Root architecture plasticity in response to endoparasitic cyst nematodes is mediated by damage signaling
Summary Plant root architecture plasticity in response to biotic stresses has not been thoroughly investigated. Infection by endoparasitic cyst nematodes induces root architectural changes that involve the formation of secondary roots at infection sites. However, the molecular mechanisms regulating...
Saved in:
Published in | The New phytologist Vol. 237; no. 3; pp. 807 - 822 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Wiley Subscription Services, Inc
01.02.2023
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0028-646X 1469-8137 1469-8137 |
DOI | 10.1111/nph.18570 |
Cover
Loading…
Abstract | Summary
Plant root architecture plasticity in response to biotic stresses has not been thoroughly investigated. Infection by endoparasitic cyst nematodes induces root architectural changes that involve the formation of secondary roots at infection sites. However, the molecular mechanisms regulating secondary root formation in response to cyst nematode infection remain largely unknown.
We first assessed whether secondary roots form in a nematode density‐dependent manner by challenging wild‐type Arabidopsis plants with increasing numbers of cyst nematodes (Heterodera schachtii). Next, using jasmonate‐related reporter lines and knockout mutants, we tested whether tissue damage by nematodes triggers jasmonate‐dependent secondary root formation. Finally, we verified whether damage‐induced secondary root formation depends on local auxin biosynthesis at nematode infection sites.
Intracellular host invasion by H. schachtii triggers a transient local increase in jasmonates, which activates the expression of ERF109 in a COI1‐dependent manner. Knockout mutations in COI1 and ERF109 disrupt the nematode density‐dependent increase in secondary roots observed in wild‐type plants. Furthermore, ERF109 regulates secondary root formation upon H. schachtii infection via local auxin biosynthesis.
Host invasion by H. schachtii triggers secondary root formation via the damage‐induced jasmonate‐dependent ERF109 pathway. This points at a novel mechanism underlying plant root plasticity in response to biotic stress. |
---|---|
AbstractList | Plant root architecture plasticity in response to biotic stresses has not been thoroughly investigated. Infection by endoparasitic cyst nematodes induces root architectural changes that involve the formation of secondary roots at infection sites. However, the molecular mechanisms regulating secondary root formation in response to cyst nematode infection remain largely unknown.
We first assessed whether secondary roots form in a nematode density‐dependent manner by challenging wild‐type Arabidopsis plants with increasing numbers of cyst nematodes (
Heterodera schachtii
). Next, using jasmonate‐related reporter lines and knockout mutants, we tested whether tissue damage by nematodes triggers jasmonate‐dependent secondary root formation. Finally, we verified whether damage‐induced secondary root formation depends on local auxin biosynthesis at nematode infection sites.
Intracellular host invasion by
H. schachtii
triggers a transient local increase in jasmonates, which activates the expression of ERF109 in a COI1‐dependent manner. Knockout mutations in COI1 and ERF109 disrupt the nematode density‐dependent increase in secondary roots observed in wild‐type plants. Furthermore, ERF109 regulates secondary root formation upon
H. schachtii
infection via local auxin biosynthesis.
Host invasion by
H. schachtii
triggers secondary root formation via the damage‐induced jasmonate‐dependent ERF109 pathway. This points at a novel mechanism underlying plant root plasticity in response to biotic stress. Plant root architecture plasticity in response to biotic stresses has not been thoroughly investigated. Infection by endoparasitic cyst nematodes induces root architectural changes that involve the formation of secondary roots at infection sites. However, the molecular mechanisms regulating secondary root formation in response to cyst nematode infection remain largely unknown. We first assessed whether secondary roots form in a nematode density-dependent manner by challenging wild-type Arabidopsis plants with increasing numbers of cyst nematodes (Heterodera schachtii). Next, using jasmonate-related reporter lines and knockout mutants, we tested whether tissue damage by nematodes triggers jasmonate-dependent secondary root formation. Finally, we verified whether damage-induced secondary root formation depends on local auxin biosynthesis at nematode infection sites. Intracellular