Root architecture plasticity in response to endoparasitic cyst nematodes is mediated by damage signaling

Summary Plant root architecture plasticity in response to biotic stresses has not been thoroughly investigated. Infection by endoparasitic cyst nematodes induces root architectural changes that involve the formation of secondary roots at infection sites. However, the molecular mechanisms regulating...

Full description

Saved in:
Bibliographic Details
Published inThe New phytologist Vol. 237; no. 3; pp. 807 - 822
Main Authors Guarneri, Nina, Willig, Jaap‐Jan, Sterken, Mark G., Zhou, Wenkun, Hasan, M. Shamim, Sharon, Letia, Grundler, Florian M. W., Willemsen, Viola, Goverse, Aska, Smant, Geert, Lozano‐Torres, Jose L.
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 01.02.2023
John Wiley and Sons Inc
Subjects
Online AccessGet full text
ISSN0028-646X
1469-8137
1469-8137
DOI10.1111/nph.18570

Cover

Loading…
Abstract Summary Plant root architecture plasticity in response to biotic stresses has not been thoroughly investigated. Infection by endoparasitic cyst nematodes induces root architectural changes that involve the formation of secondary roots at infection sites. However, the molecular mechanisms regulating secondary root formation in response to cyst nematode infection remain largely unknown. We first assessed whether secondary roots form in a nematode density‐dependent manner by challenging wild‐type Arabidopsis plants with increasing numbers of cyst nematodes (Heterodera schachtii). Next, using jasmonate‐related reporter lines and knockout mutants, we tested whether tissue damage by nematodes triggers jasmonate‐dependent secondary root formation. Finally, we verified whether damage‐induced secondary root formation depends on local auxin biosynthesis at nematode infection sites. Intracellular host invasion by H. schachtii triggers a transient local increase in jasmonates, which activates the expression of ERF109 in a COI1‐dependent manner. Knockout mutations in COI1 and ERF109 disrupt the nematode density‐dependent increase in secondary roots observed in wild‐type plants. Furthermore, ERF109 regulates secondary root formation upon H. schachtii infection via local auxin biosynthesis. Host invasion by H. schachtii triggers secondary root formation via the damage‐induced jasmonate‐dependent ERF109 pathway. This points at a novel mechanism underlying plant root plasticity in response to biotic stress.
AbstractList Plant root architecture plasticity in response to biotic stresses has not been thoroughly investigated. Infection by endoparasitic cyst nematodes induces root architectural changes that involve the formation of secondary roots at infection sites. However, the molecular mechanisms regulating secondary root formation in response to cyst nematode infection remain largely unknown. We first assessed whether secondary roots form in a nematode density‐dependent manner by challenging wild‐type Arabidopsis plants with increasing numbers of cyst nematodes ( Heterodera schachtii ). Next, using jasmonate‐related reporter lines and knockout mutants, we tested whether tissue damage by nematodes triggers jasmonate‐dependent secondary root formation. Finally, we verified whether damage‐induced secondary root formation depends on local auxin biosynthesis at nematode infection sites. Intracellular host invasion by H. schachtii triggers a transient local increase in jasmonates, which activates the expression of ERF109 in a COI1‐dependent manner. Knockout mutations in COI1 and ERF109 disrupt the nematode density‐dependent increase in secondary roots observed in wild‐type plants. Furthermore, ERF109 regulates secondary root formation upon H. schachtii infection via local auxin biosynthesis. Host invasion by H. schachtii triggers secondary root formation via the damage‐induced jasmonate‐dependent ERF109 pathway. This points at a novel mechanism underlying plant root plasticity in response to biotic stress.
Plant root architecture plasticity in response to biotic stresses has not been thoroughly investigated. Infection by endoparasitic cyst nematodes induces root architectural changes that involve the formation of secondary roots at infection sites. However, the molecular mechanisms regulating secondary root formation in response to cyst nematode infection remain largely unknown. We first assessed whether secondary roots form in a nematode density-dependent manner by challenging wild-type Arabidopsis plants with increasing numbers of cyst nematodes (Heterodera schachtii). Next, using jasmonate-related reporter lines and knockout mutants, we tested whether tissue damage by nematodes triggers jasmonate-dependent secondary root formation. Finally, we verified whether damage-induced secondary root formation depends on local auxin biosynthesis at nematode infection sites. Intracellular host invasion by H. schachtii triggers a transient local increase in jasmonates, which activates the expression of ERF109 in a COI1-dependent manner. Knockout mutations in COI1 and ERF109 disrupt the nematode density-dependent increase in secondary roots observed in wild-type plants. Furthermore, ERF109 regulates secondary root formation upon H. schachtii infection via local auxin biosynthesis. Host invasion by H. schachtii triggers secondary root formation via the damage-induced jasmonate-dependent ERF109 pathway. This points at a novel mechanism underlying plant root plasticity in response to biotic stress.
Summary Plant root architecture plasticity in response to biotic stresses has not been thoroughly investigated. Infection by endoparasitic cyst nematodes induces root architectural changes that involve the formation of secondary roots at infection sites. However, the molecular mechanisms regulating secondary root formation in response to cyst nematode infection remain largely unknown. We first assessed whether secondary roots form in a nematode density‐dependent manner by challenging wild‐type Arabidopsis plants with increasing numbers of cyst nematodes (Heterodera schachtii). Next, using jasmonate‐related reporter lines and knockout mutants, we tested whether tissue damage by nematodes triggers jasmonate‐dependent secondary root formation. Finally, we verified whether damage‐induced secondary root formation depends on local auxin biosynthesis at nematode infection sites. Intracellular host invasion by H. schachtii triggers a transient local increase in jasmonates, which activates the expression of ERF109 in a COI1‐dependent manner. Knockout mutations in COI1 and ERF109 disrupt the nematode density‐dependent increase in secondary roots observed in wild‐type plants. Furthermore, ERF109 regulates secondary root formation upon H. schachtii infection via local auxin biosynthesis. Host invasion by H. schachtii triggers secondary root formation via the damage‐induced jasmonate‐dependent ERF109 pathway. This points at a novel mechanism underlying plant root plasticity in response to biotic stress.
Plant root architecture plasticity in response to biotic stresses has not been thoroughly investigated. Infection by endoparasitic cyst nematodes induces root architectural changes that involve the formation of secondary roots at infection sites. However, the molecular mechanisms regulating secondary root formation in response to cyst nematode infection remain largely unknown. We first assessed whether secondary roots form in a nematode density-dependent manner by challenging wild-type Arabidopsis plants with increasing numbers of cyst nematodes (Heterodera schachtii). Next, using jasmonate-related reporter lines and knockout mutants, we tested whether tissue damage by nematodes triggers jasmonate-dependent secondary root formation. Finally, we verified whether damage-induced secondary root formation depends on local auxin biosynthesis at nematode infection sites. Intracellular host invasion by H. schachtii triggers a transient local increase in jasmonates, which activates the expression of ERF109 in a COI1-dependent manner. Knockout mutations in COI1 and ERF109 disrupt the nematode density-dependent increase in secondary roots observed in wild-type plants. Furthermore, ERF109 regulates secondary root formation upon H. schachtii infection via local auxin biosynthesis. Host invasion by H. schachtii triggers secondary root formation via the damage-induced jasmonate-dependent ERF109 pathway. This points at a novel mechanism underlying plant root plasticity in response to biotic stress.Plant root architecture plasticity in response to biotic stresses has not been thoroughly investigated. Infection by endoparasitic cyst nematodes induces root architectural changes that involve the formation of secondary roots at infection sites. However, the molecular mechanisms regulating secondary root formation in response to cyst nematode infection remain largely unknown. We first assessed whether secondary roots form in a nematode density-dependent manner by challenging wild-type Arabidopsis plants with increasing numbers of cyst nematodes (Heterodera schachtii). Next, using jasmonate-related reporter lines and knockout mutants, we tested whether tissue damage by nematodes triggers jasmonate-dependent secondary root formation. Finally, we verified whether damage-induced secondary root formation depends on local auxin biosynthesis at nematode infection sites. Intracellular host invasion by H. schachtii triggers a transient local increase in jasmonates, which activates the expression of ERF109 in a COI1-dependent manner. Knockout mutations in COI1 and ERF109 disrupt the nematode density-dependent increase in secondary roots observed in wild-type plants. Furthermore, ERF109 regulates secondary root formation upon H. schachtii infection via local auxin biosynthesis. Host invasion by H. schachtii triggers secondary root formation via the damage-induced jasmonate-dependent ERF109 pathway. This points at a novel mechanism underlying plant root plasticity in response to biotic stress.
Author Sharon, Letia
Guarneri, Nina
Zhou, Wenkun
Grundler, Florian M. W.
Willemsen, Viola
Hasan, M. Shamim
Goverse, Aska
Lozano‐Torres, Jose L.
Smant, Geert
Willig, Jaap‐Jan
Sterken, Mark G.
AuthorAffiliation 4 Institute of Crop Science and Resource Conservation (INRES), Molecular Phytomedicine University of Bonn 53115 Bonn Germany
2 Laboratory of Molecular Biology, Cluster of Plant Developmental Biology Wageningen University & Research 6708 PB Wageningen the Netherlands
1 Laboratory of Nematology Wageningen University & Research 6708 PB Wageningen the Netherlands
3 State Key Laboratory of Plant Physiology and Biochemistry College of Biological Sciences, China Agricultural University Beijing 100193 China
AuthorAffiliation_xml – name: 1 Laboratory of Nematology Wageningen University & Research 6708 PB Wageningen the Netherlands
– name: 3 State Key Laboratory of Plant Physiology and Biochemistry College of Biological Sciences, China Agricultural University Beijing 100193 China
– name: 4 Institute of Crop Science and Resource Conservation (INRES), Molecular Phytomedicine University of Bonn 53115 Bonn Germany
– name: 2 Laboratory of Molecular Biology, Cluster of Plant Developmental Biology Wageningen University & Research 6708 PB Wageningen the Netherlands
Author_xml – sequence: 1
  givenname: Nina
  orcidid: 0000-0002-0399-9230
  surname: Guarneri
  fullname: Guarneri, Nina
  organization: Wageningen University & Research
– sequence: 2
  givenname: Jaap‐Jan
  orcidid: 0000-0003-1872-1300
  surname: Willig
  fullname: Willig, Jaap‐Jan
  organization: Wageningen University & Research
– sequence: 3
  givenname: Mark G.
  orcidid: 0000-0001-7119-6213
  surname: Sterken
  fullname: Sterken, Mark G.
  organization: Wageningen University & Research
– sequence: 4
  givenname: Wenkun
  orcidid: 0000-0002-2480-2644
  surname: Zhou
  fullname: Zhou, Wenkun
  organization: College of Biological Sciences, China Agricultural University
– sequence: 5
  givenname: M. Shamim
  orcidid: 0000-0001-6417-9650
  surname: Hasan
  fullname: Hasan, M. Shamim
  organization: University of Bonn
– sequence: 6
  givenname: Letia
  surname: Sharon
  fullname: Sharon, Letia
  organization: University of Bonn
– sequence: 7
  givenname: Florian M. W.
  orcidid: 0000-0001-8101-0558
  surname: Grundler
  fullname: Grundler, Florian M. W.
  organization: University of Bonn
– sequence: 8
  givenname: Viola
  orcidid: 0000-0002-6420-0605
  surname: Willemsen
  fullname: Willemsen, Viola
  organization: Wageningen University & Research
– sequence: 9
  givenname: Aska
  orcidid: 0000-0002-7399-8743
  surname: Goverse
  fullname: Goverse, Aska
  organization: Wageningen University & Research
– sequence: 10
  givenname: Geert
  orcidid: 0000-0001-6094-8686
  surname: Smant
  fullname: Smant, Geert
  organization: Wageningen University & Research
– sequence: 11
  givenname: Jose L.
  orcidid: 0000-0002-0021-5947
  surname: Lozano‐Torres
  fullname: Lozano‐Torres, Jose L.
  email: jose.lozano@wur.nl
  organization: Wageningen University & Research
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36285401$$D View this record in MEDLINE/PubMed
BookMark eNqFkkFrFTEUhYNU7Gt14R-QgBtdTJtkJplkJaVYKxQVUXAX7ptk3kuZScYko8y_b15fLVpQswnhfvdwcu85Qgc-eIvQc0pOaDmnftqeUMlb8gitaCNUJWndHqAVIUxWohHfDtFRSteEEMUFe4IOa8Ekbwhdoe3nEDKG2G1dtl2eo8XTACm7zuUFO4-jTVPwyeIcsPUmTBAhuVLH3ZIy9naEHIxN2CU8WuMgW4PXCzYwwsbi5DYeBuc3T9HjHoZkn93dx-jrxdsv55fV1cd378_PrqquIS2puKnNurVEUdMYSVtlOfB-3bDyapTsKACtQbU1Aclk3xuhWN0JLhomOFdQH6M3e91pXhc_nfU5wqCn6EaIiw7g9J8V77Z6E35oSiiRNRVF4dWdQgzfZ5uyHl3q7DCAt2FOmklKlZRlkv9HW6YIE-oWffkAvQ5zLLPZUYK0nLaNKtSL393f2_61sAK83gNdDClF298jlOhdGHQJg74NQ2FPH7BlqZBd2H3cDf_q-OkGu_xdWn_4dLnvuAHVP8ZP
CitedBy_id crossref_primary_10_1093_plphys_kiae053
crossref_primary_10_1093_plphys_kiae065
crossref_primary_10_1371_journal_ppat_1012610
crossref_primary_10_1093_jxb_erad266
crossref_primary_10_1111_pce_14859
crossref_primary_10_1111_pce_14925
crossref_primary_10_1111_tpj_16999
crossref_primary_10_1186_s12864_024_11089_1
crossref_primary_10_3389_fpls_2024_1370532
crossref_primary_10_1016_j_soilbio_2023_109179
crossref_primary_10_3390_plants13213108
crossref_primary_10_1007_s00344_024_11391_y
crossref_primary_10_1016_j_pbi_2024_102510
Cites_doi 10.1111/nph.15034
10.1371/journal.ppat.1006284
10.1093/nar/29.9.e45
10.1104/pp.104.058800
10.1371/journal.ppat.1000266
10.1111/nph.13395
10.1105/tpc.003368
10.3389/fpls.2014.00089
10.1073/pnas.0712307105
10.1093/jexbot/52.356.529
10.1093/jxb/erw213
10.15252/embj.2018100972
10.1111/mpp.13210
10.1038/nmeth.2019
10.1007/978-1-4757-9080-1_15
10.1111/j.1364-3703.2004.00230.x
10.1038/ncomms7043
10.1007/s11103-008-9417-2
10.1111/j.1439-0434.1991.tb00166.x
10.1038/s41477-020-0737-9
10.1016/j.pbi.2011.03.012
10.1038/s41477-019-0408-x
10.1105/tpc.19.00378
10.1094/MPMI.2000.13.10.1121
10.3389/fpls.2016.01335
10.1093/jxb/erx374
10.3389/fpls.2017.00875
10.1111/j.1744-7348.1983.tb02708.x
10.1163/156854102321122511
10.3389/fpls.2013.00241
10.1104/pp.110.167197
10.1007/978-1-4939-6469-7_8
10.1104/pp.16.01067
10.1242/dev.030353
10.1016/j.cell.2019.03.006
10.1111/nph.12826
10.1105/tpc.111.089029
10.1105/tpc.114.122887
10.1038/ncomms6833
10.1111/nph.17559
10.2134/agronj1991.00021962008300030014x
10.1111/mpp.12121
10.1016/j.celrep.2017.12.105
10.1242/dev.152132
10.1111/j.1365-313X.1991.00245.x
10.1371/journal.pone.0185808
10.1111/j.1364-3703.2007.00392.x
10.1111/mpp.12057
ContentType Journal Article
Copyright 2022 The Authors. New Phytologist © 2022 New Phytologist Foundation.
2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. New Phytologist © 2022 New Phytologist Foundation.
– notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
5PM
DOI 10.1111/nph.18570
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Ecology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
CrossRef
MEDLINE

AGRICOLA
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1469-8137
EndPage 822
ExternalDocumentID PMC10108316
36285401
10_1111_nph_18570
NPH18570
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 32070874
– fundername: European Molecular Biology Organization
  funderid: ALTF 784‐2014
– fundername: NWO domain Applied and Engineering Sciences
  funderid: VENI 14250; VIDI 18389; VENI 17282
– fundername: Dutch Top Sector Horticulture & Starting Materials
  funderid: TU18152
– fundername: NWO domain Applied and Engineering Sciences
  grantid: VENI 14250; VIDI 18389; VENI 17282
– fundername: ;
  grantid: ALTF 784‐2014
– fundername: ;
  grantid: 32070874
– fundername: Dutch Top Sector Horticulture & Starting Materials
  grantid: TU18152
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
24P
29N
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHKG
AAHQN
AAISJ
AAKGQ
AAMNL
AANLZ
AAONW
AASGY
AASVR
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABEFU
ABEML
ABLJU
ABPLY
ABPVW
ABTLG
ABVKB
ABXSQ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACHIC
ACNCT
ACPOU
ACQPF
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUPB
AEUQT
AEUYR
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHXOZ
AILXY
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQVQM
AS~
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CBGCD
COF
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DIK
DOOOF
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FIJ
G-S
G.N
GODZA
GTFYD
H.T
H.X
HF~
HGD
HGLYW
HQ2
HTVGU
HZI
HZ~
IHE
IPNFZ
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LPU
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NEJ
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RCA
RIG
ROL
RX1
SA0
SUPJJ
TN5
TR2
UB1
W8V
W99
WBKPD
WHG
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XOL
YNT
YQT
YXE
ZCG
ZZTAW
~02
~IA
~KM
~WT
AAYXX
ABGDZ
ABSQW
ADXHL
AEYWJ
AGHNM
AGUYK
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7QO
7SN
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c4070-5d3db7e091d4d8179e5a5fb424d8498c1aa13a9730a828ffd6923c656426559a3
IEDL.DBID DR2
ISSN 0028-646X
1469-8137
IngestDate Thu Aug 21 18:37:44 EDT 2025
Fri Jul 11 18:32:22 EDT 2025
Fri Jul 11 11:53:50 EDT 2025
Fri Jul 25 12:00:27 EDT 2025
Wed Feb 19 02:25:03 EST 2025
Thu Apr 24 22:56:13 EDT 2025
Tue Jul 01 02:28:44 EDT 2025
Wed Jan 22 16:25:18 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Arabidopsis thaliana
root plasticity
damage
root architecture
ERF109
auxin
jasmonates
Heterodera schachtii
Language English
License Attribution
2022 The Authors. New Phytologist © 2022 New Phytologist Foundation.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4070-5d3db7e091d4d8179e5a5fb424d8498c1aa13a9730a828ffd6923c656426559a3
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7399-8743
0000-0002-2480-2644
0000-0001-8101-0558
0000-0001-6417-9650
0000-0002-0021-5947
0000-0003-1872-1300
0000-0001-6094-8686
0000-0002-0399-9230
0000-0001-7119-6213
0000-0002-6420-0605
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.18570
PMID 36285401
PQID 2760751749
PQPubID 2026848
PageCount 822
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10108316
proquest_miscellaneous_2811988562
proquest_miscellaneous_2729026962
proquest_journals_2760751749
pubmed_primary_36285401
crossref_primary_10_1111_nph_18570
crossref_citationtrail_10_1111_nph_18570
wiley_primary_10_1111_nph_18570_NPH18570
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2023
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: February 2023
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Lancaster
– name: Hoboken
PublicationTitle The New phytologist
PublicationTitleAlternate New Phytol
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 2002; 14
2017; 8
2013; 4
2005; 138
2022; 23
2014; 26
2004; 5
2008; 105
2011; 14
2011; 155
2020; 6
2014; 5
1983; 102
2013; 14
2018; 218
1986; 9
2000; 13
1991; 83
2007; 8
2014; 15
2011; 23
2021; 232
2014; 203
2001; 52
2009; 69
1991; 1
2015; 6
1991; 133
2019; 5
2017; 68
2019; 38
2002; 4
1994
2015; 207
2001; 29
2020; 32
2018; 22
2009; 136
2016; 7
2000; 32
2017; 13
2017; 1497
2017; 12
2009; 5
2017; 144
2019; 177
2016; 67
2016; 172
2012; 9
e_1_2_9_31_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_30_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_13_1
