A guide to assessing cellular senescence in vitro and in vivo
Cellular senescence is a complex cell response to damage and stress that can impact the surrounding tissue. Senescent cells no longer proliferate and undergo particular phenotypic changes. However, their phenotype can be very variable, and identifying senescence remains a challenge. In this review,...
Saved in:
Published in | The FEBS journal Vol. 288; no. 1; pp. 56 - 80 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Publishing Ltd
01.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cellular senescence is a complex cell response to damage and stress that can impact the surrounding tissue. Senescent cells no longer proliferate and undergo particular phenotypic changes. However, their phenotype can be very variable, and identifying senescence remains a challenge. In this review, we provide a guide to assessing senescence confidently by describing the different biomarkers and an optimized strategy for their detection in cultures, tissues and in vivo.
Cellular senescence is a physiological mechanism whereby a proliferating cell undergoes a stable cell cycle arrest upon damage or stress and elicits a secretory phenotype. This highly dynamic and regulated cellular state plays beneficial roles in physiology, such as during embryonic development and wound healing, but it can also result in antagonistic effects in age‐related pathologies, degenerative disorders, ageing and cancer. In an effort to better identify this complex state, and given that a universal marker has yet to be identified, a general set of hallmarks describing senescence has been established. However, as the senescent programme becomes more defined, further complexities, including phenotype heterogeneity, have emerged. This significantly complicates the recognition and evaluation of cellular senescence, especially within complex tissues and living organisms. To address these challenges, substantial efforts are currently being made towards the discovery of novel and more specific biomarkers, optimized combinatorial strategies and the development of emerging detection techniques. Here, we compile such advances and present a multifactorial guide to identify and assess cellular senescence in cell cultures, tissues and living organisms. The reliable assessment and identification of senescence is not only crucial for better understanding its underlying biology, but also imperative for the development of diagnostic and therapeutic strategies aimed at targeting senescence in the clinic. |
---|---|
AbstractList | Cellular senescence is a physiological mechanism whereby a proliferating cell undergoes a stable cell cycle arrest upon damage or stress and elicits a secretory phenotype. This highly dynamic and regulated cellular state plays beneficial roles in physiology, such as during embryonic development and wound healing, but it can also result in antagonistic effects in age-related pathologies, degenerative disorders, ageing and cancer. In an effort to better identify this complex state, and given that a universal marker has yet to be identified, a general set of hallmarks describing senescence has been established. However, as the senescent programme becomes more defined, further complexities, including phenotype heterogeneity, have emerged. This significantly complicates the recognition and evaluation of cellular senescence, especially within complex tissues and living organisms. To address these challenges, substantial efforts are currently being made towards the discovery of novel and more specific biomarkers, optimized combinatorial strategies and the development of emerging detection techniques. Here, we compile such advances and present a multifactorial guide to identify and assess cellular senescence in cell cultures, tissues and living organisms. The reliable assessment and identification of senescence is not only crucial for better understanding its underlying biology, but also imperative for the development of diagnostic and therapeutic strategies aimed at targeting senescence in the clinic.Cellular senescence is a physiological mechanism whereby a proliferating cell undergoes a stable cell cycle arrest upon damage or stress and elicits a secretory phenotype. This highly dynamic and regulated cellular state plays beneficial roles in physiology, such as during embryonic development and wound healing, but it can also result in antagonistic effects in age-related pathologies, degenerative disorders, ageing and cancer. In an effort to better identify this complex state, and given that a universal marker has yet to be identified, a general set of hallmarks describing senescence has been established. However, as the senescent programme becomes more defined, further complexities, including phenotype heterogeneity, have emerged. This significantly complicates the recognition and evaluation of cellular senescence, especially within complex tissues and living organisms. To address these challenges, substantial efforts are currently being made towards the discovery of novel and more specific biomarkers, optimized combinatorial strategies and the development of emerging detection techniques. Here, we compile such advances and present a multifactorial guide to identify and assess cellular senescence in cell cultures, tissues and living organisms. The reliable assessment and identification of senescence is not only crucial for better understanding its underlying biology, but also imperative for the development of diagnostic and therapeutic strategies aimed at targeting senescence in the clinic. Cellular senescence is a physiological mechanism whereby a proliferating cell undergoes a stable cell cycle arrest upon damage or stress and elicits a secretory phenotype. This highly dynamic and regulated cellular state plays beneficial roles in physiology, such as during embryonic development and wound healing, but it can also result in antagonistic effects in age-related pathologies, degenerative disorders, ageing and cancer. In an effort to better identify this complex state, and given that a universal marker has yet to be identified, a general set of hallmarks describing senescence has been established. However, as the senescent programme becomes more defined, further complexities, including phenotype heterogeneity, have emerged. This significantly complicates the recognition and evaluation of cellular senescence, especially within complex tissues and living organisms. To address these challenges, substantial efforts are currently being made towards the discovery of novel and more specific biomarkers, optimized combinatorial strategies and the development of emerging detection techniques. Here, we compile such advances and present a multifactorial guide to identify and assess cellular senescence in cell cultures, tissues and living organisms. The reliable assessment and identification of senescence is not only crucial for better understanding its underlying biology, but also imperative for the development of diagnostic and therapeutic strategies aimed at targeting senescence in the clinic. Cellular senescence is a complex cell response to damage and stress that can impact the surrounding tissue. Senescent cells no longer proliferate and undergo particular phenotypic changes. However, their phenotype can be very variable, and identifying senescence remains a challenge. In this review, we provide a guide to assessing senescence confidently by describing the different biomarkers and an optimized strategy for their detection in cultures, tissues and in vivo. Cellular senescence is a physiological mechanism whereby a proliferating cell undergoes a stable cell cycle arrest upon damage or stress and elicits a secretory phenotype. This highly dynamic and regulated cellular state plays beneficial roles in physiology, such as during embryonic development and wound healing, but it can also result in antagonistic effects in age‐related pathologies, degenerative disorders, ageing and cancer. In an effort to better identify this complex state, and given that a universal marker has yet to be identified, a general set of hallmarks describing senescence has been established. However, as the senescent programme becomes more defined, further complexities, including phenotype heterogeneity, have emerged. This significantly complicates the recognition and evaluation of cellular senescence, especially within complex tissues and living organisms. To address these challenges, substantial efforts are currently being made towards the discovery of novel and more specific biomarkers, optimized combinatorial strategies and the development of emerging detection techniques. Here, we compile such advances and present a multifactorial guide to identify and assess cellular senescence in cell cultures, tissues and living organisms. The reliable assessment and identification of senescence is not only crucial for better understanding its underlying biology, but also imperative for the development of diagnostic and therapeutic strategies aimed at targeting senescence in the clinic. |
Author | Fruk, Ljiljana Muñoz‐Espín, Daniel González‐Gualda, Estela Baker, Andrew G. |
Author_xml | – sequence: 1 givenname: Estela orcidid: 0000-0003-1558-4259 surname: González‐Gualda fullname: González‐Gualda, Estela organization: University of Cambridge – sequence: 2 givenname: Andrew G. orcidid: 0000-0002-6498-3208 surname: Baker fullname: Baker, Andrew G. organization: University of Cambridge – sequence: 3 givenname: Ljiljana surname: Fruk fullname: Fruk, Ljiljana email: lf389@cam.ac.uk organization: University of Cambridge – sequence: 4 givenname: Daniel orcidid: 0000-0002-0550-9514 surname: Muñoz‐Espín fullname: Muñoz‐Espín, Daniel email: dm742@cam.ac.uk organization: University of Cambridge |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32961620$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0UFLwzAUB_AgE-emFz-AFLyIsJmkSdqeZI5NhYEHFbyVNHkdGV06k3ayb-Nn8ZPZubnDEM0lCfz-j5e8DmrZ0gJCZwT3SbOuc8h8n3Ae4QN0TCJGe0zwuLU7s9c26ng_wzjkLEmOUDukiSCC4mN0MwimtdEQVGUgvQfvjZ0GCoqiLqQLPFjwCqyCwNjPj6WpXOOs3t6W5Qk6zGXh4XS7d9HLePQ8vO9NHu8ehoNJTzEc4Z5UucAyg1DKRGc5CWOVCcZDLOOIZpGOcs1AC56QGBPKY1A6I5iwXFCIdZiHXXS5qbtw5VsNvkrnxq_blBbK2qeUU0bZOvo_ZYwzKkjEG3qxR2dl7WzzkEZFLKZYUNGo862qsznodOHMXLpV-vOLDbjaAOVK7x3kO0Jwuh5Ruh5R-j2iBuM9rEwlK1PayklT_B4hm8i7KWD1R_F0PLp92mS-ABNwosg |
CitedBy_id | crossref_primary_10_1007_s10522_023_10084_5 crossref_primary_10_1016_j_devcel_2023_05_010 crossref_primary_10_1016_j_semcancer_2024_05_002 crossref_primary_10_12680_balneo_2023_624 crossref_primary_10_3390_life12091332 crossref_primary_10_18632_aging_204616 crossref_primary_10_1186_s11658_022_00319_7 crossref_primary_10_3390_biomedicines12020365 crossref_primary_10_3389_fendo_2023_1212716 crossref_primary_10_3390_ijms24108724 crossref_primary_10_1007_s00204_023_03678_y crossref_primary_10_3390_ijms222212415 crossref_primary_10_1186_s12964_024_01705_8 crossref_primary_10_1111_acel_13835 crossref_primary_10_1042_BSR20210079 crossref_primary_10_1016_j_jprot_2022_104669 crossref_primary_10_1073_pnas_2209973120 crossref_primary_10_1152_ajprenal_00261_2023 crossref_primary_10_1134_S000629792301008X crossref_primary_10_1097_TP_0000000000004838 crossref_primary_10_1002_ctd2_346 crossref_primary_10_1016_j_jid_2022_11_017 crossref_primary_10_1016_j_hnm_2022_200149 crossref_primary_10_1016_S2589_7500_24_00150_X crossref_primary_10_1016_j_bbi_2024_04_023 crossref_primary_10_1242_jcs_259671 crossref_primary_10_1080_23723556_2021_1985930 crossref_primary_10_1002_cbdv_202301422 crossref_primary_10_1038_s41467_024_44903_1 crossref_primary_10_3389_fimmu_2021_696486 crossref_primary_10_3389_fragi_2024_1448543 crossref_primary_10_4049_immunohorizons_2300096 crossref_primary_10_2174_1566524023666230407123727 crossref_primary_10_3390_cells11121966 crossref_primary_10_1016_j_xpro_2021_100809 crossref_primary_10_3389_fonc_2022_878675 crossref_primary_10_1089_ars_2024_0794 crossref_primary_10_1016_j_arr_2021_101458 crossref_primary_10_4081_ejh_2024_3977 crossref_primary_10_3390_ijms22169023 crossref_primary_10_1007_s10522_024_10114_w crossref_primary_10_1038_s42003_022_03266_3 crossref_primary_10_1111_jocd_16101 crossref_primary_10_3390_ijms25147850 crossref_primary_10_1186_s12979_023_00378_0 crossref_primary_10_3390_chemosensors12070141 crossref_primary_10_1186_s13014_022_02184_2 crossref_primary_10_1002_ejic_202200593 crossref_primary_10_1002_aac2_12067 crossref_primary_10_1038_s41416_024_02614_w crossref_primary_10_3390_ijms242015468 crossref_primary_10_1002_dvdy_637 crossref_primary_10_1016_j_mad_2021_111540 crossref_primary_10_1016_j_mad_2024_111918 crossref_primary_10_1016_j_mrrev_2023_108474 crossref_primary_10_1155_2022_4421952 crossref_primary_10_3390_ijms24065217 crossref_primary_10_1186_s12979_024_00433_4 crossref_primary_10_1111_acel_14012 crossref_primary_10_1097_PRS_0000000000009667 crossref_primary_10_1186_s12885_025_13499_0 crossref_primary_10_1152_ajpheart_00570_2024 crossref_primary_10_1016_j_atherosclerosis_2024_117506 crossref_primary_10_3390_biology12010042 crossref_primary_10_3390_cells11121936 crossref_primary_10_3390_cells12222609 crossref_primary_10_2147_IJN_S470225 crossref_primary_10_1002_adbi_202300194 crossref_primary_10_1002_cpz1_32 crossref_primary_10_3390_ijms24043101 crossref_primary_10_3390_cells12091296 crossref_primary_10_1016_j_isci_2023_107505 crossref_primary_10_1097_MD_0000000000031944 crossref_primary_10_1021_acs_biomac_3c01461 crossref_primary_10_3390_biomedicines12122811 crossref_primary_10_7717_peerj_16300 crossref_primary_10_1016_j_dci_2024_105271 crossref_primary_10_3390_antiox14030259 crossref_primary_10_3389_froh_2023_1285276 crossref_primary_10_3390_pathogens13020155 crossref_primary_10_1002_ange_202404885 crossref_primary_10_1111_imcb_12727 crossref_primary_10_3390_ijms24119766 crossref_primary_10_1007_s11010_024_05028_7 crossref_primary_10_1038_s41467_024_47985_z crossref_primary_10_3390_cells10123456 crossref_primary_10_1261_rna_079436_122 crossref_primary_10_3390_cells11071106 crossref_primary_10_1039_D2RA00377E crossref_primary_10_3390_biom14020189 crossref_primary_10_3390_ijms22115866 crossref_primary_10_1016_j_jpba_2024_116571 crossref_primary_10_1007_s10522_024_10174_y crossref_primary_10_1186_s13075_023_03183_8 crossref_primary_10_1186_s13287_023_03599_8 crossref_primary_10_1158_0008_5472_CAN_24_0875 crossref_primary_10_3390_ijms252011188 crossref_primary_10_1038_s41598_023_42994_2 crossref_primary_10_1016_j_jaut_2023_103013 crossref_primary_10_1111_acel_13948 crossref_primary_10_1007_s10616_025_00724_8 crossref_primary_10_3390_genes13071125 crossref_primary_10_1093_nar_gkae322 crossref_primary_10_3390_life11020153 crossref_primary_10_1016_j_arr_2023_102083 crossref_primary_10_1038_s41418_024_01431_1 crossref_primary_10_1038_s43587_021_00142_3 crossref_primary_10_1038_s41577_023_00907_4 crossref_primary_10_1016_j_cmet_2024_07_025 crossref_primary_10_1507_endocrj_EJ24_0466 crossref_primary_10_3390_biology11081121 crossref_primary_10_1016_j_yexcr_2024_114139 crossref_primary_10_3390_cells11162506 crossref_primary_10_1007_s11357_023_00909_z crossref_primary_10_1177_00220345241299789 crossref_primary_10_1016_j_brainres_2025_149480 crossref_primary_10_18632_aging_203607 crossref_primary_10_1186_s40001_023_01604_7 crossref_primary_10_1016_j_arr_2024_102619 crossref_primary_10_1016_j_arr_2024_102616 crossref_primary_10_1016_j_exer_2023_109565 crossref_primary_10_3389_fragi_2024_1376086 crossref_primary_10_1016_j_bbamcr_2024_119734 crossref_primary_10_1111_febs_16731 crossref_primary_10_1165_rcmb_2023_0038OC crossref_primary_10_1177_00220345241255325 crossref_primary_10_1016_j_bbrep_2022_101391 crossref_primary_10_1111_febs_16735 crossref_primary_10_1038_s41467_023_40393_9 crossref_primary_10_1038_s41598_024_61167_3 crossref_primary_10_1080_21688370_2022_2103353 crossref_primary_10_1177_15353702221097320 crossref_primary_10_1016_j_cellsig_2024_111402 crossref_primary_10_1002_jbm4_10674 crossref_primary_10_3389_fimmu_2022_935114 crossref_primary_10_3389_fragi_2022_828058 crossref_primary_10_1002_cbic_202200364 crossref_primary_10_1158_0008_5472_CAN_22_0787 crossref_primary_10_1042_CS20230140 crossref_primary_10_31857_S0026898423040250 crossref_primary_10_32718_ujvas5_1_02 crossref_primary_10_1038_s41573_024_01126_9 crossref_primary_10_3390_cells12060915 crossref_primary_10_1016_j_mad_2023_111858 crossref_primary_10_3390_cells10123315 crossref_primary_10_1016_j_slasd_2025_100223 crossref_primary_10_3390_cells10071740 crossref_primary_10_3390_ijms222212225 crossref_primary_10_1016_j_arr_2022_101634 crossref_primary_10_1016_j_biocel_2024_106636 crossref_primary_10_1113_JP287387 crossref_primary_10_3390_jdad1010004 crossref_primary_10_13181_mji_rev_226064 crossref_primary_10_1016_j_stem_2022_11_010 crossref_primary_10_1038_s41467_022_30010_6 crossref_primary_10_1016_j_cellimm_2023_104769 crossref_primary_10_1093_stcltm_szae053 crossref_primary_10_1016_j_talanta_2021_122689 crossref_primary_10_1038_s41598_023_31576_x crossref_primary_10_1111_pcmr_13219 crossref_primary_10_1186_s13148_024_01793_w crossref_primary_10_1016_j_trsl_2024_12_005 crossref_primary_10_1002_cbf_3970 crossref_primary_10_1073_pnas_2401218121 crossref_primary_10_2139_ssrn_4095863 crossref_primary_10_47855_jal9020_2023_3_2 crossref_primary_10_3390_cimb46120818 crossref_primary_10_3389_fmolb_2023_1148389 crossref_primary_10_1093_jnci_djae211 crossref_primary_10_1016_j_mad_2023_111836 crossref_primary_10_1093_noajnl_vdab148 crossref_primary_10_1186_s13073_024_01418_0 crossref_primary_10_1021_acs_analchem_2c04223 crossref_primary_10_7783_KJMCS_2022_30_5_357 crossref_primary_10_1038_s41368_023_00263_y crossref_primary_10_3389_fphar_2022_857730 crossref_primary_10_1186_s12964_024_01594_x crossref_primary_10_1038_s41598_024_84408_x crossref_primary_10_1134_S106816202312018X crossref_primary_10_3390_biomedicines9050567 crossref_primary_10_3390_jcm11051236 crossref_primary_10_4103_2221_1691_383689 crossref_primary_10_1172_jci_insight_155648 crossref_primary_10_3390_antiox12030694 crossref_primary_10_3390_cancers13122989 crossref_primary_10_3390_plants13141943 crossref_primary_10_1155_2024_4213141 crossref_primary_10_3390_antiox12030579 crossref_primary_10_1016_j_exer_2023_109521 crossref_primary_10_1038_s41467_022_29081_2 crossref_primary_10_1016_j_ejcb_2023_151331 crossref_primary_10_1007_s11357_022_00681_6 crossref_primary_10_18632_aging_205789 crossref_primary_10_1111_jdi_14397 crossref_primary_10_1016_j_semcancer_2024_11_003 crossref_primary_10_1016_j_nbd_2022_105649 crossref_primary_10_2147_DDDT_S492576 crossref_primary_10_3390_cells13151281 crossref_primary_10_1016_j_devcel_2024_01_009 crossref_primary_10_1111_jcmm_70360 crossref_primary_10_1111_jog_15918 crossref_primary_10_1007_s00280_023_04523_w crossref_primary_10_3389_fcell_2020_620089 crossref_primary_10_3390_cells12242769 crossref_primary_10_3390_ijms23137124 crossref_primary_10_1038_s41514_022_00083_0 crossref_primary_10_1016_j_arr_2024_102403 crossref_primary_10_1016_j_bbrc_2024_149744 crossref_primary_10_1152_ajpcell_00239_2023 crossref_primary_10_1002_adfm_202107990 crossref_primary_10_1126_sciadv_ado1463 crossref_primary_10_1186_s13287_024_04019_1 crossref_primary_10_1016_j_jbc_2023_104922 crossref_primary_10_3389_fragi_2023_1161799 crossref_primary_10_1002_pgr2_20 crossref_primary_10_1038_s41514_024_00178_w crossref_primary_10_1038_s41598_025_87635_y crossref_primary_10_1016_j_ejcb_2025_151480 crossref_primary_10_1038_s41569_023_00881_3 crossref_primary_10_1186_s13613_023_01236_4 crossref_primary_10_3389_fgene_2024_1345459 crossref_primary_10_1093_toxres_tfad075 crossref_primary_10_1038_s41598_024_78899_x crossref_primary_10_1007_s12640_025_00730_w crossref_primary_10_1007_s11357_025_01517_9 crossref_primary_10_3389_fphar_2021_739510 crossref_primary_10_3390_diagnostics12030609 crossref_primary_10_1007_s00795_022_00314_z crossref_primary_10_3389_fvets_2024_1369153 crossref_primary_10_3390_ijms25126793 crossref_primary_10_18632_aging_206192 crossref_primary_10_3390_cancers14071706 crossref_primary_10_1007_s11033_025_10232_9 crossref_primary_10_1038_s44318_024_00246_7 crossref_primary_10_1016_j_ebiom_2023_104905 crossref_primary_10_1016_j_cell_2024_10_019 crossref_primary_10_1016_j_jcyt_2024_11_014 crossref_primary_10_1089_ars_2024_0605 crossref_primary_10_1002_anie_202404885 crossref_primary_10_1016_j_etap_2022_104039 crossref_primary_10_1111_febs_16983 crossref_primary_10_3389_fbioe_2024_1324049 crossref_primary_10_3389_fmed_2023_1072359 crossref_primary_10_1111_jnc_16250 crossref_primary_10_3389_fragi_2022_1014675 crossref_primary_10_1016_j_arr_2021_101510 crossref_primary_10_3390_cancers14061460 crossref_primary_10_1016_j_biomaterials_2025_123129 crossref_primary_10_1016_j_jare_2022_12_007 crossref_primary_10_1165_rcmb_2023_0449OC crossref_primary_10_1186_s12967_024_05115_9 crossref_primary_10_3390_biom14121528 crossref_primary_10_1038_s41419_022_05229_2 crossref_primary_10_3390_jfb15090253 crossref_primary_10_3389_fcell_2021_834517 crossref_primary_10_1111_acel_14297 crossref_primary_10_20960_RevOsteoporosMetabMiner_00013 crossref_primary_10_1038_s41598_023_40248_9 crossref_primary_10_1016_j_snr_2024_100271 crossref_primary_10_1021_acs_analchem_2c04766 crossref_primary_10_3390_ani14192900 crossref_primary_10_3233_CH_211294 crossref_primary_10_4093_dmj_2022_0416 crossref_primary_10_1016_j_arr_2025_102737 crossref_primary_10_1038_s41514_024_00181_1 crossref_primary_10_18481_2077_7566_2023_19_2_11_15 crossref_primary_10_1007_s00395_024_01053_1 crossref_primary_10_1007_s00441_023_03768_4 crossref_primary_10_1038_s41591_024_02802_4 crossref_primary_10_1186_s12943_024_02096_7 crossref_primary_10_18632_aging_203560 crossref_primary_10_3390_ijms25158448 crossref_primary_10_1111_acel_13875 crossref_primary_10_1111_acel_14060 crossref_primary_10_3390_antiox13091110 crossref_primary_10_3390_genes13020208 crossref_primary_10_1111_acel_14182 crossref_primary_10_17116_labs20221103128 crossref_primary_10_1002_ibra_12154 crossref_primary_10_3389_fendo_2024_1330942 crossref_primary_10_3390_jpm11111048 crossref_primary_10_1016_j_mocell_2024_100102 crossref_primary_10_1016_j_mad_2021_111618 crossref_primary_10_1186_s13046_023_02849_0 crossref_primary_10_1021_acsami_4c17748 crossref_primary_10_1002_aisy_202200352 crossref_primary_10_1002_path_6223 crossref_primary_10_3389_fnmol_2022_1069122 crossref_primary_10_1016_j_jid_2022_09_652 crossref_primary_10_1016_j_mad_2024_111957 crossref_primary_10_3389_fcimb_2021_744013 crossref_primary_10_3390_ijms26052364 crossref_primary_10_1016_j_acvd_2024_12_008 crossref_primary_10_1111_febs_16565 crossref_primary_10_1016_j_arr_2024_102206 crossref_primary_10_18632_aging_204666 crossref_primary_10_1038_s41514_024_00170_4 crossref_primary_10_1088_1748_605X_ad3700 crossref_primary_10_1111_jnc_15866 crossref_primary_10_1016_j_repbio_2023_100734 crossref_primary_10_3390_nu14173636 crossref_primary_10_1172_JCI158450 crossref_primary_10_3390_biomedicines12020348 crossref_primary_10_1007_s00417_023_06070_9 crossref_primary_10_1515_ntrev_2023_0211 crossref_primary_10_1111_acel_14154 crossref_primary_10_1016_j_placenta_2025_01_009 crossref_primary_10_1152_ajpheart_00706_2023 crossref_primary_10_3390_ijms241411505 crossref_primary_10_1002_cyto_a_24852 crossref_primary_10_1002_ijc_33787 crossref_primary_10_1002_cyto_a_24853 crossref_primary_10_1002_path_6358 crossref_primary_10_1002_adbi_202400079 crossref_primary_10_1186_s41232_024_00342_5 crossref_primary_10_1063_5_0204393 crossref_primary_10_1111_acel_13977 crossref_primary_10_1186_s40634_023_00596_x crossref_primary_10_1038_s41569_022_00739_0 crossref_primary_10_1039_D3NR04083F crossref_primary_10_3389_fcell_2022_1083743 crossref_primary_10_3390_ijms232315153 crossref_primary_10_18632_aging_204072 crossref_primary_10_1111_acel_13850 crossref_primary_10_1007_s13311_021_01179_3 crossref_primary_10_1021_acsmaterialsau_3c00057 crossref_primary_10_1186_s40035_024_00457_2 crossref_primary_10_31857_S0320972523010049 crossref_primary_10_1016_j_exer_2023_109636 crossref_primary_10_1186_s12931_023_02636_7 crossref_primary_10_1021_acs_accounts_3c00794 crossref_primary_10_1111_dme_15408 crossref_primary_10_3389_fragi_2021_686382 crossref_primary_10_20517_jca_2024_31 crossref_primary_10_1111_acel_13505 crossref_primary_10_1210_endrev_bnae010 crossref_primary_10_3390_ijms24129906 crossref_primary_10_1039_D2SC03525A crossref_primary_10_3390_biomedicines12071586 crossref_primary_10_1038_s41598_024_79667_7 crossref_primary_10_1177_00220345231158038 crossref_primary_10_1111_acel_14278 crossref_primary_10_3389_fcvm_2024_1506360 crossref_primary_10_1007_s10456_024_09943_7 crossref_primary_10_3390_antiox13111390 crossref_primary_10_1111_acel_13620 crossref_primary_10_1007_s10750_023_05247_x crossref_primary_10_1158_1535_7163_MCT_24_0139 crossref_primary_10_3390_cells13232021 |
Cites_doi | 10.1038/s41556-018-0249-2 10.1016/j.cmet.2019.01.021 10.1038/nm.4000 10.1039/C8AN00516H 10.1016/j.cbi.2013.10.016 10.1038/nprot.2009.191 10.1007/s11357-019-00053-7 10.1016/j.celrep.2020.107830 10.1038/s41586-020-2403-9 10.1073/pnas.1818313116 10.3389/fmed.2019.00033 10.1016/j.cell.2012.12.010 10.1021/jacs.6b01705 10.1063/1.4939946 10.1039/C7AN00592J 10.15252/embj.201592862 10.1038/s41586-018-0543-y 10.1002/mrm.22400 10.1016/j.redox.2017.08.015 10.1158/1538-7445.AM2019-1146 10.1038/sj.onc.1209612 10.1038/nature10600 10.1101/gad.302570.117 10.1038/s41467-019-12064-1 10.1016/j.mad.2020.111263 10.1101/gad.1971610 10.1039/C8NH00473K 10.1038/ncomms14532 10.1073/pnas.1614661114 10.1042/BST20190109 10.1128/MCB.20.18.6741-6754.2000 10.1242/jcs.113.20.3613 10.18632/aging.102903 10.1126/science.1122446 10.1158/0008-5472.CAN-12-3902 10.1016/j.biocel.2004.10.013 10.1182/bloodadvances.2017006205 10.1002/ange.201909933 10.1089/152308603770310158 10.1146/annurev-pathol-121808-102144 10.1155/2017/5716409 10.1021/jacs.7b04985 10.1038/s41598-019-38511-z 10.1038/cddis.2014.489 10.15252/embj.201694025 10.1038/366704a0 10.1016/j.cell.2013.10.041 10.1242/dev.138222 10.4161/cc.24944 10.1038/nrc3773 10.33594/000000044 10.1016/0014-4827(61)90192-6 10.1016/j.cell.2013.10.019 10.1371/journal.pbio.3000599 10.1038/s41598-019-38546-2 10.1002/jcp.1041120312 10.1038/labinvest.3700241 10.1172/jci.insight.133668 10.1038/s41598-017-15901-9 10.18632/aging.101921 10.1038/nature05529 10.1038/s41598-019-50035-0 10.1016/j.cmet.2020.05.002 10.1007/978-1-4939-6670-7_18 10.1021/ac5031013 10.1038/ncb3397 10.1007/978-1-4939-8931-7_11 10.15252/emmm.201809355 10.1038/sj.bjc.6603636 10.1016/j.cell.2008.06.049 10.1126/science.aaf6659 10.1038/nature10599 10.1111/acel.12911 10.1111/acel.12545 10.1021/acschemneuro.8b00194 10.1111/acel.13083 10.1038/ncomms15287 10.1016/j.jmb.2019.05.036 10.5603/FHC.2012.0031 10.1007/978-1-4939-8931-7_3 10.1038/nmeth868 10.4161/cc.8.24.10215 10.1084/jem.131.6.1211 10.1038/nrm3823 10.1038/nrc3960 10.1101/2020.03.27.010827 10.1186/s13287-017-0649-4 10.1038/nature24050 10.1021/acs.molpharmaceut.8b01014 10.1111/acel.12901 10.1161/CIRCULATIONAHA.115.016457 10.1111/j.1474-9726.2012.00795.x 10.1016/j.devcel.2014.11.012 10.1021/bc200647q 10.15252/embj.2018100492 10.1155/2015/732914 10.1016/j.ebiom.2017.03.027 10.1128/MCB.19.3.2109 10.1001/archpsyc.57.1.47 10.1038/ncb2170 10.1016/j.biocel.2003.08.009 10.1038/nature06084 10.15252/emmm.201810234 10.18632/aging.101540 10.1111/acel.12632 10.1038/s41418-018-0118-3 10.1038/s41416-018-0066-1 10.1016/j.bbabio.2008.03.029 10.1016/j.celrep.2019.05.095 10.1371/journal.pbio.0050110 10.1038/onc.2008.323 10.1128/MCB.02019-06 10.1038/nrc2440 10.1016/j.cell.2019.01.018 10.3390/cells8121501 10.1016/j.ceb.2009.12.005 10.1091/mbc.e11-10-0884 10.1167/iovs.19-26983 10.1073/pnas.92.20.9363 10.1016/j.celrep.2015.07.055 10.1101/gad.313270.118 10.3390/ijms20102547 10.1038/s41467-018-03555-8 10.1002/anie.201603328 10.1038/s41593-019-0372-9 10.1007/s11357-019-00100-3 10.1038/ncomms11190 10.1038/nm.4324 10.1111/j.1474-9726.2006.00199.x 10.1002/ange.202002576 10.1016/j.freeradbiomed.2018.10.457 10.1016/S1097-2765(04)00256-4 10.1038/sj.onc.1207102 10.1371/journal.pone.0207380 10.1038/ncb2070 10.1038/s41568-019-0156-2 10.1016/j.cmet.2019.05.006 10.1088/1361-6528/aa57b3 10.1111/acel.12592 10.1038/ncomms7463 10.1093/nar/gkz555 10.1101/cshperspect.a026104 10.1016/j.cub.2017.07.033 10.1242/jcs.071340 10.3390/cells8070686 10.1186/s13578-016-0079-5 10.1016/j.nurt.2007.05.006 10.1142/S1793545819410013 10.1016/j.cell.2019.10.005 10.1186/2046-2395-1-6 10.18632/aging.100527 10.1093/emboj/cdg417 10.1038/ncb2466 10.1016/j.tcb.2017.08.007 10.1038/436642a 10.1002/biot.201800691 10.1098/rsif.2019.0311 |
ContentType | Journal Article |
Copyright | 2020 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies 2020 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies. 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies – notice: 2020 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies. – notice: 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 |
DOI | 10.1111/febs.15570 |
DatabaseName | Wiley-Blackwell Open Access Titles CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Virology and AIDS Abstracts AGRICOLA CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1742-4658 |
EndPage | 80 |
ExternalDocumentID | 32961620 10_1111_febs_15570 FEBS15570 |
Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: Royal Society Research Grant funderid: RG160806 – fundername: Medical Research Council funderid: MR/R000530/1 – fundername: Cancer Research UK funderid: C62187/A26989; C62187/A29760; C67674/A27887 – fundername: Cancer Research UK grantid: 27887 – fundername: Cancer Research UK grantid: C67674/A27887 – fundername: Cancer Research UK grantid: 29760 – fundername: Cancer Research UK grantid: C62187/A26989 – fundername: Cancer Research UK grantid: 26989 – fundername: Cancer Research UK grantid: C62187/A29760 – fundername: Medical Research Council grantid: MR/R000530/1 |
GroupedDBID | --- -DZ -~X .3N .55 .GA .Y3 05W 0R~ 10A 1OC 24P 29H 31~ 33P 36B 3O- 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 A8Z AAESR AAEVG AAHBH AAHHS AAHQN AAIPD AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEFU ABEML ABPVW ABQWH ABXGK ACAHQ ACCFJ ACCZN ACFBH ACGFS ACGOF ACIWK ACMXC ACNCT ACPOU ACPRK ACSCC ACUHS ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMXJE BROTX BRXPI BY8 C1A C45 CAG COF CS3 D-6 D-7 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRMAN DRSTM E3Z EAD EAP EAS EAU EBB EBC EBD EBS EBX EJD EMB EMK EMOBN EST ESX EX3 F00 F01 F04 F5P FIJ FUBAC G-S G.N GODZA GX1 H.X HF~ HGLYW HH5 HZI HZ~ IHE IX1 J0M KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MVM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OBS OIG OK1 OVD P2W P2X P2Z P4B P4D PQQKQ Q.N Q11 QB0 R.K RNS ROL RX1 SUPJJ SV3 TEORI TR2 TUS UB1 V8K W8V W99 WBFHL WBKPD WIH WIJ WIK WIN WOHZO WOQ WOW WQJ WRC WXI WXSBR WYISQ X7M XG1 Y6R ~IA ~KM ~WT AAYXX AEYWJ AGHNM AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c4070-acf60abe3aa9dbf138cb64530a872b7d7fd4ed6591801258ecdb1014f62e8d3f3 |
IEDL.DBID | DR2 |
ISSN | 1742-464X 1742-4658 |
IngestDate | Fri Jul 11 18:35:55 EDT 2025 Fri Jul 11 10:17:10 EDT 2025 Fri Jul 25 19:39:57 EDT 2025 Mon Jul 21 06:04:55 EDT 2025 Thu Apr 24 22:57:07 EDT 2025 Tue Jul 01 03:06:52 EDT 2025 Wed Jan 22 16:30:45 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | assessment ageing detection cellular senescence biomarkers |
Language | English |
License | Attribution 2020 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4070-acf60abe3aa9dbf138cb64530a872b7d7fd4ed6591801258ecdb1014f62e8d3f3 |
Notes | Estela González‐Gualda and Andrew G Baker contributed equally to this work ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-1558-4259 0000-0002-6498-3208 0000-0002-0550-9514 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Ffebs.15570 |
PMID | 32961620 |
PQID | 2474820626 |
PQPubID | 28478 |
PageCount | 25 |
ParticipantIDs | proquest_miscellaneous_2524241258 proquest_miscellaneous_2445426175 proquest_journals_2474820626 pubmed_primary_32961620 crossref_primary_10_1111_febs_15570 crossref_citationtrail_10_1111_febs_15570 wiley_primary_10_1111_febs_15570_FEBS15570 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2021 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: January 2021 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | The FEBS journal |
PublicationTitleAlternate | FEBS J |
PublicationYear | 2021 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | 2010; 12 2011; 479 2018; 562 2019; 11 2019; 10 2019; 12 2019; 14 2019; 16 2019; 19 2019; 18 2020; 12 2017; 550 2012; 14 1993; 366 2016; 38 2013; 5 2012; 11 2016; 35 2020; 19 2020; 18 2010; 22 2018; 9 2011; 124 2010; 24 2019; 20 2019; 22 2019; 21 2004; 36 2006; 25 2019; 26 2008; 27 2015; 132 2014; 15 2019; 27 2014; 14 2019; 29 2007; 4 2007; 5 2010; 5 2012; 23 2018; 32 2019; 431 2019; 8 2007; 445 2019; 9 2007; 448 2019; 4 2019; 6 2000; 113 2019; 30 1995; 55 2016; 10 2019; 38 2005; 85 2007; 96 2020; 32 2016; 18 2017; 139 2012; 50 2016; 6 2016; 7 1970; 131 2019; 42 2020; 31 2019; 41 2018; 118 2017; 1534 2013; 73 2019; 47 2015; 2015 2019; 179 2017; 142 2017; 144 2008; 134 2018; 10 2003; 22 2018; 14 2014; 31 2019; 176 2018; 13 2017; 7 2017; 8 2017; 1 2019; 52 2019; 58 2008; 8 2011; 13 2017; 114 2014; 207 2017; 31 2010; 64 2020; 5 2019; 60 2014; 5 1999; 19 2013; 12 2020; 132 2000; 57 2013; 155 2016; 354 2019; 116 2020; 48 2003; 5 2013; 152 2005; 37 2007; 22 2019; 1896 2007; 27 2015; 12 2015; 15 2018; 143 2015; 6 1995; 92 2017; 2017 2020; 583 2017; 28 2017; 27 1985; 2 2019; 79 2017; 21 2017; 23 2000; 20 2005; 436 2006; 5 2006; 3 2020; 189 2008; 1777 2014; 86 2006; 311 2016; 55 2012; 1 2017; 16 2020 2004; 14 2015; 21 2019 1982; 112 2018 2009; 8 2016; 138 2009; 4 2019; 130 1961; 25 e_1_2_11_70_1 e_1_2_11_93_1 e_1_2_11_32_1 e_1_2_11_55_1 e_1_2_11_78_1 e_1_2_11_36_1 e_1_2_11_51_1 e_1_2_11_74_1 e_1_2_11_97_1 e_1_2_11_13_1 e_1_2_11_118_1 e_1_2_11_29_1 e_1_2_11_4_1 e_1_2_11_106_1 e_1_2_11_148_1 e_1_2_11_48_1 e_1_2_11_121_1 e_1_2_11_102_1 e_1_2_11_144_1 e_1_2_11_163_1 e_1_2_11_140_1 e_1_2_11_81_1 e_1_2_11_20_1 e_1_2_11_66_1 e_1_2_11_47_1 e_1_2_11_89_1 e_1_2_11_24_1 e_1_2_11_62_1 Stokes HW (e_1_2_11_125_1) 1985; 2 e_1_2_11_129_1 e_1_2_11_8_1 e_1_2_11_43_1 e_1_2_11_85_1 e_1_2_11_17_1 e_1_2_11_117_1 e_1_2_11_136_1 e_1_2_11_159_1 e_1_2_11_59_1 e_1_2_11_113_1 e_1_2_11_132_1 e_1_2_11_155_1 Shapiro GI (e_1_2_11_98_1) 1995; 55 e_1_2_11_151_1 e_1_2_11_50_1 e_1_2_11_92_1 Schwenck J (e_1_2_11_126_1) 2019; 58 e_1_2_11_31_1 e_1_2_11_77_1 e_1_2_11_58_1 e_1_2_11_119_1 e_1_2_11_35_1 e_1_2_11_73_1 e_1_2_11_12_1 e_1_2_11_54_1 e_1_2_11_96_1 e_1_2_11_103_1 e_1_2_11_149_1 e_1_2_11_28_1 e_1_2_11_5_1 e_1_2_11_122_1 e_1_2_11_145_1 e_1_2_11_141_1 e_1_2_11_164_1 e_1_2_11_160_1 Amaia L (e_1_2_11_11_1) 2016; 38 e_1_2_11_61_1 e_1_2_11_80_1 e_1_2_11_46_1 e_1_2_11_69_1 e_1_2_11_88_1 e_1_2_11_107_1 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_42_1 e_1_2_11_65_1 e_1_2_11_84_1 e_1_2_11_114_1 e_1_2_11_16_1 e_1_2_11_137_1 e_1_2_11_156_1 e_1_2_11_110_1 e_1_2_11_39_1 e_1_2_11_133_1 e_1_2_11_152_1 Kopp HG (e_1_2_11_94_1) 2007; 22 e_1_2_11_72_1 e_1_2_11_91_1 e_1_2_11_30_1 e_1_2_11_57_1 e_1_2_11_99_1 e_1_2_11_34_1 e_1_2_11_53_1 e_1_2_11_76_1 e_1_2_11_95_1 e_1_2_11_6_1 e_1_2_11_104_1 e_1_2_11_27_1 e_1_2_11_127_1 e_1_2_11_2_1 e_1_2_11_100_1 e_1_2_11_146_1 e_1_2_11_123_1 e_1_2_11_142_1 e_1_2_11_161_1 e_1_2_11_83_1 e_1_2_11_60_1 e_1_2_11_45_1 e_1_2_11_68_1 e_1_2_11_41_1 e_1_2_11_87_1 e_1_2_11_108_1 e_1_2_11_22_1 e_1_2_11_64_1 e_1_2_11_115_1 e_1_2_11_138_1 e_1_2_11_15_1 e_1_2_11_111_1 e_1_2_11_134_1 e_1_2_11_38_1 e_1_2_11_157_1 e_1_2_11_19_1 e_1_2_11_153_1 e_1_2_11_130_1 e_1_2_11_71_1 e_1_2_11_90_1 e_1_2_11_10_1 e_1_2_11_56_1 e_1_2_11_79_1 e_1_2_11_14_1 e_1_2_11_52_1 e_1_2_11_33_1 e_1_2_11_75_1 e_1_2_11_7_1 e_1_2_11_105_1 e_1_2_11_128_1 e_1_2_11_147_1 e_1_2_11_26_1 e_1_2_11_3_1 e_1_2_11_49_1 e_1_2_11_101_1 e_1_2_11_124_1 e_1_2_11_143_1 e_1_2_11_120_1 e_1_2_11_162_1 e_1_2_11_82_1 e_1_2_11_21_1 e_1_2_11_44_1 e_1_2_11_67_1 e_1_2_11_25_1 e_1_2_11_40_1 e_1_2_11_63_1 e_1_2_11_86_1 e_1_2_11_109_1 e_1_2_11_18_1 e_1_2_11_139_1 e_1_2_11_116_1 e_1_2_11_158_1 e_1_2_11_37_1 e_1_2_11_135_1 e_1_2_11_154_1 e_1_2_11_112_1 e_1_2_11_131_1 e_1_2_11_150_1 |
References_xml | – volume: 6 start-page: 33 year: 2019 article-title: Selection of a real‐time PCR housekeeping gene panel in human endothelial colony forming cells for cellular senescence studies publication-title: Front Med – year: 2020 article-title: A self‐immobilizing NIR probe for non‐invasive imaging of senescence publication-title: bioRxiv – volume: 27 start-page: 697 year: 2017 end-page: 698 article-title: cGAS conducts micronuclei DNA surveillance publication-title: Trends Cell Biol – volume: 5 year: 2014 article-title: Characterization of novel markers of senescence and their prognostic potential in cancer publication-title: Cell Death Dis. – volume: 22 start-page: 234 year: 2010 end-page: 240 article-title: Connecting autophagy to senescence in pathophysiology publication-title: Curr Opin Cell Biol – volume: 12 start-page: 1483 year: 2015 end-page: 1496 article-title: Mitotic stress is an integral part of the oncogene‐induced senescence program that promotes multinucleation and cell cycle arrest publication-title: Cell Rep – volume: 20 start-page: 6741 year: 2000 end-page: 6754 article-title: Uncoupling between phenotypic senescence and cell cycle arrest in aging p21‐deficient fibroblasts publication-title: Mol Cell Biol – volume: 20 year: 2019 article-title: Exosomes as emerging pro‐tumorigenic mediators of the senescence‐associated secretory phenotype publication-title: Int J Mol Sci – volume: 1 start-page: 6 year: 2012 article-title: Aging, immunosenescence and membrane rafts: the lipid connection publication-title: Longev Heal – volume: 124 start-page: 68 year: 2011 end-page: 81 article-title: DNA‐SCARS: distinct nuclear structures that sustain damage‐induced senescence growth arrest and inflammatory cytokine secretion publication-title: J Cell Sci – volume: 11 start-page: 345 year: 2012 end-page: 349 article-title: A senescent cell bystander effect: senescence‐induced senescence publication-title: Aging Cell – volume: 16 start-page: 724 year: 2019 end-page: 736 article-title: Targeted mitochondrial COQ 10 delivery attenuates antiretroviral‐drug‐induced senescence of neural progenitor cells publication-title: Mol Pharm – volume: 9 start-page: 2074 year: 2019 article-title: Autofluorescence is a reliable marker of cellular senescence in human mesenchymal stromal cells publication-title: Sci Rep – volume: 26 start-page: 276 year: 2019 end-page: 290 article-title: Selective elimination of senescent cells by mitochondrial targeting is regulated by ANT2 publication-title: Cell Death Differ – volume: 15 start-page: 397 year: 2015 end-page: 408 article-title: Forging a signature of senescence publication-title: Nat Rev Cancer – volume: 13 year: 2018 article-title: Raman and infrared spectroscopy reveal that proliferating and quiescent human fibroblast cells age by biochemically similar but not identical processes publication-title: PLoS One – volume: 134 start-page: 657 year: 2008 end-page: 667 article-title: Senescence of activated stellate cells limits liver fibrosis publication-title: Cell – volume: 35 start-page: 724 year: 2016 end-page: 742 article-title: Mitochondria are required for pro‐ageing features of the senescent phenotype publication-title: EMBO J – volume: 96 start-page: 686 year: 2007 end-page: 691 article-title: Cellular senescence and chromatin organisation publication-title: Br J Cancer – volume: 50 start-page: 220 year: 2012 end-page: 227 article-title: The profile of lysosomal exoglycosidases in replicative and stress‐induced senescence in early passage human fibroblasts publication-title: Folia Histochem Cytobiol – volume: 31 start-page: 1529 year: 2017 end-page: 1534 article-title: Identification of senescent cell surface targetable protein DPP4 publication-title: Genes Dev – volume: 64 start-page: 65 year: 2010 end-page: 71 article-title: S‐Gal®, a novel1H MRI reporter for β‐galactosidase publication-title: Magn Reson Med – volume: 38 year: 2019 article-title: Length‐independent telomere damage drives post‐mitotic cardiomyocyte senescence publication-title: EMBO J – volume: 112 start-page: 385 year: 1982 end-page: 390 article-title: β‐Galactosidase—An indicator of the maturational stage of mouse and human mononuclear phagocytes publication-title: J Cell Physiol – volume: 11 start-page: 2378 year: 2019 end-page: 2387 article-title: Replicative and radiation‐induced aging: a comparison of gene expression profiles publication-title: Aging – volume: 14 start-page: 100 year: 2018 end-page: 115 article-title: Iron accumulation in senescent cells is coupled with impaired ferritinophagy and inhibition of ferroptosis publication-title: Redox Biol. – volume: 8 start-page: 4112 year: 2009 end-page: 4118 article-title: Pseudo‐DNA damage response in senescent cells publication-title: Cell Cycle – volume: 118 start-page: 1283 year: 2018 end-page: 1288 article-title: Paracrine roles of cellular senescence in promoting tumourigenesis publication-title: Br J Cancer – volume: 4 start-page: 371 year: 2007 end-page: 386 article-title: Iron in chronic brain disorders: imaging and neurotherapeutic implications publication-title: Neurotherapeutics – volume: 9 year: 2019 article-title: Real‐time imaging of senescence in tumors with DNA damage publication-title: Sci Rep – volume: 31 start-page: 722 year: 2014 end-page: 733 article-title: An essential role for senescent cells in optimal wound healing through secretion of PDGF‐AA publication-title: Dev Cell – volume: 2015 start-page: 732914 year: 2015 article-title: Comparative meta‐analysis of transcriptomics data during cellular senescence and tissue ageing publication-title: Oxid Med Cell Longev – volume: 562 start-page: 578 year: 2018 end-page: 582 article-title: Clearance of senescent glial cells prevents tau‐dependent pathology and cognitive decline publication-title: Nature – volume: 176 start-page: 1083 year: 2019 end-page: 1097 article-title: Excessive cell growth causes cytoplasm dilution and contributes to senescence publication-title: Cell – volume: 30 start-page: 129 year: 2019 end-page: 142 article-title: Acceleration of β cell aging determines diabetes and senolysis improves disease outcomes publication-title: Cell Metab. – volume: 1896 start-page: 107 year: 2019 end-page: 117 article-title: A multiparametric assay to evaluate senescent cells publication-title: Methods Mol Biol – volume: 48 start-page: 765 year: 2020 end-page: 773 article-title: Functional heterogeneity in senescence publication-title: Biochem Soc Trans – volume: 5 start-page: 37 year: 2013 end-page: 50 article-title: Specific lipofuscin staining as a novel biomarker to detect replicative and stress‐induced senescence. A method applicable in cryo‐preserved and archival tissues publication-title: Aging – volume: 9 start-page: 1249 year: 2018 article-title: Downregulation of cytoplasmic DNases is implicated in cytoplasmic DNA accumulation and SASP in senescent cells publication-title: Nat Commun – volume: 5 start-page: 507 year: 2003 end-page: 516 article-title: Iron accumulation during cellular senescence in human fibroblasts publication-title: Antioxid Redox Signal – volume: 550 start-page: 402 year: 2017 end-page: 406 article-title: Cytoplasmic chromatin triggers inflammation in senescence and cancer publication-title: Nature – volume: 14 start-page: 547 year: 2014 end-page: 558 article-title: Inside and out: the activities of senescence in cancer publication-title: Nat Rev Cancer – volume: 1777 start-page: 1028 year: 2008 end-page: 1031 article-title: Targeting lipophilic cations to mitochondria publication-title: Biochim Biophys Acta – volume: 116 start-page: 2603 year: 2019 end-page: 2611 article-title: Cells exhibiting strong p16INK4a promoter activation display features of senescence publication-title: Proc Natl Acad Sci USA – volume: 155 start-page: 1119 year: 2013 end-page: 1130 article-title: Senescence is a developmental mechanism that contributes to embryonic growth and patterning publication-title: Cell – volume: 8 start-page: 201 year: 2017 article-title: Decoy TRAIL receptor CD264: a cell surface marker of cellular aging for human bone marrow‐derived mesenchymal stem cells publication-title: Stem Cell Res Ther – volume: 138 start-page: 5334 year: 2016 end-page: 5340 article-title: Real‐time tracking and visualization of β‐galactosidase activity in colorectal tumor with a ratiometric near‐infrared fluorescent probe publication-title: J Am Chem Soc – volume: 6 start-page: 1 year: 2015 end-page: 7 article-title: Sensitive β‐galactosidase‐targeting fluorescence probe for visualizing small peritoneal metastatic tumours publication-title: Nat Commun – volume: 189 year: 2020 article-title: The bright and dark side of extracellular vesicles in the senescence‐associated secretory phenotype publication-title: Mech Ageing Dev – volume: 8 year: 2017 article-title: Exosomes maintain cellular homeostasis by excreting harmful DNA from cells publication-title: Nat Commun – volume: 7 year: 2016 article-title: Directed elimination of senescent cells by inhibition of BCL‐W and BCL‐XL publication-title: Nat Commun – volume: 58 start-page: L5 year: 2019 article-title: imaging of tumor senescence with a novel beta‐galactosidase specific PET tracer publication-title: Nuklearmedizin – volume: 12 start-page: 676 year: 2010 end-page: 685 article-title: The matricellular protein CCN1 induces fibroblast senescence and restricts fibrosis in cutaneous wound healing publication-title: Nat Cell Biol – volume: 25 start-page: 5210 year: 2006 end-page: 5219 article-title: RB, the conductor that orchestrates life, death and differentiation publication-title: Oncogene – volume: 18 year: 2019 article-title: Identification of stable senescence‐associated reference genes publication-title: Aging Cell – volume: 18 year: 2020 article-title: A proteomic atlas of senescence‐associated secretomes for aging biomarker development publication-title: PLoS Biol – volume: 436 start-page: 642 year: 2005 article-title: Senescence in premalignant tumours publication-title: Nature – volume: 21 start-page: 14 year: 2017 end-page: 20 article-title: Telomeres and cell senescence ‐ size matters not publication-title: EBioMedicine – volume: 155 start-page: 1104 year: 2013 end-page: 1118 article-title: Programmed cell senescence during mammalian embryonic development publication-title: Cell – volume: 35 start-page: 701 year: 2016 end-page: 702 article-title: Mitochondria and senescence: new actors for an old play publication-title: EMBO J – volume: 130 start-page: 267 year: 2019 end-page: 277 article-title: Pan‐senescence transcriptome analysis identified RRAD as a marker and negative regulator of cellular senescence publication-title: Free Radic Biol Med – volume: 19 start-page: 439 year: 2019 end-page: 453 article-title: Unmasking senescence: context‐dependent effects of SASP in cancer publication-title: Nat Rev Cancer – volume: 23 start-page: 775 year: 2017 article-title: Local clearance of senescent cells attenuates the development of post‐traumatic osteoarthritis and creates a pro‐regenerative environment publication-title: Nat Med – volume: 32 start-page: 909 year: 2018 end-page: 914 article-title: SCAMP4 enhances the senescent cell secretome publication-title: Genes Dev – volume: 85 start-page: 502 year: 2005 end-page: 511 article-title: p53‐Dependent ICAM‐1 overexpression in senescent human cells identified in atherosclerotic lesions publication-title: Lab Investig – volume: 32 start-page: 87 year: 2020 end-page: 99 article-title: Defined p16High senescent cell types are indispensable for mouse healthspan publication-title: Cell Metab – volume: 28 year: 2017 article-title: CD9 monoclonal antibody‐conjugated PEGylated liposomes for targeted delivery of rapamycin in the treatment of cellular senescence publication-title: Nanotechnology – volume: 583 start-page: 127 year: 2020 end-page: 132 article-title: Senolytic CAR T cells reverse senescence‐associated pathologies publication-title: Nature – volume: 79 start-page: 1146 year: 2019 article-title: Abstract 1146: [18F]FPyGal: a novel ß‐galactosidase specific PET tracer for imaging of tumor senescence publication-title: Cancer Res – volume: 448 start-page: 943 year: 2007 end-page: 946 article-title: p15Ink4b is a critical tumour suppressor in the absence of p16Ink4a publication-title: Nature – volume: 9 start-page: 1849 year: 2018 end-page: 1857 article-title: Increased Iron deposition on brain quantitative susceptibility mapping correlates with decreased cognitive function in Alzheimer’s disease publication-title: ACS Chem Neurosci – volume: 207 start-page: 74 year: 2014 end-page: 80 article-title: Resveratrol alters the lipid composition, metabolism and peroxide level in senescent rat hepatocytes publication-title: Chem Biol Interact – volume: 27 start-page: 2343 year: 2007 end-page: 2358 article-title: Molecular dissection of formation of senescence‐associated heterochromatin foci publication-title: Mol Cell Biol – volume: 10 year: 2018 article-title: A versatile drug delivery system targeting senescent cells publication-title: EMBO Mol Med – volume: 27 start-page: 7070 year: 2008 end-page: 7082 article-title: Oncogene activation in melanocytes links reactive oxygen to multinucleated phenotype and senescence publication-title: Oncogene – volume: 36 start-page: 1400 year: 2004 end-page: 1404 article-title: Lipofuscin publication-title: Int J Biochem Cell Biol – volume: 21 start-page: 94 year: 2019 end-page: 101 article-title: The dynamic nature of senescence in cancer publication-title: Nat Cell Biol – volume: 57 start-page: 47 year: 2000 end-page: 53 article-title: evaluation of brain iron in Alzheimer disease using magnetic resonance imaging publication-title: Arch Gen Psychiatry – volume: 22 start-page: 4212 year: 2003 end-page: 4222 article-title: Reversal of human cellular senescence: roles of the p53 and p16 pathways publication-title: EMBO J – volume: 55 start-page: 505 year: 1995 end-page: 509 article-title: Reciprocal Rb inactivation and p16INK4 expression in primary lung cancers and cell lines publication-title: Cancer Res – volume: 311 start-page: 1257 year: 2006 article-title: Cellular senescence in aging primates publication-title: Science – volume: 22 start-page: 971 year: 2007 end-page: 976 article-title: β‐galactosidase staining on bone marrow. The osteoclast pitfall publication-title: Histol Histopathol – volume: 14 start-page: 355 year: 2012 end-page: 365 article-title: Telomeric DNA damage is irreparable and causes persistent DNA‐damage‐response activation publication-title: Nat Cell Biol – volume: 132 start-page: 8776 year: 2020 end-page: 8783 article-title: Mitochondria‐targeting plasmonic spiky nanorods increase the elimination of aging cells publication-title: Angew Chemie – volume: 5 start-page: 187 year: 2006 end-page: 195 article-title: Senescence‐associated β‐galactosidase is lysosomal β‐galactosidase publication-title: Aging Cell – volume: 19 year: 2020 article-title: Cellular senescence and chronological age in various human tissues: a systematic review and meta‐analysis publication-title: Aging Cell – volume: 12 start-page: 4052 year: 2020 end-page: 4066 article-title: Survey of senescent cell markers with age in human tissues publication-title: Aging – volume: 132 start-page: 1909 year: 2015 end-page: 1919 article-title: Vascular smooth muscle cell senescence promotes atherosclerosis and features of plaque vulnerability publication-title: Circulation – volume: 16 year: 2019 article-title: A dynamical systems model for the measurement of cellular senescence publication-title: J R Soc Interface – volume: 1 start-page: 628 year: 2017 end-page: 643 article-title: Immune dysfunctionality of replicative senescent mesenchymal stromal cells is corrected by IFNg priming publication-title: Blood Adv – volume: 12 year: 2019 article-title: Photoacoustic nanoprobe for β‐galactosidase activity detection and imaging publication-title: J Innov Opt Health Sci – volume: 24 start-page: 2463 year: 2010 end-page: 2479 article-title: The essence of senescence publication-title: Genes Dev – year: 2018 – volume: 2017 year: 2017 article-title: Protein posttranslational modifications: roles in aging and age‐related disease publication-title: Oxid Med Cell Longev – volume: 25 start-page: 585 year: 1961 end-page: 621 article-title: The serial cultivation of human diploid strains publication-title: Exp Cell Res – volume: 12 start-page: 1922 year: 2013 end-page: 1927 article-title: α‐Fucosidase as a novel convenient biomarker for cellular senescence publication-title: Cell Cycle – volume: 152 start-page: 340 year: 2013 end-page: 351 article-title: Monitoring tumorigenesis and senescence with a p16(INK4a)‐luciferase model publication-title: Cell – volume: 139 start-page: 8808 year: 2017 end-page: 8811 article-title: An OFF–ON two‐photon fluorescent probe for tracking cell senescence publication-title: J Am Chem Soc – volume: 23 start-page: 596 year: 2012 end-page: 603 article-title: Dual 19F/ 1H MR gene reporter molecules for detection of β‐galactosidase publication-title: Bioconjug Chem – volume: 92 start-page: 9363 year: 1995 end-page: 9367 article-title: A biomarker that identifies senescent human cells in culture and in aging skin publication-title: Proc Natl Acad Sci USA – volume: 41 start-page: 561 year: 2019 end-page: 573 article-title: Astrocyte senescence may drive alterations in GFAPα, CDKN2A p14ARF, and TAU3 transcript expression and contribute to cognitive decline publication-title: GeroScience – volume: 14 start-page: 501 year: 2004 end-page: 513 article-title: Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21CIP1, but not p16INK4a publication-title: Mol Cell – volume: 5 start-page: 99 year: 2010 end-page: 118 article-title: The Senescence‐associated secretory phenotype: the dark side of tumor suppression publication-title: Annu Rev Pathol Mech Dis – volume: 60 start-page: 3669 year: 2019 end-page: 3679 article-title: Induction of fibroblast senescence during mouse corneal wound healing publication-title: Invest Ophthalmol Vis Sci – volume: 16 start-page: 1043 year: 2017 end-page: 1050 article-title: Analysis of individual cells identifies cell‐to‐cell variability following induction of cellular senescence publication-title: Aging Cell – volume: 15 start-page: 482 year: 2014 end-page: 496 article-title: Cellular senescence: from physiology to pathology publication-title: Nat Rev Mol Cell Biol – volume: 16 start-page: 661 year: 2017 end-page: 671 article-title: Quantitative identification of senescent cells in aging and disease publication-title: Aging Cell – volume: 143 start-page: 2680 year: 2018 end-page: 2688 article-title: Development of highly sensitive fluorescent probes for the detection of β‐galactosidase activity – application to the real‐time monitoring of senescence in live cells publication-title: Analyst – volume: 2 start-page: 469 year: 1985 end-page: 477 article-title: Sequence of the ebgA gene of : comparison with the lacZ gene publication-title: Mol Biol Evol – volume: 8 start-page: 686 year: 2019 article-title: Mitochondrial homeostasis and cellular senescence publication-title: Cells – volume: 21 start-page: 1424 year: 2015 end-page: 1435 article-title: Cellular senescence in aging and age‐related disease: from mechanisms to therapy publication-title: Nat. Med – volume: 73 start-page: 3451 year: 2013 end-page: 3459 article-title: Notch3 functions as a tumor suppressor by controlling cellular senescence publication-title: Cancer Res – volume: 18 year: 2019 article-title: Extranuclear DNA accumulates in aged cells and contributes to senescence and inflammation publication-title: Aging Cell – volume: 11 year: 2019 article-title: Targeting senescent cells in translational medicine publication-title: EMBO Mol Med – volume: 10 year: 2019 article-title: Typhoid toxin exhausts the RPA response to DNA replication stress driving senescence and Salmonella infection publication-title: Nat Commun – volume: 29 start-page: 1045 year: 2019 end-page: 1060 article-title: Targeted elimination of senescent beta cells prevents type 1 diabetes publication-title: Cell Metab – volume: 114 start-page: E1668 year: 2017 end-page: E1677 article-title: Senescent cells expose and secrete an oxidized form of membrane‐bound vimentin as revealed by a natural polyreactive antibody publication-title: Proc Natl Acad Sci USA – volume: 6 start-page: a026104 year: 2016 article-title: The cell‐cycle arrest and apoptotic functions of p53 in tumor initiation and progression publication-title: Cold Spring Harb Perspect Med – volume: 4 start-page: 1798 year: 2009 end-page: 1806 article-title: Protocols to detect senescence‐associated beta‐galactosidase (SA‐βgal) activity, a biomarker of senescent cells in culture and publication-title: Nat Protoc – volume: 8 year: 2019 article-title: Diversity of the senescence phenotype of cancer cells treated with chemotherapeutic agents publication-title: Cells – volume: 47 start-page: 7294 year: 2019 end-page: 7305 article-title: Transcriptome signature of cellular senescence publication-title: Nucleic Acids Res – volume: 9 year: 2019 article-title: Identification of reference genes for RT‐qPCR data normalisation in aging studies publication-title: Sci Rep – volume: 16 start-page: 192 year: 2017 end-page: 197 article-title: Robust, universal biomarker assay to detect senescent cells in biological specimens publication-title: Aging Cell – volume: 179 start-page: 813 year: 2019 end-page: 827 article-title: Cellular senescence: defining a path forward publication-title: Cell – volume: 6 start-page: 14 year: 2016 article-title: N‐ and O‐glycan cell surface protein modifications associated with cellular senescence and human aging publication-title: Cell Biosci – volume: 10 year: 2016 article-title: A scalable label‐free approach to separate human pluripotent cells from differentiated derivatives publication-title: Biomicrofluidics – volume: 1534 start-page: 185 year: 2017 end-page: 198 article-title: Detection of oncogene‐induced senescence publication-title: Methods Mol Biol – volume: 18 start-page: 979 year: 2016 end-page: 992 article-title: NOTCH1 mediates a switch between two distinct secretomes during senescence publication-title: Nat Cell Biol – volume: 144 start-page: 106 year: 2017 end-page: 114 article-title: Conserved and novel functions of programmed cellular senescence during vertebrate development publication-title: Development – volume: 354 start-page: 472 year: 2016 end-page: 477 article-title: Senescent intimal foam cells are deleterious at all stages of atherosclerosis publication-title: Science – volume: 5 start-page: 12 year: 2020 article-title: The senescence‐associated secretome as an indicator of age and medical risk publication-title: JCI Insight – volume: 5 year: 2007 article-title: Mitochondrial dysfunction accounts for the stochastic heterogeneity in telomere‐dependent senescence publication-title: PLoS Biol – volume: 132 start-page: 396 year: 2020 end-page: 402 article-title: Self‐immolative activation of β‐galactosidase‐responsive probes for MR imaging in mouse models publication-title: Angew Chemie – volume: 3 start-page: 295 year: 2006 end-page: 301 article-title: Luminescent imaging of beta‐galactosidase activity in living subjects using sequential reporter‐enzyme luminescence publication-title: Nat Methods – volume: 42 start-page: 377 year: 2019 end-page: 387 article-title: Raman fingerprints as promising markers of cellular senescence and aging publication-title: GeroScience – start-page: 21 year: 2019 end-page: 29 – volume: 52 start-page: 617 year: 2019 end-page: 632 article-title: Mitochondrial protection partly mitigates kidney cellular senescence in swine atherosclerotic renal artery stenosis publication-title: Cell Physiol Biochem – volume: 366 start-page: 704 year: 1993 end-page: 707 article-title: A new regulatory motif in cell‐cycle control causing specific inhibition of cyclin D/CDK4 publication-title: Nature – volume: 479 start-page: 547 year: 2011 end-page: 551 article-title: Senescence surveillance of pre‐malignant hepatocytes limits liver cancer development publication-title: Nature – volume: 22 start-page: 8590 year: 2003 end-page: 8607 article-title: The Bcl‐2 family: roles in cell survival and oncogenesis publication-title: Oncogene – volume: 479 start-page: 232 year: 2011 end-page: 236 article-title: Clearance of p16Ink4a‐positive senescent cells delays ageing‐associated disorders publication-title: Nature – volume: 7 year: 2017 article-title: Loss of lamin B1 is a biomarker to quantify cellular senescence in photoaged skin publication-title: Sci Rep – volume: 38 start-page: S56 issue: S1 year: 2016 end-page: S64 article-title: To clear, or not to clear (senescent cells)? That is the question publication-title: BioEssays – volume: 86 start-page: 10001 year: 2014 end-page: 10005 article-title: Ratiometric two‐photon fluorescent probe for quantitative detection of β‐galactosidase activity in senescent cells publication-title: Anal Chem – volume: 31 year: 2020 article-title: Senescence, necrosis, and apoptosis govern circulating cell‐free DNA release kinetics publication-title: Cell Rep – volume: 19 start-page: 2109 year: 1999 end-page: 2117 article-title: Differential roles for cyclin‐dependent kinase inhibitors p21 and p16 in the mechanisms of senescence and differentiation in human fibroblasts publication-title: Mol Cell Biol – volume: 10 start-page: 2190 year: 2018 end-page: 2208 article-title: Qualitative and quantitative alterations in intracellular and membrane glycoproteins maintain the balance between cellular senescence and human aging publication-title: Aging – volume: 142 start-page: 4405 year: 2017 end-page: 4414 article-title: Raman and infrared spectroscopy differentiate senescent from proliferating cells in a human dermal fibroblast 3D skin model publication-title: Analyst – volume: 445 start-page: 656 year: 2007 end-page: 660 article-title: Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas publication-title: Nature – volume: 23 start-page: 2066 year: 2012 end-page: 2075 article-title: Lamin B1 loss is a senescence‐associated biomarker publication-title: Mol Biol Cell – volume: 37 start-page: 961 year: 2005 end-page: 976 article-title: The signals and pathways activating cellular senescence publication-title: Int J Biochem Cell Biol – volume: 8 year: 2017 article-title: Cellular senescence mediates fibrotic pulmonary disease publication-title: Nat Commun – volume: 55 start-page: 9620 year: 2016 end-page: 9624 article-title: Detection of LacZ‐positive cells in living tissue with single‐cell resolution publication-title: Angew Chem Int Ed Engl – volume: 4 start-page: 757 year: 2019 end-page: 768 article-title: Detecting and targeting senescent cells using molecularly imprinted nanoparticles publication-title: Nanoscale Horizons – volume: 13 start-page: 292 year: 2011 end-page: 302 article-title: Interplay between oncogene‐induced DNA damage response and heterochromatin in senescence and cancer publication-title: Nat Cell Biol – volume: 22 start-page: 719 year: 2019 end-page: 728 article-title: Senolytic therapy alleviates Aβ‐associated oligodendrocyte progenitor cell senescence and cognitive deficits in an Alzheimer’s disease model publication-title: Nat Neurosci – volume: 131 start-page: 1211 year: 1970 end-page: 1222 article-title: Morphologic changes accompanying senescence of cultured human diploid cells publication-title: J Exp Med – volume: 27 start-page: 2652 year: 2017 end-page: 2660 article-title: Unmasking transcriptional heterogeneity in senescent cells publication-title: Curr Biol – volume: 431 start-page: 2629 year: 2019 end-page: 2643 article-title: Regulation of survival networks in senescent cells: from mechanisms to interventions publication-title: J Mol Biol – volume: 113 start-page: 3613 year: 2000 end-page: 3622 article-title: Senescence‐associated β‐galactosidase reflects an increase in lysosomal mass during replicative ageing of human endothelial cells publication-title: J Cell Sci – volume: 27 start-page: 3956 year: 2019 end-page: 3971 article-title: Small extracellular vesicles are key regulators of non‐cell autonomous intercellular communication in senescence via the interferon protein IFITM3 publication-title: Cell Rep – volume: 8 start-page: 512 year: 2008 end-page: 522 article-title: Living on a break: cellular senescence as a DNA‐damage response publication-title: Nat Rev Cancer – volume: 14 year: 2019 article-title: Rapid detection of senescent mesenchymal stromal cells by a fluorescent probe publication-title: Biotechnol J – ident: e_1_2_11_16_1 doi: 10.1038/s41556-018-0249-2 – ident: e_1_2_11_22_1 doi: 10.1016/j.cmet.2019.01.021 – ident: e_1_2_11_68_1 doi: 10.1038/nm.4000 – ident: e_1_2_11_52_1 doi: 10.1039/C8AN00516H – ident: e_1_2_11_134_1 doi: 10.1016/j.cbi.2013.10.016 – ident: e_1_2_11_46_1 doi: 10.1038/nprot.2009.191 – ident: e_1_2_11_137_1 doi: 10.1007/s11357-019-00053-7 – ident: e_1_2_11_162_1 doi: 10.1016/j.celrep.2020.107830 – ident: e_1_2_11_119_1 doi: 10.1038/s41586-020-2403-9 – ident: e_1_2_11_121_1 doi: 10.1073/pnas.1818313116 – ident: e_1_2_11_42_1 doi: 10.3389/fmed.2019.00033 – ident: e_1_2_11_100_1 doi: 10.1016/j.cell.2012.12.010 – ident: e_1_2_11_122_1 doi: 10.1021/jacs.6b01705 – volume: 2 start-page: 469 year: 1985 ident: e_1_2_11_125_1 article-title: Sequence of the ebgA gene of Escherichia coli: comparison with the lacZ gene publication-title: Mol Biol Evol – ident: e_1_2_11_136_1 doi: 10.1063/1.4939946 – ident: e_1_2_11_139_1 doi: 10.1039/C7AN00592J – ident: e_1_2_11_70_1 doi: 10.15252/embj.201592862 – ident: e_1_2_11_23_1 doi: 10.1038/s41586-018-0543-y – ident: e_1_2_11_141_1 doi: 10.1002/mrm.22400 – ident: e_1_2_11_147_1 doi: 10.1016/j.redox.2017.08.015 – ident: e_1_2_11_127_1 doi: 10.1158/1538-7445.AM2019-1146 – ident: e_1_2_11_34_1 doi: 10.1038/sj.onc.1209612 – ident: e_1_2_11_99_1 doi: 10.1038/nature10600 – ident: e_1_2_11_115_1 doi: 10.1101/gad.302570.117 – ident: e_1_2_11_110_1 doi: 10.1038/s41467-019-12064-1 – ident: e_1_2_11_156_1 doi: 10.1016/j.mad.2020.111263 – ident: e_1_2_11_89_1 doi: 10.1101/gad.1971610 – ident: e_1_2_11_129_1 doi: 10.1039/C8NH00473K – ident: e_1_2_11_19_1 doi: 10.1038/ncomms14532 – ident: e_1_2_11_133_1 doi: 10.1073/pnas.1614661114 – ident: e_1_2_11_27_1 doi: 10.1042/BST20190109 – ident: e_1_2_11_31_1 doi: 10.1128/MCB.20.18.6741-6754.2000 – ident: e_1_2_11_44_1 doi: 10.1242/jcs.113.20.3613 – ident: e_1_2_11_91_1 doi: 10.18632/aging.102903 – ident: e_1_2_11_63_1 doi: 10.1126/science.1122446 – ident: e_1_2_11_112_1 doi: 10.1158/0008-5472.CAN-12-3902 – ident: e_1_2_11_30_1 doi: 10.1016/j.biocel.2004.10.013 – ident: e_1_2_11_86_1 doi: 10.1182/bloodadvances.2017006205 – ident: e_1_2_11_140_1 doi: 10.1002/ange.201909933 – ident: e_1_2_11_146_1 doi: 10.1089/152308603770310158 – ident: e_1_2_11_66_1 doi: 10.1146/annurev-pathol-121808-102144 – ident: e_1_2_11_130_1 doi: 10.1155/2017/5716409 – ident: e_1_2_11_48_1 doi: 10.1021/jacs.7b04985 – ident: e_1_2_11_50_1 doi: 10.1038/s41598-019-38511-z – ident: e_1_2_11_113_1 doi: 10.1038/cddis.2014.489 – ident: e_1_2_11_72_1 doi: 10.15252/embj.201694025 – ident: e_1_2_11_97_1 doi: 10.1038/366704a0 – ident: e_1_2_11_5_1 doi: 10.1016/j.cell.2013.10.041 – ident: e_1_2_11_6_1 doi: 10.1242/dev.138222 – ident: e_1_2_11_54_1 doi: 10.4161/cc.24944 – ident: e_1_2_11_13_1 doi: 10.1038/nrc3773 – ident: e_1_2_11_108_1 doi: 10.33594/000000044 – ident: e_1_2_11_2_1 doi: 10.1016/0014-4827(61)90192-6 – ident: e_1_2_11_4_1 doi: 10.1016/j.cell.2013.10.019 – ident: e_1_2_11_69_1 doi: 10.1371/journal.pbio.3000599 – ident: e_1_2_11_145_1 doi: 10.1038/s41598-019-38546-2 – ident: e_1_2_11_92_1 doi: 10.1002/jcp.1041120312 – ident: e_1_2_11_117_1 doi: 10.1038/labinvest.3700241 – ident: e_1_2_11_155_1 doi: 10.1172/jci.insight.133668 – ident: e_1_2_11_106_1 doi: 10.1038/s41598-017-15901-9 – ident: e_1_2_11_154_1 doi: 10.18632/aging.101921 – ident: e_1_2_11_10_1 doi: 10.1038/nature05529 – ident: e_1_2_11_41_1 doi: 10.1038/s41598-019-50035-0 – ident: e_1_2_11_120_1 doi: 10.1016/j.cmet.2020.05.002 – ident: e_1_2_11_101_1 doi: 10.1007/978-1-4939-6670-7_18 – ident: e_1_2_11_49_1 doi: 10.1021/ac5031013 – ident: e_1_2_11_118_1 doi: 10.1038/ncb3397 – ident: e_1_2_11_164_1 doi: 10.1007/978-1-4939-8931-7_11 – ident: e_1_2_11_20_1 doi: 10.15252/emmm.201809355 – ident: e_1_2_11_104_1 doi: 10.1038/sj.bjc.6603636 – ident: e_1_2_11_7_1 doi: 10.1016/j.cell.2008.06.049 – ident: e_1_2_11_17_1 doi: 10.1126/science.aaf6659 – ident: e_1_2_11_12_1 doi: 10.1038/nature10599 – volume: 58 start-page: L5 year: 2019 ident: e_1_2_11_126_1 article-title: In vivo imaging of tumor senescence with a novel beta‐galactosidase specific PET tracer publication-title: Nuklearmedizin – ident: e_1_2_11_40_1 doi: 10.1111/acel.12911 – ident: e_1_2_11_47_1 doi: 10.1111/acel.12545 – ident: e_1_2_11_148_1 doi: 10.1021/acschemneuro.8b00194 – ident: e_1_2_11_28_1 doi: 10.1111/acel.13083 – ident: e_1_2_11_163_1 doi: 10.1038/ncomms15287 – ident: e_1_2_11_83_1 doi: 10.1016/j.jmb.2019.05.036 – ident: e_1_2_11_144_1 doi: 10.5603/FHC.2012.0031 – ident: e_1_2_11_79_1 doi: 10.1007/978-1-4939-8931-7_3 – ident: e_1_2_11_124_1 doi: 10.1038/nmeth868 – ident: e_1_2_11_58_1 doi: 10.4161/cc.8.24.10215 – ident: e_1_2_11_85_1 doi: 10.1084/jem.131.6.1211 – ident: e_1_2_11_3_1 doi: 10.1038/nrm3823 – ident: e_1_2_11_35_1 doi: 10.1038/nrc3960 – ident: e_1_2_11_51_1 doi: 10.1101/2020.03.27.010827 – ident: e_1_2_11_114_1 doi: 10.1186/s13287-017-0649-4 – ident: e_1_2_11_159_1 doi: 10.1038/nature24050 – ident: e_1_2_11_76_1 doi: 10.1021/acs.molpharmaceut.8b01014 – ident: e_1_2_11_160_1 doi: 10.1111/acel.12901 – ident: e_1_2_11_18_1 doi: 10.1161/CIRCULATIONAHA.115.016457 – ident: e_1_2_11_80_1 doi: 10.1111/j.1474-9726.2012.00795.x – ident: e_1_2_11_9_1 doi: 10.1016/j.devcel.2014.11.012 – volume: 38 start-page: S56 issue: 1 year: 2016 ident: e_1_2_11_11_1 article-title: To clear, or not to clear (senescent cells)? That is the question publication-title: BioEssays – ident: e_1_2_11_143_1 doi: 10.1021/bc200647q – ident: e_1_2_11_64_1 doi: 10.15252/embj.2018100492 – ident: e_1_2_11_151_1 doi: 10.1155/2015/732914 – ident: e_1_2_11_59_1 doi: 10.1016/j.ebiom.2017.03.027 – ident: e_1_2_11_103_1 doi: 10.1128/MCB.19.3.2109 – ident: e_1_2_11_149_1 doi: 10.1001/archpsyc.57.1.47 – ident: e_1_2_11_55_1 doi: 10.1038/ncb2170 – ident: e_1_2_11_95_1 doi: 10.1016/j.biocel.2003.08.009 – ident: e_1_2_11_102_1 doi: 10.1038/nature06084 – ident: e_1_2_11_26_1 doi: 10.15252/emmm.201810234 – ident: e_1_2_11_132_1 doi: 10.18632/aging.101540 – ident: e_1_2_11_152_1 doi: 10.1111/acel.12632 – ident: e_1_2_11_77_1 doi: 10.1038/s41418-018-0118-3 – volume: 22 start-page: 971 year: 2007 ident: e_1_2_11_94_1 article-title: β‐galactosidase staining on bone marrow. The osteoclast pitfall publication-title: Histol Histopathol – ident: e_1_2_11_14_1 doi: 10.1038/s41416-018-0066-1 – ident: e_1_2_11_75_1 doi: 10.1016/j.bbabio.2008.03.029 – ident: e_1_2_11_157_1 doi: 10.1016/j.celrep.2019.05.095 – ident: e_1_2_11_73_1 doi: 10.1371/journal.pbio.0050110 – ident: e_1_2_11_88_1 doi: 10.1038/onc.2008.323 – ident: e_1_2_11_56_1 doi: 10.1128/MCB.02019-06 – ident: e_1_2_11_60_1 doi: 10.1038/nrc2440 – ident: e_1_2_11_84_1 doi: 10.1016/j.cell.2019.01.018 – ident: e_1_2_11_87_1 doi: 10.3390/cells8121501 – ident: e_1_2_11_93_1 doi: 10.1016/j.ceb.2009.12.005 – ident: e_1_2_11_105_1 doi: 10.1091/mbc.e11-10-0884 – ident: e_1_2_11_109_1 doi: 10.1167/iovs.19-26983 – ident: e_1_2_11_43_1 doi: 10.1073/pnas.92.20.9363 – ident: e_1_2_11_90_1 doi: 10.1016/j.celrep.2015.07.055 – ident: e_1_2_11_116_1 doi: 10.1101/gad.313270.118 – ident: e_1_2_11_67_1 doi: 10.3390/ijms20102547 – ident: e_1_2_11_161_1 doi: 10.1038/s41467-018-03555-8 – volume: 55 start-page: 505 year: 1995 ident: e_1_2_11_98_1 article-title: Reciprocal Rb inactivation and p16INK4 expression in primary lung cancers and cell lines publication-title: Cancer Res – ident: e_1_2_11_107_1 doi: 10.1002/anie.201603328 – ident: e_1_2_11_24_1 doi: 10.1038/s41593-019-0372-9 – ident: e_1_2_11_158_1 doi: 10.1007/s11357-019-00100-3 – ident: e_1_2_11_82_1 doi: 10.1038/ncomms11190 – ident: e_1_2_11_25_1 doi: 10.1038/nm.4324 – ident: e_1_2_11_45_1 doi: 10.1111/j.1474-9726.2006.00199.x – ident: e_1_2_11_74_1 doi: 10.1002/ange.202002576 – ident: e_1_2_11_153_1 doi: 10.1016/j.freeradbiomed.2018.10.457 – ident: e_1_2_11_62_1 doi: 10.1016/S1097-2765(04)00256-4 – ident: e_1_2_11_81_1 doi: 10.1038/sj.onc.1207102 – ident: e_1_2_11_138_1 doi: 10.1371/journal.pone.0207380 – ident: e_1_2_11_8_1 doi: 10.1038/ncb2070 – ident: e_1_2_11_15_1 doi: 10.1038/s41568-019-0156-2 – ident: e_1_2_11_21_1 doi: 10.1016/j.cmet.2019.05.006 – ident: e_1_2_11_128_1 doi: 10.1088/1361-6528/aa57b3 – ident: e_1_2_11_37_1 doi: 10.1111/acel.12592 – ident: e_1_2_11_123_1 doi: 10.1038/ncomms7463 – ident: e_1_2_11_39_1 doi: 10.1093/nar/gkz555 – ident: e_1_2_11_33_1 doi: 10.1101/cshperspect.a026104 – ident: e_1_2_11_36_1 doi: 10.1016/j.cub.2017.07.033 – ident: e_1_2_11_57_1 doi: 10.1242/jcs.071340 – ident: e_1_2_11_71_1 doi: 10.3390/cells8070686 – ident: e_1_2_11_131_1 doi: 10.1186/s13578-016-0079-5 – ident: e_1_2_11_150_1 doi: 10.1016/j.nurt.2007.05.006 – ident: e_1_2_11_142_1 doi: 10.1142/S1793545819410013 – ident: e_1_2_11_29_1 doi: 10.1016/j.cell.2019.10.005 – ident: e_1_2_11_135_1 doi: 10.1186/2046-2395-1-6 – ident: e_1_2_11_96_1 doi: 10.18632/aging.100527 – ident: e_1_2_11_32_1 doi: 10.1093/emboj/cdg417 – ident: e_1_2_11_61_1 doi: 10.1038/ncb2466 – ident: e_1_2_11_53_1 – ident: e_1_2_11_65_1 doi: 10.1016/j.tcb.2017.08.007 – ident: e_1_2_11_111_1 doi: 10.1038/436642a – ident: e_1_2_11_78_1 doi: 10.1002/biot.201800691 – ident: e_1_2_11_38_1 doi: 10.1098/rsif.2019.0311 |
SSID | ssj0035499 |
Score | 2.703445 |
SecondaryResourceType | review_article |
Snippet | Cellular senescence is a complex cell response to damage and stress that can impact the surrounding tissue. Senescent cells no longer proliferate and undergo... Cellular senescence is a physiological mechanism whereby a proliferating cell undergoes a stable cell cycle arrest upon damage or stress and elicits a... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 56 |
SubjectTerms | ageing Aging Aging - genetics Aging - metabolism Animals Animals, Genetically Modified assessment Biomarkers Biomarkers - metabolism Cell cycle cell cycle checkpoints Cell Cycle Checkpoints - genetics Cell Cycle Proteins - genetics Cell Cycle Proteins - metabolism Cell Proliferation cell senescence Cell Shape - genetics Cells, Cultured cellular senescence Cellular Senescence - genetics Combinatorial analysis Cytokines - genetics Cytokines - immunology detection Diagnostic systems DNA Damage Embryogenesis Embryonic growth stage Genetic Loci Heterochromatin - chemistry Heterochromatin - metabolism Heterogeneity Humans Lamin Type B - deficiency Lamin Type B - genetics Lysosomes - metabolism Mitochondria - genetics Mitochondria - metabolism Mitochondria - pathology phenotype Phenotypes Senescence therapeutics Wound healing |
Title | A guide to assessing cellular senescence in vitro and in vivo |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Ffebs.15570 https://www.ncbi.nlm.nih.gov/pubmed/32961620 https://www.proquest.com/docview/2474820626 https://www.proquest.com/docview/2445426175 https://www.proquest.com/docview/2524241258 |
Volume | 288 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3batRA9FDbB33pVdvVuowogkKWZDKZyYJQdtsuRVBELeyLhLnKomalmy3Ur-m39MucM7nYqhT0LSEncObMuc6cC8AzjdWZsbFRYgyNWEJNpDyrREIKpmOdKRVyc9685Sen7PU0m67Aq7YWpu4P0R24oWQEfY0CLtXimpA7qxaDBDtIeQWMyVroEb3vekelGPjU1ZAeB86mTW9STOP59etNa_SHi3nTYw0mZ7IBn1pk60yTL4NlpQb6x299HP93NZuw3viiZFQzzxas2HIbdkalj8O_XZDnJGSHhmP3bbh72E6G24GDEfm8nBlLqjmR4dLY2z-CVwCY00oWqD41agwyK68uz2fVmYcrTfN2Pr8Pp5Pjj4cnUTOIIdI-3osjqR2PpbKplEOjXJLmWnGWpbHMBVXCCGeYNTwbJmjvstxqo3AGsOPU5iZ16QNYLeel3QOSx0Y7p7xpdoLFhnvGsFI4SZnUXlXoHrxoN6TQTZdyHJbxtWijFaRUESjVg6cd7Pe6N8dfofbbfS0a-VwUlAmGnesp78GT7rMnI9JKlna-RBiWYYApsltgMiyvwTX3YLfmmQ6VlA55wqlH4GXY-VtwLCbH4w_h6eG_AD-CexRTbMKJ0D6sVmdL-9j7SJXqwx3K3vVhbTQ-Gk_6QTJ-Alf0EHg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BOZQLj7aUhUJdtapUpKwSx7GzJ7RUXS30cehD2lvkJ1oBWbSbrQS_ht_CL8PjZFNKUaX2ligTaWzPwzMefwOwo_F2ZmxslBhDI5ZQEykvKpGQgulYZ0qF2pzjEz68YJ9G2aipzcG7MDU-RJtwQ80I9hoVHBPSf2m5s2rWTRBC6iE8wpbeIaI6bdGjUgx96vuQngvORg06KRbyXP173R_d2GRe37MGpzN4WndWnQWsQqw1-dKdV6qrf_6D5Hjv8TyDJ812lPRr-XkOD2y5Aqv90ofi336QXRIKREPmfQWW9xfN4VbhfZ98no-NJdWEyHBu7F0gwVMALGslM7SgGo0GGZe_f12Oq6mnK03zdjlZg4vBwfn-MGp6MUTah3xxJLXjsVQ2lbJnlEvSXCvOsjSWuaBKGOEMs4ZnvQRdXpZbbRS2AXac2tykLn0BS-WktC-B5LHRzinvnZ1gseFeNqwUTlImtbcWugN7ixUpdANUjv0yvhaLgAVnqggz1YHtlvZ7Dc_xX6qNxcIWjYrOCsoEQ_B6yjuw1X7204hzJUs7mSMNyzDGFNktNBnesMExd2C9FpqWlZT2eMKpZ-BdWPpbeCwGBx_OwtOruxBvwvLw_PioOPp4cvgaHlOsuAkJog1YqqZz-8ZvmSr1NijGH0-iEko |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1ra9RAcKgVtF_UtrY9rXZFESzkSDab3RwIcrY96quIWrgvJeyzHK250ssV9Nf4W_xl7mweWpWCfkvIBGZn57k7D4AnGqszY2OjxBgasYSaSHlWiYQUTMc6Uyrk5rw74PuH7PU4Gy_A87YWpu4P0R24oWQEfY0CfmbcL0LurJr1E-wgdQ2uMx7nyNO7H7rmUSlGPnU5pEeCs3HTnBTzeH7-e9kc_eFjXnZZg80Z3YajFts61eSkP69UX3_9rZHj_y7nDtxqnFEyrLlnGRZsuQKrw9IH4p-_kKckpIeGc_cVuLnTjoZbhRdDcjyfGEuqKZHh1tgbQIJ3AJjUSmaoPzWqDDIpv3-7mFTnHq40zdvF9C4cjvY-7exHzSSGSPuAL46kdjyWyqZSDoxySZprxVmWxjIXVAkjnGHW8GyQoMHLcquNwiHAjlObm9Sla7BYTku7ASSPjXZOedvsBIsN95xhpXCSMqm9rtA9eNZuSKGbNuU4LeO0aMMVpFQRKNWDxx3sWd2c469Qm-2-Fo2AzgrKBMPW9ZT34FH32ZMRaSVLO50jDMswwhTZFTAZ1tfgmnuwXvNMh0pKBzzh1COwHXb-ChyL0d7Lj-Hp3r8Ab8GN97uj4u2rgzf3YYliuk04HdqExep8bh94f6lSD4NY_AAuwBEC |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+guide+to+assessing+cellular+senescence+in+vitro+and+in+vivo&rft.jtitle=The+FEBS+journal&rft.au=Estela+Gonz%C3%A1lez%E2%80%90Gualda&rft.au=Baker%2C+Andrew+G&rft.au=Fruk%2C+Ljiljana&rft.au=Daniel+Mu%C3%B1oz%E2%80%90Esp%C3%ADn&rft.date=2021-01-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1742-464X&rft.eissn=1742-4658&rft.volume=288&rft.issue=1&rft.spage=56&rft.epage=80&rft_id=info:doi/10.1111%2Ffebs.15570&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-464X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-464X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-464X&client=summon |