host invasion by H. schachtii triggers a transient local increase in jasmonates, which activates the expression of ERF109 in a COI1-dependent manner. Knockout mutations in COI1 and ERF109 disrupt the nematode density-dependent increase in secondary roots observed in wild-type plants. Furthermore, ERF109 regulates secondary root formation upon H. schachtii infection via local auxin biosynthesis. Host invasion by H. schachtii triggers secondary root formation via the damage-induced jasmonate-dependent ERF109 pathway. This points at a novel mechanism underlying plant root plasticity in response to biotic stress. Summary Plant root architecture plasticity in response to biotic stresses has not been thoroughly investigated. Infection by endoparasitic cyst nematodes induces root architectural changes that involve the formation of secondary roots at infection sites. However, the molecular mechanisms regulating secondary root formation in response to cyst nematode infection remain largely unknown. We first assessed whether secondary roots form in a nematode density‐dependent manner by challenging wild‐type Arabidopsis plants with increasing numbers of cyst nematodes (Heterodera schachtii). Next, using jasmonate‐related reporter lines and knockout mutants, we tested whether tissue damage by nematodes triggers jasmonate‐dependent secondary root formation. Finally, we verified whether damage‐induced secondary root formation depends on local auxin biosynthesis at nematode infection sites. Intracellular host invasion by H. schachtii triggers a transient local increase in jasmonates, which activates the expression of ERF109 in a COI1‐dependent manner. Knockout mutations in COI1 and ERF109 disrupt the nematode density‐dependent increase in secondary roots observed in wild‐type plants. Furthermore, ERF109 regulates secondary root formation upon H. schachtii infection via local auxin biosynthesis. Host invasion by H. schachtii triggers secondary root formation via the damage‐induced jasmonate‐dependent ERF109 pathway. This points at a novel mechanism underlying plant root plasticity in response to biotic stress. Plant root architecture plasticity in response to biotic stresses has not been thoroughly investigated. Infection by endoparasitic cyst nematodes induces root architectural changes that involve the formation of secondary roots at infection sites. However, the molecular mechanisms regulating secondary root formation in response to cyst nematode infection remain largely unknown. We first assessed whether secondary roots form in a nematode density-dependent manner by challenging wild-type Arabidopsis plants with increasing numbers of cyst nematodes (Heterodera schachtii). Next, using jasmonate-related reporter lines and knockout mutants, we tested whether tissue damage by nematodes triggers jasmonate-dependent secondary root formation. Finally, we verified whether damage-induced secondary root formation depends on local auxin biosynthesis at nematode infection sites. Intracellular host invasion by H. schachtii triggers a transient local increase in jasmonates, which activates the expression of ERF109 in a COI1-dependent manner. Knockout mutations in COI1 and ERF109 disrupt the nematode density-dependent increase in secondary roots observed in wild-type plants. Furthermore, ERF109 regulates secondary root formation upon H. schachtii infection via local auxin biosynthesis. Host invasion by H. schachtii triggers secondary root formation via the damage-induced jasmonate-dependent ERF109 pathway. This points at a novel mechanism underlying plant root plasticity in response to biotic stress.Plant root architecture plasticity in response to biotic stresses has not been thoroughly investigated. Infection by endoparasitic cyst nematodes induces root architectural changes that involve the formation of secondary roots at infection sites. However, the molecular mechanisms regulating secondary root formation in response to cyst nematode infection remain largely unknown. We first assessed whether secondary roots form in a nematode density-dependent manner by challenging wild-type Arabidopsis plants with increasing numbers of cyst nematodes (Heterodera schachtii). Next, using jasmonate-related reporter lines and knockout mutants, we tested whether tissue damage by nematodes triggers jasmonate-dependent secondary root formation. Finally, we verified whether damage-induced secondary root formation depends on local auxin biosynthesis at nematode infection sites. Intracellular host invasion by H. schachtii triggers a transient local increase in jasmonates, which activates the expression of ERF109 in a COI1-dependent manner. Knockout mutations in COI1 and ERF109 disrupt the nematode density-dependent increase in secondary roots observed in wild-type plants. Furthermore, ERF109 regulates secondary root formation upon H. schachtii infection via local auxin biosynthesis. Host invasion by H. schachtii triggers secondary root formation via the damage-induced jasmonate-dependent ERF109 pathway. This points at a novel mechanism underlying plant root plasticity in response to biotic stress. |
Author | Sharon, Letia Guarneri, Nina Zhou, Wenkun Grundler, Florian M. W. Willemsen, Viola Hasan, M. Shamim Goverse, Aska Lozano‐Torres, Jose L. Smant, Geert Willig, Jaap‐Jan Sterken, Mark G. |
AuthorAffiliation | 4 Institute of Crop Science and Resource Conservation (INRES), Molecular Phytomedicine University of Bonn 53115 Bonn Germany 2 Laboratory of Molecular Biology, Cluster of Plant Developmental Biology Wageningen University & Research 6708 PB Wageningen the Netherlands 1 Laboratory of Nematology Wageningen University & Research 6708 PB Wageningen the Netherlands 3 State Key Laboratory of Plant Physiology and Biochemistry College of Biological Sciences, China Agricultural University Beijing 100193 China |
AuthorAffiliation_xml | – name: 1 Laboratory of Nematology Wageningen University & Research 6708 PB Wageningen the Netherlands – name: 3 State Key Laboratory of Plant Physiology and Biochemistry College of Biological Sciences, China Agricultural University Beijing 100193 China – name: 4 Institute of Crop Science and Resource Conservation (INRES), Molecular Phytomedicine University of Bonn 53115 Bonn Germany – name: 2 Laboratory of Molecular Biology, Cluster of Plant Developmental Biology Wageningen University & Research 6708 PB Wageningen the Netherlands |
Author_xml | – sequence: 1 givenname: Nina orcidid: 0000-0002-0399-9230 surname: Guarneri fullname: Guarneri, Nina organization: Wageningen University & Research – sequence: 2 givenname: Jaap‐Jan orcidid: 0000-0003-1872-1300 surname: Willig fullname: Willig, Jaap‐Jan organization: Wageningen University & Research – sequence: 3 givenname: Mark G. orcidid: 0000-0001-7119-6213 surname: Sterken fullname: Sterken, Mark G. organization: Wageningen University & Research – sequence: 4 givenname: Wenkun orcidid: 0000-0002-2480-2644 surname: Zhou fullname: Zhou, Wenkun organization: College of Biological Sciences, China Agricultural University – sequence: 5 givenname: M. Shamim orcidid: 0000-0001-6417-9650 surname: Hasan fullname: Hasan, M. Shamim organization: University of Bonn – sequence: 6 givenname: Letia surname: Sharon fullname: Sharon, Letia organization: University of Bonn – sequence: 7 givenname: Florian M. W. orcidid: 0000-0001-8101-0558 surname: Grundler fullname: Grundler, Florian M. W. organization: University of Bonn – sequence: 8 givenname: Viola orcidid: 0000-0002-6420-0605 surname: Willemsen fullname: Willemsen, Viola organization: Wageningen University & Research – sequence: 9 givenname: Aska orcidid: 0000-0002-7399-8743 surname: Goverse fullname: Goverse, Aska organization: Wageningen University & Research – sequence: 10 givenname: Geert orcidid: 0000-0001-6094-8686 surname: Smant fullname: Smant, Geert organization: Wageningen University & Research – sequence: 11 givenname: Jose L. orcidid: 0000-0002-0021-5947 surname: Lozano‐Torres fullname: Lozano‐Torres, Jose L. email: jose.lozano@wur.nl organization: Wageningen University & Research |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36285401$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkkFrFTEUhYNU7Gt14R-QgBtdTJtkJplkJaVYKxQVUXAX7ptk3kuZScYko8y_b15fLVpQswnhfvdwcu85Qgc-eIvQc0pOaDmnftqeUMlb8gitaCNUJWndHqAVIUxWohHfDtFRSteEEMUFe4IOa8Ekbwhdoe3nEDKG2G1dtl2eo8XTACm7zuUFO4-jTVPwyeIcsPUmTBAhuVLH3ZIy9naEHIxN2CU8WuMgW4PXCzYwwsbi5DYeBuc3T9HjHoZkn93dx-jrxdsv55fV1cd378_PrqquIS2puKnNurVEUdMYSVtlOfB-3bDyapTsKACtQbU1Aclk3xuhWN0JLhomOFdQH6M3e91pXhc_nfU5wqCn6EaIiw7g9J8V77Z6E35oSiiRNRVF4dWdQgzfZ5uyHl3q7DCAt2FOmklKlZRlkv9HW6YIE-oWffkAvQ5zLLPZUYK0nLaNKtSL393f2_61sAK83gNdDClF298jlOhdGHQJg74NQ2FPH7BlqZBd2H3cDf_q-OkGu_xdWn_4dLnvuAHVP8ZP |
CitedBy_id | crossref_primary_10_1093_plphys_kiae053 crossref_primary_10_1093_plphys_kiae065 crossref_primary_10_1371_journal_ppat_1012610 crossref_primary_10_1093_jxb_erad266 crossref_primary_10_1111_pce_14859 crossref_primary_10_1111_pce_14925 crossref_primary_10_1111_tpj_16999 crossref_primary_10_1186_s12864_024_11089_1 crossref_primary_10_3389_fpls_2024_1370532 crossref_primary_10_1016_j_soilbio_2023_109179 crossref_primary_10_3390_plants13213108 crossref_primary_10_1007_s00344_024_11391_y crossref_primary_10_1016_j_pbi_2024_102510 |
Cites_doi | 10.1111/nph.15034 10.1371/journal.ppat.1006284 10.1093/nar/29.9.e45 10.1104/pp.104.058800 10.1371/journal.ppat.1000266 10.1111/nph.13395 10.1105/tpc.003368 10.3389/fpls.2014.00089 10.1073/pnas.0712307105 10.1093/jexbot/52.356.529 10.1093/jxb/erw213 10.15252/embj.2018100972 10.1111/mpp.13210 10.1038/nmeth.2019 10.1007/978-1-4757-9080-1_15 10.1111/j.1364-3703.2004.00230.x 10.1038/ncomms7043 10.1007/s11103-008-9417-2 10.1111/j.1439-0434.1991.tb00166.x 10.1038/s41477-020-0737-9 10.1016/j.pbi.2011.03.012 10.1038/s41477-019-0408-x 10.1105/tpc.19.00378 10.1094/MPMI.2000.13.10.1121 10.3389/fpls.2016.01335 10.1093/jxb/erx374 10.3389/fpls.2017.00875 10.1111/j.1744-7348.1983.tb02708.x 10.1163/156854102321122511 10.3389/fpls.2013.00241 10.1104/pp.110.167197 10.1007/978-1-4939-6469-7_8 10.1104/pp.16.01067 10.1242/dev.030353 10.1016/j.cell.2019.03.006 10.1111/nph.12826 10.1105/tpc.111.089029 10.1105/tpc.114.122887 10.1038/ncomms6833 10.1111/nph.17559 10.2134/agronj1991.00021962008300030014x 10.1111/mpp.12121 10.1016/j.celrep.2017.12.105 10.1242/dev.152132 10.1111/j.1365-313X.1991.00245.x 10.1371/journal.pone.0185808 10.1111/j.1364-3703.2007.00392.x 10.1111/mpp.12057 |
ContentType | Journal Article |
Copyright | 2022 The Authors. New Phytologist © 2022 New Phytologist Foundation. 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Authors. New Phytologist © 2022 New Phytologist Foundation. – notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 5PM |
DOI | 10.1111/nph.18570 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Ecology Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef MEDLINE AGRICOLA Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1469-8137 |
EndPage | 822 |
ExternalDocumentID | PMC10108316 36285401 10_1111_nph_18570 NPH18570 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 32070874 – fundername: European Molecular Biology Organization funderid: ALTF 784‐2014 – fundername: NWO domain Applied and Engineering Sciences funderid: VENI 14250; VIDI 18389; VENI 17282 – fundername: Dutch Top Sector Horticulture & Starting Materials funderid: TU18152 – fundername: NWO domain Applied and Engineering Sciences grantid: VENI 14250; VIDI 18389; VENI 17282 – fundername: ; grantid: ALTF 784‐2014 – fundername: ; grantid: 32070874 – fundername: Dutch Top Sector Horticulture & Starting Materials grantid: TU18152 |
GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 123 1OC 24P 29N 2WC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 79B 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHKG AAHQN AAISJ AAKGQ AAMNL AANLZ AAONW AASGY AASVR AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABEFU ABEML ABLJU ABPLY ABPVW ABTLG ABVKB ABXSQ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACHIC ACNCT ACPOU ACQPF ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUPB AEUQT AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHXOZ AILXY AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AQVQM AS~ ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG CBGCD COF CS3 CUYZI D-E D-F DCZOG DEVKO DIK DOOOF DPXWK DR2 DRFUL DRSTM E3Z EBS ECGQY EJD ESX F00 F01 F04 F5P FIJ G-S G.N GODZA GTFYD H.T H.X HF~ HGD HGLYW HQ2 HTVGU HZI HZ~ IHE IPNFZ IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LPU LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NEJ NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K RCA RIG ROL RX1 SA0 SUPJJ TN5 TR2 UB1 W8V W99 WBKPD WHG WIH WIK WIN WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XOL YNT YQT YXE ZCG ZZTAW ~02 ~IA ~KM ~WT AAYXX ABGDZ ABSQW ADXHL AEYWJ AGHNM AGUYK AGYGG CITATION CGR CUY CVF ECM EIF NPM PKN 7QO 7SN 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c4070-5d3db7e091d4d8179e5a5fb424d8498c1aa13a9730a828ffd6923c656426559a3 |
IEDL.DBID | DR2 |
ISSN | 0028-646X 1469-8137 |
IngestDate | Thu Aug 21 18:37:44 EDT 2025 Fri Jul 11 18:32:22 EDT 2025 Fri Jul 11 11:53:50 EDT 2025 Fri Jul 25 12:00:27 EDT 2025 Wed Feb 19 02:25:03 EST 2025 Thu Apr 24 22:56:13 EDT 2025 Tue Jul 01 02:28:44 EDT 2025 Wed Jan 22 16:25:18 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Arabidopsis thaliana root plasticity damage root architecture ERF109 auxin jasmonates Heterodera schachtii |
Language | English |
License | Attribution 2022 The Authors. New Phytologist © 2022 New Phytologist Foundation. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4070-5d3db7e091d4d8179e5a5fb424d8498c1aa13a9730a828ffd6923c656426559a3 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7399-8743 0000-0002-2480-2644 0000-0001-8101-0558 0000-0001-6417-9650 0000-0002-0021-5947 0000-0003-1872-1300 0000-0001-6094-8686 0000-0002-0399-9230 0000-0001-7119-6213 0000-0002-6420-0605 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.18570 |
PMID | 36285401 |
PQID | 2760751749 |
PQPubID | 2026848 |
PageCount | 822 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10108316 proquest_miscellaneous_2811988562 proquest_miscellaneous_2729026962 proquest_journals_2760751749 pubmed_primary_36285401 crossref_primary_10_1111_nph_18570 crossref_citationtrail_10_1111_nph_18570 wiley_primary_10_1111_nph_18570_NPH18570 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2023 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: February 2023 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Lancaster – name: Hoboken |
PublicationTitle | The New phytologist |
PublicationTitleAlternate | New Phytol |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc John Wiley and Sons Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
References | 2002; 14 2017; 8 2013; 4 2005; 138 2022; 23 2014; 26 2004; 5 2008; 105 2011; 14 2011; 155 2020; 6 2014; 5 1983; 102 2013; 14 2018; 218 1986; 9 2000; 13 1991; 83 2007; 8 2014; 15 2011; 23 2021; 232 2014; 203 2001; 52 2009; 69 1991; 1 2015; 6 1991; 133 2019; 5 2017; 68 2019; 38 2002; 4 1994 2015; 207 2001; 29 2020; 32 2018; 22 2009; 136 2016; 7 2000; 32 2017; 13 2017; 1497 2017; 12 2009; 5 2017; 144 2019; 177 2016; 67 2016; 172 2012; 9 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_30_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_13_1 e_1_2_9_32_1 Baum TJ (e_1_2_9_3_1) 2000; 32 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 Wyss U (e_1_2_9_47_1) 1986; 9 |
References_xml | – volume: 6 start-page: 6043 year: 2015 article-title: A fluorescent hormone biosensor reveals the dynamics of jasmonate signalling in plants publication-title: Nature Communications – volume: 5 start-page: 491 year: 2019 end-page: 497 article-title: Jasmonate‐mediated wound signalling promotes plant regeneration publication-title: Nature Plants – volume: 4 start-page: 899 year: 2002 end-page: 908 article-title: Development and pharyngeal gland activities of infecting roots publication-title: Nematology – volume: 83 start-page: 571 year: 1991 end-page: 576 article-title: Root response of tolerant and intolerant soybean cultivars to soybean cyst nematode publication-title: Agronomy Journal – volume: 14 start-page: 946 year: 2013 end-page: 961 article-title: Top 10 plant–parasitic nematodes in molecular plant pathology publication-title: Molecular Plant Pathology – volume: 22 start-page: 1350 year: 2018 end-page: 1363 article-title: PHB3 maintains root stem cell niche identity through ROS‐responsive AP2/ERF transcription factors in Arabidopsis publication-title: Cell Reports – volume: 14 start-page: 1919 year: 2002 end-page: 1935 article-title: The SCF(COI1) ubiquitin‐ligase complexes are required for jasmonate response in Arabidopsis publication-title: Plant Cell – volume: 136 start-page: 2675 year: 2009 end-page: 2688 article-title: Auxin transport routes in plant development publication-title: Development – volume: 38 year: 2019 article-title: Single‐cell damage elicits regional, nematode‐restricting ethylene responses in roots publication-title: EMBO Journal – volume: 52 start-page: 529 year: 2001 end-page: 539 article-title: GFP imaging: methodology and application to investigate cellular compartmentation in plants publication-title: Journal of Experimental Botany – volume: 6 start-page: 1020 year: 2020 end-page: 1030 article-title: Local auxin biosynthesis is required for root regeneration after wounding publication-title: Nature Plants – volume: 5 start-page: 5833 year: 2014 article-title: ERF109 mediates cross‐talk between jasmonic acid and auxin biosynthesis during lateral root formation publication-title: Nature Communications – volume: 172 start-page: 2363 year: 2016 end-page: 2373 article-title: Transcription factors WOX11/12 directly activate WOX5/7 to promote root primordia initiation and organogenesis publication-title: Plant Physiology – volume: 5 start-page: 343 year: 2004 end-page: 346 article-title: Feeding cell development by cyst and root‐knot nematodes involves a similar early, local and transient activation of a specific auxin‐inducible promoter element publication-title: Molecular Plant Pathology – volume: 8 start-page: 875 year: 2017 article-title: Molecular transducers from roots are triggered in Arabidopsis leaves by root‐knot nematodes for successful feeding site formation: a conserved post‐embryogenic organogenesis program? publication-title: Frontiers in Plant Science – volume: 29 year: 2001 article-title: A new mathematical model for relative quantification in real‐time RT‐PCR publication-title: Nucleic Acids Research – volume: 102 start-page: 385 year: 1983 end-page: 397 article-title: Tolerance of potato to potato cyst nematodes ( and ) in relation to the growth and efficiency of the root system publication-title: Annals of Applied Biology – volume: 67 start-page: 4273 year: 2016 end-page: 4284 article-title: YUCCA‐mediated auxin biogenesis is required for cell fate transition occurring during root organogenesis in Arabidopsis publication-title: Journal of Experimental Botany – volume: 23 start-page: 3944 year: 2011 end-page: 3960 article-title: A small‐molecule screen identifies ‐kynurenine as a competitive inhibitor of TAA1/TAR activity in ethylene‐directed auxin biosynthesis and root growth in Arabidopsis publication-title: Plant Cell – volume: 9 start-page: 153 year: 1986 end-page: 165 article-title: Observations on the behavior of second‐stage juveniles of inside host root publication-title: Revue de Nematologie – volume: 133 start-page: 307 year: 1991 end-page: 319 article-title: Structure of syncytia induced by Woll. in roots of susceptible and resistant wheat ( .) publication-title: Journal of Phytopathology – volume: 207 start-page: 778 year: 2015 end-page: 789 article-title: Role of stress‐related hormones in plant defence during early infection of the cyst nematode in Arabidopsis publication-title: New Phytologist – volume: 8 start-page: 267 year: 2007 end-page: 278 article-title: Molecular characterization and functional importance of pectate lyase secreted by the cyst nematode publication-title: Molecular Plant Pathology – volume: 23 start-page: 1048 year: 2022 end-page: 1059 article-title: Glutathione contributes to plant defence against parasitic cyst nematodes publication-title: Molecular Plant Pathology – volume: 15 start-page: 730 year: 2014 end-page: 736 article-title: Spatial and temporal expression patterns of auxin response transcription factors in the syncytium induced by the beet cyst nematode in Arabidopsis publication-title: Molecular Plant Pathology – volume: 9 start-page: 676 year: 2012 end-page: 682 article-title: F : an open‐source platform for biological‐image analysis publication-title: Nature Methods – volume: 218 start-page: 724 year: 2018 end-page: 737 article-title: Genome‐wide association mapping of the architecture of susceptibility to the root‐knot nematode in publication-title: New Phytologist – volume: 14 start-page: 415 year: 2011 end-page: 421 article-title: How nematodes manipulate plant development pathways for infection publication-title: Current Opinion in Plant Biology – volume: 32 start-page: 226 year: 2020 end-page: 241 article-title: AP2/ERF transcription factors integrate age and wound signals for root regeneration publication-title: Plant Cell – volume: 68 start-page: 5949 year: 2017 end-page: 5960 article-title: Damage‐associated responses of the host contribute to defence against cyst nematodes but not root‐knot nematodes publication-title: Journal of Experimental Botany – volume: 5 start-page: 89 year: 2014 article-title: The plant cell wall in the feeding sites of cyst nematodes publication-title: Frontiers in Plant Science – volume: 203 start-page: 632 year: 2014 end-page: 645 article-title: A role for during the interaction Arabidopsis– spp. provides a molecular link between lateral root and root‐knot nematode feeding site development publication-title: New Phytologist – volume: 144 start-page: 3126 year: 2017 end-page: 3133 article-title: Non‐canonical WOX11‐mediated root branching contributes to plasticity in Arabidopsis root system architecture publication-title: Development – volume: 4 start-page: 241 year: 2013 article-title: Phloem development in nematode‐induced feeding sites: the implications of auxin and cytokinin publication-title: Frontiers in Plant Science – volume: 155 start-page: 866 year: 2011 end-page: 880 article-title: The novel cyst nematode effector protein 19C07 interacts with the Arabidopsis auxin influx transporter LAX3 to control feeding site development publication-title: Plant Physiology – volume: 26 start-page: 1081 year: 2014 end-page: 1093 article-title: WOX11 and 12 are involved in the first‐step cell fate transition during root organogenesis in Arabidopsis publication-title: Plant Cell – volume: 12 year: 2017 article-title: In roots of , the damage‐associated molecular pattern AtPep1 is a stronger elicitor of immune signalling than flg22 or the chitin heptamer publication-title: PLoS ONE – volume: 5 year: 2009 article-title: Parasitic nematodes modulate PIN‐mediated auxin transport to facilitate infection publication-title: PLoS Pathogens – volume: 232 start-page: 318 year: 2021 end-page: 331 article-title: Plant parasitic cyst nematodes redirect host indole metabolism via NADPH oxidase‐mediated ROS to promote infection publication-title: New Phytologist – volume: 138 start-page: 383 year: 2005 end-page: 392 article-title: Nematode infection triggers the formation of unloading phloem that allows macromolecular trafficking of green fluorescent protein into syncytia publication-title: Plant Physiology – start-page: 171 year: 1994 end-page: 180 – volume: 13 start-page: 1121 year: 2000 end-page: 1129 article-title: Both induction and morphogenesis of cyst nematode feeding cells are mediated by auxin publication-title: Molecular Plant–Microbe Interactions – volume: 1 start-page: 245 year: 1991 end-page: 254 article-title: as a new model host for plant–parasitic nematodes publication-title: The Plant Journal – volume: 105 start-page: 8790 year: 2008 end-page: 8794 article-title: Auxin acts as a local morphogenetic trigger to specify lateral root founder cells publication-title: Proceedings of the National Academy of Sciences, USA – volume: 7 start-page: 1335 year: 2016 article-title: Roots withstanding their environment: exploiting root system architecture responses to abiotic atress to improve crop tolerance publication-title: Frontiers in Plant Science – volume: 177 start-page: 942 year: 2019 end-page: 956 article-title: A jasmonate signaling network activates root stem cells and promotes regeneration publication-title: Cell – volume: 69 start-page: 437 year: 2009 end-page: 449 article-title: Hormone interactions during lateral root formation publication-title: Plant Molecular Biology – volume: 1497 start-page: 73 year: 2017 end-page: 80 article-title: Histochemical staining of beta‐glucuronidase and its spatial quantification publication-title: Methods in Molecular Biology – volume: 13 year: 2017 article-title: Arabidopsis leucine‐rich repeat receptor‐like kinase NILR1 is required for induction of innate immunity to parasitic nematodes publication-title: PLoS Pathogens – volume: 32 start-page: 166 year: 2000 end-page: 173 article-title: A screen for mutants with altered susceptibility to publication-title: Journal of Nematology – ident: e_1_2_9_46_1 doi: 10.1111/nph.15034 – ident: e_1_2_9_33_1 doi: 10.1371/journal.ppat.1006284 – ident: e_1_2_9_37_1 doi: 10.1093/nar/29.9.e45 – ident: e_1_2_9_21_1 doi: 10.1104/pp.104.058800 – ident: e_1_2_9_15_1 doi: 10.1371/journal.ppat.1000266 – ident: e_1_2_9_24_1 doi: 10.1111/nph.13395 – ident: e_1_2_9_48_1 doi: 10.1105/tpc.003368 – ident: e_1_2_9_5_1 doi: 10.3389/fpls.2014.00089 – ident: e_1_2_9_10_1 doi: 10.1073/pnas.0712307105 – ident: e_1_2_9_17_1 doi: 10.1093/jexbot/52.356.529 – ident: e_1_2_9_8_1 doi: 10.1093/jxb/erw213 – ident: e_1_2_9_31_1 doi: 10.15252/embj.2018100972 – ident: e_1_2_9_18_1 doi: 10.1111/mpp.13210 – ident: e_1_2_9_39_1 doi: 10.1038/nmeth.2019 – ident: e_1_2_9_14_1 doi: 10.1007/978-1-4757-9080-1_15 – ident: e_1_2_9_25_1 doi: 10.1111/j.1364-3703.2004.00230.x – ident: e_1_2_9_28_1 doi: 10.1038/ncomms7043 – ident: e_1_2_9_11_1 doi: 10.1007/s11103-008-9417-2 – ident: e_1_2_9_16_1 doi: 10.1111/j.1439-0434.1991.tb00166.x – ident: e_1_2_9_32_1 doi: 10.1038/s41477-020-0737-9 – ident: e_1_2_9_12_1 doi: 10.1016/j.pbi.2011.03.012 – ident: e_1_2_9_50_1 doi: 10.1038/s41477-019-0408-x – ident: e_1_2_9_49_1 doi: 10.1105/tpc.19.00378 – volume: 32 start-page: 166 year: 2000 ident: e_1_2_9_3_1 article-title: A screen for Arabidopsis thaliana mutants with altered susceptibility to Heterodera schachtii publication-title: Journal of Nematology – ident: e_1_2_9_13_1 doi: 10.1094/MPMI.2000.13.10.1121 – ident: e_1_2_9_26_1 doi: 10.3389/fpls.2016.01335 – ident: e_1_2_9_40_1 doi: 10.1093/jxb/erx374 – ident: e_1_2_9_35_1 doi: 10.3389/fpls.2017.00875 – ident: e_1_2_9_43_1 doi: 10.1111/j.1744-7348.1983.tb02708.x – ident: e_1_2_9_44_1 doi: 10.1163/156854102321122511 – ident: e_1_2_9_2_1 doi: 10.3389/fpls.2013.00241 – ident: e_1_2_9_29_1 doi: 10.1104/pp.110.167197 – ident: e_1_2_9_4_1 doi: 10.1007/978-1-4939-6469-7_8 – ident: e_1_2_9_22_1 doi: 10.1104/pp.16.01067 – ident: e_1_2_9_36_1 doi: 10.1242/dev.030353 – ident: e_1_2_9_51_1 doi: 10.1016/j.cell.2019.03.006 – volume: 9 start-page: 153 year: 1986 ident: e_1_2_9_47_1 article-title: Observations on the behavior of second‐stage juveniles of Heterodera schachtii inside host root publication-title: Revue de Nematologie – ident: e_1_2_9_6_1 doi: 10.1111/nph.12826 – ident: e_1_2_9_19_1 doi: 10.1105/tpc.111.089029 – ident: e_1_2_9_30_1 doi: 10.1105/tpc.114.122887 – ident: e_1_2_9_7_1 doi: 10.1038/ncomms6833 – ident: e_1_2_9_9_1 doi: 10.1111/nph.17559 – ident: e_1_2_9_34_1 doi: 10.2134/agronj1991.00021962008300030014x – ident: e_1_2_9_20_1 doi: 10.1111/mpp.12121 – ident: e_1_2_9_27_1 doi: 10.1016/j.celrep.2017.12.105 – ident: e_1_2_9_41_1 doi: 10.1242/dev.152132 – ident: e_1_2_9_42_1 doi: 10.1111/j.1365-313X.1991.00245.x – ident: e_1_2_9_38_1 doi: 10.1371/journal.pone.0185808 – ident: e_1_2_9_45_1 doi: 10.1111/j.1364-3703.2007.00392.x – ident: e_1_2_9_23_1 doi: 10.1111/mpp.12057 |
SSID | ssj0009562 |
Score | 2.4893146 |
Snippet | Summary
Plant root architecture plasticity in response to biotic stresses has not been thoroughly investigated. Infection by endoparasitic cyst nematodes... Plant root architecture plasticity in response to biotic stresses has not been thoroughly investigated. Infection by endoparasitic cyst nematodes induces root... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 807 |
SubjectTerms | Animals Arabidopsis Arabidopsis - metabolism Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism Arabidopsis thaliana auxin Auxins Biosynthesis biotic stress cyst nematodes Damage Density Endoparasites ERF109 Heterodera schachtii Indoleacetic Acids - metabolism Infections jasmonates Jasmonic acid Molecular modelling Mutation nematode infections Nematode Infections - metabolism Nematodes Plant Diseases - parasitology Plant roots Plant Roots - metabolism Plants Plastic properties Plasticity root architecture root plasticity Roots Tylenchoidea - physiology |
Title | Root architecture plasticity in response to endoparasitic cyst nematodes is mediated by damage signaling |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.18570 https://www.ncbi.nlm.nih.gov/pubmed/36285401 https://www.proquest.com/docview/2760751749 https://www.proquest.com/docview/2729026962 https://www.proquest.com/docview/2811988562 https://pubmed.ncbi.nlm.nih.gov/PMC10108316 |
Volume | 237 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZpyKGXNk0f2SYNSsmhFy9rWdLa9NSWhiWQEEIDeygYvcwubeQl9h42vz4z8oPdJi0lNxmPsSRrpG-sbz4RcsILWNSdYVGRSBehhFakOZQyYZh1jo2kxtzh8ws5ueZnUzHdIp-7XJhGH6L_4YaeEeZrdHClqzUn94vZEIWMMF5HrhYCoiu2JrgrWafALLmctqpCyOLpn9xcix4AzIc8yXX8Ghag05fkZ1f1hnfya7is9dDc_aHq-MS27ZIXLTClX5qR9IpsOb9Hdr6WAB5Xr8nsqixrur7rQBeAu5GSXa_o3NPbhmvraF1S522JkuJIBzPUrKqaepSGLa2r6LyiIVsFkC7VK2rVDcxoFGkkCjPj35Dr0-8_vk2i9pCGyEAsOIqEDQrNADsstym4txNKFJozuOJZamKl4kRlMJEoCO6KwkqAlAZQJEADiGZU8pZs-9K7fUK1UM6O3VgUwnCuk3SESkEFIMqxxd3EAfnUfa7ctArmeJDG77yLZKDf8tBvA_KxN100sh2PGR123zxvPbfK2VgCioI4DV533N8Gn8ONFOVduUQblkHsmkn2D5s0jrM0FWjzrhlGfU2SkLc6igck3RhgvQFqfm_e8fNZ0P6GGRTPhpPQF2EA_b11-cXlJBTe_7_pAXnOAMQ1rPRDsl3fLt0HAF21PiLPGL88Cj52DxI8Kv8 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB6tFiS4LG8oLGAQBy6pGsd2E4kLIFYFdiu02pV6QZFjO2oF61Tb9FB-PTPOQy0LCHFL5Ini19jf2DPfALwSJW7qzvCoTJSLiEIrKgQ-ZdJw6xwfqYJih0-manIuPs3kbA_edLEwDT9Ef-BGmhHWa1JwOpDe0nK_nA-JyQgN9muU0TsYVKd8i3JX8Y6DWQk1a3mFyI-n_3R3N7oCMa96Sm4j2LAFHd2Cr13lG8-Tb8N1XQzNj194Hf-3dbfhoMWm7G0zme7AnvN34fq7CvHj5h7MT6uqZtsXD2yJ0Ju8susNW3h22bjbOlZXzHlbEas4eYQZZjarmnlih62sW7HFioWAFQS7rNgwqy9wUWPkSaIpOP4-nB99OHs_ido8DZFBc3AUSRtImhF5WGFT1HAntSwLwfFNZKmJtY4TneFaotG-K0urEFUaBJKIDtCg0ckD2PeVd4-AFVI7O3ZjWUojRJGkIyILKhFUji1dKA7gdTdeuWlJzCmXxve8M2aw3_LQbwN42YsuG-aO3wkddoOet8q7yvlYIZBCUw1_96IvRrWjuxTtXbUmGZ6h-Zop_heZNI6zNJUk87CZR31NkhC6OooHkO7MsF6AaL93S_xiHui_cRGl9HAK-yLMoD-3Lp9-mYSHx_8u-hxuTM5OjvPjj9PPT-AmR0zXOKkfwn59uXZPEYPVxbOgaj8Bj0EuQw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELemMSFexsbXCmMYxAMvqRLHdhPxxNiq8lVNE5P6gBQ5tqNWgFOt6UP567lzPtRuY0J7c-SL4o87-3fx3c-EvOUFbOpWs6CIpQ2QQivIOZRSoZmxloUyx9zhb2M5uuCfJ2KyRd63uTA1P0T3ww0tw6_XaOBzU6wZuZtP-0hkBP76PS7DBFX65JytMe5K1lIwSy4nDa0QhvF0r25uRtcQ5vVAyXUA63eg4UPyo217HXjys7-s8r7-c4XW8Y6d2yO7DTKlH2pV2idb1j0iO8cloMfVYzI9L8uKrh870DkAb4zJrlZ05uhlHWxraVVS60yJnOIYD6apXi0q6pAbtjR2QWcL6tNVAOrSfEWN-g1LGsU4EoWp8U_IxfD0-8dR0NzSEGhwBsNAGE_RDLjDcJOAfVuhRJFzBk88TXSkVBSrFFYSBd5dURgJmFIDjARsAO6Mip-SbVc6e0BoLpQ1AzsQhdCc53ESIlVQAZByYPA4sUfetdOV6YbCHG_S-JW1rgyMW-bHrUfedKLzmrfjJqHDds6zxnQXGRtIgFHgqMHnXnfVYHR4kqKcLZcow1JwXlPJbpFJoihNEoEyz2o16loS-8TVMOqRZEPBOgEk_d6scbOpJ_-GJRQvh5MwFl6B_t27bHw28oXn_y_6itw_OxlmXz-Nv7wgDxgAujpC_ZBsV5dL-xIAWJUfeUP7CwkhLPs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Root+architecture+plasticity+in+response+to+endoparasitic+cyst+nematodes+is+mediated+by+damage+signaling&rft.jtitle=The+New+phytologist&rft.au=Guarneri%2C+Nina&rft.au=Willig%2C+Jaap%E2%80%90Jan&rft.au=Sterken%2C+Mark+G.&rft.au=Zhou%2C+Wenkun&rft.date=2023-02-01&rft.issn=0028-646X&rft.eissn=1469-8137&rft.volume=237&rft.issue=3&rft.spage=807&rft.epage=822&rft_id=info:doi/10.1111%2Fnph.18570&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_nph_18570 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon |