Efficient CRISPR/Cas9 gene-chemo synergistic cancer therapy via a stimuli-responsive chitosan-based nanocomplex elicits anti-tumorigenic pathway effect

[Display omitted] •Nanocomplex for co-delivery of CRISPR/Cas9 and paclitaxel was constructed.•The nanosystem triggered efficient gene-editing with good safety.•The gene therapy of VEGFR2 sensitized the treatment effect of paclitaxel.•The nanosystem exhibited the synergistic modulation for IL-6-IL-8/...

Full description

Saved in:
Bibliographic Details
Published inChemical engineering journal (Lausanne, Switzerland : 1996) Vol. 393; p. 124688
Main Authors Zhang, Bing-Chen, Wu, Peng-Yu, Zou, Jun-Jie, Jiang, Jia-Li, Zhao, Rui-Rui, Luo, Bang-Yue, Liao, Yu-Qin, Shao, Jing-Wei
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.08.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •Nanocomplex for co-delivery of CRISPR/Cas9 and paclitaxel was constructed.•The nanosystem triggered efficient gene-editing with good safety.•The gene therapy of VEGFR2 sensitized the treatment effect of paclitaxel.•The nanosystem exhibited the synergistic modulation for IL-6-IL-8/NF-κB pathway.•The nanosystem achieved significant synergistic gene-chemo HCC treatment. Clustered regularly interspaced short palindromic repeat (CRISPR)-associated Cas9 nuclease system (CRISPR/Cas9) has become a powerful toolbox as a gene fixed-point knock-out method and hold the promising prospect for cancer therapy. However, the biological safety of the viral vectors and the instability of exogenous plasmid in blood circulation limits its application. Herein, we reported a lactobionic acid functionalized and stimuli-responsive chitosan based nanocomplex to co-deliver sgVEGFR2/Cas9 plasmid and paclitaxel for hepatoma carcinoma therapy. The genome editing efficiency of sgVEGFR2/Cas9 in the nanosystem achieved up to 38.6% of HepG2 cells in vitro and 33.4% of tumor tissues in vivo. The nanocomplex suppressed >60% VEGFR2 protein expression of HepG2 cells and inhibited hepatoma carcinoma (HCC) tumor progress by 70% on mice. In vivo study indicated the obvious tumor accumulation and the good biosafety of the nanosystem. Moreover, the gene-drug co-loaded nanoparticles stimulate anti-tumorigenic pathway of HCC by suppressing pro-inflammatory cytokines (IL-6/IL-8) and tumor angiogenesis-related protein (NF-κB p65) expression, which revealed the potential pathway inhibition of PTX when combined with the gene therapy for overexpression VEGFR2 on HCC cells. Overall, this strategy provided a versatile method for high efficiency CRISPR/Cas9 system delivery and showed tremendous application prospect for gene-chemo synergistic therapy.
AbstractList [Display omitted] •Nanocomplex for co-delivery of CRISPR/Cas9 and paclitaxel was constructed.•The nanosystem triggered efficient gene-editing with good safety.•The gene therapy of VEGFR2 sensitized the treatment effect of paclitaxel.•The nanosystem exhibited the synergistic modulation for IL-6-IL-8/NF-κB pathway.•The nanosystem achieved significant synergistic gene-chemo HCC treatment. Clustered regularly interspaced short palindromic repeat (CRISPR)-associated Cas9 nuclease system (CRISPR/Cas9) has become a powerful toolbox as a gene fixed-point knock-out method and hold the promising prospect for cancer therapy. However, the biological safety of the viral vectors and the instability of exogenous plasmid in blood circulation limits its application. Herein, we reported a lactobionic acid functionalized and stimuli-responsive chitosan based nanocomplex to co-deliver sgVEGFR2/Cas9 plasmid and paclitaxel for hepatoma carcinoma therapy. The genome editing efficiency of sgVEGFR2/Cas9 in the nanosystem achieved up to 38.6% of HepG2 cells in vitro and 33.4% of tumor tissues in vivo. The nanocomplex suppressed >60% VEGFR2 protein expression of HepG2 cells and inhibited hepatoma carcinoma (HCC) tumor progress by 70% on mice. In vivo study indicated the obvious tumor accumulation and the good biosafety of the nanosystem. Moreover, the gene-drug co-loaded nanoparticles stimulate anti-tumorigenic pathway of HCC by suppressing pro-inflammatory cytokines (IL-6/IL-8) and tumor angiogenesis-related protein (NF-κB p65) expression, which revealed the potential pathway inhibition of PTX when combined with the gene therapy for overexpression VEGFR2 on HCC cells. Overall, this strategy provided a versatile method for high efficiency CRISPR/Cas9 system delivery and showed tremendous application prospect for gene-chemo synergistic therapy.
ArticleNumber 124688
Author Wu, Peng-Yu
Luo, Bang-Yue
Zou, Jun-Jie
Jiang, Jia-Li
Zhao, Rui-Rui
Shao, Jing-Wei
Zhang, Bing-Chen
Liao, Yu-Qin
Author_xml – sequence: 1
  givenname: Bing-Chen
  surname: Zhang
  fullname: Zhang, Bing-Chen
  organization: Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
– sequence: 2
  givenname: Peng-Yu
  surname: Wu
  fullname: Wu, Peng-Yu
  organization: Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
– sequence: 3
  givenname: Jun-Jie
  surname: Zou
  fullname: Zou, Jun-Jie
  organization: Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
– sequence: 4
  givenname: Jia-Li
  surname: Jiang
  fullname: Jiang, Jia-Li
  organization: Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
– sequence: 5
  givenname: Rui-Rui
  surname: Zhao
  fullname: Zhao, Rui-Rui
  organization: Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
– sequence: 6
  givenname: Bang-Yue
  surname: Luo
  fullname: Luo, Bang-Yue
  organization: Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
– sequence: 7
  givenname: Yu-Qin
  surname: Liao
  fullname: Liao, Yu-Qin
  organization: Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
– sequence: 8
  givenname: Jing-Wei
  surname: Shao
  fullname: Shao, Jing-Wei
  email: shaojingwei@fzu.edu.cn
  organization: Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
BookMark eNp9kEtO5DAQhq0RSMNjDjA7X8CN7XScRLMatWBAQgLxWFsVp0y7ldiRbZrpk3Bd3GpWLFhVlUpflf7vlBz54JGQ34IvBBfqYrMwuFlILsssl6ptf5AT0TYVq6SQR6Wv2pq13bL5SU5T2nDOVSe6E_J-aa0zDn2mq4ebx_uHixWkjr6gR2bWOAWadh7ji0vZGWrAG4w0rzHCvKNbBxRo2Uyvo2MR0xx8clukZu1ySOBZDwkH6sEHE6Z5xP8Ux_IuJwo-O5ZfpxBdeVZuz5DXb7CjaC2afE6OLYwJf33WM_J8dfm0uma3d_9uVn9vmVlylZnlyHsrS-lVr2ojjBoq0bXQdMBtWw0S-16ovsG6khUOEgZsTFOruulNN9TVGRGHuyaGlCJaPUc3QdxpwfXerN7oYlbvzeqD2cI0X5iSCLILPkdw47fknwOJJdLWYdRp797g4GIJrYfgvqE_AHYumdQ
CitedBy_id crossref_primary_10_1016_j_omtn_2024_102256
crossref_primary_10_1002_EXP_20210081
crossref_primary_10_1016_j_ajps_2025_101041
crossref_primary_10_1016_j_biomaterials_2024_122573
crossref_primary_10_1016_j_apsb_2023_02_021
crossref_primary_10_1016_j_ijbiomac_2021_10_029
crossref_primary_10_1002_wnan_1938
crossref_primary_10_1039_D2TB02610D
crossref_primary_10_3390_pharmaceutics16070868
crossref_primary_10_1039_D3BM00529A
crossref_primary_10_3390_biom12091239
crossref_primary_10_2147_JHC_S456683
crossref_primary_10_1208_s12248_021_00613_w
crossref_primary_10_1016_j_jconrel_2022_02_012
crossref_primary_10_1016_j_carbpol_2023_121562
crossref_primary_10_1002_adfm_202305630
crossref_primary_10_1016_j_biopha_2022_113932
crossref_primary_10_1021_acsabm_1c01112
crossref_primary_10_1016_j_carbpol_2021_118323
crossref_primary_10_1016_j_ijbiomac_2024_137601
crossref_primary_10_1016_j_cej_2022_135116
crossref_primary_10_1002_smll_202005222
crossref_primary_10_1007_s13205_024_04186_1
crossref_primary_10_1016_j_jconrel_2023_08_028
crossref_primary_10_3390_pharmaceutics13060853
crossref_primary_10_1002_mabi_202300102
crossref_primary_10_1002_adma_202300665
crossref_primary_10_1016_j_asems_2024_100104
crossref_primary_10_1021_acsmaterialslett_3c01338
crossref_primary_10_2217_nnm_2020_0146
crossref_primary_10_3389_fonc_2022_1054029
crossref_primary_10_34133_bmr_0023
crossref_primary_10_1021_acs_chemmater_1c02844
crossref_primary_10_14233_ajchem_2022_23548
crossref_primary_10_1016_j_cej_2022_134992
crossref_primary_10_1016_j_matdes_2024_113097
crossref_primary_10_3390_pharmaceutics14091773
crossref_primary_10_2174_0113892037238265231006051215
crossref_primary_10_1021_acsami_0c17660
crossref_primary_10_1016_j_colsurfb_2021_112257
crossref_primary_10_1016_j_mtbio_2024_101138
crossref_primary_10_1016_j_nantod_2022_101482
crossref_primary_10_1016_j_cis_2025_103497
crossref_primary_10_1039_D2BM01636B
crossref_primary_10_1016_j_heliyon_2024_e39323
crossref_primary_10_1021_acsami_4c11418
crossref_primary_10_1039_D3BM00788J
crossref_primary_10_1039_D3TB01850D
crossref_primary_10_1039_D1BM01658J
crossref_primary_10_1016_j_jddst_2022_103737
crossref_primary_10_3390_pharmaceutics14091840
crossref_primary_10_1016_j_aej_2023_08_046
crossref_primary_10_1002_biot_202300077
crossref_primary_10_1186_s12951_022_01570_y
crossref_primary_10_3390_biotech12020037
crossref_primary_10_3390_pharmaceutics14112463
crossref_primary_10_1016_j_lfs_2020_118969
crossref_primary_10_1002_mba2_70
Cites_doi 10.1002/anie.201506030
10.1021/acsami.7b14755
10.1021/acs.molpharmaceut.8b00444
10.3389/fgene.2015.00300
10.1002/med.21506
10.1021/acsnano.8b01670
10.1016/j.nano.2017.10.007
10.1016/j.biomaterials.2017.09.015
10.1016/j.ejps.2017.10.036
10.1039/C7NR05843H
10.1038/nrclinonc.2014.40
10.1038/nbt.3081
10.1093/nar/gku1403
10.1002/anie.201708689
10.1039/C8NR90055H
10.1039/C7NR01677H
10.1038/nature23270
10.1038/527S10a
10.1002/advs.201700175
10.1080/15548627.2018.1474994
10.1016/j.colsurfb.2017.07.049
10.1016/j.biomaterials.2017.07.030
10.2217/imt.15.126
10.1038/nprot.2013.143
10.1016/j.cell.2014.05.010
10.1039/C8BM00263K
10.1038/nm.4377
10.1021/acsnano.8b04658
10.1126/science.1247005
10.1038/516S2a
10.1038/cddis.2017.123
10.1073/pnas.1520244113
10.1038/nbt.2682
10.1016/j.cell.2014.09.014
10.1007/978-1-4939-6518-2_7
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.cej.2020.124688
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3212
ExternalDocumentID 10_1016_j_cej_2020_124688
S1385894720306793
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABLST
ABMAC
ABNUV
ABUDA
ABYKQ
ACDAQ
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSG
SSJ
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABXDB
ACVFH
ADCNI
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BKOMP
BNPGV
CITATION
EJD
FEDTE
FGOYB
HVGLF
HZ~
R2-
RIG
SEW
SSH
ZY4
ID FETCH-LOGICAL-c406t-f0e0bf2f0eb6b65c1c6d3198a79a0f83d2ebb16b7e5323ed2ade7c75657bc9d53
IEDL.DBID .~1
ISSN 1385-8947
IngestDate Tue Jul 01 04:26:46 EDT 2025
Thu Apr 24 23:11:32 EDT 2025
Fri Feb 23 02:48:09 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Co-delivery nanosystem
HCC treatment
CRISPR/Cas9 system
Gene-chemo synergistic therapy
Paclitaxel
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-f0e0bf2f0eb6b65c1c6d3198a79a0f83d2ebb16b7e5323ed2ade7c75657bc9d53
OpenAccessLink https://doi.org/10.1016/j.cej.2020.124688
ParticipantIDs crossref_primary_10_1016_j_cej_2020_124688
crossref_citationtrail_10_1016_j_cej_2020_124688
elsevier_sciencedirect_doi_10_1016_j_cej_2020_124688
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-08-01
2020-08-00
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-01
  day: 01
PublicationDecade 2020
PublicationTitle Chemical engineering journal (Lausanne, Switzerland : 1996)
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Kim, Shin, Kim (b0180) 2018; 12
Wang, Zhang, Zheng (b0100) 2018; 57
Zhao, Li, Zheng (b0165) 2017; 143
Shalem, Sanjana, Hartenian (b0060) 2014; 343
Li, Shan, Wang (b0015) 2018; 13
Sun, Ji, Hall (b0075) 2015; 54
Kalhapure, Jadhav, Rambharose, Mocktar, Singh, Renukuntla, Govender (b0145) 2017; 158
Fathi, Majidi, Zangabad (b0125) 2018; 38
Liang, Li, Wang (b0110) 2017; 147
Wang, Zuris (b0085) 2016; 113
Guo, Jiang, Shen (b0185) 2017; 9
Suresh, Ramakrishna, Kim (b0205) 2017; 1507
Ferlay, Shin, Bray (b0025) 2008; 27
Zheng, Zhao, Xu (b0130) 2018; 111
Fan, Zhang, Xu (b0195) 2018; 15
Wang, Zhang, Xie (b0105) 2017; 4
Zangi, Lui, von Gise (b0070) 2013; 31
Ou, Byeon, Thapa (b0120) 2018; 12
Meng, Kang, Sun (b0160) 2018; 10
Chen, Ning, Li (b0135) 2018; 14
Hsu, Lander, Zhang (b0055) 2014; 157
Jiang, Chi, Li (b0115) 2018; 10
Pang, Poon (b0040) 2017; 1
Jiang, Ting, Li (b0170) 2017; 9
Shen, Li, Liu (b0200) 2018; 14
Mathijssen, Sparreboom, Verweij (b0030) 2014; 11
Ran, Hsu, Wright (b0155) 2013; 8
Agrotis, Ketteler (b0065) 2015; 6
Wang, Wang, Wang (b0175) 2019
Liu, Zhao, Xu (b0190) 2018; 6
Zuris, Thompson, Shu (b0080) 2015; 33
Schmidt (b0010) 2015; 527
Platt, Chen, Zhou (b0090) 2014; 159
Laursen (b0005) 2014; 516
Manguso, Pope, Zimmer, Brown (b0095) 2017; 547
Hagen, Sharma, Aas (b0140) 1854; 2015
Sadeghi, Rahmanian, Amiri (b0020) 2018; 21
Hato, Zhu, Duda (b0045) 2016; 8
Scott, Zhang (b0150) 2017; 23
Ghosh, Dasgupta (b0035) 2017; 8
Kaulich, Lee, Lonn (b0050) 2015; 43
Ou (10.1016/j.cej.2020.124688_b0120) 2018; 12
Zangi (10.1016/j.cej.2020.124688_b0070) 2013; 31
Fan (10.1016/j.cej.2020.124688_b0195) 2018; 15
Ferlay (10.1016/j.cej.2020.124688_b0025) 2008; 27
Sun (10.1016/j.cej.2020.124688_b0075) 2015; 54
Scott (10.1016/j.cej.2020.124688_b0150) 2017; 23
Meng (10.1016/j.cej.2020.124688_b0160) 2018; 10
Shalem (10.1016/j.cej.2020.124688_b0060) 2014; 343
Hsu (10.1016/j.cej.2020.124688_b0055) 2014; 157
Laursen (10.1016/j.cej.2020.124688_b0005) 2014; 516
Zheng (10.1016/j.cej.2020.124688_b0130) 2018; 111
Kim (10.1016/j.cej.2020.124688_b0180) 2018; 12
Liang (10.1016/j.cej.2020.124688_b0110) 2017; 147
Agrotis (10.1016/j.cej.2020.124688_b0065) 2015; 6
Chen (10.1016/j.cej.2020.124688_b0135) 2018; 14
Liu (10.1016/j.cej.2020.124688_b0190) 2018; 6
Shen (10.1016/j.cej.2020.124688_b0200) 2018; 14
Sadeghi (10.1016/j.cej.2020.124688_b0020) 2018; 21
Ghosh (10.1016/j.cej.2020.124688_b0035) 2017; 8
Pang (10.1016/j.cej.2020.124688_b0040) 2017; 1
Ran (10.1016/j.cej.2020.124688_b0155) 2013; 8
Li (10.1016/j.cej.2020.124688_b0015) 2018; 13
Suresh (10.1016/j.cej.2020.124688_b0205) 2017; 1507
Hagen (10.1016/j.cej.2020.124688_b0140) 1854; 2015
Wang (10.1016/j.cej.2020.124688_b0085) 2016; 113
Platt (10.1016/j.cej.2020.124688_b0090) 2014; 159
Fathi (10.1016/j.cej.2020.124688_b0125) 2018; 38
Wang (10.1016/j.cej.2020.124688_b0100) 2018; 57
Zhao (10.1016/j.cej.2020.124688_b0165) 2017; 143
Hato (10.1016/j.cej.2020.124688_b0045) 2016; 8
Jiang (10.1016/j.cej.2020.124688_b0170) 2017; 9
Zuris (10.1016/j.cej.2020.124688_b0080) 2015; 33
Manguso (10.1016/j.cej.2020.124688_b0095) 2017; 547
Jiang (10.1016/j.cej.2020.124688_b0115) 2018; 10
Wang (10.1016/j.cej.2020.124688_b0175) 2019
Schmidt (10.1016/j.cej.2020.124688_b0010) 2015; 527
Wang (10.1016/j.cej.2020.124688_b0105) 2017; 4
Kalhapure (10.1016/j.cej.2020.124688_b0145) 2017; 158
Mathijssen (10.1016/j.cej.2020.124688_b0030) 2014; 11
Guo (10.1016/j.cej.2020.124688_b0185) 2017; 9
Kaulich (10.1016/j.cej.2020.124688_b0050) 2015; 43
References_xml – volume: 4
  start-page: 1700175
  year: 2017
  ident: b0105
  article-title: Genome Editing for Cancer Therapy: Delivery of Cas9 Protein/sgRNA Plasmid via a Gold Nanocluster/Lipid Core-Shell Nanocarrier
  publication-title: Adv. Sci.
– volume: 111
  start-page: 492
  year: 2018
  end-page: 502
  ident: b0130
  article-title: Co-delivery of sorafenib and siVEGF based on mesoporous silica nanoparticles for ASGPR mediated targeted HCC therapy
  publication-title: Eur. J. Pharm. Sci.
– volume: 10
  start-page: 6212
  year: 2018
  end-page: 6213
  ident: b0115
  article-title: A smart pH-responsive nano-carrier as a drug delivery system for the targeted delivery of ursolic acid: suppresses cancer growth and metastasis by modulating P53/MMP-9/PTEN/CD44 mediated multiple signaling pathways
  publication-title: Nanoscale.
– volume: 113
  start-page: 2868
  year: 2016
  end-page: 2873
  ident: b0085
  article-title: Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 157
  start-page: 1262
  year: 2014
  end-page: 1278
  ident: b0055
  article-title: Development and applications of CRISPR-Cas9 for genome engineering
  publication-title: Cell
– volume: 31
  start-page: 898
  year: 2013
  end-page: 907
  ident: b0070
  article-title: Modified mRNA directs the fate of heart progenitor cells and induces vascular regeneration after myocardial infarctio
  publication-title: Nat Biotechnol.
– volume: 158
  start-page: 650
  year: 2017
  end-page: 657
  ident: b0145
  article-title: pH-responsive chitosan nanoparticles from a novel twin-chain anionic amphiphile for controlled and targeted delivery of vancomycin
  publication-title: Colloids Surf B Biointerfaces.
– volume: 9
  start-page: 43508
  year: 2017
  end-page: 43519
  ident: b0185
  article-title: A Small Molecule Nanodrug by Self-Assembly of Dual Anticancer Drugs and Photosensitizer for Synergistic near-Infrared Cancer Theranostics
  publication-title: ACS Appl. Mater Interfaces.
– volume: 159
  start-page: 440
  year: 2014
  end-page: 455
  ident: b0090
  article-title: CRISPR-Cas9 knockin mice for genome editing and cancer modeling
  publication-title: Cell
– volume: 547
  start-page: 413
  year: 2017
  end-page: 418
  ident: b0095
  article-title: CRISPR screening identifies Ptpn2 as a cancer immunotherapy target
  publication-title: Nature
– volume: 6
  start-page: 1592
  year: 2018
  end-page: 1603
  ident: b0190
  article-title: Systemic delivery of CRISPR/Cas9 with PEG-PLGA nanoparticles for chronic myeloid leukemia targeted therapy
  publication-title: Biomater Sci.
– volume: 21
  start-page: 77
  year: 2018
  end-page: 82
  ident: b0020
  article-title: Tc-Glucarate for assessment of paclitaxel therapy in human ovarian cancer in mice
  publication-title: Iran. J. Basic Med. Sci.
– volume: 8
  start-page: 299
  year: 2016
  end-page: 313
  ident: b0045
  article-title: Rationally combining anti-VEGF therapy with checkpoint inhibitors in hepatocellular carcinoma
  publication-title: Immunotherapy
– volume: 38
  start-page: 2110
  year: 2018
  end-page: 2136
  ident: b0125
  article-title: Chitosan-based multifunctional nanomedicines and theranostics for targeted therapy of cancer
  publication-title: Med. Res.. Rev.
– volume: 9
  start-page: 9428
  year: 2017
  end-page: 9439
  ident: b0170
  article-title: A smart pH-responsive nano-carrier as a drug delivery system for the targeted delivery of ursolic acid: suppresses cancer growth and metastasis by modulating P53/MMP-9/PTEN/CD44 mediated multiple signaling pathways
  publication-title: Nanoscale.
– volume: 6
  start-page: 300
  year: 2015
  ident: b0065
  article-title: A new age in functional genomics using CRISPR/Cas9 in arrayed library screening
  publication-title: Front Genet.
– volume: 33
  start-page: 73
  year: 2015
  end-page: 80
  ident: b0080
  article-title: Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo
  publication-title: Nat. Biotechnol.
– volume: 8
  start-page: 2281
  year: 2013
  end-page: 2308
  ident: b0155
  article-title: Genome engineering using the CRISPR-Cas9 system
  publication-title: Nature Protocols.
– volume: 27
  start-page: 2893
  year: 2008
  end-page: 2917
  ident: b0025
  article-title: Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008
  publication-title: Int. J. Cancer.
– year: 2019
  ident: b0175
  article-title: Nonviolent Self-Catabolic DNAzyme Nanosponges for Smart Anticancer Drug Delivery
  publication-title: ACS Nano.
– volume: 2015
  start-page: 84
  year: 1854
  end-page: 90
  ident: b0140
  article-title: Off-target responses in the HeLa proteome subsequent to transient plasmid-mediated transfection
  publication-title: Biochim. Biophys. Acta.
– volume: 12
  start-page: 7750
  year: 2018
  end-page: 7760
  ident: b0180
  article-title: Simple in Vivo Gene Editing via Direct Self-Assembly of Cas9 Ribonucleoprotein Complexes for Cancer Treatment
  publication-title: ACS Nano.
– volume: 12
  start-page: 10061
  year: 2018
  end-page: 10074
  ident: b0120
  article-title: Plug-and-Play Nanorization of Coarse Black Phosphorus for Targeted Chemo-photoimmunotherapy of Colorectal Cancer
  publication-title: ACS Nano.
– volume: 1507
  start-page: 81
  year: 2017
  end-page: 89
  ident: b0205
  article-title: Cell-penetrating peptide-mediated delivery of cas9 protein and guide RNA for genome editing
  publication-title: Methods Mol. Biol.
– volume: 43
  year: 2015
  ident: b0050
  article-title: Efficient CRISPR-rAAV engineering of endogenous genes to study protein function by allele-specific RNAi
  publication-title: Nucleic Acids Res.
– volume: 147
  start-page: 68
  year: 2017
  end-page: 85
  ident: b0110
  article-title: Tumor cell-targeted delivery of CRISPR/Cas9 by aptamer-functionalized lipopolymer for therapeutic genome editing of VEGFA in osteosarcoma
  publication-title: Biomaterials
– volume: 57
  start-page: 1491
  year: 2018
  end-page: 1496
  ident: b0100
  article-title: Thermo-triggered Release of CRISPR-Cas9 System by Lipid-Encapsulated Gold Nanoparticles for Tumor Therapy
  publication-title: Angew. Chem. Int. Edit.
– volume: 143
  start-page: 1
  year: 2017
  end-page: 16
  ident: b0165
  article-title: Simultaneous inhibition of growth and metastasis of hepatocellular carcinoma by co-delivery of ursolic acid and sorafenib using lactobionic acid modified and pH-sensitive chitosan-conjugated mesoporous silica nanocomplex
  publication-title: Biomaterials
– volume: 10
  start-page: 1215
  year: 2018
  end-page: 1227
  ident: b0160
  article-title: Enhanced gene transfection efficiency by use of peptide vectors containing laminin receptor-targeting sequence YIGSR
  publication-title: Nanoscale.
– volume: 15
  start-page: 2466
  year: 2018
  end-page: 2478
  ident: b0195
  article-title: Carrier-free, pure nanodrug formed by the self-assembly of an anticancer drug for cancer immune therapy
  publication-title: Mol. Pharm.
– volume: 516
  start-page: S2
  year: 2014
  end-page: S3
  ident: b0005
  article-title: A preventable cancer
  publication-title: Nature
– volume: 8
  year: 2017
  ident: b0035
  article-title: MiRNA199a-3p suppresses tumor growth, migration, invasion and angiogenesis in hepatocellular carcinoma by targeting VEGFA, VEGFR1, VEGFR2, HGF and MMP2
  publication-title: Cell Death Dis.
– volume: 14
  start-page: 227
  year: 2018
  end-page: 236
  ident: b0200
  article-title: A self-assembly nanodrug delivery system based on amphiphilic low generations of PAMAM dendrimers-ursolic acid conjugate modified by lactobionic acid for HCC targeting therapy
  publication-title: Nanomedicine.
– volume: 343
  start-page: 84
  year: 2014
  end-page: 87
  ident: b0060
  article-title: Genome-scale CRISPR-Cas9 knockout screening in human cells
  publication-title: Science
– volume: 13
  year: 2018
  ident: b0015
  article-title: Correlation of pathological complete response with survival after neoadjuvant chemotherapy in gastric or gastroesophageal junction cancer treated with radical surgery: a meta-analysis
  publication-title: PLoS One
– volume: 11
  start-page: 272
  year: 2014
  end-page: 281
  ident: b0030
  article-title: Determining the optimal dose in the development of anticancer agents
  publication-title: Nat. Rev. Clin. Oncol.
– volume: 14
  start-page: 1335
  year: 2018
  end-page: 1346
  ident: b0135
  article-title: Peritumoral monocytes induce cancer cell autophagy to facilitate the progression of human hepatocellular carcinoma
  publication-title: Autophagy
– volume: 527
  start-page: S10
  year: 2015
  end-page: S11
  ident: b0010
  article-title: Immunology: another shot at cancer
  publication-title: Nature
– volume: 23
  start-page: 1095
  year: 2017
  end-page: 1101
  ident: b0150
  article-title: Implications of human genetic variation in CRISPR-based therapeutic genome editing
  publication-title: Nature Medicine.
– volume: 1
  start-page: 30
  year: 2017
  end-page: 44
  ident: b0040
  article-title: From molecular biology to targeted therapies for hepatocellular carcinoma: the future is now
  publication-title: Oncology
– volume: 54
  start-page: 12029
  year: 2015
  end-page: 12033
  ident: b0075
  article-title: Self-assembled DNA nanoclews for the efficient delivery of CRISPR-Cas9 for genome editing
  publication-title: Angew. Chem. Int. Ed Engl.
– volume: 54
  start-page: 12029
  year: 2015
  ident: 10.1016/j.cej.2020.124688_b0075
  article-title: Self-assembled DNA nanoclews for the efficient delivery of CRISPR-Cas9 for genome editing
  publication-title: Angew. Chem. Int. Ed Engl.
  doi: 10.1002/anie.201506030
– volume: 9
  start-page: 43508
  issue: 50
  year: 2017
  ident: 10.1016/j.cej.2020.124688_b0185
  article-title: A Small Molecule Nanodrug by Self-Assembly of Dual Anticancer Drugs and Photosensitizer for Synergistic near-Infrared Cancer Theranostics
  publication-title: ACS Appl. Mater Interfaces.
  doi: 10.1021/acsami.7b14755
– volume: 15
  start-page: 2466
  issue: 6
  year: 2018
  ident: 10.1016/j.cej.2020.124688_b0195
  article-title: Carrier-free, pure nanodrug formed by the self-assembly of an anticancer drug for cancer immune therapy
  publication-title: Mol. Pharm.
  doi: 10.1021/acs.molpharmaceut.8b00444
– volume: 13
  year: 2018
  ident: 10.1016/j.cej.2020.124688_b0015
  article-title: Correlation of pathological complete response with survival after neoadjuvant chemotherapy in gastric or gastroesophageal junction cancer treated with radical surgery: a meta-analysis
  publication-title: PLoS One
– volume: 6
  start-page: 300
  year: 2015
  ident: 10.1016/j.cej.2020.124688_b0065
  article-title: A new age in functional genomics using CRISPR/Cas9 in arrayed library screening
  publication-title: Front Genet.
  doi: 10.3389/fgene.2015.00300
– volume: 38
  start-page: 2110
  issue: 6
  year: 2018
  ident: 10.1016/j.cej.2020.124688_b0125
  article-title: Chitosan-based multifunctional nanomedicines and theranostics for targeted therapy of cancer
  publication-title: Med. Res.. Rev.
  doi: 10.1002/med.21506
– volume: 1
  start-page: 30
  year: 2017
  ident: 10.1016/j.cej.2020.124688_b0040
  article-title: From molecular biology to targeted therapies for hepatocellular carcinoma: the future is now
  publication-title: Oncology
– volume: 12
  start-page: 7750
  issue: 8
  year: 2018
  ident: 10.1016/j.cej.2020.124688_b0180
  article-title: Simple in Vivo Gene Editing via Direct Self-Assembly of Cas9 Ribonucleoprotein Complexes for Cancer Treatment
  publication-title: ACS Nano.
  doi: 10.1021/acsnano.8b01670
– volume: 14
  start-page: 227
  issue: 2
  year: 2018
  ident: 10.1016/j.cej.2020.124688_b0200
  article-title: A self-assembly nanodrug delivery system based on amphiphilic low generations of PAMAM dendrimers-ursolic acid conjugate modified by lactobionic acid for HCC targeting therapy
  publication-title: Nanomedicine.
  doi: 10.1016/j.nano.2017.10.007
– volume: 147
  start-page: 68
  year: 2017
  ident: 10.1016/j.cej.2020.124688_b0110
  article-title: Tumor cell-targeted delivery of CRISPR/Cas9 by aptamer-functionalized lipopolymer for therapeutic genome editing of VEGFA in osteosarcoma
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2017.09.015
– volume: 111
  start-page: 492
  year: 2018
  ident: 10.1016/j.cej.2020.124688_b0130
  article-title: Co-delivery of sorafenib and siVEGF based on mesoporous silica nanoparticles for ASGPR mediated targeted HCC therapy
  publication-title: Eur. J. Pharm. Sci.
  doi: 10.1016/j.ejps.2017.10.036
– volume: 10
  start-page: 1215
  issue: 3
  year: 2018
  ident: 10.1016/j.cej.2020.124688_b0160
  article-title: Enhanced gene transfection efficiency by use of peptide vectors containing laminin receptor-targeting sequence YIGSR
  publication-title: Nanoscale.
  doi: 10.1039/C7NR05843H
– volume: 11
  start-page: 272
  year: 2014
  ident: 10.1016/j.cej.2020.124688_b0030
  article-title: Determining the optimal dose in the development of anticancer agents
  publication-title: Nat. Rev. Clin. Oncol.
  doi: 10.1038/nrclinonc.2014.40
– volume: 33
  start-page: 73
  year: 2015
  ident: 10.1016/j.cej.2020.124688_b0080
  article-title: Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3081
– volume: 43
  year: 2015
  ident: 10.1016/j.cej.2020.124688_b0050
  article-title: Efficient CRISPR-rAAV engineering of endogenous genes to study protein function by allele-specific RNAi
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gku1403
– volume: 57
  start-page: 1491
  year: 2018
  ident: 10.1016/j.cej.2020.124688_b0100
  article-title: Thermo-triggered Release of CRISPR-Cas9 System by Lipid-Encapsulated Gold Nanoparticles for Tumor Therapy
  publication-title: Angew. Chem. Int. Edit.
  doi: 10.1002/anie.201708689
– volume: 10
  start-page: 6212
  issue: 13
  year: 2018
  ident: 10.1016/j.cej.2020.124688_b0115
  article-title: A smart pH-responsive nano-carrier as a drug delivery system for the targeted delivery of ursolic acid: suppresses cancer growth and metastasis by modulating P53/MMP-9/PTEN/CD44 mediated multiple signaling pathways
  publication-title: Nanoscale.
  doi: 10.1039/C8NR90055H
– volume: 9
  start-page: 9428
  issue: 27
  year: 2017
  ident: 10.1016/j.cej.2020.124688_b0170
  article-title: A smart pH-responsive nano-carrier as a drug delivery system for the targeted delivery of ursolic acid: suppresses cancer growth and metastasis by modulating P53/MMP-9/PTEN/CD44 mediated multiple signaling pathways
  publication-title: Nanoscale.
  doi: 10.1039/C7NR01677H
– volume: 547
  start-page: 413
  year: 2017
  ident: 10.1016/j.cej.2020.124688_b0095
  article-title: In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target
  publication-title: Nature
  doi: 10.1038/nature23270
– volume: 527
  start-page: S10
  year: 2015
  ident: 10.1016/j.cej.2020.124688_b0010
  article-title: Immunology: another shot at cancer
  publication-title: Nature
  doi: 10.1038/527S10a
– volume: 27
  start-page: 2893
  issue: 2010
  year: 2008
  ident: 10.1016/j.cej.2020.124688_b0025
  article-title: Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008
  publication-title: Int. J. Cancer.
– volume: 4
  start-page: 1700175
  year: 2017
  ident: 10.1016/j.cej.2020.124688_b0105
  article-title: Genome Editing for Cancer Therapy: Delivery of Cas9 Protein/sgRNA Plasmid via a Gold Nanocluster/Lipid Core-Shell Nanocarrier
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201700175
– volume: 14
  start-page: 1335
  issue: 8
  year: 2018
  ident: 10.1016/j.cej.2020.124688_b0135
  article-title: Peritumoral monocytes induce cancer cell autophagy to facilitate the progression of human hepatocellular carcinoma
  publication-title: Autophagy
  doi: 10.1080/15548627.2018.1474994
– volume: 2015
  start-page: 84
  year: 1854
  ident: 10.1016/j.cej.2020.124688_b0140
  article-title: Off-target responses in the HeLa proteome subsequent to transient plasmid-mediated transfection
  publication-title: Biochim. Biophys. Acta.
– volume: 158
  start-page: 650
  year: 2017
  ident: 10.1016/j.cej.2020.124688_b0145
  article-title: pH-responsive chitosan nanoparticles from a novel twin-chain anionic amphiphile for controlled and targeted delivery of vancomycin
  publication-title: Colloids Surf B Biointerfaces.
  doi: 10.1016/j.colsurfb.2017.07.049
– volume: 143
  start-page: 1
  year: 2017
  ident: 10.1016/j.cej.2020.124688_b0165
  article-title: Simultaneous inhibition of growth and metastasis of hepatocellular carcinoma by co-delivery of ursolic acid and sorafenib using lactobionic acid modified and pH-sensitive chitosan-conjugated mesoporous silica nanocomplex
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2017.07.030
– volume: 21
  start-page: 77
  year: 2018
  ident: 10.1016/j.cej.2020.124688_b0020
  article-title: 99mTc-Glucarate for assessment of paclitaxel therapy in human ovarian cancer in mice
  publication-title: Iran. J. Basic Med. Sci.