e_1_2_9_32_1
Baum TJ (e_1_2_9_3_1) 2000; 32
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
Wyss U (e_1_2_9_47_1) 1986; 9
References_xml – volume: 6
  start-page: 6043
  year: 2015
  article-title: A fluorescent hormone biosensor reveals the dynamics of jasmonate signalling in plants
  publication-title: Nature Communications
– volume: 5
  start-page: 491
  year: 2019
  end-page: 497
  article-title: Jasmonate‐mediated wound signalling promotes plant regeneration
  publication-title: Nature Plants
– volume: 4
  start-page: 899
  year: 2002
  end-page: 908
  article-title: Development and pharyngeal gland activities of infecting roots
  publication-title: Nematology
– volume: 83
  start-page: 571
  year: 1991
  end-page: 576
  article-title: Root response of tolerant and intolerant soybean cultivars to soybean cyst nematode
  publication-title: Agronomy Journal
– volume: 14
  start-page: 946
  year: 2013
  end-page: 961
  article-title: Top 10 plant–parasitic nematodes in molecular plant pathology
  publication-title: Molecular Plant Pathology
– volume: 22
  start-page: 1350
  year: 2018
  end-page: 1363
  article-title: PHB3 maintains root stem cell niche identity through ROS‐responsive AP2/ERF transcription factors in Arabidopsis
  publication-title: Cell Reports
– volume: 14
  start-page: 1919
  year: 2002
  end-page: 1935
  article-title: The SCF(COI1) ubiquitin‐ligase complexes are required for jasmonate response in Arabidopsis
  publication-title: Plant Cell
– volume: 136
  start-page: 2675
  year: 2009
  end-page: 2688
  article-title: Auxin transport routes in plant development
  publication-title: Development
– volume: 38
  year: 2019
  article-title: Single‐cell damage elicits regional, nematode‐restricting ethylene responses in roots
  publication-title: EMBO Journal
– volume: 52
  start-page: 529
  year: 2001
  end-page: 539
  article-title: GFP imaging: methodology and application to investigate cellular compartmentation in plants
  publication-title: Journal of Experimental Botany
– volume: 6
  start-page: 1020
  year: 2020
  end-page: 1030
  article-title: Local auxin biosynthesis is required for root regeneration after wounding
  publication-title: Nature Plants
– volume: 5
  start-page: 5833
  year: 2014
  article-title: ERF109 mediates cross‐talk between jasmonic acid and auxin biosynthesis during lateral root formation
  publication-title: Nature Communications
– volume: 172
  start-page: 2363
  year: 2016
  end-page: 2373
  article-title: Transcription factors WOX11/12 directly activate WOX5/7 to promote root primordia initiation and organogenesis
  publication-title: Plant Physiology
– volume: 5
  start-page: 343
  year: 2004
  end-page: 346
  article-title: Feeding cell development by cyst and root‐knot nematodes involves a similar early, local and transient activation of a specific auxin‐inducible promoter element
  publication-title: Molecular Plant Pathology
– volume: 8
  start-page: 875
  year: 2017
  article-title: Molecular transducers from roots are triggered in Arabidopsis leaves by root‐knot nematodes for successful feeding site formation: a conserved post‐embryogenic organogenesis program?
  publication-title: Frontiers in Plant Science
– volume: 29
  year: 2001
  article-title: A new mathematical model for relative quantification in real‐time RT‐PCR
  publication-title: Nucleic Acids Research
– volume: 102
  start-page: 385
  year: 1983
  end-page: 397
  article-title: Tolerance of potato to potato cyst nematodes ( and ) in relation to the growth and efficiency of the root system
  publication-title: Annals of Applied Biology
– volume: 67
  start-page: 4273
  year: 2016
  end-page: 4284
  article-title: YUCCA‐mediated auxin biogenesis is required for cell fate transition occurring during root organogenesis in Arabidopsis
  publication-title: Journal of Experimental Botany
– volume: 23
  start-page: 3944
  year: 2011
  end-page: 3960
  article-title: A small‐molecule screen identifies ‐kynurenine as a competitive inhibitor of TAA1/TAR activity in ethylene‐directed auxin biosynthesis and root growth in Arabidopsis
  publication-title: Plant Cell
– volume: 9
  start-page: 153
  year: 1986
  end-page: 165
  article-title: Observations on the behavior of second‐stage juveniles of inside host root
  publication-title: Revue de Nematologie
– volume: 133
  start-page: 307
  year: 1991
  end-page: 319
  article-title: Structure of syncytia induced by Woll. in roots of susceptible and resistant wheat ( .)
  publication-title: Journal of Phytopathology
– volume: 207
  start-page: 778
  year: 2015
  end-page: 789
  article-title: Role of stress‐related hormones in plant defence during early infection of the cyst nematode in Arabidopsis
  publication-title: New Phytologist
– volume: 8
  start-page: 267
  year: 2007
  end-page: 278
  article-title: Molecular characterization and functional importance of pectate lyase secreted by the cyst nematode
  publication-title: Molecular Plant Pathology
– volume: 23
  start-page: 1048
  year: 2022
  end-page: 1059
  article-title: Glutathione contributes to plant defence against parasitic cyst nematodes
  publication-title: Molecular Plant Pathology
– volume: 15
  start-page: 730
  year: 2014
  end-page: 736
  article-title: Spatial and temporal expression patterns of auxin response transcription factors in the syncytium induced by the beet cyst nematode in Arabidopsis
  publication-title: Molecular Plant Pathology
– volume: 9
  start-page: 676
  year: 2012
  end-page: 682
  article-title: F : an open‐source platform for biological‐image analysis
  publication-title: Nature Methods
– volume: 218
  start-page: 724
  year: 2018
  end-page: 737
  article-title: Genome‐wide association mapping of the architecture of susceptibility to the root‐knot nematode in
  publication-title: New Phytologist
– volume: 14
  start-page: 415
  year: 2011
  end-page: 421
  article-title: How nematodes manipulate plant development pathways for infection
  publication-title: Current Opinion in Plant Biology
– volume: 32
  start-page: 226
  year: 2020
  end-page: 241
  article-title: AP2/ERF transcription factors integrate age and wound signals for root regeneration
  publication-title: Plant Cell
– volume: 68
  start-page: 5949
  year: 2017
  end-page: 5960
  article-title: Damage‐associated responses of the host contribute to defence against cyst nematodes but not root‐knot nematodes
  publication-title: Journal of Experimental Botany
– volume: 5
  start-page: 89
  year: 2014
  article-title: The plant cell wall in the feeding sites of cyst nematodes
  publication-title: Frontiers in Plant Science
– volume: 203
  start-page: 632
  year: 2014
  end-page: 645
  article-title: A role for during the interaction Arabidopsis– spp. provides a molecular link between lateral root and root‐knot nematode feeding site development
  publication-title: New Phytologist
– volume: 144
  start-page: 3126
  year: 2017
  end-page: 3133
  article-title: Non‐canonical WOX11‐mediated root branching contributes to plasticity in Arabidopsis root system architecture
  publication-title: Development
– volume: 4
  start-page: 241
  year: 2013
  article-title: Phloem development in nematode‐induced feeding sites: the implications of auxin and cytokinin
  publication-title: Frontiers in Plant Science
– volume: 155
  start-page: 866
  year: 2011
  end-page: 880
  article-title: The novel cyst nematode effector protein 19C07 interacts with the Arabidopsis auxin influx transporter LAX3 to control feeding site development
  publication-title: Plant Physiology
– volume: 26
  start-page: 1081
  year: 2014
  end-page: 1093
  article-title: WOX11 and 12 are involved in the first‐step cell fate transition during root organogenesis in Arabidopsis
  publication-title: Plant Cell
– volume: 12
  year: 2017
  article-title: In roots of , the damage‐associated molecular pattern AtPep1 is a stronger elicitor of immune signalling than flg22 or the chitin heptamer
  publication-title: PLoS ONE
– volume: 5
  year: 2009
  article-title: Parasitic nematodes modulate PIN‐mediated auxin transport to facilitate infection
  publication-title: PLoS Pathogens
– volume: 232
  start-page: 318
  year: 2021
  end-page: 331
  article-title: Plant parasitic cyst nematodes redirect host indole metabolism via NADPH oxidase‐mediated ROS to promote infection
  publication-title: New Phytologist
– volume: 138
  start-page: 383
  year: 2005
  end-page: 392
  article-title: Nematode infection triggers the formation of unloading phloem that allows macromolecular trafficking of green fluorescent protein into syncytia
  publication-title: Plant Physiology
– start-page: 171
  year: 1994
  end-page: 180
– volume: 13
  start-page: 1121
  year: 2000
  end-page: 1129
  article-title: Both induction and morphogenesis of cyst nematode feeding cells are mediated by auxin
  publication-title: Molecular Plant–Microbe Interactions
– volume: 1
  start-page: 245
  year: 1991
  end-page: 254
  article-title: as a new model host for plant–parasitic nematodes
  publication-title: The Plant Journal
– volume: 105
  start-page: 8790
  year: 2008
  end-page: 8794
  article-title: Auxin acts as a local morphogenetic trigger to specify lateral root founder cells
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 7
  start-page: 1335
  year: 2016
  article-title: Roots withstanding their environment: exploiting root system architecture responses to abiotic atress to improve crop tolerance
  publication-title: Frontiers in Plant Science
– volume: 177
  start-page: 942
  year: 2019
  end-page: 956
  article-title: A jasmonate signaling network activates root stem cells and promotes regeneration
  publication-title: Cell
– volume: 69
  start-page: 437
  year: 2009
  end-page: 449
  article-title: Hormone interactions during lateral root formation
  publication-title: Plant Molecular Biology
– volume: 1497
  start-page: 73
  year: 2017
  end-page: 80
  article-title: Histochemical staining of beta‐glucuronidase and its spatial quantification
  publication-title: Methods in Molecular Biology
– volume: 13
  year: 2017
  article-title: Arabidopsis leucine‐rich repeat receptor‐like kinase NILR1 is required for induction of innate immunity to parasitic nematodes
  publication-title: PLoS Pathogens
– volume: 32
  start-page: 166
  year: 2000
  end-page: 173
  article-title: A screen for mutants with altered susceptibility to
  publication-title: Journal of Nematology
– ident: e_1_2_9_46_1
  doi: 10.1111/nph.15034
– ident: e_1_2_9_33_1
  doi: 10.1371/journal.ppat.1006284
– ident: e_1_2_9_37_1
  doi: 10.1093/nar/29.9.e45
– ident: e_1_2_9_21_1
  doi: 10.1104/pp.104.058800
– ident: e_1_2_9_15_1
  doi: 10.1371/journal.ppat.1000266
– ident: e_1_2_9_24_1
  doi: 10.1111/nph.13395
– ident: e_1_2_9_48_1
  doi: 10.1105/tpc.003368
– ident: e_1_2_9_5_1
  doi: 10.3389/fpls.2014.00089
– ident: e_1_2_9_10_1
  doi: 10.1073/pnas.0712307105
– ident: e_1_2_9_17_1
  doi: 10.1093/jexbot/52.356.529
– ident: e_1_2_9_8_1
  doi: 10.1093/jxb/erw213
– ident: e_1_2_9_31_1
  doi: 10.15252/embj.2018100972
– ident: e_1_2_9_18_1
  doi: 10.1111/mpp.13210
– ident: e_1_2_9_39_1
  doi: 10.1038/nmeth.2019
– ident: e_1_2_9_14_1
  doi: 10.1007/978-1-4757-9080-1_15
– ident: e_1_2_9_25_1
  doi: 10.1111/j.1364-3703.2004.00230.x
– ident: e_1_2_9_28_1
  doi: 10.1038/ncomms7043
– ident: e_1_2_9_11_1
  doi: 10.1007/s11103-008-9417-2
– ident: e_1_2_9_16_1
  doi: 10.1111/j.1439-0434.1991.tb00166.x
– ident: e_1_2_9_32_1
  doi: 10.1038/s41477-020-0737-9
– ident: e_1_2_9_12_1
  doi: 10.1016/j.pbi.2011.03.012
– ident: e_1_2_9_50_1
  doi: 10.1038/s41477-019-0408-x
– ident: e_1_2_9_49_1
  doi: 10.1105/tpc.19.00378
– volume: 32
  start-page: 166
  year: 2000
  ident: e_1_2_9_3_1
  article-title: A screen for Arabidopsis thaliana mutants with altered susceptibility to Heterodera schachtii
  publication-title: Journal of Nematology
– ident: e_1_2_9_13_1
  doi: 10.1094/MPMI.2000.13.10.1121
– ident: e_1_2_9_26_1
  doi: 10.3389/fpls.2016.01335
– ident: e_1_2_9_40_1
  doi: 10.1093/jxb/erx374
– ident: e_1_2_9_35_1
  doi: 10.3389/fpls.2017.00875
– ident: e_1_2_9_43_1
  doi: 10.1111/j.1744-7348.1983.tb02708.x
– ident: e_1_2_9_44_1
  doi: 10.1163/156854102321122511
– ident: e_1_2_9_2_1
  doi: 10.3389/fpls.2013.00241
– ident: e_1_2_9_29_1
  doi: 10.1104/pp.110.167197
– ident: e_1_2_9_4_1
  doi: 10.1007/978-1-4939-6469-7_8
– ident: e_1_2_9_22_1
  doi: 10.1104/pp.16.01067
– ident: e_1_2_9_36_1
  doi: 10.1242/dev.030353
– ident: e_1_2_9_51_1
  doi: 10.1016/j.cell.2019.03.006
– volume: 9
  start-page: 153
  year: 1986
  ident: e_1_2_9_47_1
  article-title: Observations on the behavior of second‐stage juveniles of Heterodera schachtii inside host root
  publication-title: Revue de Nematologie
– ident: e_1_2_9_6_1
  doi: 10.1111/nph.12826
– ident: e_1_2_9_19_1
  doi: 10.1105/tpc.111.089029
– ident: e_1_2_9_30_1
  doi: 10.1105/tpc.114.122887
– ident: e_1_2_9_7_1
  doi: 10.1038/ncomms6833
– ident: e_1_2_9_9_1
  doi: 10.1111/nph.17559
– ident: e_1_2_9_34_1
  doi: 10.2134/agronj1991.00021962008300030014x
– ident: e_1_2_9_20_1
  doi: 10.1111/mpp.12121
– ident: e_1_2_9_27_1
  doi: 10.1016/j.celrep.2017.12.105
– ident: e_1_2_9_41_1
  doi: 10.1242/dev.152132
– ident: e_1_2_9_42_1
  doi: 10.1111/j.1365-313X.1991.00245.x
– ident: e_1_2_9_38_1
  doi: 10.1371/journal.pone.0185808
– ident: e_1_2_9_45_1
  doi: 10.1111/j.1364-3703.2007.00392.x
– ident: e_1_2_9_23_1
  doi: 10.1111/mpp.12057
SSID ssj0009562
Score 2.4893146
Snippet Summary Plant root architecture plasticity in response to biotic stresses has not been thoroughly investigated. Infection by endoparasitic cyst nematodes...
Plant root architecture plasticity in response to biotic stresses has not been thoroughly investigated. Infection by endoparasitic cyst nematodes induces root...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 807
SubjectTerms Animals
Arabidopsis
Arabidopsis - metabolism
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Arabidopsis thaliana
auxin
Auxins
Biosynthesis
biotic stress
cyst nematodes
Damage
Density
Endoparasites
ERF109
Heterodera schachtii
Indoleacetic Acids - metabolism
Infections
jasmonates
Jasmonic acid
Molecular modelling
Mutation
nematode infections
Nematode Infections - metabolism
Nematodes
Plant Diseases - parasitology
Plant roots
Plant Roots - metabolism
Plants
Plastic properties
Plasticity
root architecture
root plasticity
Roots
Tylenchoidea - physiology
Title Root architecture plasticity in response to endoparasitic cyst nematodes is mediated by damage signaling
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.18570
https://www.ncbi.nlm.nih.gov/pubmed/36285401
https://www.proquest.com/docview/2760751749
https://www.proquest.com/docview/2729026962
https://www.proquest.com/docview/2811988562
https://pubmed.ncbi.nlm.nih.gov/PMC10108316
Volume 237
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZpyKGXNk0f2SYNSsmhFy9rWdLa9NSWhiWQEEIDeygYvcwubeQl9h42vz4z8oPdJi0lNxmPsSRrpG-sbz4RcsILWNSdYVGRSBehhFakOZQyYZh1jo2kxtzh8ws5ueZnUzHdIp-7XJhGH6L_4YaeEeZrdHClqzUn94vZEIWMMF5HrhYCoiu2JrgrWafALLmctqpCyOLpn9xcix4AzIc8yXX8Ghag05fkZ1f1hnfya7is9dDc_aHq-MS27ZIXLTClX5qR9IpsOb9Hdr6WAB5Xr8nsqixrur7rQBeAu5GSXa_o3NPbhmvraF1S522JkuJIBzPUrKqaepSGLa2r6LyiIVsFkC7VK2rVDcxoFGkkCjPj35Dr0-8_vk2i9pCGyEAsOIqEDQrNADsstym4txNKFJozuOJZamKl4kRlMJEoCO6KwkqAlAZQJEADiGZU8pZs-9K7fUK1UM6O3VgUwnCuk3SESkEFIMqxxd3EAfnUfa7ctArmeJDG77yLZKDf8tBvA_KxN100sh2PGR123zxvPbfK2VgCioI4DV533N8Gn8ONFOVduUQblkHsmkn2D5s0jrM0FWjzrhlGfU2SkLc6igck3RhgvQFqfm_e8fNZ0P6GGRTPhpPQF2EA_b11-cXlJBTe_7_pAXnOAMQ1rPRDsl3fLt0HAF21PiLPGL88Cj52DxI8Kv8
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB6tFiS4LG8oLGAQBy6pGsd2E4kLIFYFdiu02pV6QZFjO2oF61Tb9FB-PTPOQy0LCHFL5Ini19jf2DPfALwSJW7qzvCoTJSLiEIrKgQ-ZdJw6xwfqYJih0-manIuPs3kbA_edLEwDT9Ef-BGmhHWa1JwOpDe0nK_nA-JyQgN9muU0TsYVKd8i3JX8Y6DWQk1a3mFyI-n_3R3N7oCMa96Sm4j2LAFHd2Cr13lG8-Tb8N1XQzNj194Hf-3dbfhoMWm7G0zme7AnvN34fq7CvHj5h7MT6uqZtsXD2yJ0Ju8susNW3h22bjbOlZXzHlbEas4eYQZZjarmnlih62sW7HFioWAFQS7rNgwqy9wUWPkSaIpOP4-nB99OHs_ido8DZFBc3AUSRtImhF5WGFT1HAntSwLwfFNZKmJtY4TneFaotG-K0urEFUaBJKIDtCg0ckD2PeVd4-AFVI7O3ZjWUojRJGkIyILKhFUji1dKA7gdTdeuWlJzCmXxve8M2aw3_LQbwN42YsuG-aO3wkddoOet8q7yvlYIZBCUw1_96IvRrWjuxTtXbUmGZ6h-Zop_heZNI6zNJUk87CZR31NkhC6OooHkO7MsF6AaL93S_xiHui_cRGl9HAK-yLMoD-3Lp9-mYSHx_8u-hxuTM5OjvPjj9PPT-AmR0zXOKkfwn59uXZPEYPVxbOgaj8Bj0EuQw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELemMSFexsbXCmMYxAMvqRLHdhPxxNiq8lVNE5P6gBQ5tqNWgFOt6UP567lzPtRuY0J7c-SL4o87-3fx3c-EvOUFbOpWs6CIpQ2QQivIOZRSoZmxloUyx9zhb2M5uuCfJ2KyRd63uTA1P0T3ww0tw6_XaOBzU6wZuZtP-0hkBP76PS7DBFX65JytMe5K1lIwSy4nDa0QhvF0r25uRtcQ5vVAyXUA63eg4UPyo217HXjys7-s8r7-c4XW8Y6d2yO7DTKlH2pV2idb1j0iO8cloMfVYzI9L8uKrh870DkAb4zJrlZ05uhlHWxraVVS60yJnOIYD6apXi0q6pAbtjR2QWcL6tNVAOrSfEWN-g1LGsU4EoWp8U_IxfD0-8dR0NzSEGhwBsNAGE_RDLjDcJOAfVuhRJFzBk88TXSkVBSrFFYSBd5dURgJmFIDjARsAO6Mip-SbVc6e0BoLpQ1AzsQhdCc53ESIlVQAZByYPA4sUfetdOV6YbCHG_S-JW1rgyMW-bHrUfedKLzmrfjJqHDds6zxnQXGRtIgFHgqMHnXnfVYHR4kqKcLZcow1JwXlPJbpFJoihNEoEyz2o16loS-8TVMOqRZEPBOgEk_d6scbOpJ_-GJRQvh5MwFl6B_t27bHw28oXn_y_6itw_OxlmXz-Nv7wgDxgAujpC_ZBsV5dL-xIAWJUfeUP7CwkhLPs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Root+architecture+plasticity+in+response+to+endoparasitic+cyst+nematodes+is+mediated+by+damage+signaling&rft.jtitle=The+New+phytologist&rft.au=Guarneri%2C+Nina&rft.au=Willig%2C+Jaap%E2%80%90Jan&rft.au=Sterken%2C+Mark+G.&rft.au=Zhou%2C+Wenkun&rft.date=2023-02-01&rft.issn=0028-646X&rft.eissn=1469-8137&rft.volume=237&rft.issue=3&rft.spage=807&rft.epage=822&rft_id=info:doi/10.1111%2Fnph.18570&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_nph_18570
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon