Efficient CRISPR/Cas9 gene-chemo synergistic cancer therapy via a stimuli-responsive chitosan-based nanocomplex elicits anti-tumorigenic pathway effect
[Display omitted] •Nanocomplex for co-delivery of CRISPR/Cas9 and paclitaxel was constructed.•The nanosystem triggered efficient gene-editing with good safety.•The gene therapy of VEGFR2 sensitized the treatment effect of paclitaxel.•The nanosystem exhibited the synergistic modulation for IL-6-IL-8/...
Saved in:
Published in | Chemical engineering journal (Lausanne, Switzerland : 1996) Vol. 393; p. 124688 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.08.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Nanocomplex for co-delivery of CRISPR/Cas9 and paclitaxel was constructed.•The nanosystem triggered efficient gene-editing with good safety.•The gene therapy of VEGFR2 sensitized the treatment effect of paclitaxel.•The nanosystem exhibited the synergistic modulation for IL-6-IL-8/NF-κB pathway.•The nanosystem achieved significant synergistic gene-chemo HCC treatment.
Clustered regularly interspaced short palindromic repeat (CRISPR)-associated Cas9 nuclease system (CRISPR/Cas9) has become a powerful toolbox as a gene fixed-point knock-out method and hold the promising prospect for cancer therapy. However, the biological safety of the viral vectors and the instability of exogenous plasmid in blood circulation limits its application. Herein, we reported a lactobionic acid functionalized and stimuli-responsive chitosan based nanocomplex to co-deliver sgVEGFR2/Cas9 plasmid and paclitaxel for hepatoma carcinoma therapy. The genome editing efficiency of sgVEGFR2/Cas9 in the nanosystem achieved up to 38.6% of HepG2 cells in vitro and 33.4% of tumor tissues in vivo. The nanocomplex suppressed >60% VEGFR2 protein expression of HepG2 cells and inhibited hepatoma carcinoma (HCC) tumor progress by 70% on mice. In vivo study indicated the obvious tumor accumulation and the good biosafety of the nanosystem. Moreover, the gene-drug co-loaded nanoparticles stimulate anti-tumorigenic pathway of HCC by suppressing pro-inflammatory cytokines (IL-6/IL-8) and tumor angiogenesis-related protein (NF-κB p65) expression, which revealed the potential pathway inhibition of PTX when combined with the gene therapy for overexpression VEGFR2 on HCC cells. Overall, this strategy provided a versatile method for high efficiency CRISPR/Cas9 system delivery and showed tremendous application prospect for gene-chemo synergistic therapy. |
---|---|
AbstractList | [Display omitted]
•Nanocomplex for co-delivery of CRISPR/Cas9 and paclitaxel was constructed.•The nanosystem triggered efficient gene-editing with good safety.•The gene therapy of VEGFR2 sensitized the treatment effect of paclitaxel.•The nanosystem exhibited the synergistic modulation for IL-6-IL-8/NF-κB pathway.•The nanosystem achieved significant synergistic gene-chemo HCC treatment.
Clustered regularly interspaced short palindromic repeat (CRISPR)-associated Cas9 nuclease system (CRISPR/Cas9) has become a powerful toolbox as a gene fixed-point knock-out method and hold the promising prospect for cancer therapy. However, the biological safety of the viral vectors and the instability of exogenous plasmid in blood circulation limits its application. Herein, we reported a lactobionic acid functionalized and stimuli-responsive chitosan based nanocomplex to co-deliver sgVEGFR2/Cas9 plasmid and paclitaxel for hepatoma carcinoma therapy. The genome editing efficiency of sgVEGFR2/Cas9 in the nanosystem achieved up to 38.6% of HepG2 cells in vitro and 33.4% of tumor tissues in vivo. The nanocomplex suppressed >60% VEGFR2 protein expression of HepG2 cells and inhibited hepatoma carcinoma (HCC) tumor progress by 70% on mice. In vivo study indicated the obvious tumor accumulation and the good biosafety of the nanosystem. Moreover, the gene-drug co-loaded nanoparticles stimulate anti-tumorigenic pathway of HCC by suppressing pro-inflammatory cytokines (IL-6/IL-8) and tumor angiogenesis-related protein (NF-κB p65) expression, which revealed the potential pathway inhibition of PTX when combined with the gene therapy for overexpression VEGFR2 on HCC cells. Overall, this strategy provided a versatile method for high efficiency CRISPR/Cas9 system delivery and showed tremendous application prospect for gene-chemo synergistic therapy. |
ArticleNumber | 124688 |
Author | Wu, Peng-Yu Luo, Bang-Yue Zou, Jun-Jie Jiang, Jia-Li Zhao, Rui-Rui Shao, Jing-Wei Zhang, Bing-Chen Liao, Yu-Qin |
Author_xml | – sequence: 1 givenname: Bing-Chen surname: Zhang fullname: Zhang, Bing-Chen organization: Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China – sequence: 2 givenname: Peng-Yu surname: Wu fullname: Wu, Peng-Yu organization: Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China – sequence: 3 givenname: Jun-Jie surname: Zou fullname: Zou, Jun-Jie organization: Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China – sequence: 4 givenname: Jia-Li surname: Jiang fullname: Jiang, Jia-Li organization: Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China – sequence: 5 givenname: Rui-Rui surname: Zhao fullname: Zhao, Rui-Rui organization: Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China – sequence: 6 givenname: Bang-Yue surname: Luo fullname: Luo, Bang-Yue organization: Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China – sequence: 7 givenname: Yu-Qin surname: Liao fullname: Liao, Yu-Qin organization: Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China – sequence: 8 givenname: Jing-Wei surname: Shao fullname: Shao, Jing-Wei email: shaojingwei@fzu.edu.cn organization: Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China |
BookMark | eNp9kEtO5DAQhq0RSMNjDjA7X8CN7XScRLMatWBAQgLxWFsVp0y7ldiRbZrpk3Bd3GpWLFhVlUpflf7vlBz54JGQ34IvBBfqYrMwuFlILsssl6ptf5AT0TYVq6SQR6Wv2pq13bL5SU5T2nDOVSe6E_J-aa0zDn2mq4ebx_uHixWkjr6gR2bWOAWadh7ji0vZGWrAG4w0rzHCvKNbBxRo2Uyvo2MR0xx8clukZu1ySOBZDwkH6sEHE6Z5xP8Ux_IuJwo-O5ZfpxBdeVZuz5DXb7CjaC2afE6OLYwJf33WM_J8dfm0uma3d_9uVn9vmVlylZnlyHsrS-lVr2ojjBoq0bXQdMBtWw0S-16ovsG6khUOEgZsTFOruulNN9TVGRGHuyaGlCJaPUc3QdxpwfXerN7oYlbvzeqD2cI0X5iSCLILPkdw47fknwOJJdLWYdRp797g4GIJrYfgvqE_AHYumdQ |
CitedBy_id | crossref_primary_10_1016_j_omtn_2024_102256 crossref_primary_10_1002_EXP_20210081 crossref_primary_10_1016_j_ajps_2025_101041 crossref_primary_10_1016_j_biomaterials_2024_122573 crossref_primary_10_1016_j_apsb_2023_02_021 crossref_primary_10_1016_j_ijbiomac_2021_10_029 crossref_primary_10_1002_wnan_1938 crossref_primary_10_1039_D2TB02610D crossref_primary_10_3390_pharmaceutics16070868 crossref_primary_10_1039_D3BM00529A crossref_primary_10_3390_biom12091239 crossref_primary_10_2147_JHC_S456683 crossref_primary_10_1208_s12248_021_00613_w crossref_primary_10_1016_j_jconrel_2022_02_012 crossref_primary_10_1016_j_carbpol_2023_121562 crossref_primary_10_1002_adfm_202305630 crossref_primary_10_1016_j_biopha_2022_113932 crossref_primary_10_1021_acsabm_1c01112 crossref_primary_10_1016_j_carbpol_2021_118323 crossref_primary_10_1016_j_ijbiomac_2024_137601 crossref_primary_10_1016_j_cej_2022_135116 crossref_primary_10_1002_smll_202005222 crossref_primary_10_1007_s13205_024_04186_1 crossref_primary_10_1016_j_jconrel_2023_08_028 crossref_primary_10_3390_pharmaceutics13060853 crossref_primary_10_1002_mabi_202300102 crossref_primary_10_1002_adma_202300665 crossref_primary_10_1016_j_asems_2024_100104 crossref_primary_10_1021_acsmaterialslett_3c01338 crossref_primary_10_2217_nnm_2020_0146 crossref_primary_10_3389_fonc_2022_1054029 crossref_primary_10_34133_bmr_0023 crossref_primary_10_1021_acs_chemmater_1c02844 crossref_primary_10_14233_ajchem_2022_23548 crossref_primary_10_1016_j_cej_2022_134992 crossref_primary_10_1016_j_matdes_2024_113097 crossref_primary_10_3390_pharmaceutics14091773 crossref_primary_10_2174_0113892037238265231006051215 crossref_primary_10_1021_acsami_0c17660 crossref_primary_10_1016_j_colsurfb_2021_112257 crossref_primary_10_1016_j_mtbio_2024_101138 crossref_primary_10_1016_j_nantod_2022_101482 crossref_primary_10_1016_j_cis_2025_103497 crossref_primary_10_1039_D2BM01636B crossref_primary_10_1016_j_heliyon_2024_e39323 crossref_primary_10_1021_acsami_4c11418 crossref_primary_10_1039_D3BM00788J crossref_primary_10_1039_D3TB01850D crossref_primary_10_1039_D1BM01658J crossref_primary_10_1016_j_jddst_2022_103737 crossref_primary_10_3390_pharmaceutics14091840 crossref_primary_10_1016_j_aej_2023_08_046 crossref_primary_10_1002_biot_202300077 crossref_primary_10_1186_s12951_022_01570_y crossref_primary_10_3390_biotech12020037 crossref_primary_10_3390_pharmaceutics14112463 crossref_primary_10_1016_j_lfs_2020_118969 crossref_primary_10_1002_mba2_70 |
Cites_doi | 10.1002/anie.201506030 10.1021/acsami.7b14755 10.1021/acs.molpharmaceut.8b00444 10.3389/fgene.2015.00300 10.1002/med.21506 10.1021/acsnano.8b01670 10.1016/j.nano.2017.10.007 10.1016/j.biomaterials.2017.09.015 10.1016/j.ejps.2017.10.036 10.1039/C7NR05843H 10.1038/nrclinonc.2014.40 10.1038/nbt.3081 10.1093/nar/gku1403 10.1002/anie.201708689 10.1039/C8NR90055H 10.1039/C7NR01677H 10.1038/nature23270 10.1038/527S10a 10.1002/advs.201700175 10.1080/15548627.2018.1474994 10.1016/j.colsurfb.2017.07.049 10.1016/j.biomaterials.2017.07.030 10.2217/imt.15.126 10.1038/nprot.2013.143 10.1016/j.cell.2014.05.010 10.1039/C8BM00263K 10.1038/nm.4377 10.1021/acsnano.8b04658 10.1126/science.1247005 10.1038/516S2a 10.1038/cddis.2017.123 10.1073/pnas.1520244113 10.1038/nbt.2682 10.1016/j.cell.2014.09.014 10.1007/978-1-4939-6518-2_7 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. |
Copyright_xml | – notice: 2020 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.cej.2020.124688 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3212 |
ExternalDocumentID | 10_1016_j_cej_2020_124688 S1385894720306793 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABLST ABMAC ABNUV ABUDA ABYKQ ACDAQ ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHPOS AIEXJ AIKHN AITUG AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SPC SPCBC SSG SSJ SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABXDB ACVFH ADCNI AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BKOMP BNPGV CITATION EJD FEDTE FGOYB HVGLF HZ~ R2- RIG SEW SSH ZY4 |
ID | FETCH-LOGICAL-c406t-f0e0bf2f0eb6b65c1c6d3198a79a0f83d2ebb16b7e5323ed2ade7c75657bc9d53 |
IEDL.DBID | .~1 |
ISSN | 1385-8947 |
IngestDate | Tue Jul 01 04:26:46 EDT 2025 Thu Apr 24 23:11:32 EDT 2025 Fri Feb 23 02:48:09 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Co-delivery nanosystem HCC treatment CRISPR/Cas9 system Gene-chemo synergistic therapy Paclitaxel |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c406t-f0e0bf2f0eb6b65c1c6d3198a79a0f83d2ebb16b7e5323ed2ade7c75657bc9d53 |
OpenAccessLink | https://doi.org/10.1016/j.cej.2020.124688 |
ParticipantIDs | crossref_primary_10_1016_j_cej_2020_124688 crossref_citationtrail_10_1016_j_cej_2020_124688 elsevier_sciencedirect_doi_10_1016_j_cej_2020_124688 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-08-01 2020-08-00 |
PublicationDateYYYYMMDD | 2020-08-01 |
PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Chemical engineering journal (Lausanne, Switzerland : 1996) |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Kim, Shin, Kim (b0180) 2018; 12 Wang, Zhang, Zheng (b0100) 2018; 57 Zhao, Li, Zheng (b0165) 2017; 143 Shalem, Sanjana, Hartenian (b0060) 2014; 343 Li, Shan, Wang (b0015) 2018; 13 Sun, Ji, Hall (b0075) 2015; 54 Kalhapure, Jadhav, Rambharose, Mocktar, Singh, Renukuntla, Govender (b0145) 2017; 158 Fathi, Majidi, Zangabad (b0125) 2018; 38 Liang, Li, Wang (b0110) 2017; 147 Wang, Zuris (b0085) 2016; 113 Guo, Jiang, Shen (b0185) 2017; 9 Suresh, Ramakrishna, Kim (b0205) 2017; 1507 Ferlay, Shin, Bray (b0025) 2008; 27 Zheng, Zhao, Xu (b0130) 2018; 111 Fan, Zhang, Xu (b0195) 2018; 15 Wang, Zhang, Xie (b0105) 2017; 4 Zangi, Lui, von Gise (b0070) 2013; 31 Ou, Byeon, Thapa (b0120) 2018; 12 Meng, Kang, Sun (b0160) 2018; 10 Chen, Ning, Li (b0135) 2018; 14 Hsu, Lander, Zhang (b0055) 2014; 157 Jiang, Chi, Li (b0115) 2018; 10 Pang, Poon (b0040) 2017; 1 Jiang, Ting, Li (b0170) 2017; 9 Shen, Li, Liu (b0200) 2018; 14 Mathijssen, Sparreboom, Verweij (b0030) 2014; 11 Ran, Hsu, Wright (b0155) 2013; 8 Agrotis, Ketteler (b0065) 2015; 6 Wang, Wang, Wang (b0175) 2019 Liu, Zhao, Xu (b0190) 2018; 6 Zuris, Thompson, Shu (b0080) 2015; 33 Schmidt (b0010) 2015; 527 Platt, Chen, Zhou (b0090) 2014; 159 Laursen (b0005) 2014; 516 Manguso, Pope, Zimmer, Brown (b0095) 2017; 547 Hagen, Sharma, Aas (b0140) 1854; 2015 Sadeghi, Rahmanian, Amiri (b0020) 2018; 21 Hato, Zhu, Duda (b0045) 2016; 8 Scott, Zhang (b0150) 2017; 23 Ghosh, Dasgupta (b0035) 2017; 8 Kaulich, Lee, Lonn (b0050) 2015; 43 Ou (10.1016/j.cej.2020.124688_b0120) 2018; 12 Zangi (10.1016/j.cej.2020.124688_b0070) 2013; 31 Fan (10.1016/j.cej.2020.124688_b0195) 2018; 15 Ferlay (10.1016/j.cej.2020.124688_b0025) 2008; 27 Sun (10.1016/j.cej.2020.124688_b0075) 2015; 54 Scott (10.1016/j.cej.2020.124688_b0150) 2017; 23 Meng (10.1016/j.cej.2020.124688_b0160) 2018; 10 Shalem (10.1016/j.cej.2020.124688_b0060) 2014; 343 Hsu (10.1016/j.cej.2020.124688_b0055) 2014; 157 Laursen (10.1016/j.cej.2020.124688_b0005) 2014; 516 Zheng (10.1016/j.cej.2020.124688_b0130) 2018; 111 Kim (10.1016/j.cej.2020.124688_b0180) 2018; 12 Liang (10.1016/j.cej.2020.124688_b0110) 2017; 147 Agrotis (10.1016/j.cej.2020.124688_b0065) 2015; 6 Chen (10.1016/j.cej.2020.124688_b0135) 2018; 14 Liu (10.1016/j.cej.2020.124688_b0190) 2018; 6 Shen (10.1016/j.cej.2020.124688_b0200) 2018; 14 Sadeghi (10.1016/j.cej.2020.124688_b0020) 2018; 21 Ghosh (10.1016/j.cej.2020.124688_b0035) 2017; 8 Pang (10.1016/j.cej.2020.124688_b0040) 2017; 1 Ran (10.1016/j.cej.2020.124688_b0155) 2013; 8 Li (10.1016/j.cej.2020.124688_b0015) 2018; 13 Suresh (10.1016/j.cej.2020.124688_b0205) 2017; 1507 Hagen (10.1016/j.cej.2020.124688_b0140) 1854; 2015 Wang (10.1016/j.cej.2020.124688_b0085) 2016; 113 Platt (10.1016/j.cej.2020.124688_b0090) 2014; 159 Fathi (10.1016/j.cej.2020.124688_b0125) 2018; 38 Wang (10.1016/j.cej.2020.124688_b0100) 2018; 57 Zhao (10.1016/j.cej.2020.124688_b0165) 2017; 143 Hato (10.1016/j.cej.2020.124688_b0045) 2016; 8 Jiang (10.1016/j.cej.2020.124688_b0170) 2017; 9 Zuris (10.1016/j.cej.2020.124688_b0080) 2015; 33 Manguso (10.1016/j.cej.2020.124688_b0095) 2017; 547 Jiang (10.1016/j.cej.2020.124688_b0115) 2018; 10 Wang (10.1016/j.cej.2020.124688_b0175) 2019 Schmidt (10.1016/j.cej.2020.124688_b0010) 2015; 527 Wang (10.1016/j.cej.2020.124688_b0105) 2017; 4 Kalhapure (10.1016/j.cej.2020.124688_b0145) 2017; 158 Mathijssen (10.1016/j.cej.2020.124688_b0030) 2014; 11 Guo (10.1016/j.cej.2020.124688_b0185) 2017; 9 Kaulich (10.1016/j.cej.2020.124688_b0050) 2015; 43 |
References_xml | – volume: 4 start-page: 1700175 year: 2017 ident: b0105 article-title: Genome Editing for Cancer Therapy: Delivery of Cas9 Protein/sgRNA Plasmid via a Gold Nanocluster/Lipid Core-Shell Nanocarrier publication-title: Adv. Sci. – volume: 111 start-page: 492 year: 2018 end-page: 502 ident: b0130 article-title: Co-delivery of sorafenib and siVEGF based on mesoporous silica nanoparticles for ASGPR mediated targeted HCC therapy publication-title: Eur. J. Pharm. Sci. – volume: 10 start-page: 6212 year: 2018 end-page: 6213 ident: b0115 article-title: A smart pH-responsive nano-carrier as a drug delivery system for the targeted delivery of ursolic acid: suppresses cancer growth and metastasis by modulating P53/MMP-9/PTEN/CD44 mediated multiple signaling pathways publication-title: Nanoscale. – volume: 113 start-page: 2868 year: 2016 end-page: 2873 ident: b0085 article-title: Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 157 start-page: 1262 year: 2014 end-page: 1278 ident: b0055 article-title: Development and applications of CRISPR-Cas9 for genome engineering publication-title: Cell – volume: 31 start-page: 898 year: 2013 end-page: 907 ident: b0070 article-title: Modified mRNA directs the fate of heart progenitor cells and induces vascular regeneration after myocardial infarctio publication-title: Nat Biotechnol. – volume: 158 start-page: 650 year: 2017 end-page: 657 ident: b0145 article-title: pH-responsive chitosan nanoparticles from a novel twin-chain anionic amphiphile for controlled and targeted delivery of vancomycin publication-title: Colloids Surf B Biointerfaces. – volume: 9 start-page: 43508 year: 2017 end-page: 43519 ident: b0185 article-title: A Small Molecule Nanodrug by Self-Assembly of Dual Anticancer Drugs and Photosensitizer for Synergistic near-Infrared Cancer Theranostics publication-title: ACS Appl. Mater Interfaces. – volume: 159 start-page: 440 year: 2014 end-page: 455 ident: b0090 article-title: CRISPR-Cas9 knockin mice for genome editing and cancer modeling publication-title: Cell – volume: 547 start-page: 413 year: 2017 end-page: 418 ident: b0095 article-title: CRISPR screening identifies Ptpn2 as a cancer immunotherapy target publication-title: Nature – volume: 6 start-page: 1592 year: 2018 end-page: 1603 ident: b0190 article-title: Systemic delivery of CRISPR/Cas9 with PEG-PLGA nanoparticles for chronic myeloid leukemia targeted therapy publication-title: Biomater Sci. – volume: 21 start-page: 77 year: 2018 end-page: 82 ident: b0020 article-title: Tc-Glucarate for assessment of paclitaxel therapy in human ovarian cancer in mice publication-title: Iran. J. Basic Med. Sci. – volume: 8 start-page: 299 year: 2016 end-page: 313 ident: b0045 article-title: Rationally combining anti-VEGF therapy with checkpoint inhibitors in hepatocellular carcinoma publication-title: Immunotherapy – volume: 38 start-page: 2110 year: 2018 end-page: 2136 ident: b0125 article-title: Chitosan-based multifunctional nanomedicines and theranostics for targeted therapy of cancer publication-title: Med. Res.. Rev. – volume: 9 start-page: 9428 year: 2017 end-page: 9439 ident: b0170 article-title: A smart pH-responsive nano-carrier as a drug delivery system for the targeted delivery of ursolic acid: suppresses cancer growth and metastasis by modulating P53/MMP-9/PTEN/CD44 mediated multiple signaling pathways publication-title: Nanoscale. – volume: 6 start-page: 300 year: 2015 ident: b0065 article-title: A new age in functional genomics using CRISPR/Cas9 in arrayed library screening publication-title: Front Genet. – volume: 33 start-page: 73 year: 2015 end-page: 80 ident: b0080 article-title: Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo publication-title: Nat. Biotechnol. – volume: 8 start-page: 2281 year: 2013 end-page: 2308 ident: b0155 article-title: Genome engineering using the CRISPR-Cas9 system publication-title: Nature Protocols. – volume: 27 start-page: 2893 year: 2008 end-page: 2917 ident: b0025 article-title: Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008 publication-title: Int. J. Cancer. – year: 2019 ident: b0175 article-title: Nonviolent Self-Catabolic DNAzyme Nanosponges for Smart Anticancer Drug Delivery publication-title: ACS Nano. – volume: 2015 start-page: 84 year: 1854 end-page: 90 ident: b0140 article-title: Off-target responses in the HeLa proteome subsequent to transient plasmid-mediated transfection publication-title: Biochim. Biophys. Acta. – volume: 12 start-page: 7750 year: 2018 end-page: 7760 ident: b0180 article-title: Simple in Vivo Gene Editing via Direct Self-Assembly of Cas9 Ribonucleoprotein Complexes for Cancer Treatment publication-title: ACS Nano. – volume: 12 start-page: 10061 year: 2018 end-page: 10074 ident: b0120 article-title: Plug-and-Play Nanorization of Coarse Black Phosphorus for Targeted Chemo-photoimmunotherapy of Colorectal Cancer publication-title: ACS Nano. – volume: 1507 start-page: 81 year: 2017 end-page: 89 ident: b0205 article-title: Cell-penetrating peptide-mediated delivery of cas9 protein and guide RNA for genome editing publication-title: Methods Mol. Biol. – volume: 43 year: 2015 ident: b0050 article-title: Efficient CRISPR-rAAV engineering of endogenous genes to study protein function by allele-specific RNAi publication-title: Nucleic Acids Res. – volume: 147 start-page: 68 year: 2017 end-page: 85 ident: b0110 article-title: Tumor cell-targeted delivery of CRISPR/Cas9 by aptamer-functionalized lipopolymer for therapeutic genome editing of VEGFA in osteosarcoma publication-title: Biomaterials – volume: 57 start-page: 1491 year: 2018 end-page: 1496 ident: b0100 article-title: Thermo-triggered Release of CRISPR-Cas9 System by Lipid-Encapsulated Gold Nanoparticles for Tumor Therapy publication-title: Angew. Chem. Int. Edit. – volume: 143 start-page: 1 year: 2017 end-page: 16 ident: b0165 article-title: Simultaneous inhibition of growth and metastasis of hepatocellular carcinoma by co-delivery of ursolic acid and sorafenib using lactobionic acid modified and pH-sensitive chitosan-conjugated mesoporous silica nanocomplex publication-title: Biomaterials – volume: 10 start-page: 1215 year: 2018 end-page: 1227 ident: b0160 article-title: Enhanced gene transfection efficiency by use of peptide vectors containing laminin receptor-targeting sequence YIGSR publication-title: Nanoscale. – volume: 15 start-page: 2466 year: 2018 end-page: 2478 ident: b0195 article-title: Carrier-free, pure nanodrug formed by the self-assembly of an anticancer drug for cancer immune therapy publication-title: Mol. Pharm. – volume: 516 start-page: S2 year: 2014 end-page: S3 ident: b0005 article-title: A preventable cancer publication-title: Nature – volume: 8 year: 2017 ident: b0035 article-title: MiRNA199a-3p suppresses tumor growth, migration, invasion and angiogenesis in hepatocellular carcinoma by targeting VEGFA, VEGFR1, VEGFR2, HGF and MMP2 publication-title: Cell Death Dis. – volume: 14 start-page: 227 year: 2018 end-page: 236 ident: b0200 article-title: A self-assembly nanodrug delivery system based on amphiphilic low generations of PAMAM dendrimers-ursolic acid conjugate modified by lactobionic acid for HCC targeting therapy publication-title: Nanomedicine. – volume: 343 start-page: 84 year: 2014 end-page: 87 ident: b0060 article-title: Genome-scale CRISPR-Cas9 knockout screening in human cells publication-title: Science – volume: 13 year: 2018 ident: b0015 article-title: Correlation of pathological complete response with survival after neoadjuvant chemotherapy in gastric or gastroesophageal junction cancer treated with radical surgery: a meta-analysis publication-title: PLoS One – volume: 11 start-page: 272 year: 2014 end-page: 281 ident: b0030 article-title: Determining the optimal dose in the development of anticancer agents publication-title: Nat. Rev. Clin. Oncol. – volume: 14 start-page: 1335 year: 2018 end-page: 1346 ident: b0135 article-title: Peritumoral monocytes induce cancer cell autophagy to facilitate the progression of human hepatocellular carcinoma publication-title: Autophagy – volume: 527 start-page: S10 year: 2015 end-page: S11 ident: b0010 article-title: Immunology: another shot at cancer publication-title: Nature – volume: 23 start-page: 1095 year: 2017 end-page: 1101 ident: b0150 article-title: Implications of human genetic variation in CRISPR-based therapeutic genome editing publication-title: Nature Medicine. – volume: 1 start-page: 30 year: 2017 end-page: 44 ident: b0040 article-title: From molecular biology to targeted therapies for hepatocellular carcinoma: the future is now publication-title: Oncology – volume: 54 start-page: 12029 year: 2015 end-page: 12033 ident: b0075 article-title: Self-assembled DNA nanoclews for the efficient delivery of CRISPR-Cas9 for genome editing publication-title: Angew. Chem. Int. Ed Engl. – volume: 54 start-page: 12029 year: 2015 ident: 10.1016/j.cej.2020.124688_b0075 article-title: Self-assembled DNA nanoclews for the efficient delivery of CRISPR-Cas9 for genome editing publication-title: Angew. Chem. Int. Ed Engl. doi: 10.1002/anie.201506030 – volume: 9 start-page: 43508 issue: 50 year: 2017 ident: 10.1016/j.cej.2020.124688_b0185 article-title: A Small Molecule Nanodrug by Self-Assembly of Dual Anticancer Drugs and Photosensitizer for Synergistic near-Infrared Cancer Theranostics publication-title: ACS Appl. Mater Interfaces. doi: 10.1021/acsami.7b14755 – volume: 15 start-page: 2466 issue: 6 year: 2018 ident: 10.1016/j.cej.2020.124688_b0195 article-title: Carrier-free, pure nanodrug formed by the self-assembly of an anticancer drug for cancer immune therapy publication-title: Mol. Pharm. doi: 10.1021/acs.molpharmaceut.8b00444 – volume: 13 year: 2018 ident: 10.1016/j.cej.2020.124688_b0015 article-title: Correlation of pathological complete response with survival after neoadjuvant chemotherapy in gastric or gastroesophageal junction cancer treated with radical surgery: a meta-analysis publication-title: PLoS One – volume: 6 start-page: 300 year: 2015 ident: 10.1016/j.cej.2020.124688_b0065 article-title: A new age in functional genomics using CRISPR/Cas9 in arrayed library screening publication-title: Front Genet. doi: 10.3389/fgene.2015.00300 – volume: 38 start-page: 2110 issue: 6 year: 2018 ident: 10.1016/j.cej.2020.124688_b0125 article-title: Chitosan-based multifunctional nanomedicines and theranostics for targeted therapy of cancer publication-title: Med. Res.. Rev. doi: 10.1002/med.21506 – volume: 1 start-page: 30 year: 2017 ident: 10.1016/j.cej.2020.124688_b0040 article-title: From molecular biology to targeted therapies for hepatocellular carcinoma: the future is now publication-title: Oncology – volume: 12 start-page: 7750 issue: 8 year: 2018 ident: 10.1016/j.cej.2020.124688_b0180 article-title: Simple in Vivo Gene Editing via Direct Self-Assembly of Cas9 Ribonucleoprotein Complexes for Cancer Treatment publication-title: ACS Nano. doi: 10.1021/acsnano.8b01670 – volume: 14 start-page: 227 issue: 2 year: 2018 ident: 10.1016/j.cej.2020.124688_b0200 article-title: A self-assembly nanodrug delivery system based on amphiphilic low generations of PAMAM dendrimers-ursolic acid conjugate modified by lactobionic acid for HCC targeting therapy publication-title: Nanomedicine. doi: 10.1016/j.nano.2017.10.007 – volume: 147 start-page: 68 year: 2017 ident: 10.1016/j.cej.2020.124688_b0110 article-title: Tumor cell-targeted delivery of CRISPR/Cas9 by aptamer-functionalized lipopolymer for therapeutic genome editing of VEGFA in osteosarcoma publication-title: Biomaterials doi: 10.1016/j.biomaterials.2017.09.015 – volume: 111 start-page: 492 year: 2018 ident: 10.1016/j.cej.2020.124688_b0130 article-title: Co-delivery of sorafenib and siVEGF based on mesoporous silica nanoparticles for ASGPR mediated targeted HCC therapy publication-title: Eur. J. Pharm. Sci. doi: 10.1016/j.ejps.2017.10.036 – volume: 10 start-page: 1215 issue: 3 year: 2018 ident: 10.1016/j.cej.2020.124688_b0160 article-title: Enhanced gene transfection efficiency by use of peptide vectors containing laminin receptor-targeting sequence YIGSR publication-title: Nanoscale. doi: 10.1039/C7NR05843H – volume: 11 start-page: 272 year: 2014 ident: 10.1016/j.cej.2020.124688_b0030 article-title: Determining the optimal dose in the development of anticancer agents publication-title: Nat. Rev. Clin. Oncol. doi: 10.1038/nrclinonc.2014.40 – volume: 33 start-page: 73 year: 2015 ident: 10.1016/j.cej.2020.124688_b0080 article-title: Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3081 – volume: 43 year: 2015 ident: 10.1016/j.cej.2020.124688_b0050 article-title: Efficient CRISPR-rAAV engineering of endogenous genes to study protein function by allele-specific RNAi publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku1403 – volume: 57 start-page: 1491 year: 2018 ident: 10.1016/j.cej.2020.124688_b0100 article-title: Thermo-triggered Release of CRISPR-Cas9 System by Lipid-Encapsulated Gold Nanoparticles for Tumor Therapy publication-title: Angew. Chem. Int. Edit. doi: 10.1002/anie.201708689 – volume: 10 start-page: 6212 issue: 13 year: 2018 ident: 10.1016/j.cej.2020.124688_b0115 article-title: A smart pH-responsive nano-carrier as a drug delivery system for the targeted delivery of ursolic acid: suppresses cancer growth and metastasis by modulating P53/MMP-9/PTEN/CD44 mediated multiple signaling pathways publication-title: Nanoscale. doi: 10.1039/C8NR90055H – volume: 9 start-page: 9428 issue: 27 year: 2017 ident: 10.1016/j.cej.2020.124688_b0170 article-title: A smart pH-responsive nano-carrier as a drug delivery system for the targeted delivery of ursolic acid: suppresses cancer growth and metastasis by modulating P53/MMP-9/PTEN/CD44 mediated multiple signaling pathways publication-title: Nanoscale. doi: 10.1039/C7NR01677H – volume: 547 start-page: 413 year: 2017 ident: 10.1016/j.cej.2020.124688_b0095 article-title: In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target publication-title: Nature doi: 10.1038/nature23270 – volume: 527 start-page: S10 year: 2015 ident: 10.1016/j.cej.2020.124688_b0010 article-title: Immunology: another shot at cancer publication-title: Nature doi: 10.1038/527S10a – volume: 27 start-page: 2893 issue: 2010 year: 2008 ident: 10.1016/j.cej.2020.124688_b0025 article-title: Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008 publication-title: Int. J. Cancer. – volume: 4 start-page: 1700175 year: 2017 ident: 10.1016/j.cej.2020.124688_b0105 article-title: Genome Editing for Cancer Therapy: Delivery of Cas9 Protein/sgRNA Plasmid via a Gold Nanocluster/Lipid Core-Shell Nanocarrier publication-title: Adv. Sci. doi: 10.1002/advs.201700175 – volume: 14 start-page: 1335 issue: 8 year: 2018 ident: 10.1016/j.cej.2020.124688_b0135 article-title: Peritumoral monocytes induce cancer cell autophagy to facilitate the progression of human hepatocellular carcinoma publication-title: Autophagy doi: 10.1080/15548627.2018.1474994 – volume: 2015 start-page: 84 year: 1854 ident: 10.1016/j.cej.2020.124688_b0140 article-title: Off-target responses in the HeLa proteome subsequent to transient plasmid-mediated transfection publication-title: Biochim. Biophys. Acta. – volume: 158 start-page: 650 year: 2017 ident: 10.1016/j.cej.2020.124688_b0145 article-title: pH-responsive chitosan nanoparticles from a novel twin-chain anionic amphiphile for controlled and targeted delivery of vancomycin publication-title: Colloids Surf B Biointerfaces. doi: 10.1016/j.colsurfb.2017.07.049 – volume: 143 start-page: 1 year: 2017 ident: 10.1016/j.cej.2020.124688_b0165 article-title: Simultaneous inhibition of growth and metastasis of hepatocellular carcinoma by co-delivery of ursolic acid and sorafenib using lactobionic acid modified and pH-sensitive chitosan-conjugated mesoporous silica nanocomplex publication-title: Biomaterials doi: 10.1016/j.biomaterials.2017.07.030 – volume: 21 start-page: 77 year: 2018 ident: 10.1016/j.cej.2020.124688_b0020 article-title: 99mTc-Glucarate for assessment of paclitaxel therapy in human ovarian cancer in mice publication-title: Iran. J. Basic Med. Sci. – volume: 8 start-page: 299 issue: 3 year: 2016 ident: 10.1016/j.cej.2020.124688_b0045 article-title: Rationally combining anti-VEGF therapy with checkpoint inhibitors in hepatocellular carcinoma publication-title: Immunotherapy doi: 10.2217/imt.15.126 – volume: 8 start-page: 2281 year: 2013 ident: 10.1016/j.cej.2020.124688_b0155 article-title: Genome engineering using the CRISPR-Cas9 system publication-title: Nature Protocols. doi: 10.1038/nprot.2013.143 – volume: 157 start-page: 1262 year: 2014 ident: 10.1016/j.cej.2020.124688_b0055 article-title: Development and applications of CRISPR-Cas9 for genome engineering publication-title: Cell doi: 10.1016/j.cell.2014.05.010 – volume: 6 start-page: 1592 issue: 6 year: 2018 ident: 10.1016/j.cej.2020.124688_b0190 article-title: Systemic delivery of CRISPR/Cas9 with PEG-PLGA nanoparticles for chronic myeloid leukemia targeted therapy publication-title: Biomater Sci. doi: 10.1039/C8BM00263K – volume: 23 start-page: 1095 year: 2017 ident: 10.1016/j.cej.2020.124688_b0150 article-title: Implications of human genetic variation in CRISPR-based therapeutic genome editing publication-title: Nature Medicine. doi: 10.1038/nm.4377 – volume: 12 start-page: 10061 issue: 10 year: 2018 ident: 10.1016/j.cej.2020.124688_b0120 article-title: Plug-and-Play Nanorization of Coarse Black Phosphorus for Targeted Chemo-photoimmunotherapy of Colorectal Cancer publication-title: ACS Nano. doi: 10.1021/acsnano.8b04658 – volume: 343 start-page: 84 year: 2014 ident: 10.1016/j.cej.2020.124688_b0060 article-title: Genome-scale CRISPR-Cas9 knockout screening in human cells publication-title: Science doi: 10.1126/science.1247005 – volume: 516 start-page: S2 year: 2014 ident: 10.1016/j.cej.2020.124688_b0005 article-title: A preventable cancer publication-title: Nature doi: 10.1038/516S2a – volume: 8 issue: 3 year: 2017 ident: 10.1016/j.cej.2020.124688_b0035 article-title: MiRNA199a-3p suppresses tumor growth, migration, invasion and angiogenesis in hepatocellular carcinoma by targeting VEGFA, VEGFR1, VEGFR2, HGF and MMP2 publication-title: Cell Death Dis. doi: 10.1038/cddis.2017.123 – volume: 113 start-page: 2868 year: 2016 ident: 10.1016/j.cej.2020.124688_b0085 article-title: Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1520244113 – year: 2019 ident: 10.1016/j.cej.2020.124688_b0175 article-title: Nonviolent Self-Catabolic DNAzyme Nanosponges for Smart Anticancer Drug Delivery publication-title: ACS Nano. – volume: 31 start-page: 898 issue: 10 year: 2013 ident: 10.1016/j.cej.2020.124688_b0070 article-title: Modified mRNA directs the fate of heart progenitor cells and induces vascular regeneration after myocardial infarctio publication-title: Nat Biotechnol. doi: 10.1038/nbt.2682 – volume: 159 start-page: 440 year: 2014 ident: 10.1016/j.cej.2020.124688_b0090 article-title: CRISPR-Cas9 knockin mice for genome editing and cancer modeling publication-title: Cell doi: 10.1016/j.cell.2014.09.014 – volume: 1507 start-page: 81 year: 2017 ident: 10.1016/j.cej.2020.124688_b0205 article-title: Cell-penetrating peptide-mediated delivery of cas9 protein and guide RNA for genome editing publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-6518-2_7 |
SSID | ssj0006919 |
Score | 2.5436082 |
Snippet | [Display omitted]
•Nanocomplex for co-delivery of CRISPR/Cas9 and paclitaxel was constructed.•The nanosystem triggered efficient gene-editing with good... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 124688 |
SubjectTerms | Co-delivery nanosystem CRISPR/Cas9 system Gene-chemo synergistic therapy HCC treatment Paclitaxel |
Title | Efficient CRISPR/Cas9 gene-chemo synergistic cancer therapy via a stimuli-responsive chitosan-based nanocomplex elicits anti-tumorigenic pathway effect |
URI | https://dx.doi.org/10.1016/j.cej.2020.124688 |
Volume | 393 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT8IwFG4IvuiD8RrxQvrgk0mFXcseCYGAJMSARN6WtusSCAwCA-XFv-Hf9ZxdFBP1wadm2-m29Ov6tTtfzyHkNgRWD7mwmVeD5SrwcY0JLh2GkV9gBq3Rt4Rqi57bHtoPI2dUII18LwzKKrOxPx3Tk9E6O1PJWrOyGI8rAwN9Wp6NfkT8G4IRP22bYy-_f_uSebhektwDjRla557NROOl9ASWiCbGWLDT5Cs_cNMO37SOyGE2UaT19F2OSUFHJ-RgJ3zgKXlvJvEfgDZoo98ZPPYrDbHyKHQJzQCL2Zyutri1L4nFTBXiu6Tphqst3YwFFRSuoD6KLTOp7EZTdCzMVyJiSHABjUQ0T3Tn-pXqKTwuXlFAY8zi9QyzaukI7o15jV_ElqbqkDMybDWfGm2WJVpgCvg8ZmFVV2VoQiFd6TrKUG4An2ZNcE9UAc3A1FIaruTasUxLB6YINFccPaZSeYFjnZNiNI_0BaEcVmCWVNwAK1sangyA_w0zFI7klukEJVLNm9hXWRRyTIYx9XO52cQHVHxExU9RKZG7zyqLNATHX8Z2jpv_rR_5QBG_V7v8X7Urso9HqSDwmhTj5VrfwCQlluWkF5bJXr3Tbfew7Pafux8f_unh |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60HtSD-MT63IMnYWnz3OYoRWl9FFELvYXdzQZa2rS0abW_xL_rTB6ioB48BZKdJOxs5tvNfPsNwEWMqB4L6fKggctVxOMGl0J5nJRfcAZtKLdEbIuO3-q6tz2vtwLNci8M0SqL2J_H9CxaF2dqRW_WJv1-7dminFbgUh6R_oY4q7BG6lReBdau2netzmdA9oOsvge152RQJjczmpc2A1wl2iSz4Ob1V36Apy-Qc7MNW8VckV3lr7MDKybZhc0vCoJ78H6dSUAgcrDmU_v58anWlLOA4agwHN0xGrPZknb3ZXLMTJOLpyzfc7Vki75kkuEVokjxacGWXRhGuYXxTCacMC5iiUzGGfXcvDEzxMelM4YO6fN0PqLCWibBe1Np41e5ZDlBZB-6N9cvzRYvai1wjZCe8rhu6iq28aB85Xva0n6EX2dDikDW0aGRbZSyfCWM59iOiWwZGaEFJU2VDiLPOYBKMk7MITCBizBHaWFhK1dZgYpwCmDZsfSUcGwvqkK97OJQF0LkVA9jGJaMs0GIXgnJK2HulSpcfppMchWOvxq7pd_Cb0MpRJT43ezof2bnsN56ebgP79udu2PYoCs5P_AEKul0bk5xzpKqs2JMfgDMaerv |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+CRISPR%2FCas9+gene-chemo+synergistic+cancer+therapy+via+a+stimuli-responsive+chitosan-based+nanocomplex+elicits+anti-tumorigenic+pathway+effect&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Zhang%2C+Bing-Chen&rft.au=Wu%2C+Peng-Yu&rft.au=Zou%2C+Jun-Jie&rft.au=Jiang%2C+Jia-Li&rft.date=2020-08-01&rft.issn=1385-8947&rft.volume=393&rft.spage=124688&rft_id=info:doi/10.1016%2Fj.cej.2020.124688&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cej_2020_124688 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon |