Reduction in the Number of Varicella-Zoster Virus-Specific T-Cells in Immunocompromised Children with Varicella

Varicella zoster virus (VZV) causes a life-threatening infection in immunocompromised hosts. The immune response to VZV of healthy subjects has been rigorously assessed, but little is known about that of immunocompromised individuals. This study aimed to clarify the primary response to VZV infection...

Full description

Saved in:
Bibliographic Details
Published inThe Tohoku Journal of Experimental Medicine Vol. 250; no. 3; pp. 181 - 190
Main Authors Onoyama, Sagano, Nakayama, Hideki, Tanaka, Tamami, Ishimura, Masataka, Hoshina, Takayuki, Kanno, Shunsuke, Murata, Kenji, Koga, Yuhki, Ohga, Shouichi
Format Journal Article
LanguageEnglish
Published Japan Tohoku University Medical Press 01.03.2020
Subjects
Online AccessGet full text
ISSN0040-8727
1349-3329
1349-3329
DOI10.1620/tjem.250.181

Cover

Abstract Varicella zoster virus (VZV) causes a life-threatening infection in immunocompromised hosts. The immune response to VZV of healthy subjects has been rigorously assessed, but little is known about that of immunocompromised individuals. This study aimed to clarify the primary response to VZV infection in immunocompromised children. This prospective study enrolled six immunocompromised children (median age, 33 months; range, 20-62) receiving steroids or immunosuppressants, and 10 immunocompetent children (median age, 32 months; range, 15-81) with varicella. The immunocompromised children were three patients with acute lymphoblastic leukemia, two recipients with liver transplantation and one patient with juvenile idiopathic arthritis. Interferon-γ-producing CD69+T-cells produced by VZV stimulation (VZV-specific T-cells) were studied during the acute or convalescent phase. To further address the direct effect of immunosuppressants, we analyzed the number of VZV-specific T-cells after stimulating peripheral blood mononuclear cells obtained from healthy adults with live-attenuated VZV with or without prednisolone, cyclosporine-A, or tacrolimus. The circulating numbers of lymphocytes in the convalescent stage but not acute stage were lower in immunocompromised children compared with immunocompetent children. In the acute stage, immunocompromised patients showed lower VZV-specific CD8+T-cell counts than immunocompetent subjects. In contrast, in the convalescent phase, immunocompromised patients had lower VZV-specific CD4+T-cell counts than immunocompetent hosts. The in vitro culture of activated lymphocytes with prednisolone or immunosuppressants significantly decreased the proportion of VZV-specific CD4+T-cells. In conclusion, the decreased numbers of VZV-specific CD8+T-cells during the acute phase and VZV-specific CD4+T-cells during the convalescent phase of disease may account for severe varicella in immunocompromised children.
AbstractList Varicella zoster virus (VZV) causes a life-threatening infection in immunocompromised hosts. The immune response to VZV of healthy subjects has been rigorously assessed, but little is known about that of immunocompromised individuals. This study aimed to clarify the primary response to VZV infection in immunocompromised children. This prospective study enrolled six immunocompromised children (median age, 33 months; range, 20-62) receiving steroids or immunosuppressants, and 10 immunocompetent children (median age, 32 months; range, 15-81) with varicella. The immunocompromised children were three patients with acute lymphoblastic leukemia, two recipients with liver transplantation and one patient with juvenile idiopathic arthritis. Interferon-γ-producing CD69+T-cells produced by VZV stimulation (VZV-specific T-cells) were studied during the acute or convalescent phase. To further address the direct effect of immunosuppressants, we analyzed the number of VZV-specific T-cells after stimulating peripheral blood mononuclear cells obtained from healthy adults with live-attenuated VZV with or without prednisolone, cyclosporine-A, or tacrolimus. The circulating numbers of lymphocytes in the convalescent stage but not acute stage were lower in immunocompromised children compared with immunocompetent children. In the acute stage, immunocompromised patients showed lower VZV-specific CD8+T-cell counts than immunocompetent subjects. In contrast, in the convalescent phase, immunocompromised patients had lower VZV-specific CD4+T-cell counts than immunocompetent hosts. The in vitro culture of activated lymphocytes with prednisolone or immunosuppressants significantly decreased the proportion of VZV-specific CD4+T-cells. In conclusion, the decreased numbers of VZV-specific CD8+T-cells during the acute phase and VZV-specific CD4+T-cells during the convalescent phase of disease may account for severe varicella in immunocompromised children.Varicella zoster virus (VZV) causes a life-threatening infection in immunocompromised hosts. The immune response to VZV of healthy subjects has been rigorously assessed, but little is known about that of immunocompromised individuals. This study aimed to clarify the primary response to VZV infection in immunocompromised children. This prospective study enrolled six immunocompromised children (median age, 33 months; range, 20-62) receiving steroids or immunosuppressants, and 10 immunocompetent children (median age, 32 months; range, 15-81) with varicella. The immunocompromised children were three patients with acute lymphoblastic leukemia, two recipients with liver transplantation and one patient with juvenile idiopathic arthritis. Interferon-γ-producing CD69+T-cells produced by VZV stimulation (VZV-specific T-cells) were studied during the acute or convalescent phase. To further address the direct effect of immunosuppressants, we analyzed the number of VZV-specific T-cells after stimulating peripheral blood mononuclear cells obtained from healthy adults with live-attenuated VZV with or without prednisolone, cyclosporine-A, or tacrolimus. The circulating numbers of lymphocytes in the convalescent stage but not acute stage were lower in immunocompromised children compared with immunocompetent children. In the acute stage, immunocompromised patients showed lower VZV-specific CD8+T-cell counts than immunocompetent subjects. In contrast, in the convalescent phase, immunocompromised patients had lower VZV-specific CD4+T-cell counts than immunocompetent hosts. The in vitro culture of activated lymphocytes with prednisolone or immunosuppressants significantly decreased the proportion of VZV-specific CD4+T-cells. In conclusion, the decreased numbers of VZV-specific CD8+T-cells during the acute phase and VZV-specific CD4+T-cells during the convalescent phase of disease may account for severe varicella in immunocompromised children.
Varicella zoster virus (VZV) causes a life-threatening infection in immunocompromised hosts. The immune response to VZV of healthy subjects has been rigorously assessed, but little is known about that of immunocompromised individuals. This study aimed to clarify the primary response to VZV infection in immunocompromised children. This prospective study enrolled six immunocompromised children (median age, 33 months; range, 20-62) receiving steroids or immunosuppressants, and 10 immunocompetent children (median age, 32 months; range, 15-81) with varicella. The immunocompromised children were three patients with acute lymphoblastic leukemia, two recipients with liver transplantation and one patient with juvenile idiopathic arthritis. Interferon-γ-producing CD69 T-cells produced by VZV stimulation (VZV-specific T-cells) were studied during the acute or convalescent phase. To further address the direct effect of immunosuppressants, we analyzed the number of VZV-specific T-cells after stimulating peripheral blood mononuclear cells obtained from healthy adults with live-attenuated VZV with or without prednisolone, cyclosporine-A, or tacrolimus. The circulating numbers of lymphocytes in the convalescent stage but not acute stage were lower in immunocompromised children compared with immunocompetent children. In the acute stage, immunocompromised patients showed lower VZV-specific CD8 T-cell counts than immunocompetent subjects. In contrast, in the convalescent phase, immunocompromised patients had lower VZV-specific CD4 T-cell counts than immunocompetent hosts. The in vitro culture of activated lymphocytes with prednisolone or immunosuppressants significantly decreased the proportion of VZV-specific CD4 T-cells. In conclusion, the decreased numbers of VZV-specific CD8 T-cells during the acute phase and VZV-specific CD4 T-cells during the convalescent phase of disease may account for severe varicella in immunocompromised children.
Varicella zoster virus (VZV) causes a life-threatening infection in immunocompromised hosts. The immune response to VZV of healthy subjects has been rigorously assessed, but little is known about that of immunocompromised individuals. This study aimed to clarify the primary response to VZV infection in immunocompromised children. This prospective study enrolled six immunocompromised children (median age, 33 months; range, 20-62) receiving steroids or immunosuppressants, and 10 immunocompetent children (median age, 32 months; range, 15-81) with varicella. The immunocompromised children were three patients with acute lymphoblastic leukemia, two recipients with liver transplantation and one patient with juvenile idiopathic arthritis. Interferon-γ-producing CD69+T-cells produced by VZV stimulation (VZV-specific T-cells) were studied during the acute or convalescent phase. To further address the direct effect of immunosuppressants, we analyzed the number of VZV-specific T-cells after stimulating peripheral blood mononuclear cells obtained from healthy adults with live-attenuated VZV with or without prednisolone, cyclosporine-A, or tacrolimus. The circulating numbers of lymphocytes in the convalescent stage but not acute stage were lower in immunocompromised children compared with immunocompetent children. In the acute stage, immunocompromised patients showed lower VZV-specific CD8+T-cell counts than immunocompetent subjects. In contrast, in the convalescent phase, immunocompromised patients had lower VZV-specific CD4+T-cell counts than immunocompetent hosts. The in vitro culture of activated lymphocytes with prednisolone or immunosuppressants significantly decreased the proportion of VZV-specific CD4+T-cells. In conclusion, the decreased numbers of VZV-specific CD8+T-cells during the acute phase and VZV-specific CD4+T-cells during the convalescent phase of disease may account for severe varicella in immunocompromised children.
Author Ishimura, Masataka
Onoyama, Sagano
Ohga, Shouichi
Tanaka, Tamami
Koga, Yuhki
Nakayama, Hideki
Kanno, Shunsuke
Murata, Kenji
Hoshina, Takayuki
Author_xml – sequence: 1
  fullname: Onoyama, Sagano
  organization: Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University
– sequence: 1
  fullname: Nakayama, Hideki
  organization: Department of Pediatrics, National Hospital Organization Fukuoka Higashi Medical Center
– sequence: 1
  fullname: Tanaka, Tamami
  organization: Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University
– sequence: 1
  fullname: Ishimura, Masataka
  organization: Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University
– sequence: 1
  fullname: Hoshina, Takayuki
  organization: Department of Pediatrics, School of Medicine, University of Occupational and Environmental Health, Japan
– sequence: 1
  fullname: Kanno, Shunsuke
  organization: Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University
– sequence: 1
  fullname: Murata, Kenji
  organization: Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University
– sequence: 1
  fullname: Koga, Yuhki
  organization: Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University
– sequence: 1
  fullname: Ohga, Shouichi
  organization: Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32213753$$D View this record in MEDLINE/PubMed
BookMark eNp1kcFP2zAUxi1URAvbjfOUIwfS2c-p49w2VbAhoSFtjMMuluO8UFdJ3NmOEP897kqpNImT9fx-36dP7zslk8ENSMg5o3MmgH6Oa-znsEiTZEdkxnhR5ZxDNSEzSguayxLKKTkNYU0pL2gpTsiUAzBeLviMuJ_YjCZaN2R2yOIKsx9jX6PPXJs9aG8Ndp3O_7gQ09-D9WPIf23Q2Naa7D5fpm3YCm_6fhyccf3Gu94GbLLlynaNxyF7snF1sPpAjlvdBfz4-p6R39dX98vv-e3dt5vl19vcFFTEvAVoZUNrkI2krRSyEliCkIYuhDEFiBJ5beqmFJQyqBhoUZmqwbIC1oKR_Ixc7HxToL8jhqhSrH8JBnRjUMBlAYxJUSX00ys61j02auNtr_2z2h8pAbADjHcheGyVsVFvbxa9tp1iVG2bUNsmVGpCpSaS6PI_0d73HfzLDl-HqB_xDdY-WtPhAeZ7ydvKrLRXOPAXSTOiCQ
CitedBy_id crossref_primary_10_1007_s40278_020_78584_9
crossref_primary_10_3389_fimmu_2022_1054407
crossref_primary_10_1111_iju_15605
crossref_primary_10_1172_jci_insight_184452
crossref_primary_10_1186_s41043_023_00429_8
crossref_primary_10_36233_0507_4088_151
Cites_doi 10.1111/j.1600-6143.2005.00759.x
10.1093/infdis/jir660
10.1111/tid.12180
10.1016/j.jinf.2015.04.015
10.1371/journal.ppat.1002367
10.1136/bmjopen-2014-004833
10.4049/jimmunol.1700290
ContentType Journal Article
Copyright 2020 Tohoku University Medical Press
Copyright_xml – notice: 2020 Tohoku University Medical Press
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1620/tjem.250.181
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1349-3329
EndPage 190
ExternalDocumentID 32213753
10_1620_tjem_250_181
article_tjem_250_3_250_181_article_char_en
Genre Journal Article
GroupedDBID ---
-~X
.55
.GJ
123
29Q
2WC
36B
3O-
53G
5RE
7.U
ABCQX
ACGFO
ADBBV
AEGXH
AENEX
AIAGR
ALMA_UNASSIGNED_HOLDINGS
BAWUL
CS3
DIK
DU5
E3Z
EBD
EMB
EMOBN
F5P
GX1
JSF
JSH
KQ8
L7B
MK0
OK1
OVT
P2P
RJT
RNS
RZJ
SV3
TKC
TR2
W2D
WH7
X7J
X7M
XSB
ZGI
ZXP
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
M~E
NPM
7X8
ID FETCH-LOGICAL-c406t-f22f8d0b28d80f86896e7268c056cc4267e3bcbd760012912a69c9de7921f2c83
ISSN 0040-8727
1349-3329
IngestDate Fri Jul 11 06:17:49 EDT 2025
Thu Jan 02 22:58:47 EST 2025
Thu Apr 24 22:59:57 EDT 2025
Tue Jul 01 01:28:58 EDT 2025
Wed Sep 03 06:15:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords immunosuppressive agents
varicella-zoster virus
chickenpox
interferon-gamma
cellular immunity
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c406t-f22f8d0b28d80f86896e7268c056cc4267e3bcbd760012912a69c9de7921f2c83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.jstage.jst.go.jp/article/tjem/250/3/250_181/_article/-char/en
PMID 32213753
PQID 2384211869
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_2384211869
pubmed_primary_32213753
crossref_citationtrail_10_1620_tjem_250_181
crossref_primary_10_1620_tjem_250_181
jstage_primary_article_tjem_250_3_250_181_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-03-01
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Japan
PublicationPlace_xml – name: Japan
PublicationTitle The Tohoku Journal of Experimental Medicine
PublicationTitleAlternate Tohoku J. Exp. Med.
PublicationYear 2020
Publisher Tohoku University Medical Press
Publisher_xml – name: Tohoku University Medical Press
References Schub, D., Janssen, E., Leyking, S., Sester, U., Assmann, G., Hennes, P., Smola, S., Vogt, T., Rohrer, T., Sester, M. & Schmidt, T. (2015) Altered phenotype and functionality of varicella zoster virus-specific cellular immunity in individuals with active infection. J. Infect. Dis., 211, 600-612.
Guchelaar, H.J., Vermes, I., Koopmans, R.P., Reutelingsperger, C.P. & Haanen, C. (1998) Apoptosis- and necrosis-inducing potential of cladribine, cytarabine, cisplatin, and 5-fluorouracil in vitro: a quantitative pharmacodynamic model. Cancer Chemother. Pharmacol., 42, 77-83.
Steain, M., Sutherland, J.P., Rodriguez, M., Cunningham, A.L., Slobedman, B. & Abendroth, A. (2014) Analysis of T cell responses during active varicella-zoster virus reactivation in human ganglia. J. Virol., 88, 2704-2716.
Matsuzaki, A., Suminoe, A., Koga, Y., Kusuhara, K., Hara, T., Ogata, R., Sata, T. & Hara, T. (2008) Fatal visceral varicella-zoster virus infection without skin involvement in a child with acute lymphoblastic leukemia. Pediatr. Hematol. Oncol., 25, 237-242.
Kawai, K., Gebremeskel, B.G. & Acosta, C.J. (2014) Systematic review of incidence and complications of herpes zoster: towards a global perspective. BMJ Open, 4, e004833.
Ishizaki, Y., Tezuka, J., Ohga, S., Nomura, A., Suga, N., Kuromaru, R., Kusuhara, K., Mizuno, Y., Kasuga, N. & Hara, T. (2003) Quantification of circulating varicella zoster virus-DNA for the early diagnosis of visceral varicella. J. Infect., 47, 133-138.
Banovic, T., Yanilla, M., Simmons, R., Robertson, I., Schroder, W.A., Raffelt, N.C., Wilson, Y.A., Hill, G.R., Hogan, P. & Nourse, C.B. (2011) Disseminated varicella infection caused by varicella vaccine strain in a child with low invariant natural killer T cells and diminished CD1d expression. J. Infect. Dis., 204, 1893-1901.
Duncan, C.J. & Hambleton, S. (2015) Varicella zoster virus immunity: a primer. J. Infect., 71 Suppl 1, S47-53.
Vermont, C.L., Jol-van der Zijde, E.C., Hissink Muller, P., Ball, L.M., Bredius, R.G., Vossen, A.C. & Lankester, A.C. (2014) Varicella zoster reactivation after hematopoietic stem cell transplant in children is strongly correlated with leukemia treatment and suppression of host T-lymphocyte immunity. Transpl. Infect. Dis., 16, 188-194.
Hoshina, T., Kusuhara, K., Saito, M., Mizuno, Y. & Hara, T. (2012) NKRP1A+ gammadelta and alphabeta T cells are preferentially induced in patients with Salmonella infection. Hum. Immunol., 73, 623-628.
Herold, M.J., McPherson, K.G. & Reichardt, H.M. (2006) Glucocorticoids in T cell apoptosis and function. Cell. Mol. Life Sci., 63, 60-72.
Offidani, M., Corvatta, L., Olivieri, A., Mele, A., Brunori, M., Montanari, M., Rupoli, S., Scalari, P. & Leoni, P. (2001) A predictive model of varicella-zoster virus infection after autologous peripheral blood progenitor cell transplantation. Clin. Infect. Dis., 32, 1414-1422.
Vossen, M.T., Biezeveld, M.H., de Jong, M.D., Gent, M.R., Baars, P.A., von Rosenstiel, I.A., van Lier, R.A. & Kuijpers, T.W. (2005) Absence of circulating natural killer and primed CD8+ cells in life-threatening varicella. J. Infect. Dis., 191, 198-206.
Yu, H.R., Huang, H.C., Kuo, H.C., Sheen, J.M., Ou, C.Y., Hsu, T.Y. & Yang, K.D. (2011) IFN-alpha production by human mononuclear cells infected with varicella-zoster virus through TLR9-dependent and -independent pathways. Cell. Mol. Immunol., 8, 181-188.
Park, H.B., Kim, K.C., Park, J.H., Kang, T.Y., Lee, H.S., Kim, T.H., Jun, J.B., Bae, S.C., Yoo, D.H., Craft, J. & Jung, S. (2004) Association of reduced CD4 T cell responses specific to varicella zoster virus with high incidence of herpes zoster in patients with systemic lupus erythematosus. J. Rheumatol., 31, 2151-2155.
Landmeier, S., Altvater, B., Pscherer, S., Eing, B.R., Kuehn, J., Rooney, C.M., Juergens, H. & Rossig, C. (2007) Gene-engineered varicella-zoster virus reactive CD4+ cytotoxic T cells exert tumor-specific effector function. Cancer Res., 67, 8335-8343.
Rowland, P., Wald, E.R., Mirro, J.R. Jr., Yunis, E., Albo, V.C., Wollman, M.R. & Blatt, J. (1995) Progressive varicella presenting with pain and minimal skin involvement in children with acute lymphoblastic leukemia. J. Clin. Oncol., 13, 1697-1703.
Honda, K., Takada, H., Nagatoshi, Y., Akazawa, K., Ohga, S., Ishii, E., Okamura, J. & Hara, T. (2000) Thymus-independent expansion of T lymphocytes in children after allogeneic bone marrow transplantation. Bone Marrow Transplant., 25, 647-652.
Arvin, A.M. (1996) Varicella-zoster virus. Clin. Microbiol. Rev., 9, 361-381.
Weinberg, A., Canniff, J., Rouphael, N., Mehta, A., Mulligan, M., Whitaker, J.A. & Levin, M.J. (2017) Varicella-zoster virus-specific cellular immune responses to the live attenuated zoster vaccine in young and older adults. J. Immunol., 199, 604-612.
Haberthur, K., Engelmann, F., Park, B., Barron, A., Legasse, A., Dewane, J., Fischer, M., Kerns, A., Brown, M. & Messaoudi, I. (2011) CD4 T cell immunity is critical for the control of simian varicella virus infection in a nonhuman primate model of VZV infection. PLoS Pathog., 7, e1002367.
Kangro, H.O., Ward, A., Argent, S., Heath, R.B., Cradock-Watson, J.E. & Ridehalgh, M.K. (1988) Detection of specific IgM in varicella and herpes zoster by antibody-capture radioimmunoassay. Epidemiol. Infect., 101, 187-195.
Pearl, J.P., Parris, J., Hale, D.A., Hoffmann, S.C., Bernstein, W.B., McCoy, K.L., Swanson, S.J., Mannon, R.B., Roederer, M. & Kirk, A.D. (2005) Immunocompetent T-cells with a memory-like phenotype are the dominant cell type following antibody-mediated T-cell depletion. Am. J. Transplant., 5, 465-474.
Rondaan, C., de Haan, A., Horst, G., Hempel, J.C., van Leer, C., Bos, N.A., van Assen, S., Bijl, M. & Westra, J. (2014) Altered cellular and humoral immunity to varicella-zoster virus in patients with autoimmune diseases. Arthritis Rheumatol., 66, 3122-3128.
Arvin, A.M., Moffat, J.F. & Redman, R. (1996) Varicella-zoster virus: aspects of pathogenesis and host response to natural infection and varicella vaccine. Adv. Virus Res., 46, 263-309.
Vossen, M.T., Gent, M.R., Weel, J.F., de Jong, M.D., van Lier, R.A. & Kuijpers, T.W. (2004) Development of virus-specific CD4+ T cells on reexposure to Varicella-Zoster virus. J. Infect. Dis., 190, 72-82.
Choi, S.J., You, H.S. & Chung, S.Y. (2008) Tacrolimus-induced apoptotic signal transduction pathway. Transplant. Proc., 40, 2734-2736.
Umezawa, Y., Kakihana, K., Oshikawa, G., Kobayashi, T., Doki, N., Sakamaki, H. & Ohashi, K. (2014) Clinical features and risk factors for developing varicella zoster virus dissemination following hematopoietic stem cell transplantation. Transpl. Infect. Dis., 16, 195-202.
22
23
24
25
26
27
28
10
11
12
13
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
21
References_xml – reference: Arvin, A.M. (1996) Varicella-zoster virus. Clin. Microbiol. Rev., 9, 361-381.
– reference: Matsuzaki, A., Suminoe, A., Koga, Y., Kusuhara, K., Hara, T., Ogata, R., Sata, T. & Hara, T. (2008) Fatal visceral varicella-zoster virus infection without skin involvement in a child with acute lymphoblastic leukemia. Pediatr. Hematol. Oncol., 25, 237-242.
– reference: Honda, K., Takada, H., Nagatoshi, Y., Akazawa, K., Ohga, S., Ishii, E., Okamura, J. & Hara, T. (2000) Thymus-independent expansion of T lymphocytes in children after allogeneic bone marrow transplantation. Bone Marrow Transplant., 25, 647-652.
– reference: Kawai, K., Gebremeskel, B.G. & Acosta, C.J. (2014) Systematic review of incidence and complications of herpes zoster: towards a global perspective. BMJ Open, 4, e004833.
– reference: Umezawa, Y., Kakihana, K., Oshikawa, G., Kobayashi, T., Doki, N., Sakamaki, H. & Ohashi, K. (2014) Clinical features and risk factors for developing varicella zoster virus dissemination following hematopoietic stem cell transplantation. Transpl. Infect. Dis., 16, 195-202.
– reference: Vossen, M.T., Gent, M.R., Weel, J.F., de Jong, M.D., van Lier, R.A. & Kuijpers, T.W. (2004) Development of virus-specific CD4+ T cells on reexposure to Varicella-Zoster virus. J. Infect. Dis., 190, 72-82.
– reference: Hoshina, T., Kusuhara, K., Saito, M., Mizuno, Y. & Hara, T. (2012) NKRP1A+ gammadelta and alphabeta T cells are preferentially induced in patients with Salmonella infection. Hum. Immunol., 73, 623-628.
– reference: Vermont, C.L., Jol-van der Zijde, E.C., Hissink Muller, P., Ball, L.M., Bredius, R.G., Vossen, A.C. & Lankester, A.C. (2014) Varicella zoster reactivation after hematopoietic stem cell transplant in children is strongly correlated with leukemia treatment and suppression of host T-lymphocyte immunity. Transpl. Infect. Dis., 16, 188-194.
– reference: Guchelaar, H.J., Vermes, I., Koopmans, R.P., Reutelingsperger, C.P. & Haanen, C. (1998) Apoptosis- and necrosis-inducing potential of cladribine, cytarabine, cisplatin, and 5-fluorouracil in vitro: a quantitative pharmacodynamic model. Cancer Chemother. Pharmacol., 42, 77-83.
– reference: Pearl, J.P., Parris, J., Hale, D.A., Hoffmann, S.C., Bernstein, W.B., McCoy, K.L., Swanson, S.J., Mannon, R.B., Roederer, M. & Kirk, A.D. (2005) Immunocompetent T-cells with a memory-like phenotype are the dominant cell type following antibody-mediated T-cell depletion. Am. J. Transplant., 5, 465-474.
– reference: Herold, M.J., McPherson, K.G. & Reichardt, H.M. (2006) Glucocorticoids in T cell apoptosis and function. Cell. Mol. Life Sci., 63, 60-72.
– reference: Park, H.B., Kim, K.C., Park, J.H., Kang, T.Y., Lee, H.S., Kim, T.H., Jun, J.B., Bae, S.C., Yoo, D.H., Craft, J. & Jung, S. (2004) Association of reduced CD4 T cell responses specific to varicella zoster virus with high incidence of herpes zoster in patients with systemic lupus erythematosus. J. Rheumatol., 31, 2151-2155.
– reference: Ishizaki, Y., Tezuka, J., Ohga, S., Nomura, A., Suga, N., Kuromaru, R., Kusuhara, K., Mizuno, Y., Kasuga, N. & Hara, T. (2003) Quantification of circulating varicella zoster virus-DNA for the early diagnosis of visceral varicella. J. Infect., 47, 133-138.
– reference: Vossen, M.T., Biezeveld, M.H., de Jong, M.D., Gent, M.R., Baars, P.A., von Rosenstiel, I.A., van Lier, R.A. & Kuijpers, T.W. (2005) Absence of circulating natural killer and primed CD8+ cells in life-threatening varicella. J. Infect. Dis., 191, 198-206.
– reference: Schub, D., Janssen, E., Leyking, S., Sester, U., Assmann, G., Hennes, P., Smola, S., Vogt, T., Rohrer, T., Sester, M. & Schmidt, T. (2015) Altered phenotype and functionality of varicella zoster virus-specific cellular immunity in individuals with active infection. J. Infect. Dis., 211, 600-612.
– reference: Duncan, C.J. & Hambleton, S. (2015) Varicella zoster virus immunity: a primer. J. Infect., 71 Suppl 1, S47-53.
– reference: Steain, M., Sutherland, J.P., Rodriguez, M., Cunningham, A.L., Slobedman, B. & Abendroth, A. (2014) Analysis of T cell responses during active varicella-zoster virus reactivation in human ganglia. J. Virol., 88, 2704-2716.
– reference: Offidani, M., Corvatta, L., Olivieri, A., Mele, A., Brunori, M., Montanari, M., Rupoli, S., Scalari, P. & Leoni, P. (2001) A predictive model of varicella-zoster virus infection after autologous peripheral blood progenitor cell transplantation. Clin. Infect. Dis., 32, 1414-1422.
– reference: Rowland, P., Wald, E.R., Mirro, J.R. Jr., Yunis, E., Albo, V.C., Wollman, M.R. & Blatt, J. (1995) Progressive varicella presenting with pain and minimal skin involvement in children with acute lymphoblastic leukemia. J. Clin. Oncol., 13, 1697-1703.
– reference: Arvin, A.M., Moffat, J.F. & Redman, R. (1996) Varicella-zoster virus: aspects of pathogenesis and host response to natural infection and varicella vaccine. Adv. Virus Res., 46, 263-309.
– reference: Kangro, H.O., Ward, A., Argent, S., Heath, R.B., Cradock-Watson, J.E. & Ridehalgh, M.K. (1988) Detection of specific IgM in varicella and herpes zoster by antibody-capture radioimmunoassay. Epidemiol. Infect., 101, 187-195.
– reference: Landmeier, S., Altvater, B., Pscherer, S., Eing, B.R., Kuehn, J., Rooney, C.M., Juergens, H. & Rossig, C. (2007) Gene-engineered varicella-zoster virus reactive CD4+ cytotoxic T cells exert tumor-specific effector function. Cancer Res., 67, 8335-8343.
– reference: Haberthur, K., Engelmann, F., Park, B., Barron, A., Legasse, A., Dewane, J., Fischer, M., Kerns, A., Brown, M. & Messaoudi, I. (2011) CD4 T cell immunity is critical for the control of simian varicella virus infection in a nonhuman primate model of VZV infection. PLoS Pathog., 7, e1002367.
– reference: Yu, H.R., Huang, H.C., Kuo, H.C., Sheen, J.M., Ou, C.Y., Hsu, T.Y. & Yang, K.D. (2011) IFN-alpha production by human mononuclear cells infected with varicella-zoster virus through TLR9-dependent and -independent pathways. Cell. Mol. Immunol., 8, 181-188.
– reference: Rondaan, C., de Haan, A., Horst, G., Hempel, J.C., van Leer, C., Bos, N.A., van Assen, S., Bijl, M. & Westra, J. (2014) Altered cellular and humoral immunity to varicella-zoster virus in patients with autoimmune diseases. Arthritis Rheumatol., 66, 3122-3128.
– reference: Choi, S.J., You, H.S. & Chung, S.Y. (2008) Tacrolimus-induced apoptotic signal transduction pathway. Transplant. Proc., 40, 2734-2736.
– reference: Banovic, T., Yanilla, M., Simmons, R., Robertson, I., Schroder, W.A., Raffelt, N.C., Wilson, Y.A., Hill, G.R., Hogan, P. & Nourse, C.B. (2011) Disseminated varicella infection caused by varicella vaccine strain in a child with low invariant natural killer T cells and diminished CD1d expression. J. Infect. Dis., 204, 1893-1901.
– reference: Weinberg, A., Canniff, J., Rouphael, N., Mehta, A., Mulligan, M., Whitaker, J.A. & Levin, M.J. (2017) Varicella-zoster virus-specific cellular immune responses to the live attenuated zoster vaccine in young and older adults. J. Immunol., 199, 604-612.
– ident: 2
– ident: 4
– ident: 12
– ident: 10
– ident: 16
– ident: 14
– ident: 18
  doi: 10.1111/j.1600-6143.2005.00759.x
– ident: 28
– ident: 3
  doi: 10.1093/infdis/jir660
– ident: 9
– ident: 24
  doi: 10.1111/tid.12180
– ident: 20
– ident: 26
– ident: 22
– ident: 17
– ident: 5
  doi: 10.1016/j.jinf.2015.04.015
– ident: 1
– ident: 7
  doi: 10.1371/journal.ppat.1002367
– ident: 11
– ident: 13
  doi: 10.1136/bmjopen-2014-004833
– ident: 19
– ident: 15
– ident: 6
– ident: 8
– ident: 27
  doi: 10.4049/jimmunol.1700290
– ident: 21
– ident: 25
– ident: 23
SSID ssj0034076
Score 2.2351217
Snippet Varicella zoster virus (VZV) causes a life-threatening infection in immunocompromised hosts. The immune response to VZV of healthy subjects has been rigorously...
SourceID proquest
pubmed
crossref
jstage
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 181
SubjectTerms Antigens, CD - metabolism
Antigens, Differentiation, T-Lymphocyte - metabolism
cellular immunity
chickenpox
Chickenpox - drug therapy
Chickenpox - immunology
Chickenpox - virology
Child
Child, Preschool
Convalescence
Herpesvirus 3, Human - immunology
Humans
Immunocompetence
immunosuppressive agents
Immunosuppressive Agents - therapeutic use
Infant
interferon-gamma
Interferon-gamma - metabolism
Lectins, C-Type - metabolism
Lymphocyte Activation - immunology
Lymphocyte Count
Species Specificity
T-Lymphocytes - immunology
Tissue Donors
varicella-zoster virus
Title Reduction in the Number of Varicella-Zoster Virus-Specific T-Cells in Immunocompromised Children with Varicella
URI https://www.jstage.jst.go.jp/article/tjem/250/3/250_181/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/32213753
https://www.proquest.com/docview/2384211869
Volume 250
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX The Tohoku Journal of Experimental Medicine, 2020, Vol.250(3), pp.181-190
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELeqgRAviG_Kl4wET5VLY7dJ_IgmYCANJNRNEy-R7dijLY1R1zyMf4l_knPsuGm3SYOXqIp9Tuvf5Xx3vQ-EXguQiklqciJlyQnYG4LIklHCpTHcqLHkTSHtwy_pwdH488nkpNf704laqtdyqH5fmlfyP6jCPcDVZcn-A7JxUbgBnwFfuALCcL0Wxt9c3dWtaMWmv4dTAI-FqxYEGJPvLo1jNTiereoz0rSbNzM1mJJ9GG2CYT-5FBHrYstXFlB3Lt9uhvdmqa4iO7U_7KLuFp7Y6hWw-5c94Cm8ngqSfT6LzGSdB6y5PxULcV4v4tDXyp6LpfBe61NR2Y2PoYKpnmQplrOu3wKM1Bi41cri8Qhksa8MMNRe_LIxJ4wFH0iQz9RXpg2MyDrSNvHdXsLBnfi-oxfOhJS6IMr1XC-HsNQwEnVLb-8ciTFQ0ZlIQF846gKoi8Sl-d-gWdbEBHw8ifFEDCzjtA3RdD8rZFkA9dvus7f0n5tzMAFO9dXWTaPlTO-iO8E8we88r91DPV3dR7cOA5oPkI0sh2cVBpbDnuWwNXiX5fA2y-HAco7wAsvhluWwY7nNUg_R0Yf30_0DEnp2EAWq4ZoYSk1ejiTNy3xk8jTnqc5omitQtJUCdTDTTCpZZo2izRMqUq54qTNOE0NVzh6hvcpW-gnCijn_QCo1B7VZ6glnhrnsyVFpdKaU7KNBu5OFCgXtXV-Vn8VlqPXRmzj7ly_kcsU87kGJs8LrvZnF2rlxyGVIgkDqo1ctjgVsXrNPlbb1WQGK8Zgmrv1bHz32AMf14UhNWDZhT6_5DZ-h25v36TnaW69q_QI047V82XDkX4oMvpM
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reduction+in+the+Number+of+Varicella-Zoster+Virus-Specific+T-Cells+in+Immunocompromised+Children+with+Varicella&rft.jtitle=Tohoku+journal+of+experimental+medicine&rft.au=Murata%2C+Kenji&rft.au=Hoshina%2C+Takayuki&rft.au=Onoyama%2C+Sagano&rft.au=Tanaka%2C+Tamami&rft.date=2020-03-01&rft.issn=0040-8727&rft.eissn=1349-3329&rft.volume=250&rft.issue=3&rft.spage=181&rft.epage=190&rft_id=info:doi/10.1620%2Ftjem.250.181&rft.externalDBID=n%2Fa&rft.externalDocID=10_1620_tjem_250_181
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0040-8727&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0040-8727&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0040-8727&client=summon