Inference on a new distribution under progressive-stress accelerated life tests and progressive type-II censoring based on a series-parallel system
It is of great importance for physicists and engineers to assess a lifetime distribution of a series-parallel system when its components' lifetimes are subject to a finite mixture of distributions. The present article addresses this problem by introducing a new distribution called "Poisson...
Saved in:
Published in | AIMS mathematics Vol. 7; no. 1; pp. 425 - 454 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
AIMS Press
01.01.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 2473-6988 2473-6988 |
DOI | 10.3934/math.2022028 |
Cover
Loading…
Abstract | It is of great importance for physicists and engineers to assess a lifetime distribution of a series-parallel system when its components' lifetimes are subject to a finite mixture of distributions. The present article addresses this problem by introducing a new distribution called "Poisson-geometric-Lomax distribution". Important properties of the proposed distribution are discussed. When the stress is an increasing nonlinear function of time, the progressive-stress model is considered and the inverse power-law model has suggested a relationship between the stress and the scale parameter of the proposed distribution. Based on the progressive type-II censoring with binomial removals, estimation of the included parameters is discussed using maximum likelihood and Bayes methods. An example, based on two real data sets, demonstrates the superiority of the proposed distribution over some other known distributions. To compare the performance of the implemented estimation methods, a simulation study is carried out. Finally, some concluding remarks followed by certain features and motivations to the proposed distribution are presented. |
---|---|
AbstractList | It is of great importance for physicists and engineers to assess a lifetime distribution of a series-parallel system when its components' lifetimes are subject to a finite mixture of distributions. The present article addresses this problem by introducing a new distribution called "Poisson-geometric-Lomax distribution". Important properties of the proposed distribution are discussed. When the stress is an increasing nonlinear function of time, the progressive-stress model is considered and the inverse power-law model has suggested a relationship between the stress and the scale parameter of the proposed distribution. Based on the progressive type-II censoring with binomial removals, estimation of the included parameters is discussed using maximum likelihood and Bayes methods. An example, based on two real data sets, demonstrates the superiority of the proposed distribution over some other known distributions. To compare the performance of the implemented estimation methods, a simulation study is carried out. Finally, some concluding remarks followed by certain features and motivations to the proposed distribution are presented. |
Author | Abushal, Tahani A. Abdel-Hamid, Alaa H. |
Author_xml | – sequence: 1 givenname: Tahani A. surname: Abushal fullname: Abushal, Tahani A. – sequence: 2 givenname: Alaa H. surname: Abdel-Hamid fullname: Abdel-Hamid, Alaa H. |
BookMark | eNptUdFKHTEQDUWhVn3rB-QDujqbZHezj0XauiD4os_LZHZyG9mbvSRRud_RH-5elSJFGJjhzDlnYM4XcRSXyEJ8reFC99pcbrH8vlCg1rKfxIkyna7a3tqjd_NncZ7zAwCoWhnVmRPxZ4ieE0diuUSJMvKznEIuKbjHElboMU6c5C4tm8Q5hyeu1uU6SSTimRMWnuQcPMvCuaxwnN6zZdnvuBoGSRzzkkLcSId5lbxcy5wC52qHCeeZZ5n3ufD2TBx7nDOfv_VTcf_zx93VdXVz-2u4-n5TkYG2VN5qpkkp3bbQGXLeOrCkJvC6o163WHPTKE3gHaJzBNZq6jrlsKEeodGnYnj1nRZ8GHcpbDHtxwXD-AIsaTNiKoFmHn0HToFBgqY3BJNl7snbtmk1m9ri6vXt1YvSknNi_8-vhvGQz3jIZ3zLZ6Wr_-gUCh4eXhKG-WPRX5xwmkw |
CitedBy_id | crossref_primary_10_32604_csse_2023_036179 crossref_primary_10_1155_2023_5211682 crossref_primary_10_3390_axioms14040244 crossref_primary_10_1016_j_aej_2024_05_045 crossref_primary_10_3934_math_2022840 |
Cites_doi | 10.1109/TR.1987.5222320 10.1080/03610918.2013.826363 10.1016/0026-2714(94)90004-3 10.1002/0471722162 10.1080/09537280802187634 10.1002/9780470316870 10.1080/01621459.1986.10478289 10.1080/00949655.2016.1243683 10.1214/aoms/1177705987 10.18576/jsap/070109 10.1002/9780470316795 10.1080/00031305.1995.10476150 10.1080/00949655.2013.868463 10.1080/00949650802600730 10.1080/00949659608811749 10.1201/9781420035872 10.1007/978-1-4612-1334-5 10.1007/978-3-540-30726-6 10.1081/STA-100108449 10.1155/2021/6684918 10.1007/s00184-014-0526-4 10.7546/CRABS.2018.11.01 10.15446/rce.v37n1.44369 10.1137/1.9780898719062 10.1002/qre.2279 10.1201/9781351071666 10.1080/02331880802605346 10.1198/00401700152672573 10.1016/j.egypro.2018.12.026, |
ContentType | Journal Article |
CorporateAuthor | Mathematics and Computer Science Department, Faculty of Science, Beni-Suef University, Egypt Department of Mathematical Sciences, Faculty of Applied Sciences, Umm Al-Qura University, Makkah, Saudi Arabia |
CorporateAuthor_xml | – name: Mathematics and Computer Science Department, Faculty of Science, Beni-Suef University, Egypt – name: Department of Mathematical Sciences, Faculty of Applied Sciences, Umm Al-Qura University, Makkah, Saudi Arabia |
DBID | AAYXX CITATION DOA |
DOI | 10.3934/math.2022028 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2473-6988 |
EndPage | 454 |
ExternalDocumentID | oai_doaj_org_article_f70b204ac0594c0d8ee9cf86563e418a 10_3934_math_2022028 |
GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN |
ID | FETCH-LOGICAL-c406t-f83ecd22366074cbf8b08c2d0f37c936a1e5523c0fbaabbc0883c772ba5c9a053 |
IEDL.DBID | DOA |
ISSN | 2473-6988 |
IngestDate | Wed Aug 27 01:29:46 EDT 2025 Tue Jul 01 03:56:50 EDT 2025 Thu Apr 24 22:54:19 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c406t-f83ecd22366074cbf8b08c2d0f37c936a1e5523c0fbaabbc0883c772ba5c9a053 |
OpenAccessLink | https://doaj.org/article/f70b204ac0594c0d8ee9cf86563e418a |
PageCount | 30 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f70b204ac0594c0d8ee9cf86563e418a crossref_primary_10_3934_math_2022028 crossref_citationtrail_10_3934_math_2022028 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | AIMS mathematics |
PublicationYear | 2022 |
Publisher | AIMS Press |
Publisher_xml | – name: AIMS Press |
References | key-10.3934/math.2022028-7 key-10.3934/math.2022028-6 key-10.3934/math.2022028-5 key-10.3934/math.2022028-4 key-10.3934/math.2022028-9 key-10.3934/math.2022028-8 key-10.3934/math.2022028-26 key-10.3934/math.2022028-27 key-10.3934/math.2022028-28 key-10.3934/math.2022028-29 key-10.3934/math.2022028-20 key-10.3934/math.2022028-21 key-10.3934/math.2022028-22 key-10.3934/math.2022028-23 key-10.3934/math.2022028-24 key-10.3934/math.2022028-25 key-10.3934/math.2022028-15 key-10.3934/math.2022028-16 key-10.3934/math.2022028-17 key-10.3934/math.2022028-18 key-10.3934/math.2022028-3 key-10.3934/math.2022028-19 key-10.3934/math.2022028-2 key-10.3934/math.2022028-1 key-10.3934/math.2022028-30 key-10.3934/math.2022028-31 key-10.3934/math.2022028-10 key-10.3934/math.2022028-32 key-10.3934/math.2022028-11 key-10.3934/math.2022028-33 key-10.3934/math.2022028-12 key-10.3934/math.2022028-34 key-10.3934/math.2022028-13 key-10.3934/math.2022028-14 |
References_xml | – ident: key-10.3934/math.2022028-14 – ident: key-10.3934/math.2022028-3 doi: 10.1109/TR.1987.5222320 – ident: key-10.3934/math.2022028-4 doi: 10.1080/03610918.2013.826363 – ident: key-10.3934/math.2022028-26 doi: 10.1016/0026-2714(94)90004-3 – ident: key-10.3934/math.2022028-19 doi: 10.1002/0471722162 – ident: key-10.3934/math.2022028-21 doi: 10.1080/09537280802187634 – ident: key-10.3934/math.2022028-34 doi: 10.1002/9780470316870 – ident: key-10.3934/math.2022028-23 doi: 10.1080/01621459.1986.10478289 – ident: key-10.3934/math.2022028-7 doi: 10.1080/00949655.2016.1243683 – ident: key-10.3934/math.2022028-29 – ident: key-10.3934/math.2022028-12 doi: 10.1214/aoms/1177705987 – ident: key-10.3934/math.2022028-16 doi: 10.18576/jsap/070109 – ident: key-10.3934/math.2022028-1 doi: 10.1002/9780470316795 – ident: key-10.3934/math.2022028-25 – ident: key-10.3934/math.2022028-32 doi: 10.1080/00031305.1995.10476150 – ident: key-10.3934/math.2022028-5 doi: 10.1080/00949655.2013.868463 – ident: key-10.3934/math.2022028-27 doi: 10.1080/00949650802600730 – ident: key-10.3934/math.2022028-20 doi: 10.1080/00949659608811749 – ident: key-10.3934/math.2022028-2 doi: 10.1201/9781420035872 – ident: key-10.3934/math.2022028-22 doi: 10.1007/978-1-4612-1334-5 – ident: key-10.3934/math.2022028-17 doi: 10.1007/978-3-540-30726-6 – ident: key-10.3934/math.2022028-24 doi: 10.1081/STA-100108449 – ident: key-10.3934/math.2022028-13 – ident: key-10.3934/math.2022028-11 doi: 10.1155/2021/6684918 – ident: key-10.3934/math.2022028-15 – ident: key-10.3934/math.2022028-6 doi: 10.1007/s00184-014-0526-4 – ident: key-10.3934/math.2022028-8 doi: 10.7546/CRABS.2018.11.01 – ident: key-10.3934/math.2022028-28 doi: 10.15446/rce.v37n1.44369 – ident: key-10.3934/math.2022028-18 doi: 10.1137/1.9780898719062 – ident: key-10.3934/math.2022028-9 doi: 10.1002/qre.2279 – ident: key-10.3934/math.2022028-33 doi: 10.1201/9781351071666 – ident: key-10.3934/math.2022028-31 doi: 10.1080/02331880802605346 – ident: key-10.3934/math.2022028-30 doi: 10.1198/00401700152672573 – ident: key-10.3934/math.2022028-10 doi: 10.1016/j.egypro.2018.12.026, |
SSID | ssj0002124274 |
Score | 2.211284 |
Snippet | It is of great importance for physicists and engineers to assess a lifetime distribution of a series-parallel system when its components' lifetimes are subject... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 425 |
SubjectTerms | maximum likelihood and bayes estimations mixed system mixture of distributions progressive censoring progressive-stress model simulation |
Title | Inference on a new distribution under progressive-stress accelerated life tests and progressive type-II censoring based on a series-parallel system |
URI | https://doaj.org/article/f70b204ac0594c0d8ee9cf86563e418a |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1BSx0xEA7FU3sQtS1qVXKoJwnmvWT3ZY9aKr6CnnzwbktmMoHCshZ9-kf8w53ZrI_XQ_Ei7CkMuyEzm_kmmflGqe81VFD5TCZDqIyHmEysAU30ELyfWqqS1A7f3NbXC_9rWS03Wn1JTlihBy4Ld55nFqbWRxRiEbQpEDWYA8MQR34SBmjEPm8jmJI9mDdkz_FWyXR3jfPnjP_k7mHKT_jHB21Q9Q8-5WpHbY9gUF-USeyqD9TvqU83aybVx8_qZf5akafvex01o2CdhOx27FOlpQjsQQ9pVpLR-kymlH_oiMguRZggku5-Z9IMKlc83KdNaS1nsGY-18jx7JCMp8WxpfI1sU96NMIP3nXU6cL7_EUtrn7e_bg2YyMFg-yvVyYHR5gYCNQ1IwaEHMAGnCab3QwbV8cJVRyQos0QIwDyzuOQYTfECpvIv-lXtdXf97SvNKGbxRA9e370McfGpQjBpglZB-ThQJ29Lm2LI8u4NLvoWo42RBGtKKIdFXGgTtfSfwq7xn_kLkVLaxnhxB4G2FLa0VLatyzl8D1e8k19lDmVQ5gjtbV6eKJjhiUrOBks8C_Y5uaD |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inference+on+a+new+distribution+under+progressive-stress+accelerated+life+tests+and+progressive+type-II+censoring+based+on+a+series-parallel+system&rft.jtitle=AIMS+mathematics&rft.au=Tahani+A.+Abushal&rft.au=Alaa+H.+Abdel-Hamid&rft.date=2022-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=7&rft.issue=1&rft.spage=425&rft.epage=454&rft_id=info:doi/10.3934%2Fmath.2022028&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_f70b204ac0594c0d8ee9cf86563e418a |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |