A guide to assessing cellular senescence in vitro and in vivo

Cellular senescence is a complex cell response to damage and stress that can impact the surrounding tissue. Senescent cells no longer proliferate and undergo particular phenotypic changes. However, their phenotype can be very variable, and identifying senescence remains a challenge. In this review,...

Full description

Saved in:
Bibliographic Details
Published inThe FEBS journal Vol. 288; no. 1; pp. 56 - 80
Main Authors González‐Gualda, Estela, Baker, Andrew G., Fruk, Ljiljana, Muñoz‐Espín, Daniel
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cellular senescence is a complex cell response to damage and stress that can impact the surrounding tissue. Senescent cells no longer proliferate and undergo particular phenotypic changes. However, their phenotype can be very variable, and identifying senescence remains a challenge. In this review, we provide a guide to assessing senescence confidently by describing the different biomarkers and an optimized strategy for their detection in cultures, tissues and in vivo. Cellular senescence is a physiological mechanism whereby a proliferating cell undergoes a stable cell cycle arrest upon damage or stress and elicits a secretory phenotype. This highly dynamic and regulated cellular state plays beneficial roles in physiology, such as during embryonic development and wound healing, but it can also result in antagonistic effects in age‐related pathologies, degenerative disorders, ageing and cancer. In an effort to better identify this complex state, and given that a universal marker has yet to be identified, a general set of hallmarks describing senescence has been established. However, as the senescent programme becomes more defined, further complexities, including phenotype heterogeneity, have emerged. This significantly complicates the recognition and evaluation of cellular senescence, especially within complex tissues and living organisms. To address these challenges, substantial efforts are currently being made towards the discovery of novel and more specific biomarkers, optimized combinatorial strategies and the development of emerging detection techniques. Here, we compile such advances and present a multifactorial guide to identify and assess cellular senescence in cell cultures, tissues and living organisms. The reliable assessment and identification of senescence is not only crucial for better understanding its underlying biology, but also imperative for the development of diagnostic and therapeutic strategies aimed at targeting senescence in the clinic.
AbstractList Cellular senescence is a physiological mechanism whereby a proliferating cell undergoes a stable cell cycle arrest upon damage or stress and elicits a secretory phenotype. This highly dynamic and regulated cellular state plays beneficial roles in physiology, such as during embryonic development and wound healing, but it can also result in antagonistic effects in age-related pathologies, degenerative disorders, ageing and cancer. In an effort to better identify this complex state, and given that a universal marker has yet to be identified, a general set of hallmarks describing senescence has been established. However, as the senescent programme becomes more defined, further complexities, including phenotype heterogeneity, have emerged. This significantly complicates the recognition and evaluation of cellular senescence, especially within complex tissues and living organisms. To address these challenges, substantial efforts are currently being made towards the discovery of novel and more specific biomarkers, optimized combinatorial strategies and the development of emerging detection techniques. Here, we compile such advances and present a multifactorial guide to identify and assess cellular senescence in cell cultures, tissues and living organisms. The reliable assessment and identification of senescence is not only crucial for better understanding its underlying biology, but also imperative for the development of diagnostic and therapeutic strategies aimed at targeting senescence in the clinic.Cellular senescence is a physiological mechanism whereby a proliferating cell undergoes a stable cell cycle arrest upon damage or stress and elicits a secretory phenotype. This highly dynamic and regulated cellular state plays beneficial roles in physiology, such as during embryonic development and wound healing, but it can also result in antagonistic effects in age-related pathologies, degenerative disorders, ageing and cancer. In an effort to better identify this complex state, and given that a universal marker has yet to be identified, a general set of hallmarks describing senescence has been established. However, as the senescent programme becomes more defined, further complexities, including phenotype heterogeneity, have emerged. This significantly complicates the recognition and evaluation of cellular senescence, especially within complex tissues and living organisms. To address these challenges, substantial efforts are currently being made towards the discovery of novel and more specific biomarkers, optimized combinatorial strategies and the development of emerging detection techniques. Here, we compile such advances and present a multifactorial guide to identify and assess cellular senescence in cell cultures, tissues and living organisms. The reliable assessment and identification of senescence is not only crucial for better understanding its underlying biology, but also imperative for the development of diagnostic and therapeutic strategies aimed at targeting senescence in the clinic.
Cellular senescence is a physiological mechanism whereby a proliferating cell undergoes a stable cell cycle arrest upon damage or stress and elicits a secretory phenotype. This highly dynamic and regulated cellular state plays beneficial roles in physiology, such as during embryonic development and wound healing, but it can also result in antagonistic effects in age-related pathologies, degenerative disorders, ageing and cancer. In an effort to better identify this complex state, and given that a universal marker has yet to be identified, a general set of hallmarks describing senescence has been established. However, as the senescent programme becomes more defined, further complexities, including phenotype heterogeneity, have emerged. This significantly complicates the recognition and evaluation of cellular senescence, especially within complex tissues and living organisms. To address these challenges, substantial efforts are currently being made towards the discovery of novel and more specific biomarkers, optimized combinatorial strategies and the development of emerging detection techniques. Here, we compile such advances and present a multifactorial guide to identify and assess cellular senescence in cell cultures, tissues and living organisms. The reliable assessment and identification of senescence is not only crucial for better understanding its underlying biology, but also imperative for the development of diagnostic and therapeutic strategies aimed at targeting senescence in the clinic.
Cellular senescence is a complex cell response to damage and stress that can impact the surrounding tissue. Senescent cells no longer proliferate and undergo particular phenotypic changes. However, their phenotype can be very variable, and identifying senescence remains a challenge. In this review, we provide a guide to assessing senescence confidently by describing the different biomarkers and an optimized strategy for their detection in cultures, tissues and in vivo. Cellular senescence is a physiological mechanism whereby a proliferating cell undergoes a stable cell cycle arrest upon damage or stress and elicits a secretory phenotype. This highly dynamic and regulated cellular state plays beneficial roles in physiology, such as during embryonic development and wound healing, but it can also result in antagonistic effects in age‐related pathologies, degenerative disorders, ageing and cancer. In an effort to better identify this complex state, and given that a universal marker has yet to be identified, a general set of hallmarks describing senescence has been established. However, as the senescent programme becomes more defined, further complexities, including phenotype heterogeneity, have emerged. This significantly complicates the recognition and evaluation of cellular senescence, especially within complex tissues and living organisms. To address these challenges, substantial efforts are currently being made towards the discovery of novel and more specific biomarkers, optimized combinatorial strategies and the development of emerging detection techniques. Here, we compile such advances and present a multifactorial guide to identify and assess cellular senescence in cell cultures, tissues and living organisms. The reliable assessment and identification of senescence is not only crucial for better understanding its underlying biology, but also imperative for the development of diagnostic and therapeutic strategies aimed at targeting senescence in the clinic.
Author Fruk, Ljiljana
Muñoz‐Espín, Daniel
González‐Gualda, Estela
Baker, Andrew G.
Author_xml – sequence: 1
  givenname: Estela
  orcidid: 0000-0003-1558-4259
  surname: González‐Gualda
  fullname: González‐Gualda, Estela
  organization: University of Cambridge
– sequence: 2
  givenname: Andrew G.
  orcidid: 0000-0002-6498-3208
  surname: Baker
  fullname: Baker, Andrew G.
  organization: University of Cambridge
– sequence: 3
  givenname: Ljiljana
  surname: Fruk
  fullname: Fruk, Ljiljana
  email: lf389@cam.ac.uk
  organization: University of Cambridge
– sequence: 4
  givenname: Daniel
  orcidid: 0000-0002-0550-9514
  surname: Muñoz‐Espín
  fullname: Muñoz‐Espín, Daniel
  email: dm742@cam.ac.uk
  organization: University of Cambridge
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32961620$$D View this record in MEDLINE/PubMed
BookMark eNqF0UFLwzAUB_AgE-emFz-AFLyIsJmkSdqeZI5NhYEHFbyVNHkdGV06k3ayb-Nn8ZPZubnDEM0lCfz-j5e8DmrZ0gJCZwT3SbOuc8h8n3Ae4QN0TCJGe0zwuLU7s9c26ng_wzjkLEmOUDukiSCC4mN0MwimtdEQVGUgvQfvjZ0GCoqiLqQLPFjwCqyCwNjPj6WpXOOs3t6W5Qk6zGXh4XS7d9HLePQ8vO9NHu8ehoNJTzEc4Z5UucAyg1DKRGc5CWOVCcZDLOOIZpGOcs1AC56QGBPKY1A6I5iwXFCIdZiHXXS5qbtw5VsNvkrnxq_blBbK2qeUU0bZOvo_ZYwzKkjEG3qxR2dl7WzzkEZFLKZYUNGo862qsznodOHMXLpV-vOLDbjaAOVK7x3kO0Jwuh5Ruh5R-j2iBuM9rEwlK1PayklT_B4hm8i7KWD1R_F0PLp92mS-ABNwosg
CitedBy_id crossref_primary_10_1007_s10522_023_10084_5
crossref_primary_10_1016_j_devcel_2023_05_010
crossref_primary_10_1016_j_semcancer_2024_05_002
crossref_primary_10_12680_balneo_2023_624
crossref_primary_10_3390_life12091332
crossref_primary_10_18632_aging_204616
crossref_primary_10_1186_s11658_022_00319_7
crossref_primary_10_3390_biomedicines12020365
crossref_primary_10_3389_fendo_2023_1212716
crossref_primary_10_3390_ijms24108724
crossref_primary_10_1007_s00204_023_03678_y
crossref_primary_10_3390_ijms222212415
crossref_primary_10_1186_s12964_024_01705_8
crossref_primary_10_1111_acel_13835
crossref_primary_10_1042_BSR20210079
crossref_primary_10_1016_j_jprot_2022_104669
crossref_primary_10_1073_pnas_2209973120
crossref_primary_10_1152_ajprenal_00261_2023
crossref_primary_10_1134_S000629792301008X
crossref_primary_10_1097_TP_0000000000004838
crossref_primary_10_1002_ctd2_346
crossref_primary_10_1016_j_jid_2022_11_017
crossref_primary_10_1016_j_hnm_2022_200149
crossref_primary_10_1016_S2589_7500_24_00150_X
crossref_primary_10_1016_j_bbi_2024_04_023
crossref_primary_10_1242_jcs_259671
crossref_primary_10_1080_23723556_2021_1985930
crossref_primary_10_1002_cbdv_202301422
crossref_primary_10_1038_s41467_024_44903_1
crossref_primary_10_3389_fimmu_2021_696486
crossref_primary_10_3389_fragi_2024_1448543
crossref_primary_10_4049_immunohorizons_2300096
crossref_primary_10_2174_1566524023666230407123727
crossref_primary_10_3390_cells11121966
crossref_primary_10_1016_j_xpro_2021_100809
crossref_primary_10_3389_fonc_2022_878675
crossref_primary_10_1089_ars_2024_0794
crossref_primary_10_1016_j_arr_2021_101458
crossref_primary_10_4081_ejh_2024_3977
crossref_primary_10_3390_ijms22169023
crossref_primary_10_1007_s10522_024_10114_w
crossref_primary_10_1038_s42003_022_03266_3
crossref_primary_10_1111_jocd_16101
crossref_primary_10_3390_ijms25147850
crossref_primary_10_1186_s12979_023_00378_0
crossref_primary_10_3390_chemosensors12070141
crossref_primary_10_1186_s13014_022_02184_2
crossref_primary_10_1002_ejic_202200593
crossref_primary_10_1002_aac2_12067
crossref_primary_10_1038_s41416_024_02614_w
crossref_primary_10_3390_ijms242015468
crossref_primary_10_1002_dvdy_637
crossref_primary_10_1016_j_mad_2021_111540
crossref_primary_10_1016_j_mad_2024_111918
crossref_primary_10_1016_j_mrrev_2023_108474
crossref_primary_10_1155_2022_4421952
crossref_primary_10_3390_ijms24065217
crossref_primary_10_1186_s12979_024_00433_4
crossref_primary_10_1111_acel_14012
crossref_primary_10_1097_PRS_0000000000009667
crossref_primary_10_1186_s12885_025_13499_0
crossref_primary_10_1152_ajpheart_00570_2024
crossref_primary_10_1016_j_atherosclerosis_2024_117506
crossref_primary_10_3390_biology12010042
crossref_primary_10_3390_cells11121936
crossref_primary_10_3390_cells12222609
crossref_primary_10_2147_IJN_S470225
crossref_primary_10_1002_adbi_202300194
crossref_primary_10_1002_cpz1_32
crossref_primary_10_3390_ijms24043101
crossref_primary_10_3390_cells12091296
crossref_primary_10_1016_j_isci_2023_107505
crossref_primary_10_1097_MD_0000000000031944
crossref_primary_10_1021_acs_biomac_3c01461
crossref_primary_10_3390_biomedicines12122811
crossref_primary_10_7717_peerj_16300
crossref_primary_10_1016_j_dci_2024_105271
crossref_primary_10_3390_antiox14030259
crossref_primary_10_3389_froh_2023_1285276
crossref_primary_10_3390_pathogens13020155
crossref_primary_10_1002_ange_202404885
crossref_primary_10_1111_imcb_12727
crossref_primary_10_3390_ijms24119766
crossref_primary_10_1007_s11010_024_05028_7
crossref_primary_10_1038_s41467_024_47985_z
crossref_primary_10_3390_cells10123456
crossref_primary_10_1261_rna_079436_122
crossref_primary_10_3390_cells11071106
crossref_primary_10_1039_D2RA00377E
crossref_primary_10_3390_biom14020189
crossref_primary_10_3390_ijms22115866
crossref_primary_10_1016_j_jpba_2024_116571
crossref_primary_10_1007_s10522_024_10174_y
crossref_primary_10_1186_s13075_023_03183_8
crossref_primary_10_1186_s13287_023_03599_8
crossref_primary_10_1158_0008_5472_CAN_24_0875
crossref_primary_10_3390_ijms252011188
crossref_primary_10_1038_s41598_023_42994_2
crossref_primary_10_1016_j_jaut_2023_103013
crossref_primary_10_1111_acel_13948
crossref_primary_10_1007_s10616_025_00724_8
crossref_primary_10_3390_genes13071125
crossref_primary_10_1093_nar_gkae322
crossref_primary_10_3390_life11020153
crossref_primary_10_1016_j_arr_2023_102083
crossref_primary_10_1038_s41418_024_01431_1
crossref_primary_10_1038_s43587_021_00142_3
crossref_primary_10_1038_s41577_023_00907_4
crossref_primary_10_1016_j_cmet_2024_07_025
crossref_primary_10_1507_endocrj_EJ24_0466
crossref_primary_10_3390_biology11081121
crossref_primary_10_1016_j_yexcr_2024_114139
crossref_primary_10_3390_cells11162506
crossref_primary_10_1007_s11357_023_00909_z
crossref_primary_10_1177_00220345241299789
crossref_primary_10_1016_j_brainres_2025_149480
crossref_primary_10_18632_aging_203607
crossref_primary_10_1186_s40001_023_01604_7
crossref_primary_10_1016_j_arr_2024_102619
crossref_primary_10_1016_j_arr_2024_102616
crossref_primary_10_1016_j_exer_2023_109565
crossref_primary_10_3389_fragi_2024_1376086
crossref_primary_10_1016_j_bbamcr_2024_119734
crossref_primary_10_1111_febs_16731
crossref_primary_10_1165_rcmb_2023_0038OC
crossref_primary_10_1177_00220345241255325
crossref_primary_10_1016_j_bbrep_2022_101391
crossref_primary_10_1111_febs_16735
crossref_primary_10_1038_s41467_023_40393_9
crossref_primary_10_1038_s41598_024_61167_3
crossref_primary_10_1080_21688370_2022_2103353
crossref_primary_10_1177_15353702221097320
crossref_primary_10_1016_j_cellsig_2024_111402
crossref_primary_10_1002_jbm4_10674
crossref_primary_10_3389_fimmu_2022_935114
crossref_primary_10_3389_fragi_2022_828058
crossref_primary_10_1002_cbic_202200364
crossref_primary_10_1158_0008_5472_CAN_22_0787
crossref_primary_10_1042_CS20230140
crossref_primary_10_31857_S0026898423040250
crossref_primary_10_32718_ujvas5_1_02
crossref_primary_10_1038_s41573_024_01126_9
crossref_primary_10_3390_cells12060915
crossref_primary_10_1016_j_mad_2023_111858
crossref_primary_10_3390_cells10123315
crossref_primary_10_1016_j_slasd_2025_100223
crossref_primary_10_3390_cells10071740
crossref_primary_10_3390_ijms222212225
crossref_primary_10_1016_j_arr_2022_101634
crossref_primary_10_1016_j_biocel_2024_106636
crossref_primary_10_1113_JP287387
crossref_primary_10_3390_jdad1010004
crossref_primary_10_13181_mji_rev_226064
crossref_primary_10_1016_j_stem_2022_11_010
crossref_primary_10_1038_s41467_022_30010_6
crossref_primary_10_1016_j_cellimm_2023_104769
crossref_primary_10_1093_stcltm_szae053
crossref_primary_10_1016_j_talanta_2021_122689
crossref_primary_10_1038_s41598_023_31576_x
crossref_primary_10_1111_pcmr_13219
crossref_primary_10_1186_s13148_024_01793_w
crossref_primary_10_1016_j_trsl_2024_12_005
crossref_primary_10_1002_cbf_3970
crossref_primary_10_1073_pnas_2401218121
crossref_primary_10_2139_ssrn_4095863
crossref_primary_10_47855_jal9020_2023_3_2
crossref_primary_10_3390_cimb46120818
crossref_primary_10_3389_fmolb_2023_1148389
crossref_primary_10_1093_jnci_djae211
crossref_primary_10_1016_j_mad_2023_111836
crossref_primary_10_1093_noajnl_vdab148
crossref_primary_10_1186_s13073_024_01418_0
crossref_primary_10_1021_acs_analchem_2c04223
crossref_primary_10_7783_KJMCS_2022_30_5_357
crossref_primary_10_1038_s41368_023_00263_y
crossref_primary_10_3389_fphar_2022_857730
crossref_primary_10_1186_s12964_024_01594_x
crossref_primary_10_1038_s41598_024_84408_x
crossref_primary_10_1134_S106816202312018X
crossref_primary_10_3390_biomedicines9050567
crossref_primary_10_3390_jcm11051236
crossref_primary_10_4103_2221_1691_383689
crossref_primary_10_1172_jci_insight_155648
crossref_primary_10_3390_antiox12030694
crossref_primary_10_3390_cancers13122989
crossref_primary_10_3390_plants13141943
crossref_primary_10_1155_2024_4213141
crossref_primary_10_3390_antiox12030579
crossref_primary_10_1016_j_exer_2023_109521
crossref_primary_10_1038_s41467_022_29081_2
crossref_primary_10_1016_j_ejcb_2023_151331
crossref_primary_10_1007_s11357_022_00681_6
crossref_primary_10_18632_aging_205789
crossref_primary_10_1111_jdi_14397
crossref_primary_10_1016_j_semcancer_2024_11_003
crossref_primary_10_1016_j_nbd_2022_105649
crossref_primary_10_2147_DDDT_S492576
crossref_primary_10_3390_cells13151281
crossref_primary_10_1016_j_devcel_2024_01_009
crossref_primary_10_1111_jcmm_70360
crossref_primary_10_1111_jog_15918
crossref_primary_10_1007_s00280_023_04523_w
crossref_primary_10_3389_fcell_2020_620089
crossref_primary_10_3390_cells12242769
crossref_primary_10_3390_ijms23137124
crossref_primary_10_1038_s41514_022_00083_0
crossref_primary_10_1016_j_arr_2024_102403
crossref_primary_10_1016_j_bbrc_2024_149744
crossref_primary_10_1152_ajpcell_00239_2023
crossref_primary_10_1002_adfm_202107990
crossref_primary_10_1126_sciadv_ado1463
crossref_primary_10_1186_s13287_024_04019_1
crossref_primary_10_1016_j_jbc_2023_104922
crossref_primary_10_3389_fragi_2023_1161799
crossref_primary_10_1002_pgr2_20
crossref_primary_10_1038_s41514_024_00178_w
crossref_primary_10_1038_s41598_025_87635_y
crossref_primary_10_1016_j_ejcb_2025_151480
crossref_primary_10_1038_s41569_023_00881_3
crossref_primary_10_1186_s13613_023_01236_4
crossref_primary_10_3389_fgene_2024_1345459
crossref_primary_10_1093_toxres_tfad075
crossref_primary_10_1038_s41598_024_78899_x
crossref_primary_10_1007_s12640_025_00730_w
crossref_primary_10_1007_s11357_025_01517_9
crossref_primary_10_3389_fphar_2021_739510
crossref_primary_10_3390_diagnostics12030609
crossref_primary_10_1007_s00795_022_00314_z
crossref_primary_10_3389_fvets_2024_1369153
crossref_primary_10_3390_ijms25126793
crossref_primary_10_18632_aging_206192
crossref_primary_10_3390_cancers14071706
crossref_primary_10_1007_s11033_025_10232_9
crossref_primary_10_1038_s44318_024_00246_7
crossref_primary_10_1016_j_ebiom_2023_104905
crossref_primary_10_1016_j_cell_2024_10_019
crossref_primary_10_1016_j_jcyt_2024_11_014
crossref_primary_10_1089_ars_2024_0605
crossref_primary_10_1002_anie_202404885
crossref_primary_10_1016_j_etap_2022_104039
crossref_primary_10_1111_febs_16983
crossref_primary_10_3389_fbioe_2024_1324049
crossref_primary_10_3389_fmed_2023_1072359
crossref_primary_10_1111_jnc_16250
crossref_primary_10_3389_fragi_2022_1014675
crossref_primary_10_1016_j_arr_2021_101510
crossref_primary_10_3390_cancers14061460
crossref_primary_10_1016_j_biomaterials_2025_123129
crossref_primary_10_1016_j_jare_2022_12_007
crossref_primary_10_1165_rcmb_2023_0449OC
crossref_primary_10_1186_s12967_024_05115_9
crossref_primary_10_3390_biom14121528
crossref_primary_10_1038_s41419_022_05229_2
crossref_primary_10_3390_jfb15090253
crossref_primary_10_3389_fcell_2021_834517
crossref_primary_10_1111_acel_14297
crossref_primary_10_20960_RevOsteoporosMetabMiner_00013
crossref_primary_10_1038_s41598_023_40248_9
crossref_primary_10_1016_j_snr_2024_100271
crossref_primary_10_1021_acs_analchem_2c04766
crossref_primary_10_3390_ani14192900
crossref_primary_10_3233_CH_211294
crossref_primary_10_4093_dmj_2022_0416
crossref_primary_10_1016_j_arr_2025_102737
crossref_primary_10_1038_s41514_024_00181_1
crossref_primary_10_18481_2077_7566_2023_19_2_11_15
crossref_primary_10_1007_s00395_024_01053_1
crossref_primary_10_1007_s00441_023_03768_4
crossref_primary_10_1038_s41591_024_02802_4
crossref_primary_10_1186_s12943_024_02096_7
crossref_primary_10_18632_aging_203560
crossref_primary_10_3390_ijms25158448
crossref_primary_10_1111_acel_13875
crossref_primary_10_1111_acel_14060
crossref_primary_10_3390_antiox13091110
crossref_primary_10_3390_genes13020208
crossref_primary_10_1111_acel_14182
crossref_primary_10_17116_labs20221103128
crossref_primary_10_1002_ibra_12154
crossref_primary_10_3389_fendo_2024_1330942
crossref_primary_10_3390_jpm11111048
crossref_primary_10_1016_j_mocell_2024_100102
crossref_primary_10_1016_j_mad_2021_111618
crossref_primary_10_1186_s13046_023_02849_0
crossref_primary_10_1021_acsami_4c17748
crossref_primary_10_1002_aisy_202200352
crossref_primary_10_1002_path_6223
crossref_primary_10_3389_fnmol_2022_1069122
crossref_primary_10_1016_j_jid_2022_09_652
crossref_primary_10_1016_j_mad_2024_111957
crossref_primary_10_3389_fcimb_2021_744013
crossref_primary_10_3390_ijms26052364
crossref_primary_10_1016_j_acvd_2024_12_008
crossref_primary_10_1111_febs_16565
crossref_primary_10_1016_j_arr_2024_102206
crossref_primary_10_18632_aging_204666
crossref_primary_10_1038_s41514_024_00170_4
crossref_primary_10_1088_1748_605X_ad3700
crossref_primary_10_1111_jnc_15866
crossref_primary_10_1016_j_repbio_2023_100734
crossref_primary_10_3390_nu14173636
crossref_primary_10_1172_JCI158450
crossref_primary_10_3390_biomedicines12020348
crossref_primary_10_1007_s00417_023_06070_9
crossref_primary_10_1515_ntrev_2023_0211
crossref_primary_10_1111_acel_14154
crossref_primary_10_1016_j_placenta_2025_01_009
crossref_primary_10_1152_ajpheart_00706_2023
crossref_primary_10_3390_ijms241411505
crossref_primary_10_1002_cyto_a_24852
crossref_primary_10_1002_ijc_33787
crossref_primary_10_1002_cyto_a_24853
crossref_primary_10_1002_path_6358
crossref_primary_10_1002_adbi_202400079
crossref_primary_10_1186_s41232_024_00342_5
crossref_primary_10_1063_5_0204393
crossref_primary_10_1111_acel_13977
crossref_primary_10_1186_s40634_023_00596_x
crossref_primary_10_1038_s41569_022_00739_0
crossref_primary_10_1039_D3NR04083F
crossref_primary_10_3389_fcell_2022_1083743
crossref_primary_10_3390_ijms232315153
crossref_primary_10_18632_aging_204072
crossref_primary_10_1111_acel_13850
crossref_primary_10_1007_s13311_021_01179_3
crossref_primary_10_1021_acsmaterialsau_3c00057
crossref_primary_10_1186_s40035_024_00457_2
crossref_primary_10_31857_S0320972523010049
crossref_primary_10_1016_j_exer_2023_109636
crossref_primary_10_1186_s12931_023_02636_7
crossref_primary_10_1021_acs_accounts_3c00794
crossref_primary_10_1111_dme_15408
crossref_primary_10_3389_fragi_2021_686382
crossref_primary_10_20517_jca_2024_31
crossref_primary_10_1111_acel_13505
crossref_primary_10_1210_endrev_bnae010
crossref_primary_10_3390_ijms24129906
crossref_primary_10_1039_D2SC03525A
crossref_primary_10_3390_biomedicines12071586
crossref_primary_10_1038_s41598_024_79667_7
crossref_primary_10_1177_00220345231158038
crossref_primary_10_1111_acel_14278
crossref_primary_10_3389_fcvm_2024_1506360
crossref_primary_10_1007_s10456_024_09943_7
crossref_primary_10_3390_antiox13111390
crossref_primary_10_1111_acel_13620
crossref_primary_10_1007_s10750_023_05247_x
crossref_primary_10_1158_1535_7163_MCT_24_0139
crossref_primary_10_3390_cells13232021
Cites_doi 10.1038/s41556-018-0249-2
10.1016/j.cmet.2019.01.021
10.1038/nm.4000
10.1039/C8AN00516H
10.1016/j.cbi.2013.10.016
10.1038/nprot.2009.191
10.1007/s11357-019-00053-7
10.1016/j.celrep.2020.107830
10.1038/s41586-020-2403-9
10.1073/pnas.1818313116
10.3389/fmed.2019.00033
10.1016/j.cell.2012.12.010
10.1021/jacs.6b01705
10.1063/1.4939946
10.1039/C7AN00592J
10.15252/embj.201592862
10.1038/s41586-018-0543-y
10.1002/mrm.22400
10.1016/j.redox.2017.08.015
10.1158/1538-7445.AM2019-1146
10.1038/sj.onc.1209612
10.1038/nature10600
10.1101/gad.302570.117
10.1038/s41467-019-12064-1
10.1016/j.mad.2020.111263
10.1101/gad.1971610
10.1039/C8NH00473K
10.1038/ncomms14532
10.1073/pnas.1614661114
10.1042/BST20190109
10.1128/MCB.20.18.6741-6754.2000
10.1242/jcs.113.20.3613
10.18632/aging.102903
10.1126/science.1122446
10.1158/0008-5472.CAN-12-3902
10.1016/j.biocel.2004.10.013
10.1182/bloodadvances.2017006205
10.1002/ange.201909933
10.1089/152308603770310158
10.1146/annurev-pathol-121808-102144
10.1155/2017/5716409
10.1021/jacs.7b04985
10.1038/s41598-019-38511-z
10.1038/cddis.2014.489
10.15252/embj.201694025
10.1038/366704a0
10.1016/j.cell.2013.10.041
10.1242/dev.138222
10.4161/cc.24944
10.1038/nrc3773
10.33594/000000044
10.1016/0014-4827(61)90192-6
10.1016/j.cell.2013.10.019
10.1371/journal.pbio.3000599
10.1038/s41598-019-38546-2
10.1002/jcp.1041120312
10.1038/labinvest.3700241
10.1172/jci.insight.133668
10.1038/s41598-017-15901-9
10.18632/aging.101921
10.1038/nature05529
10.1038/s41598-019-50035-0
10.1016/j.cmet.2020.05.002
10.1007/978-1-4939-6670-7_18
10.1021/ac5031013
10.1038/ncb3397
10.1007/978-1-4939-8931-7_11
10.15252/emmm.201809355
10.1038/sj.bjc.6603636
10.1016/j.cell.2008.06.049
10.1126/science.aaf6659
10.1038/nature10599
10.1111/acel.12911
10.1111/acel.12545
10.1021/acschemneuro.8b00194
10.1111/acel.13083
10.1038/ncomms15287
10.1016/j.jmb.2019.05.036
10.5603/FHC.2012.0031
10.1007/978-1-4939-8931-7_3
10.1038/nmeth868
10.4161/cc.8.24.10215
10.1084/jem.131.6.1211
10.1038/nrm3823
10.1038/nrc3960
10.1101/2020.03.27.010827
10.1186/s13287-017-0649-4
10.1038/nature24050
10.1021/acs.molpharmaceut.8b01014
10.1111/acel.12901
10.1161/CIRCULATIONAHA.115.016457
10.1111/j.1474-9726.2012.00795.x
10.1016/j.devcel.2014.11.012
10.1021/bc200647q
10.15252/embj.2018100492
10.1155/2015/732914
10.1016/j.ebiom.2017.03.027
10.1128/MCB.19.3.2109
10.1001/archpsyc.57.1.47
10.1038/ncb2170
10.1016/j.biocel.2003.08.009
10.1038/nature06084
10.15252/emmm.201810234
10.18632/aging.101540
10.1111/acel.12632
10.1038/s41418-018-0118-3
10.1038/s41416-018-0066-1
10.1016/j.bbabio.2008.03.029
10.1016/j.celrep.2019.05.095
10.1371/journal.pbio.0050110
10.1038/onc.2008.323
10.1128/MCB.02019-06
10.1038/nrc2440
10.1016/j.cell.2019.01.018
10.3390/cells8121501
10.1016/j.ceb.2009.12.005
10.1091/mbc.e11-10-0884
10.1167/iovs.19-26983
10.1073/pnas.92.20.9363
10.1016/j.celrep.2015.07.055
10.1101/gad.313270.118
10.3390/ijms20102547
10.1038/s41467-018-03555-8
10.1002/anie.201603328
10.1038/s41593-019-0372-9
10.1007/s11357-019-00100-3
10.1038/ncomms11190
10.1038/nm.4324
10.1111/j.1474-9726.2006.00199.x
10.1002/ange.202002576
10.1016/j.freeradbiomed.2018.10.457
10.1016/S1097-2765(04)00256-4
10.1038/sj.onc.1207102
10.1371/journal.pone.0207380
10.1038/ncb2070
10.1038/s41568-019-0156-2
10.1016/j.cmet.2019.05.006
10.1088/1361-6528/aa57b3
10.1111/acel.12592
10.1038/ncomms7463
10.1093/nar/gkz555
10.1101/cshperspect.a026104
10.1016/j.cub.2017.07.033
10.1242/jcs.071340
10.3390/cells8070686
10.1186/s13578-016-0079-5
10.1016/j.nurt.2007.05.006
10.1142/S1793545819410013
10.1016/j.cell.2019.10.005
10.1186/2046-2395-1-6
10.18632/aging.100527
10.1093/emboj/cdg417
10.1038/ncb2466
10.1016/j.tcb.2017.08.007
10.1038/436642a
10.1002/biot.201800691
10.1098/rsif.2019.0311
ContentType Journal Article
Copyright 2020 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies
2020 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.
2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies
– notice: 2020 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.
– notice: 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
DOI 10.1111/febs.15570
DatabaseName Wiley-Blackwell Open Access Titles
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Virology and AIDS Abstracts

AGRICOLA
CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1742-4658
EndPage 80
ExternalDocumentID 32961620
10_1111_febs_15570
FEBS15570
Genre reviewArticle
Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: Royal Society Research Grant
  funderid: RG160806
– fundername: Medical Research Council
  funderid: MR/R000530/1
– fundername: Cancer Research UK
  funderid: C62187/A26989; C62187/A29760; C67674/A27887
– fundername: Cancer Research UK
  grantid: 27887
– fundername: Cancer Research UK
  grantid: C67674/A27887
– fundername: Cancer Research UK
  grantid: 29760
– fundername: Cancer Research UK
  grantid: C62187/A26989
– fundername: Cancer Research UK
  grantid: 26989
– fundername: Cancer Research UK
  grantid: C62187/A29760
– fundername: Medical Research Council
  grantid: MR/R000530/1
GroupedDBID ---
-DZ
-~X
.3N
.55
.GA
.Y3
05W
0R~
10A
1OC
24P
29H
31~
33P
36B
3O-
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
A8Z
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAIPD
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEFU
ABEML
ABPVW
ABQWH
ABXGK
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACGOF
ACIWK
ACMXC
ACNCT
ACPOU
ACPRK
ACSCC
ACUHS
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C1A
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
E3Z
EAD
EAP
EAS
EAU
EBB
EBC
EBD
EBS
EBX
EJD
EMB
EMK
EMOBN
EST
ESX
EX3
F00
F01
F04
F5P
FIJ
FUBAC
G-S
G.N
GODZA
GX1
H.X
HF~
HGLYW
HH5
HZI
HZ~
IHE
IX1
J0M
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MVM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OBS
OIG
OK1
OVD
P2W
P2X
P2Z
P4B
P4D
PQQKQ
Q.N
Q11
QB0
R.K
RNS
ROL
RX1
SUPJJ
SV3
TEORI
TR2
TUS
UB1
V8K
W8V
W99
WBFHL
WBKPD
WIH
WIJ
WIK
WIN
WOHZO
WOQ
WOW
WQJ
WRC
WXI
WXSBR
WYISQ
X7M
XG1
Y6R
~IA
~KM
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c4070-acf60abe3aa9dbf138cb64530a872b7d7fd4ed6591801258ecdb1014f62e8d3f3
IEDL.DBID DR2
ISSN 1742-464X
1742-4658
IngestDate Fri Jul 11 18:35:55 EDT 2025
Fri Jul 11 10:17:10 EDT 2025
Fri Jul 25 19:39:57 EDT 2025
Mon Jul 21 06:04:55 EDT 2025
Thu Apr 24 22:57:07 EDT 2025
Tue Jul 01 03:06:52 EDT 2025
Wed Jan 22 16:30:45 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords assessment
ageing
detection
cellular senescence
biomarkers
Language English
License Attribution
2020 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4070-acf60abe3aa9dbf138cb64530a872b7d7fd4ed6591801258ecdb1014f62e8d3f3
Notes Estela González‐Gualda and Andrew G Baker contributed equally to this work
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-1558-4259
0000-0002-6498-3208
0000-0002-0550-9514
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Ffebs.15570
PMID 32961620
PQID 2474820626
PQPubID 28478
PageCount 25
ParticipantIDs proquest_miscellaneous_2524241258
proquest_miscellaneous_2445426175
proquest_journals_2474820626
pubmed_primary_32961620
crossref_primary_10_1111_febs_15570
crossref_citationtrail_10_1111_febs_15570
wiley_primary_10_1111_febs_15570_FEBS15570
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2021
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: January 2021
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle The FEBS journal
PublicationTitleAlternate FEBS J
PublicationYear 2021
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2010; 12
2011; 479
2018; 562
2019; 11
2019; 10
2019; 12
2019; 14
2019; 16
2019; 19
2019; 18
2020; 12
2017; 550
2012; 14
1993; 366
2016; 38
2013; 5
2012; 11
2016; 35
2020; 19
2020; 18
2010; 22
2018; 9
2011; 124
2010; 24
2019; 20
2019; 22
2019; 21
2004; 36
2006; 25
2019; 26
2008; 27
2015; 132
2014; 15
2019; 27
2014; 14
2019; 29
2007; 4
2007; 5
2010; 5
2012; 23
2018; 32
2019; 431
2019; 8
2007; 445
2019; 9
2007; 448
2019; 4
2019; 6
2000; 113
2019; 30
1995; 55
2016; 10
2019; 38
2005; 85
2007; 96
2020; 32
2016; 18
2017; 139
2012; 50
2016; 6
2016; 7
1970; 131
2019; 42
2020; 31
2019; 41
2018; 118
2017; 1534
2013; 73
2019; 47
2015; 2015
2019; 179
2017; 142
2017; 144
2008; 134
2018; 10
2003; 22
2018; 14
2014; 31
2019; 176
2018; 13
2017; 7
2017; 8
2017; 1
2019; 52
2019; 58
2008; 8
2011; 13
2017; 114
2014; 207
2017; 31
2010; 64
2020; 5
2019; 60
2014; 5
1999; 19
2013; 12
2020; 132
2000; 57
2013; 155
2016; 354
2019; 116
2020; 48
2003; 5
2013; 152
2005; 37
2007; 22
2019; 1896
2007; 27
2015; 12
2015; 15
2018; 143
2015; 6
1995; 92
2017; 2017
2020; 583
2017; 28
2017; 27
1985; 2
2019; 79
2017; 21
2017; 23
2000; 20
2005; 436
2006; 5
2006; 3
2020; 189
2008; 1777
2014; 86
2006; 311
2016; 55
2012; 1
2017; 16
2020
2004; 14
2015; 21
2019
1982; 112
2018
2009; 8
2016; 138
2009; 4
2019; 130
1961; 25
e_1_2_11_70_1
e_1_2_11_93_1
e_1_2_11_32_1
e_1_2_11_55_1
e_1_2_11_78_1
e_1_2_11_36_1
e_1_2_11_51_1
e_1_2_11_74_1
e_1_2_11_97_1
e_1_2_11_13_1
e_1_2_11_118_1
e_1_2_11_29_1
e_1_2_11_4_1
e_1_2_11_106_1
e_1_2_11_148_1
e_1_2_11_48_1
e_1_2_11_121_1
e_1_2_11_102_1
e_1_2_11_144_1
e_1_2_11_163_1
e_1_2_11_140_1
e_1_2_11_81_1
e_1_2_11_20_1
e_1_2_11_66_1
e_1_2_11_47_1
e_1_2_11_89_1
e_1_2_11_24_1
e_1_2_11_62_1
Stokes HW (e_1_2_11_125_1) 1985; 2
e_1_2_11_129_1
e_1_2_11_8_1
e_1_2_11_43_1
e_1_2_11_85_1
e_1_2_11_17_1
e_1_2_11_117_1
e_1_2_11_136_1
e_1_2_11_159_1
e_1_2_11_59_1
e_1_2_11_113_1
e_1_2_11_132_1
e_1_2_11_155_1
Shapiro GI (e_1_2_11_98_1) 1995; 55
e_1_2_11_151_1
e_1_2_11_50_1
e_1_2_11_92_1
Schwenck J (e_1_2_11_126_1) 2019; 58
e_1_2_11_31_1
e_1_2_11_77_1
e_1_2_11_58_1
e_1_2_11_119_1
e_1_2_11_35_1
e_1_2_11_73_1
e_1_2_11_12_1
e_1_2_11_54_1
e_1_2_11_96_1
e_1_2_11_103_1
e_1_2_11_149_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_122_1
e_1_2_11_145_1
e_1_2_11_141_1
e_1_2_11_164_1
e_1_2_11_160_1
Amaia L (e_1_2_11_11_1) 2016; 38
e_1_2_11_61_1
e_1_2_11_80_1
e_1_2_11_46_1
e_1_2_11_69_1
e_1_2_11_88_1
e_1_2_11_107_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_42_1
e_1_2_11_65_1
e_1_2_11_84_1
e_1_2_11_114_1
e_1_2_11_16_1
e_1_2_11_137_1
e_1_2_11_156_1
e_1_2_11_110_1
e_1_2_11_39_1
e_1_2_11_133_1
e_1_2_11_152_1
Kopp HG (e_1_2_11_94_1) 2007; 22
e_1_2_11_72_1
e_1_2_11_91_1
e_1_2_11_30_1
e_1_2_11_57_1
e_1_2_11_99_1
e_1_2_11_34_1
e_1_2_11_53_1
e_1_2_11_76_1
e_1_2_11_95_1
e_1_2_11_6_1
e_1_2_11_104_1
e_1_2_11_27_1
e_1_2_11_127_1
e_1_2_11_2_1
e_1_2_11_100_1
e_1_2_11_146_1
e_1_2_11_123_1
e_1_2_11_142_1
e_1_2_11_161_1
e_1_2_11_83_1
e_1_2_11_60_1
e_1_2_11_45_1
e_1_2_11_68_1
e_1_2_11_41_1
e_1_2_11_87_1
e_1_2_11_108_1
e_1_2_11_22_1
e_1_2_11_64_1
e_1_2_11_115_1
e_1_2_11_138_1
e_1_2_11_15_1
e_1_2_11_111_1
e_1_2_11_134_1
e_1_2_11_38_1
e_1_2_11_157_1
e_1_2_11_19_1
e_1_2_11_153_1
e_1_2_11_130_1
e_1_2_11_71_1
e_1_2_11_90_1
e_1_2_11_10_1
e_1_2_11_56_1
e_1_2_11_79_1
e_1_2_11_14_1
e_1_2_11_52_1
e_1_2_11_33_1
e_1_2_11_75_1
e_1_2_11_7_1
e_1_2_11_105_1
e_1_2_11_128_1
e_1_2_11_147_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_49_1
e_1_2_11_101_1
e_1_2_11_124_1
e_1_2_11_143_1
e_1_2_11_120_1
e_1_2_11_162_1
e_1_2_11_82_1
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_67_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_63_1
e_1_2_11_86_1
e_1_2_11_109_1
e_1_2_11_18_1
e_1_2_11_139_1
e_1_2_11_116_1
e_1_2_11_158_1
e_1_2_11_37_1
e_1_2_11_135_1
e_1_2_11_154_1
e_1_2_11_112_1
e_1_2_11_131_1
e_1_2_11_150_1
References_xml – volume: 6
  start-page: 33
  year: 2019
  article-title: Selection of a real‐time PCR housekeeping gene panel in human endothelial colony forming cells for cellular senescence studies
  publication-title: Front Med
– year: 2020
  article-title: A self‐immobilizing NIR probe for non‐invasive imaging of senescence
  publication-title: bioRxiv
– volume: 27
  start-page: 697
  year: 2017
  end-page: 698
  article-title: cGAS conducts micronuclei DNA surveillance
  publication-title: Trends Cell Biol
– volume: 5
  year: 2014
  article-title: Characterization of novel markers of senescence and their prognostic potential in cancer
  publication-title: Cell Death Dis.
– volume: 22
  start-page: 234
  year: 2010
  end-page: 240
  article-title: Connecting autophagy to senescence in pathophysiology
  publication-title: Curr Opin Cell Biol
– volume: 12
  start-page: 1483
  year: 2015
  end-page: 1496
  article-title: Mitotic stress is an integral part of the oncogene‐induced senescence program that promotes multinucleation and cell cycle arrest
  publication-title: Cell Rep
– volume: 20
  start-page: 6741
  year: 2000
  end-page: 6754
  article-title: Uncoupling between phenotypic senescence and cell cycle arrest in aging p21‐deficient fibroblasts
  publication-title: Mol Cell Biol
– volume: 20
  year: 2019
  article-title: Exosomes as emerging pro‐tumorigenic mediators of the senescence‐associated secretory phenotype
  publication-title: Int J Mol Sci
– volume: 1
  start-page: 6
  year: 2012
  article-title: Aging, immunosenescence and membrane rafts: the lipid connection
  publication-title: Longev Heal
– volume: 124
  start-page: 68
  year: 2011
  end-page: 81
  article-title: DNA‐SCARS: distinct nuclear structures that sustain damage‐induced senescence growth arrest and inflammatory cytokine secretion
  publication-title: J Cell Sci
– volume: 11
  start-page: 345
  year: 2012
  end-page: 349
  article-title: A senescent cell bystander effect: senescence‐induced senescence
  publication-title: Aging Cell
– volume: 16
  start-page: 724
  year: 2019
  end-page: 736
  article-title: Targeted mitochondrial COQ 10 delivery attenuates antiretroviral‐drug‐induced senescence of neural progenitor cells
  publication-title: Mol Pharm
– volume: 9
  start-page: 2074
  year: 2019
  article-title: Autofluorescence is a reliable marker of cellular senescence in human mesenchymal stromal cells
  publication-title: Sci Rep
– volume: 26
  start-page: 276
  year: 2019
  end-page: 290
  article-title: Selective elimination of senescent cells by mitochondrial targeting is regulated by ANT2
  publication-title: Cell Death Differ
– volume: 15
  start-page: 397
  year: 2015
  end-page: 408
  article-title: Forging a signature of senescence
  publication-title: Nat Rev Cancer
– volume: 13
  year: 2018
  article-title: Raman and infrared spectroscopy reveal that proliferating and quiescent human fibroblast cells age by biochemically similar but not identical processes
  publication-title: PLoS One
– volume: 134
  start-page: 657
  year: 2008
  end-page: 667
  article-title: Senescence of activated stellate cells limits liver fibrosis
  publication-title: Cell
– volume: 35
  start-page: 724
  year: 2016
  end-page: 742
  article-title: Mitochondria are required for pro‐ageing features of the senescent phenotype
  publication-title: EMBO J
– volume: 96
  start-page: 686
  year: 2007
  end-page: 691
  article-title: Cellular senescence and chromatin organisation
  publication-title: Br J Cancer
– volume: 50
  start-page: 220
  year: 2012
  end-page: 227
  article-title: The profile of lysosomal exoglycosidases in replicative and stress‐induced senescence in early passage human fibroblasts
  publication-title: Folia Histochem Cytobiol
– volume: 31
  start-page: 1529
  year: 2017
  end-page: 1534
  article-title: Identification of senescent cell surface targetable protein DPP4
  publication-title: Genes Dev
– volume: 64
  start-page: 65
  year: 2010
  end-page: 71
  article-title: S‐Gal®, a novel1H MRI reporter for β‐galactosidase
  publication-title: Magn Reson Med
– volume: 38
  year: 2019
  article-title: Length‐independent telomere damage drives post‐mitotic cardiomyocyte senescence
  publication-title: EMBO J
– volume: 112
  start-page: 385
  year: 1982
  end-page: 390
  article-title: β‐Galactosidase—An indicator of the maturational stage of mouse and human mononuclear phagocytes
  publication-title: J Cell Physiol
– volume: 11
  start-page: 2378
  year: 2019
  end-page: 2387
  article-title: Replicative and radiation‐induced aging: a comparison of gene expression profiles
  publication-title: Aging
– volume: 14
  start-page: 100
  year: 2018
  end-page: 115
  article-title: Iron accumulation in senescent cells is coupled with impaired ferritinophagy and inhibition of ferroptosis
  publication-title: Redox Biol.
– volume: 8
  start-page: 4112
  year: 2009
  end-page: 4118
  article-title: Pseudo‐DNA damage response in senescent cells
  publication-title: Cell Cycle
– volume: 118
  start-page: 1283
  year: 2018
  end-page: 1288
  article-title: Paracrine roles of cellular senescence in promoting tumourigenesis
  publication-title: Br J Cancer
– volume: 4
  start-page: 371
  year: 2007
  end-page: 386
  article-title: Iron in chronic brain disorders: imaging and neurotherapeutic implications
  publication-title: Neurotherapeutics
– volume: 9
  year: 2019
  article-title: Real‐time imaging of senescence in tumors with DNA damage
  publication-title: Sci Rep
– volume: 31
  start-page: 722
  year: 2014
  end-page: 733
  article-title: An essential role for senescent cells in optimal wound healing through secretion of PDGF‐AA
  publication-title: Dev Cell
– volume: 2015
  start-page: 732914
  year: 2015
  article-title: Comparative meta‐analysis of transcriptomics data during cellular senescence and tissue ageing
  publication-title: Oxid Med Cell Longev
– volume: 562
  start-page: 578
  year: 2018
  end-page: 582
  article-title: Clearance of senescent glial cells prevents tau‐dependent pathology and cognitive decline
  publication-title: Nature
– volume: 176
  start-page: 1083
  year: 2019
  end-page: 1097
  article-title: Excessive cell growth causes cytoplasm dilution and contributes to senescence
  publication-title: Cell
– volume: 30
  start-page: 129
  year: 2019
  end-page: 142
  article-title: Acceleration of β cell aging determines diabetes and senolysis improves disease outcomes
  publication-title: Cell Metab.
– volume: 1896
  start-page: 107
  year: 2019
  end-page: 117
  article-title: A multiparametric assay to evaluate senescent cells
  publication-title: Methods Mol Biol
– volume: 48
  start-page: 765
  year: 2020
  end-page: 773
  article-title: Functional heterogeneity in senescence
  publication-title: Biochem Soc Trans
– volume: 5
  start-page: 37
  year: 2013
  end-page: 50
  article-title: Specific lipofuscin staining as a novel biomarker to detect replicative and stress‐induced senescence. A method applicable in cryo‐preserved and archival tissues
  publication-title: Aging
– volume: 9
  start-page: 1249
  year: 2018
  article-title: Downregulation of cytoplasmic DNases is implicated in cytoplasmic DNA accumulation and SASP in senescent cells
  publication-title: Nat Commun
– volume: 5
  start-page: 507
  year: 2003
  end-page: 516
  article-title: Iron accumulation during cellular senescence in human fibroblasts
  publication-title: Antioxid Redox Signal
– volume: 550
  start-page: 402
  year: 2017
  end-page: 406
  article-title: Cytoplasmic chromatin triggers inflammation in senescence and cancer
  publication-title: Nature
– volume: 14
  start-page: 547
  year: 2014
  end-page: 558
  article-title: Inside and out: the activities of senescence in cancer
  publication-title: Nat Rev Cancer
– volume: 1777
  start-page: 1028
  year: 2008
  end-page: 1031
  article-title: Targeting lipophilic cations to mitochondria
  publication-title: Biochim Biophys Acta
– volume: 116
  start-page: 2603
  year: 2019
  end-page: 2611
  article-title: Cells exhibiting strong p16INK4a promoter activation display features of senescence
  publication-title: Proc Natl Acad Sci USA
– volume: 155
  start-page: 1119
  year: 2013
  end-page: 1130
  article-title: Senescence is a developmental mechanism that contributes to embryonic growth and patterning
  publication-title: Cell
– volume: 8
  start-page: 201
  year: 2017
  article-title: Decoy TRAIL receptor CD264: a cell surface marker of cellular aging for human bone marrow‐derived mesenchymal stem cells
  publication-title: Stem Cell Res Ther
– volume: 138
  start-page: 5334
  year: 2016
  end-page: 5340
  article-title: Real‐time tracking and visualization of β‐galactosidase activity in colorectal tumor with a ratiometric near‐infrared fluorescent probe
  publication-title: J Am Chem Soc
– volume: 6
  start-page: 1
  year: 2015
  end-page: 7
  article-title: Sensitive β‐galactosidase‐targeting fluorescence probe for visualizing small peritoneal metastatic tumours
  publication-title: Nat Commun
– volume: 189
  year: 2020
  article-title: The bright and dark side of extracellular vesicles in the senescence‐associated secretory phenotype
  publication-title: Mech Ageing Dev
– volume: 8
  year: 2017
  article-title: Exosomes maintain cellular homeostasis by excreting harmful DNA from cells
  publication-title: Nat Commun
– volume: 7
  year: 2016
  article-title: Directed elimination of senescent cells by inhibition of BCL‐W and BCL‐XL
  publication-title: Nat Commun
– volume: 58
  start-page: L5
  year: 2019
  article-title: imaging of tumor senescence with a novel beta‐galactosidase specific PET tracer
  publication-title: Nuklearmedizin
– volume: 12
  start-page: 676
  year: 2010
  end-page: 685
  article-title: The matricellular protein CCN1 induces fibroblast senescence and restricts fibrosis in cutaneous wound healing
  publication-title: Nat Cell Biol
– volume: 25
  start-page: 5210
  year: 2006
  end-page: 5219
  article-title: RB, the conductor that orchestrates life, death and differentiation
  publication-title: Oncogene
– volume: 18
  year: 2019
  article-title: Identification of stable senescence‐associated reference genes
  publication-title: Aging Cell
– volume: 18
  year: 2020
  article-title: A proteomic atlas of senescence‐associated secretomes for aging biomarker development
  publication-title: PLoS Biol
– volume: 436
  start-page: 642
  year: 2005
  article-title: Senescence in premalignant tumours
  publication-title: Nature
– volume: 21
  start-page: 14
  year: 2017
  end-page: 20
  article-title: Telomeres and cell senescence ‐ size matters not
  publication-title: EBioMedicine
– volume: 155
  start-page: 1104
  year: 2013
  end-page: 1118
  article-title: Programmed cell senescence during mammalian embryonic development
  publication-title: Cell
– volume: 35
  start-page: 701
  year: 2016
  end-page: 702
  article-title: Mitochondria and senescence: new actors for an old play
  publication-title: EMBO J
– volume: 130
  start-page: 267
  year: 2019
  end-page: 277
  article-title: Pan‐senescence transcriptome analysis identified RRAD as a marker and negative regulator of cellular senescence
  publication-title: Free Radic Biol Med
– volume: 19
  start-page: 439
  year: 2019
  end-page: 453
  article-title: Unmasking senescence: context‐dependent effects of SASP in cancer
  publication-title: Nat Rev Cancer
– volume: 23
  start-page: 775
  year: 2017
  article-title: Local clearance of senescent cells attenuates the development of post‐traumatic osteoarthritis and creates a pro‐regenerative environment
  publication-title: Nat Med
– volume: 32
  start-page: 909
  year: 2018
  end-page: 914
  article-title: SCAMP4 enhances the senescent cell secretome
  publication-title: Genes Dev
– volume: 85
  start-page: 502
  year: 2005
  end-page: 511
  article-title: p53‐Dependent ICAM‐1 overexpression in senescent human cells identified in atherosclerotic lesions
  publication-title: Lab Investig
– volume: 32
  start-page: 87
  year: 2020
  end-page: 99
  article-title: Defined p16High senescent cell types are indispensable for mouse healthspan
  publication-title: Cell Metab
– volume: 28
  year: 2017
  article-title: CD9 monoclonal antibody‐conjugated PEGylated liposomes for targeted delivery of rapamycin in the treatment of cellular senescence
  publication-title: Nanotechnology
– volume: 583
  start-page: 127
  year: 2020
  end-page: 132
  article-title: Senolytic CAR T cells reverse senescence‐associated pathologies
  publication-title: Nature
– volume: 79
  start-page: 1146
  year: 2019
  article-title: Abstract 1146: [18F]FPyGal: a novel ß‐galactosidase specific PET tracer for imaging of tumor senescence
  publication-title: Cancer Res
– volume: 448
  start-page: 943
  year: 2007
  end-page: 946
  article-title: p15Ink4b is a critical tumour suppressor in the absence of p16Ink4a
  publication-title: Nature
– volume: 9
  start-page: 1849
  year: 2018
  end-page: 1857
  article-title: Increased Iron deposition on brain quantitative susceptibility mapping correlates with decreased cognitive function in Alzheimer’s disease
  publication-title: ACS Chem Neurosci
– volume: 207
  start-page: 74
  year: 2014
  end-page: 80
  article-title: Resveratrol alters the lipid composition, metabolism and peroxide level in senescent rat hepatocytes
  publication-title: Chem Biol Interact
– volume: 27
  start-page: 2343
  year: 2007
  end-page: 2358
  article-title: Molecular dissection of formation of senescence‐associated heterochromatin foci
  publication-title: Mol Cell Biol
– volume: 10
  year: 2018
  article-title: A versatile drug delivery system targeting senescent cells
  publication-title: EMBO Mol Med
– volume: 27
  start-page: 7070
  year: 2008
  end-page: 7082
  article-title: Oncogene activation in melanocytes links reactive oxygen to multinucleated phenotype and senescence
  publication-title: Oncogene
– volume: 36
  start-page: 1400
  year: 2004
  end-page: 1404
  article-title: Lipofuscin
  publication-title: Int J Biochem Cell Biol
– volume: 21
  start-page: 94
  year: 2019
  end-page: 101
  article-title: The dynamic nature of senescence in cancer
  publication-title: Nat Cell Biol
– volume: 57
  start-page: 47
  year: 2000
  end-page: 53
  article-title: evaluation of brain iron in Alzheimer disease using magnetic resonance imaging
  publication-title: Arch Gen Psychiatry
– volume: 22
  start-page: 4212
  year: 2003
  end-page: 4222
  article-title: Reversal of human cellular senescence: roles of the p53 and p16 pathways
  publication-title: EMBO J
– volume: 55
  start-page: 505
  year: 1995
  end-page: 509
  article-title: Reciprocal Rb inactivation and p16INK4 expression in primary lung cancers and cell lines
  publication-title: Cancer Res
– volume: 311
  start-page: 1257
  year: 2006
  article-title: Cellular senescence in aging primates
  publication-title: Science
– volume: 22
  start-page: 971
  year: 2007
  end-page: 976
  article-title: β‐galactosidase staining on bone marrow. The osteoclast pitfall
  publication-title: Histol Histopathol
– volume: 14
  start-page: 355
  year: 2012
  end-page: 365
  article-title: Telomeric DNA damage is irreparable and causes persistent DNA‐damage‐response activation
  publication-title: Nat Cell Biol
– volume: 132
  start-page: 8776
  year: 2020
  end-page: 8783
  article-title: Mitochondria‐targeting plasmonic spiky nanorods increase the elimination of aging cells
  publication-title: Angew Chemie
– volume: 5
  start-page: 187
  year: 2006
  end-page: 195
  article-title: Senescence‐associated β‐galactosidase is lysosomal β‐galactosidase
  publication-title: Aging Cell
– volume: 19
  year: 2020
  article-title: Cellular senescence and chronological age in various human tissues: a systematic review and meta‐analysis
  publication-title: Aging Cell
– volume: 12
  start-page: 4052
  year: 2020
  end-page: 4066
  article-title: Survey of senescent cell markers with age in human tissues
  publication-title: Aging
– volume: 132
  start-page: 1909
  year: 2015
  end-page: 1919
  article-title: Vascular smooth muscle cell senescence promotes atherosclerosis and features of plaque vulnerability
  publication-title: Circulation
– volume: 16
  year: 2019
  article-title: A dynamical systems model for the measurement of cellular senescence
  publication-title: J R Soc Interface
– volume: 1
  start-page: 628
  year: 2017
  end-page: 643
  article-title: Immune dysfunctionality of replicative senescent mesenchymal stromal cells is corrected by IFNg priming
  publication-title: Blood Adv
– volume: 12
  year: 2019
  article-title: Photoacoustic nanoprobe for β‐galactosidase activity detection and imaging
  publication-title: J Innov Opt Health Sci
– volume: 24
  start-page: 2463
  year: 2010
  end-page: 2479
  article-title: The essence of senescence
  publication-title: Genes Dev
– year: 2018
– volume: 2017
  year: 2017
  article-title: Protein posttranslational modifications: roles in aging and age‐related disease
  publication-title: Oxid Med Cell Longev
– volume: 25
  start-page: 585
  year: 1961
  end-page: 621
  article-title: The serial cultivation of human diploid strains
  publication-title: Exp Cell Res
– volume: 12
  start-page: 1922
  year: 2013
  end-page: 1927
  article-title: α‐Fucosidase as a novel convenient biomarker for cellular senescence
  publication-title: Cell Cycle
– volume: 152
  start-page: 340
  year: 2013
  end-page: 351
  article-title: Monitoring tumorigenesis and senescence with a p16(INK4a)‐luciferase model
  publication-title: Cell
– volume: 139
  start-page: 8808
  year: 2017
  end-page: 8811
  article-title: An OFF–ON two‐photon fluorescent probe for tracking cell senescence
  publication-title: J Am Chem Soc
– volume: 23
  start-page: 596
  year: 2012
  end-page: 603
  article-title: Dual 19F/ 1H MR gene reporter molecules for detection of β‐galactosidase
  publication-title: Bioconjug Chem
– volume: 92
  start-page: 9363
  year: 1995
  end-page: 9367
  article-title: A biomarker that identifies senescent human cells in culture and in aging skin
  publication-title: Proc Natl Acad Sci USA
– volume: 41
  start-page: 561
  year: 2019
  end-page: 573
  article-title: Astrocyte senescence may drive alterations in GFAPα, CDKN2A p14ARF, and TAU3 transcript expression and contribute to cognitive decline
  publication-title: GeroScience
– volume: 14
  start-page: 501
  year: 2004
  end-page: 513
  article-title: Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21CIP1, but not p16INK4a
  publication-title: Mol Cell
– volume: 5
  start-page: 99
  year: 2010
  end-page: 118
  article-title: The Senescence‐associated secretory phenotype: the dark side of tumor suppression
  publication-title: Annu Rev Pathol Mech Dis
– volume: 60
  start-page: 3669
  year: 2019
  end-page: 3679
  article-title: Induction of fibroblast senescence during mouse corneal wound healing
  publication-title: Invest Ophthalmol Vis Sci
– volume: 16
  start-page: 1043
  year: 2017
  end-page: 1050
  article-title: Analysis of individual cells identifies cell‐to‐cell variability following induction of cellular senescence
  publication-title: Aging Cell
– volume: 15
  start-page: 482
  year: 2014
  end-page: 496
  article-title: Cellular senescence: from physiology to pathology
  publication-title: Nat Rev Mol Cell Biol
– volume: 16
  start-page: 661
  year: 2017
  end-page: 671
  article-title: Quantitative identification of senescent cells in aging and disease
  publication-title: Aging Cell
– volume: 143
  start-page: 2680
  year: 2018
  end-page: 2688
  article-title: Development of highly sensitive fluorescent probes for the detection of β‐galactosidase activity – application to the real‐time monitoring of senescence in live cells
  publication-title: Analyst
– volume: 2
  start-page: 469
  year: 1985
  end-page: 477
  article-title: Sequence of the ebgA gene of : comparison with the lacZ gene
  publication-title: Mol Biol Evol
– volume: 8
  start-page: 686
  year: 2019
  article-title: Mitochondrial homeostasis and cellular senescence
  publication-title: Cells
– volume: 21
  start-page: 1424
  year: 2015
  end-page: 1435
  article-title: Cellular senescence in aging and age‐related disease: from mechanisms to therapy
  publication-title: Nat. Med
– volume: 73
  start-page: 3451
  year: 2013
  end-page: 3459
  article-title: Notch3 functions as a tumor suppressor by controlling cellular senescence
  publication-title: Cancer Res
– volume: 18
  year: 2019
  article-title: Extranuclear DNA accumulates in aged cells and contributes to senescence and inflammation
  publication-title: Aging Cell
– volume: 11
  year: 2019
  article-title: Targeting senescent cells in translational medicine
  publication-title: EMBO Mol Med
– volume: 10
  year: 2019
  article-title: Typhoid toxin exhausts the RPA response to DNA replication stress driving senescence and Salmonella infection
  publication-title: Nat Commun
– volume: 29
  start-page: 1045
  year: 2019
  end-page: 1060
  article-title: Targeted elimination of senescent beta cells prevents type 1 diabetes
  publication-title: Cell Metab
– volume: 114
  start-page: E1668
  year: 2017
  end-page: E1677
  article-title: Senescent cells expose and secrete an oxidized form of membrane‐bound vimentin as revealed by a natural polyreactive antibody
  publication-title: Proc Natl Acad Sci USA
– volume: 6
  start-page: a026104
  year: 2016
  article-title: The cell‐cycle arrest and apoptotic functions of p53 in tumor initiation and progression
  publication-title: Cold Spring Harb Perspect Med
– volume: 4
  start-page: 1798
  year: 2009
  end-page: 1806
  article-title: Protocols to detect senescence‐associated beta‐galactosidase (SA‐βgal) activity, a biomarker of senescent cells in culture and
  publication-title: Nat Protoc
– volume: 8
  year: 2019
  article-title: Diversity of the senescence phenotype of cancer cells treated with chemotherapeutic agents
  publication-title: Cells
– volume: 47
  start-page: 7294
  year: 2019
  end-page: 7305
  article-title: Transcriptome signature of cellular senescence
  publication-title: Nucleic Acids Res
– volume: 9
  year: 2019
  article-title: Identification of reference genes for RT‐qPCR data normalisation in aging studies
  publication-title: Sci Rep
– volume: 16
  start-page: 192
  year: 2017
  end-page: 197
  article-title: Robust, universal biomarker assay to detect senescent cells in biological specimens
  publication-title: Aging Cell
– volume: 179
  start-page: 813
  year: 2019
  end-page: 827
  article-title: Cellular senescence: defining a path forward
  publication-title: Cell
– volume: 6
  start-page: 14
  year: 2016
  article-title: N‐ and O‐glycan cell surface protein modifications associated with cellular senescence and human aging
  publication-title: Cell Biosci
– volume: 10
  year: 2016
  article-title: A scalable label‐free approach to separate human pluripotent cells from differentiated derivatives
  publication-title: Biomicrofluidics
– volume: 1534
  start-page: 185
  year: 2017
  end-page: 198
  article-title: Detection of oncogene‐induced senescence
  publication-title: Methods Mol Biol
– volume: 18
  start-page: 979
  year: 2016
  end-page: 992
  article-title: NOTCH1 mediates a switch between two distinct secretomes during senescence
  publication-title: Nat Cell Biol
– volume: 144
  start-page: 106
  year: 2017
  end-page: 114
  article-title: Conserved and novel functions of programmed cellular senescence during vertebrate development
  publication-title: Development
– volume: 354
  start-page: 472
  year: 2016
  end-page: 477
  article-title: Senescent intimal foam cells are deleterious at all stages of atherosclerosis
  publication-title: Science
– volume: 5
  start-page: 12
  year: 2020
  article-title: The senescence‐associated secretome as an indicator of age and medical risk
  publication-title: JCI Insight
– volume: 5
  year: 2007
  article-title: Mitochondrial dysfunction accounts for the stochastic heterogeneity in telomere‐dependent senescence
  publication-title: PLoS Biol
– volume: 132
  start-page: 396
  year: 2020
  end-page: 402
  article-title: Self‐immolative activation of β‐galactosidase‐responsive probes for MR imaging in mouse models
  publication-title: Angew Chemie
– volume: 3
  start-page: 295
  year: 2006
  end-page: 301
  article-title: Luminescent imaging of beta‐galactosidase activity in living subjects using sequential reporter‐enzyme luminescence
  publication-title: Nat Methods
– volume: 42
  start-page: 377
  year: 2019
  end-page: 387
  article-title: Raman fingerprints as promising markers of cellular senescence and aging
  publication-title: GeroScience
– start-page: 21
  year: 2019
  end-page: 29
– volume: 52
  start-page: 617
  year: 2019
  end-page: 632
  article-title: Mitochondrial protection partly mitigates kidney cellular senescence in swine atherosclerotic renal artery stenosis
  publication-title: Cell Physiol Biochem
– volume: 366
  start-page: 704
  year: 1993
  end-page: 707
  article-title: A new regulatory motif in cell‐cycle control causing specific inhibition of cyclin D/CDK4
  publication-title: Nature
– volume: 479
  start-page: 547
  year: 2011
  end-page: 551
  article-title: Senescence surveillance of pre‐malignant hepatocytes limits liver cancer development
  publication-title: Nature
– volume: 22
  start-page: 8590
  year: 2003
  end-page: 8607
  article-title: The Bcl‐2 family: roles in cell survival and oncogenesis
  publication-title: Oncogene
– volume: 479
  start-page: 232
  year: 2011
  end-page: 236
  article-title: Clearance of p16Ink4a‐positive senescent cells delays ageing‐associated disorders
  publication-title: Nature
– volume: 7
  year: 2017
  article-title: Loss of lamin B1 is a biomarker to quantify cellular senescence in photoaged skin
  publication-title: Sci Rep
– volume: 38
  start-page: S56
  issue: S1
  year: 2016
  end-page: S64
  article-title: To clear, or not to clear (senescent cells)? That is the question
  publication-title: BioEssays
– volume: 86
  start-page: 10001
  year: 2014
  end-page: 10005
  article-title: Ratiometric two‐photon fluorescent probe for quantitative detection of β‐galactosidase activity in senescent cells
  publication-title: Anal Chem
– volume: 31
  year: 2020
  article-title: Senescence, necrosis, and apoptosis govern circulating cell‐free DNA release kinetics
  publication-title: Cell Rep
– volume: 19
  start-page: 2109
  year: 1999
  end-page: 2117
  article-title: Differential roles for cyclin‐dependent kinase inhibitors p21 and p16 in the mechanisms of senescence and differentiation in human fibroblasts
  publication-title: Mol Cell Biol
– volume: 10
  start-page: 2190
  year: 2018
  end-page: 2208
  article-title: Qualitative and quantitative alterations in intracellular and membrane glycoproteins maintain the balance between cellular senescence and human aging
  publication-title: Aging
– volume: 142
  start-page: 4405
  year: 2017
  end-page: 4414
  article-title: Raman and infrared spectroscopy differentiate senescent from proliferating cells in a human dermal fibroblast 3D skin model
  publication-title: Analyst
– volume: 445
  start-page: 656
  year: 2007
  end-page: 660
  article-title: Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas
  publication-title: Nature
– volume: 23
  start-page: 2066
  year: 2012
  end-page: 2075
  article-title: Lamin B1 loss is a senescence‐associated biomarker
  publication-title: Mol Biol Cell
– volume: 37
  start-page: 961
  year: 2005
  end-page: 976
  article-title: The signals and pathways activating cellular senescence
  publication-title: Int J Biochem Cell Biol
– volume: 8
  year: 2017
  article-title: Cellular senescence mediates fibrotic pulmonary disease
  publication-title: Nat Commun
– volume: 55
  start-page: 9620
  year: 2016
  end-page: 9624
  article-title: Detection of LacZ‐positive cells in living tissue with single‐cell resolution
  publication-title: Angew Chem Int Ed Engl
– volume: 4
  start-page: 757
  year: 2019
  end-page: 768
  article-title: Detecting and targeting senescent cells using molecularly imprinted nanoparticles
  publication-title: Nanoscale Horizons
– volume: 13
  start-page: 292
  year: 2011
  end-page: 302
  article-title: Interplay between oncogene‐induced DNA damage response and heterochromatin in senescence and cancer
  publication-title: Nat Cell Biol
– volume: 22
  start-page: 719
  year: 2019
  end-page: 728
  article-title: Senolytic therapy alleviates Aβ‐associated oligodendrocyte progenitor cell senescence and cognitive deficits in an Alzheimer’s disease model
  publication-title: Nat Neurosci
– volume: 131
  start-page: 1211
  year: 1970
  end-page: 1222
  article-title: Morphologic changes accompanying senescence of cultured human diploid cells
  publication-title: J Exp Med
– volume: 27
  start-page: 2652
  year: 2017
  end-page: 2660
  article-title: Unmasking transcriptional heterogeneity in senescent cells
  publication-title: Curr Biol
– volume: 431
  start-page: 2629
  year: 2019
  end-page: 2643
  article-title: Regulation of survival networks in senescent cells: from mechanisms to interventions
  publication-title: J Mol Biol
– volume: 113
  start-page: 3613
  year: 2000
  end-page: 3622
  article-title: Senescence‐associated β‐galactosidase reflects an increase in lysosomal mass during replicative ageing of human endothelial cells
  publication-title: J Cell Sci
– volume: 27
  start-page: 3956
  year: 2019
  end-page: 3971
  article-title: Small extracellular vesicles are key regulators of non‐cell autonomous intercellular communication in senescence via the interferon protein IFITM3
  publication-title: Cell Rep
– volume: 8
  start-page: 512
  year: 2008
  end-page: 522
  article-title: Living on a break: cellular senescence as a DNA‐damage response
  publication-title: Nat Rev Cancer
– volume: 14
  year: 2019
  article-title: Rapid detection of senescent mesenchymal stromal cells by a fluorescent probe
  publication-title: Biotechnol J
– ident: e_1_2_11_16_1
  doi: 10.1038/s41556-018-0249-2
– ident: e_1_2_11_22_1
  doi: 10.1016/j.cmet.2019.01.021
– ident: e_1_2_11_68_1
  doi: 10.1038/nm.4000
– ident: e_1_2_11_52_1
  doi: 10.1039/C8AN00516H
– ident: e_1_2_11_134_1
  doi: 10.1016/j.cbi.2013.10.016
– ident: e_1_2_11_46_1
  doi: 10.1038/nprot.2009.191
– ident: e_1_2_11_137_1
  doi: 10.1007/s11357-019-00053-7
– ident: e_1_2_11_162_1
  doi: 10.1016/j.celrep.2020.107830
– ident: e_1_2_11_119_1
  doi: 10.1038/s41586-020-2403-9
– ident: e_1_2_11_121_1
  doi: 10.1073/pnas.1818313116
– ident: e_1_2_11_42_1
  doi: 10.3389/fmed.2019.00033
– ident: e_1_2_11_100_1
  doi: 10.1016/j.cell.2012.12.010
– ident: e_1_2_11_122_1
  doi: 10.1021/jacs.6b01705
– volume: 2
  start-page: 469
  year: 1985
  ident: e_1_2_11_125_1
  article-title: Sequence of the ebgA gene of Escherichia coli: comparison with the lacZ gene
  publication-title: Mol Biol Evol
– ident: e_1_2_11_136_1
  doi: 10.1063/1.4939946
– ident: e_1_2_11_139_1
  doi: 10.1039/C7AN00592J
– ident: e_1_2_11_70_1
  doi: 10.15252/embj.201592862
– ident: e_1_2_11_23_1
  doi: 10.1038/s41586-018-0543-y
– ident: e_1_2_11_141_1
  doi: 10.1002/mrm.22400
– ident: e_1_2_11_147_1
  doi: 10.1016/j.redox.2017.08.015
– ident: e_1_2_11_127_1
  doi: 10.1158/1538-7445.AM2019-1146
– ident: e_1_2_11_34_1
  doi: 10.1038/sj.onc.1209612
– ident: e_1_2_11_99_1
  doi: 10.1038/nature10600
– ident: e_1_2_11_115_1
  doi: 10.1101/gad.302570.117
– ident: e_1_2_11_110_1
  doi: 10.1038/s41467-019-12064-1
– ident: e_1_2_11_156_1
  doi: 10.1016/j.mad.2020.111263
– ident: e_1_2_11_89_1
  doi: 10.1101/gad.1971610
– ident: e_1_2_11_129_1
  doi: 10.1039/C8NH00473K
– ident: e_1_2_11_19_1
  doi: 10.1038/ncomms14532
– ident: e_1_2_11_133_1
  doi: 10.1073/pnas.1614661114
– ident: e_1_2_11_27_1
  doi: 10.1042/BST20190109
– ident: e_1_2_11_31_1
  doi: 10.1128/MCB.20.18.6741-6754.2000
– ident: e_1_2_11_44_1
  doi: 10.1242/jcs.113.20.3613
– ident: e_1_2_11_91_1
  doi: 10.18632/aging.102903
– ident: e_1_2_11_63_1
  doi: 10.1126/science.1122446
– ident: e_1_2_11_112_1
  doi: 10.1158/0008-5472.CAN-12-3902
– ident: e_1_2_11_30_1
  doi: 10.1016/j.biocel.2004.10.013
– ident: e_1_2_11_86_1
  doi: 10.1182/bloodadvances.2017006205
– ident: e_1_2_11_140_1
  doi: 10.1002/ange.201909933
– ident: e_1_2_11_146_1
  doi: 10.1089/152308603770310158
– ident: e_1_2_11_66_1
  doi: 10.1146/annurev-pathol-121808-102144
– ident: e_1_2_11_130_1
  doi: 10.1155/2017/5716409
– ident: e_1_2_11_48_1
  doi: 10.1021/jacs.7b04985
– ident: e_1_2_11_50_1
  doi: 10.1038/s41598-019-38511-z
– ident: e_1_2_11_113_1
  doi: 10.1038/cddis.2014.489
– ident: e_1_2_11_72_1
  doi: 10.15252/embj.201694025
– ident: e_1_2_11_97_1
  doi: 10.1038/366704a0
– ident: e_1_2_11_5_1
  doi: 10.1016/j.cell.2013.10.041
– ident: e_1_2_11_6_1
  doi: 10.1242/dev.138222
– ident: e_1_2_11_54_1
  doi: 10.4161/cc.24944
– ident: e_1_2_11_13_1
  doi: 10.1038/nrc3773
– ident: e_1_2_11_108_1
  doi: 10.33594/000000044
– ident: e_1_2_11_2_1
  doi: 10.1016/0014-4827(61)90192-6
– ident: e_1_2_11_4_1
  doi: 10.1016/j.cell.2013.10.019
– ident: e_1_2_11_69_1
  doi: 10.1371/journal.pbio.3000599
– ident: e_1_2_11_145_1
  doi: 10.1038/s41598-019-38546-2
– ident: e_1_2_11_92_1
  doi: 10.1002/jcp.1041120312
– ident: e_1_2_11_117_1
  doi: 10.1038/labinvest.3700241
– ident: e_1_2_11_155_1
  doi: 10.1172/jci.insight.133668
– ident: e_1_2_11_106_1
  doi: 10.1038/s41598-017-15901-9
– ident: e_1_2_11_154_1
  doi: 10.18632/aging.101921
– ident: e_1_2_11_10_1
  doi: 10.1038/nature05529
– ident: e_1_2_11_41_1
  doi: 10.1038/s41598-019-50035-0
– ident: e_1_2_11_120_1
  doi: 10.1016/j.cmet.2020.05.002
– ident: e_1_2_11_101_1
  doi: 10.1007/978-1-4939-6670-7_18
– ident: e_1_2_11_49_1
  doi: 10.1021/ac5031013
– ident: e_1_2_11_118_1
  doi: 10.1038/ncb3397
– ident: e_1_2_11_164_1
  doi: 10.1007/978-1-4939-8931-7_11
– ident: e_1_2_11_20_1
  doi: 10.15252/emmm.201809355
– ident: e_1_2_11_104_1
  doi: 10.1038/sj.bjc.6603636
– ident: e_1_2_11_7_1
  doi: 10.1016/j.cell.2008.06.049
– ident: e_1_2_11_17_1
  doi: 10.1126/science.aaf6659
– ident: e_1_2_11_12_1
  doi: 10.1038/nature10599
– volume: 58
  start-page: L5
  year: 2019
  ident: e_1_2_11_126_1
  article-title: In vivo imaging of tumor senescence with a novel beta‐galactosidase specific PET tracer
  publication-title: Nuklearmedizin
– ident: e_1_2_11_40_1
  doi: 10.1111/acel.12911
– ident: e_1_2_11_47_1
  doi: 10.1111/acel.12545
– ident: e_1_2_11_148_1
  doi: 10.1021/acschemneuro.8b00194
– ident: e_1_2_11_28_1
  doi: 10.1111/acel.13083
– ident: e_1_2_11_163_1
  doi: 10.1038/ncomms15287
– ident: e_1_2_11_83_1
  doi: 10.1016/j.jmb.2019.05.036
– ident: e_1_2_11_144_1
  doi: 10.5603/FHC.2012.0031
– ident: e_1_2_11_79_1
  doi: 10.1007/978-1-4939-8931-7_3
– ident: e_1_2_11_124_1
  doi: 10.1038/nmeth868
– ident: e_1_2_11_58_1
  doi: 10.4161/cc.8.24.10215
– ident: e_1_2_11_85_1
  doi: 10.1084/jem.131.6.1211
– ident: e_1_2_11_3_1
  doi: 10.1038/nrm3823
– ident: e_1_2_11_35_1
  doi: 10.1038/nrc3960
– ident: e_1_2_11_51_1
  doi: 10.1101/2020.03.27.010827
– ident: e_1_2_11_114_1
  doi: 10.1186/s13287-017-0649-4
– ident: e_1_2_11_159_1
  doi: 10.1038/nature24050
– ident: e_1_2_11_76_1
  doi: 10.1021/acs.molpharmaceut.8b01014
– ident: e_1_2_11_160_1
  doi: 10.1111/acel.12901
– ident: e_1_2_11_18_1
  doi: 10.1161/CIRCULATIONAHA.115.016457
– ident: e_1_2_11_80_1
  doi: 10.1111/j.1474-9726.2012.00795.x
– ident: e_1_2_11_9_1
  doi: 10.1016/j.devcel.2014.11.012
– volume: 38
  start-page: S56
  issue: 1
  year: 2016
  ident: e_1_2_11_11_1
  article-title: To clear, or not to clear (senescent cells)? That is the question
  publication-title: BioEssays
– ident: e_1_2_11_143_1
  doi: 10.1021/bc200647q
– ident: e_1_2_11_64_1
  doi: 10.15252/embj.2018100492
– ident: e_1_2_11_151_1
  doi: 10.1155/2015/732914
– ident: e_1_2_11_59_1
  doi: 10.1016/j.ebiom.2017.03.027
– ident: e_1_2_11_103_1
  doi: 10.1128/MCB.19.3.2109
– ident: e_1_2_11_149_1
  doi: 10.1001/archpsyc.57.1.47
– ident: e_1_2_11_55_1
  doi: 10.1038/ncb2170
– ident: e_1_2_11_95_1
  doi: 10.1016/j.biocel.2003.08.009
– ident: e_1_2_11_102_1
  doi: 10.1038/nature06084
– ident: e_1_2_11_26_1
  doi: 10.15252/emmm.201810234
– ident: e_1_2_11_132_1
  doi: 10.18632/aging.101540
– ident: e_1_2_11_152_1
  doi: 10.1111/acel.12632
– ident: e_1_2_11_77_1
  doi: 10.1038/s41418-018-0118-3
– volume: 22
  start-page: 971
  year: 2007
  ident: e_1_2_11_94_1
  article-title: β‐galactosidase staining on bone marrow. The osteoclast pitfall
  publication-title: Histol Histopathol
– ident: e_1_2_11_14_1
  doi: 10.1038/s41416-018-0066-1
– ident: e_1_2_11_75_1
  doi: 10.1016/j.bbabio.2008.03.029
– ident: e_1_2_11_157_1
  doi: 10.1016/j.celrep.2019.05.095
– ident: e_1_2_11_73_1
  doi: 10.1371/journal.pbio.0050110
– ident: e_1_2_11_88_1
  doi: 10.1038/onc.2008.323
– ident: e_1_2_11_56_1
  doi: 10.1128/MCB.02019-06
– ident: e_1_2_11_60_1
  doi: 10.1038/nrc2440
– ident: e_1_2_11_84_1
  doi: 10.1016/j.cell.2019.01.018
– ident: e_1_2_11_87_1
  doi: 10.3390/cells8121501
– ident: e_1_2_11_93_1
  doi: 10.1016/j.ceb.2009.12.005
– ident: e_1_2_11_105_1
  doi: 10.1091/mbc.e11-10-0884
– ident: e_1_2_11_109_1
  doi: 10.1167/iovs.19-26983
– ident: e_1_2_11_43_1
  doi: 10.1073/pnas.92.20.9363
– ident: e_1_2_11_90_1
  doi: 10.1016/j.celrep.2015.07.055
– ident: e_1_2_11_116_1
  doi: 10.1101/gad.313270.118
– ident: e_1_2_11_67_1
  doi: 10.3390/ijms20102547
– ident: e_1_2_11_161_1
  doi: 10.1038/s41467-018-03555-8
– volume: 55
  start-page: 505
  year: 1995
  ident: e_1_2_11_98_1
  article-title: Reciprocal Rb inactivation and p16INK4 expression in primary lung cancers and cell lines
  publication-title: Cancer Res
– ident: e_1_2_11_107_1
  doi: 10.1002/anie.201603328
– ident: e_1_2_11_24_1
  doi: 10.1038/s41593-019-0372-9
– ident: e_1_2_11_158_1
  doi: 10.1007/s11357-019-00100-3
– ident: e_1_2_11_82_1
  doi: 10.1038/ncomms11190
– ident: e_1_2_11_25_1
  doi: 10.1038/nm.4324
– ident: e_1_2_11_45_1
  doi: 10.1111/j.1474-9726.2006.00199.x
– ident: e_1_2_11_74_1
  doi: 10.1002/ange.202002576
– ident: e_1_2_11_153_1
  doi: 10.1016/j.freeradbiomed.2018.10.457
– ident: e_1_2_11_62_1
  doi: 10.1016/S1097-2765(04)00256-4
– ident: e_1_2_11_81_1
  doi: 10.1038/sj.onc.1207102
– ident: e_1_2_11_138_1
  doi: 10.1371/journal.pone.0207380
– ident: e_1_2_11_8_1
  doi: 10.1038/ncb2070
– ident: e_1_2_11_15_1
  doi: 10.1038/s41568-019-0156-2
– ident: e_1_2_11_21_1
  doi: 10.1016/j.cmet.2019.05.006
– ident: e_1_2_11_128_1
  doi: 10.1088/1361-6528/aa57b3
– ident: e_1_2_11_37_1
  doi: 10.1111/acel.12592
– ident: e_1_2_11_123_1
  doi: 10.1038/ncomms7463
– ident: e_1_2_11_39_1
  doi: 10.1093/nar/gkz555
– ident: e_1_2_11_33_1
  doi: 10.1101/cshperspect.a026104
– ident: e_1_2_11_36_1
  doi: 10.1016/j.cub.2017.07.033
– ident: e_1_2_11_57_1
  doi: 10.1242/jcs.071340
– ident: e_1_2_11_71_1
  doi: 10.3390/cells8070686
– ident: e_1_2_11_131_1
  doi: 10.1186/s13578-016-0079-5
– ident: e_1_2_11_150_1
  doi: 10.1016/j.nurt.2007.05.006
– ident: e_1_2_11_142_1
  doi: 10.1142/S1793545819410013
– ident: e_1_2_11_29_1
  doi: 10.1016/j.cell.2019.10.005
– ident: e_1_2_11_135_1
  doi: 10.1186/2046-2395-1-6
– ident: e_1_2_11_96_1
  doi: 10.18632/aging.100527
– ident: e_1_2_11_32_1
  doi: 10.1093/emboj/cdg417
– ident: e_1_2_11_61_1
  doi: 10.1038/ncb2466
– ident: e_1_2_11_53_1
– ident: e_1_2_11_65_1
  doi: 10.1016/j.tcb.2017.08.007
– ident: e_1_2_11_111_1
  doi: 10.1038/436642a
– ident: e_1_2_11_78_1
  doi: 10.1002/biot.201800691
– ident: e_1_2_11_38_1
  doi: 10.1098/rsif.2019.0311
SSID ssj0035499
Score 2.703445
SecondaryResourceType review_article
Snippet Cellular senescence is a complex cell response to damage and stress that can impact the surrounding tissue. Senescent cells no longer proliferate and undergo...
Cellular senescence is a physiological mechanism whereby a proliferating cell undergoes a stable cell cycle arrest upon damage or stress and elicits a...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 56
SubjectTerms ageing
Aging
Aging - genetics
Aging - metabolism
Animals
Animals, Genetically Modified
assessment
Biomarkers
Biomarkers - metabolism
Cell cycle
cell cycle checkpoints
Cell Cycle Checkpoints - genetics
Cell Cycle Proteins - genetics
Cell Cycle Proteins - metabolism
Cell Proliferation
cell senescence
Cell Shape - genetics
Cells, Cultured
cellular senescence
Cellular Senescence - genetics
Combinatorial analysis
Cytokines - genetics
Cytokines - immunology
detection
Diagnostic systems
DNA Damage
Embryogenesis
Embryonic growth stage
Genetic Loci
Heterochromatin - chemistry
Heterochromatin - metabolism
Heterogeneity
Humans
Lamin Type B - deficiency
Lamin Type B - genetics
Lysosomes - metabolism
Mitochondria - genetics
Mitochondria - metabolism
Mitochondria - pathology
phenotype
Phenotypes
Senescence
therapeutics
Wound healing
Title A guide to assessing cellular senescence in vitro and in vivo
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Ffebs.15570
https://www.ncbi.nlm.nih.gov/pubmed/32961620
https://www.proquest.com/docview/2474820626
https://www.proquest.com/docview/2445426175
https://www.proquest.com/docview/2524241258
Volume 288
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3batRA9FDbB33pVdvVuowogkKWZDKZyYJQdtsuRVBELeyLhLnKomalmy3Ur-m39MucM7nYqhT0LSEncObMuc6cC8AzjdWZsbFRYgyNWEJNpDyrREIKpmOdKRVyc9685Sen7PU0m67Aq7YWpu4P0R24oWQEfY0CLtXimpA7qxaDBDtIeQWMyVroEb3vekelGPjU1ZAeB86mTW9STOP59etNa_SHi3nTYw0mZ7IBn1pk60yTL4NlpQb6x299HP93NZuw3viiZFQzzxas2HIbdkalj8O_XZDnJGSHhmP3bbh72E6G24GDEfm8nBlLqjmR4dLY2z-CVwCY00oWqD41agwyK68uz2fVmYcrTfN2Pr8Pp5Pjj4cnUTOIIdI-3osjqR2PpbKplEOjXJLmWnGWpbHMBVXCCGeYNTwbJmjvstxqo3AGsOPU5iZ16QNYLeel3QOSx0Y7p7xpdoLFhnvGsFI4SZnUXlXoHrxoN6TQTZdyHJbxtWijFaRUESjVg6cd7Pe6N8dfofbbfS0a-VwUlAmGnesp78GT7rMnI9JKlna-RBiWYYApsltgMiyvwTX3YLfmmQ6VlA55wqlH4GXY-VtwLCbH4w_h6eG_AD-CexRTbMKJ0D6sVmdL-9j7SJXqwx3K3vVhbTQ-Gk_6QTJ-Alf0EHg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BOZQLj7aUhUJdtapUpKwSx7GzJ7RUXS30cehD2lvkJ1oBWbSbrQS_ht_CL8PjZFNKUaX2ligTaWzPwzMefwOwo_F2ZmxslBhDI5ZQEykvKpGQgulYZ0qF2pzjEz68YJ9G2aipzcG7MDU-RJtwQ80I9hoVHBPSf2m5s2rWTRBC6iE8wpbeIaI6bdGjUgx96vuQngvORg06KRbyXP173R_d2GRe37MGpzN4WndWnQWsQqw1-dKdV6qrf_6D5Hjv8TyDJ812lPRr-XkOD2y5Aqv90ofi336QXRIKREPmfQWW9xfN4VbhfZ98no-NJdWEyHBu7F0gwVMALGslM7SgGo0GGZe_f12Oq6mnK03zdjlZg4vBwfn-MGp6MUTah3xxJLXjsVQ2lbJnlEvSXCvOsjSWuaBKGOEMs4ZnvQRdXpZbbRS2AXac2tykLn0BS-WktC-B5LHRzinvnZ1gseFeNqwUTlImtbcWugN7ixUpdANUjv0yvhaLgAVnqggz1YHtlvZ7Dc_xX6qNxcIWjYrOCsoEQ_B6yjuw1X7204hzJUs7mSMNyzDGFNktNBnesMExd2C9FpqWlZT2eMKpZ-BdWPpbeCwGBx_OwtOruxBvwvLw_PioOPp4cvgaHlOsuAkJog1YqqZz-8ZvmSr1NijGH0-iEko
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1ra9RAcKgVtF_UtrY9rXZFESzkSDab3RwIcrY96quIWrgvJeyzHK250ssV9Nf4W_xl7mweWpWCfkvIBGZn57k7D4AnGqszY2OjxBgasYSaSHlWiYQUTMc6Uyrk5rw74PuH7PU4Gy_A87YWpu4P0R24oWQEfY0CfmbcL0LurJr1E-wgdQ2uMx7nyNO7H7rmUSlGPnU5pEeCs3HTnBTzeH7-e9kc_eFjXnZZg80Z3YajFts61eSkP69UX3_9rZHj_y7nDtxqnFEyrLlnGRZsuQKrw9IH4p-_kKckpIeGc_cVuLnTjoZbhRdDcjyfGEuqKZHh1tgbQIJ3AJjUSmaoPzWqDDIpv3-7mFTnHq40zdvF9C4cjvY-7exHzSSGSPuAL46kdjyWyqZSDoxySZprxVmWxjIXVAkjnGHW8GyQoMHLcquNwiHAjlObm9Sla7BYTku7ASSPjXZOedvsBIsN95xhpXCSMqm9rtA9eNZuSKGbNuU4LeO0aMMVpFQRKNWDxx3sWd2c469Qm-2-Fo2AzgrKBMPW9ZT34FH32ZMRaSVLO50jDMswwhTZFTAZ1tfgmnuwXvNMh0pKBzzh1COwHXb-ChyL0d7Lj-Hp3r8Ab8GN97uj4u2rgzf3YYliuk04HdqExep8bh94f6lSD4NY_AAuwBEC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+guide+to+assessing+cellular+senescence+in+vitro+and+in+vivo&rft.jtitle=The+FEBS+journal&rft.au=Estela+Gonz%C3%A1lez%E2%80%90Gualda&rft.au=Baker%2C+Andrew+G&rft.au=Fruk%2C+Ljiljana&rft.au=Daniel+Mu%C3%B1oz%E2%80%90Esp%C3%ADn&rft.date=2021-01-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1742-464X&rft.eissn=1742-4658&rft.volume=288&rft.issue=1&rft.spage=56&rft.epage=80&rft_id=info:doi/10.1111%2Ffebs.15570&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-464X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-464X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-464X&client=summon