossref_primary_10_1016_j_agwat_2020_106547
crossref_primary_10_17221_186_2018_PSE
crossref_primary_10_1016_j_agwat_2021_106799
crossref_primary_10_1016_j_agwat_2024_108764
crossref_primary_10_1016_j_agwat_2021_106883
crossref_primary_10_1016_j_agwat_2020_106473
crossref_primary_10_1016_j_rse_2019_111413
Cites_doi 10.1016/j.agwat.2011.03.006
10.2134/agronj1990.00021962008200010032x
10.2136/sssaj2013.08.0371
10.1029/2008WR006961
10.1023/A:1004756002983
10.2134/agronj1993.00021962008500050023x
10.1007/s00271-011-0279-z
10.1016/0168-1923(91)90103-W
10.2480/agrmet.37.9
10.13031/2013.21251
10.2134/agronj2007.0201
10.1016/j.agrformet.2007.04.015
10.1016/S0168-1923(98)00083-5
10.1016/S0168-1923(96)02397-0
10.1016/j.agrformet.2013.11.007
ContentType Journal Article
Copyright Copyright © 2017 by the American Society of Agronomy, Inc.
Copyright_xml – notice: Copyright © 2017 by the American Society of Agronomy, Inc.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.2134/agronj2016.10.0611
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1435-0645
EndPage 1128
ExternalDocumentID 10_2134_agronj2016_10_0611
AGJ2AGRONJ2016100611
Genre article
GrantInformation_xml – fundername: U.S. National Science Foundation
  funderid: 1623806
– fundername: Natural Science Foundation of China
  funderid: 41671223
– fundername: National Key Technology Research and Development Program of China
  funderid: 2015CB150403
GroupedDBID -~X
.86
.~0
0R~
186
1OB
1OC
23M
2WC
33P
3V.
5GY
6J9
6KN
7X2
7XC
88I
8FE
8FG
8FH
8FW
8G5
8R4
8R5
AABCJ
AAHBH
AAHHS
AAHQN
AAMNL
AANLZ
AAYCA
ABCQX
ABCUV
ABEFU
ABJCF
ABJNI
ABRSH
ABUWG
ACAWQ
ACCFJ
ACCZN
ACGFO
ACGOD
ACIWK
ACPOU
ACQAM
ACXQS
ADFRT
ADKYN
ADMHG
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYN
AEUYR
AFFPM
AFKRA
AFRAH
AFWVQ
AHBTC
AI.
AIDBO
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ATCPS
AZQEC
BCR
BCU
BEC
BENPR
BES
BFHJK
BGLVJ
BHPHI
BLC
BPHCQ
C1A
CCPQU
D0L
DCZOG
DROCM
DWQXO
E3Z
EBS
ECGQY
EJD
F5P
GNUQQ
GUQSH
H13
HCIFZ
HF~
HGLYW
L6V
L7B
LAS
LATKE
LEEKS
LPU
M0K
M2O
M2P
M7S
MEWTI
MV1
NEJ
NHAZY
NHB
O9-
P2P
PATMY
PEA
PQQKQ
PROAC
PTHSS
PYCSY
Q2X
QF4
QM4
QN7
ROL
RPX
RWL
S0X
SAMSI
SJFOW
SJN
SUPJJ
TAE
TR2
TWZ
U2A
VH1
VOH
WOQ
WXSBR
Y6R
YR5
YYP
ZCG
~02
~KM
AAYXX
AETEA
AEYWJ
AGHNM
AGYGG
CITATION
PHGZM
PHGZT
7S9
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
L.6
ID FETCH-LOGICAL-c4071-dfce56be114a6c786c553871748519fea81e144a76ca375a9a2e266584e965eb3
ISSN 0002-1962
IngestDate Fri Jul 11 18:28:35 EDT 2025
Thu Apr 24 23:05:54 EDT 2025
Tue Jul 01 02:17:05 EDT 2025
Wed Jan 22 17:23:13 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4071-dfce56be114a6c786c553871748519fea81e144a76ca375a9a2e266584e965eb3
Notes All rights reserved
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2524246816
PQPubID 24069
PageCount 7
ParticipantIDs proquest_miscellaneous_2524246816
crossref_citationtrail_10_2134_agronj2016_10_0611
crossref_primary_10_2134_agronj2016_10_0611
wiley_primary_10_2134_agronj2016_10_0611_AGJ2AGRONJ2016100611
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May–June 2017
2017-05-00
20170501
PublicationDateYYYYMMDD 2017-05-01
PublicationDate_xml – month: 05
  year: 2017
  text: May–June 2017
PublicationDecade 2010
PublicationTitle Agronomy journal
PublicationYear 2017
Publisher The American Society of Agronomy, Inc
Publisher_xml – name: The American Society of Agronomy, Inc
References 2007; 145
1997; 40
1991; 56
1997; 85
1993; 85
1998
1981; 37
2011; 98
2005
1998; 92
2016
2008; 44
2008; 100
1999; 215
2014; 186
2014; 78
2012; 30
1990; 82
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_16_1
Allen R.G. (e_1_2_7_2_1) 1998
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
Xiao X. (e_1_2_7_17_1) 2016
Dynamax (e_1_2_7_6_1) 2005
References_xml – volume: 30
  start-page: 259
  issue: 4
  year: 2012
  end-page: 273
  article-title: Soil water content on drip irrigated cotton: Comparison of measured and simulated values obtained with the Hydrus 2‐D model
  publication-title: Irrig. Sci.
– volume: 98
  start-page: 1207
  year: 2011
  end-page: 1214
  article-title: Evapotranspiration components determined by sap flow and microlysimetry techniques of a vineyard in northwest China: Dynamics and influential factors
  publication-title: Agric. Water Manage.
– volume: 44
  start-page: W00D05
  year: 2008
  article-title: Sensible heat measurement indicating depth and magnitude of subsurface soil water evaporation
  publication-title: Water Resour. Res.
– volume: 186
  start-page: 34
  year: 2014
  end-page: 42
  article-title: Improving the stem heat balance method for determining sap‐flow in wheat
  publication-title: Agric. For. Meteorol.
– volume: 215
  start-page: 39
  year: 1999
  end-page: 45
  article-title: Sap flow measurements in grapevines ( L.) 1. Stem morphology and use of the heat balance method
  publication-title: Plant Soil
– volume: 56
  start-page: 35
  year: 1991
  end-page: 48
  article-title: Improved heat balance method for determining sap flow rate
  publication-title: Agric. For. Meteorol.
– year: 2016
  article-title: Partitioning evaporation and transpiration in a maize field using heat‐pulse sensors for evaporation measurement
  publication-title: Trans. ASABE
– start-page: 45
  year: 2005
– volume: 85
  start-page: 1080
  year: 1993
  end-page: 1086
  article-title: Accuracy of sap flow measurement using heat balance and heat pulse methods
  publication-title: Agron. J.
– volume: 145
  start-page: 206
  year: 2007
  end-page: 214
  article-title: Radiation balance and evaporation partitioning in a narrow‐row soybean canopy
  publication-title: Agric. For. Meteorol.
– volume: 100
  start-page: 988
  year: 2008
  end-page: 996
  article-title: A Bowen ratio technique for partitioning energy fluxes between maize transpiration and soil surface evaporation
  publication-title: Agron. J.
– volume: 92
  start-page: 131
  year: 1998
  end-page: 145
  article-title: Measurement of evapotranspiration and its components in a corn ( L.) field
  publication-title: Agric. For. Meteorol.
– volume: 78
  start-page: 361
  year: 2014
  end-page: 368
  article-title: Sensible heat balance measurements of soil water evaporation beneath a maize canopy
  publication-title: Soil Sci. Soc. Am. J.
– volume: 40
  start-page: 81
  year: 1997
  end-page: 88
  article-title: Testing of a water loss distribution model for moving sprinkler systems
  publication-title: Trans. ASAE
– volume: 37
  start-page: 9
  issue: 1
  year: 1981
  end-page: 17
  article-title: A heat balance method for measuring water flux in the stem of intact plants
  publication-title: J. Agric. Meteorol.
– volume: 82
  start-page: 147
  year: 1990
  end-page: 152
  article-title: Dynamics of a heat balance stem flow gauge during high flow
  publication-title: Agron. J.
– volume: 85
  start-page: 239
  year: 1997
  end-page: 250
  article-title: Measuring sap flow with the heat balance method approach using constant and variable heat inputs
  publication-title: Agric. For. Meteorol.
– year: 1998
– start-page: 45
  volume-title: Dynagage sap flow sensor user manual
  year: 2005
  ident: e_1_2_7_6_1
– ident: e_1_2_7_19_1
  doi: 10.1016/j.agwat.2011.03.006
– ident: e_1_2_7_7_1
  doi: 10.2134/agronj1990.00021962008200010032x
– ident: e_1_2_7_16_1
  doi: 10.2136/sssaj2013.08.0371
– ident: e_1_2_7_8_1
  doi: 10.1029/2008WR006961
– ident: e_1_2_7_3_1
  doi: 10.1023/A:1004756002983
– ident: e_1_2_7_5_1
  doi: 10.2134/agronj1993.00021962008500050023x
– ident: e_1_2_7_4_1
  doi: 10.1007/s00271-011-0279-z
– ident: e_1_2_7_9_1
  doi: 10.1016/0168-1923(91)90103-W
– volume-title: Irrig. Drain.
  year: 1998
  ident: e_1_2_7_2_1
– ident: e_1_2_7_13_1
  doi: 10.2480/agrmet.37.9
– ident: e_1_2_7_15_1
  doi: 10.13031/2013.21251
– ident: e_1_2_7_18_1
  doi: 10.2134/agronj2007.0201
– ident: e_1_2_7_14_1
  doi: 10.1016/j.agrformet.2007.04.015
– ident: e_1_2_7_10_1
  doi: 10.1016/S0168-1923(98)00083-5
– ident: e_1_2_7_11_1
  doi: 10.1016/S0168-1923(96)02397-0
– ident: e_1_2_7_12_1
  doi: 10.1016/j.agrformet.2013.11.007
– year: 2016
  ident: e_1_2_7_17_1
  article-title: Partitioning evaporation and transpiration in a maize field using heat‐pulse sensors for evaporation measurement
  publication-title: Trans. ASABE
SSID ssj0011941
Score 2.2310927
Snippet Core Ideas Sap flow errors with heat‐balance sap‐flow sensors are quantified. An empirical equation is established for correcting heat‐balance sap‐flow...
CORE IDEAS: Sap flow errors with heat‐balance sap‐flow sensors are quantified. An empirical equation is established for correcting heat‐balance sap‐flow...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1122
SubjectTerms agronomy
calibration
corn
data collection
equations
evaporation
evapotranspiration
lysimeters
sap flow
solar radiation
temperature
transpiration
Zea mays
Title An Empirical Calibration for Heat‐Balance Sap‐Flow Sensors in Maize
URI https://onlinelibrary.wiley.com/doi/abs/10.2134%2Fagronj2016.10.0611
https://www.proquest.com/docview/2524246816
Volume 109
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEF6F9gIHxK8IBbRI3CKX-G8dHzi4KE0UiYCqVgony7uZgFFZR0msip54BJ6RJ2HGXm8cKKjlYtnjZLX2fP5mZnd2lrFXEHlysPCFAzL2nSCWviNdF5xqjioSgCaBxjveTcX4LJjMwlmn085aKjfyUF1eua7kf7SKMtQrrZK9gWZtoyjAc9QvHlHDeLyWjhPdG35d5nWVD1plJVfb3MExsqxNZTiiDEYqupktrez4vLhArtBr2m8n15RucbmTGJR8WlVLHnrtzlSD7zVBfCzhW2mBYYeeZ3lWNEI6r2X6c2ktwBjyjRl5nRTr5oYZe0B7ZjP9WnyK33DNp1BTKDpgDlXB2-HYftwCk99iTPT3vJb1xcvBVcxOhefIbNGDf8GuiEPKyROGqHfKaP9m3mzSIYY71Eq6bSNFEbVxi-17GGUgTe4fDacfTuw0lBsHbhM_0WPWq66oldd_9mTXs9mGK-2gp_JaTu-xuybc4EmNnfusA_oBu4OKNSVX4CEbJZpbFPEWijiiiBOKfn7_YfDDET94RcjhBjk817xCziN2djw8fTt2zPYajqIo3pkvFIRCAkbEmVDRQKgQrR-G9wF64fECsoELGG5nkVCZH4VZnHmA7hx6rBCLEKT_mO3pQsMTxmUAc_SzlZAyDOZzIWlUQsRBH919JUS_y9zm1aTK1J6nLVDO078rpct69j_LuvLKP3_9snnjKRIkzXplGopynXohrYASyD1d9qZSxTWaS5PRxEtGJ--nExK75Om7T2_UowN2e_vJPGN7m1UJz9GB3cgXBma_ABOOk34
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Empirical+Calibration+for+Heat%E2%80%90Balance+Sap%E2%80%90Flow+Sensors+in+Maize&rft.jtitle=Agronomy+journal&rft.au=Wang%2C+Yueyue&rft.au=Zhang%2C+Xiao&rft.au=Xiao%2C+Xinhua&rft.au=Heitman%2C+Joshua&rft.date=2017-05-01&rft.issn=0002-1962&rft.eissn=1435-0645&rft.volume=109&rft.issue=3&rft.spage=1122&rft.epage=1128&rft_id=info:doi/10.2134%2Fagronj2016.10.0611&rft.externalDBID=n%2Fa&rft.externalDocID=10_2134_agronj2016_10_0611
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-1962&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-1962&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-1962&client=summon