– volume: 8
  start-page: 299
  issue: 3
  year: 2016
  ident: 10.1016/j.cej.2020.124688_b0045
  article-title: Rationally combining anti-VEGF therapy with checkpoint inhibitors in hepatocellular carcinoma
  publication-title: Immunotherapy
  doi: 10.2217/imt.15.126
– volume: 8
  start-page: 2281
  year: 2013
  ident: 10.1016/j.cej.2020.124688_b0155
  article-title: Genome engineering using the CRISPR-Cas9 system
  publication-title: Nature Protocols.
  doi: 10.1038/nprot.2013.143
– volume: 157
  start-page: 1262
  year: 2014
  ident: 10.1016/j.cej.2020.124688_b0055
  article-title: Development and applications of CRISPR-Cas9 for genome engineering
  publication-title: Cell
  doi: 10.1016/j.cell.2014.05.010
– volume: 6
  start-page: 1592
  issue: 6
  year: 2018
  ident: 10.1016/j.cej.2020.124688_b0190
  article-title: Systemic delivery of CRISPR/Cas9 with PEG-PLGA nanoparticles for chronic myeloid leukemia targeted therapy
  publication-title: Biomater Sci.
  doi: 10.1039/C8BM00263K
– volume: 23
  start-page: 1095
  year: 2017
  ident: 10.1016/j.cej.2020.124688_b0150
  article-title: Implications of human genetic variation in CRISPR-based therapeutic genome editing
  publication-title: Nature Medicine.
  doi: 10.1038/nm.4377
– volume: 12
  start-page: 10061
  issue: 10
  year: 2018
  ident: 10.1016/j.cej.2020.124688_b0120
  article-title: Plug-and-Play Nanorization of Coarse Black Phosphorus for Targeted Chemo-photoimmunotherapy of Colorectal Cancer
  publication-title: ACS Nano.
  doi: 10.1021/acsnano.8b04658
– volume: 343
  start-page: 84
  year: 2014
  ident: 10.1016/j.cej.2020.124688_b0060
  article-title: Genome-scale CRISPR-Cas9 knockout screening in human cells
  publication-title: Science
  doi: 10.1126/science.1247005
– volume: 516
  start-page: S2
  year: 2014
  ident: 10.1016/j.cej.2020.124688_b0005
  article-title: A preventable cancer
  publication-title: Nature
  doi: 10.1038/516S2a
– volume: 8
  issue: 3
  year: 2017
  ident: 10.1016/j.cej.2020.124688_b0035
  article-title: MiRNA199a-3p suppresses tumor growth, migration, invasion and angiogenesis in hepatocellular carcinoma by targeting VEGFA, VEGFR1, VEGFR2, HGF and MMP2
  publication-title: Cell Death Dis.
  doi: 10.1038/cddis.2017.123
– volume: 113
  start-page: 2868
  year: 2016
  ident: 10.1016/j.cej.2020.124688_b0085
  article-title: Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1520244113
– year: 2019
  ident: 10.1016/j.cej.2020.124688_b0175
  article-title: Nonviolent Self-Catabolic DNAzyme Nanosponges for Smart Anticancer Drug Delivery
  publication-title: ACS Nano.
– volume: 31
  start-page: 898
  issue: 10
  year: 2013
  ident: 10.1016/j.cej.2020.124688_b0070
  article-title: Modified mRNA directs the fate of heart progenitor cells and induces vascular regeneration after myocardial infarctio
  publication-title: Nat Biotechnol.
  doi: 10.1038/nbt.2682
– volume: 159
  start-page: 440
  year: 2014
  ident: 10.1016/j.cej.2020.124688_b0090
  article-title: CRISPR-Cas9 knockin mice for genome editing and cancer modeling
  publication-title: Cell
  doi: 10.1016/j.cell.2014.09.014
– volume: 1507
  start-page: 81
  year: 2017
  ident: 10.1016/j.cej.2020.124688_b0205
  article-title: Cell-penetrating peptide-mediated delivery of cas9 protein and guide RNA for genome editing
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-6518-2_7
SSID ssj0006919
Score 2.5436082
Snippet [Display omitted] •Nanocomplex for co-delivery of CRISPR/Cas9 and paclitaxel was constructed.•The nanosystem triggered efficient gene-editing with good...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 124688
SubjectTerms Co-delivery nanosystem
CRISPR/Cas9 system
Gene-chemo synergistic therapy
HCC treatment
Paclitaxel
Title Efficient CRISPR/Cas9 gene-chemo synergistic cancer therapy via a stimuli-responsive chitosan-based nanocomplex elicits anti-tumorigenic pathway effect
URI https://dx.doi.org/10.1016/j.cej.2020.124688
Volume 393
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT8IwFG4IvuiD8RrxQvrgk0mFXcseCYGAJMSARN6WtusSCAwCA-XFv-Hf9ZxdFBP1wadm2-m29Ov6tTtfzyHkNgRWD7mwmVeD5SrwcY0JLh2GkV9gBq3Rt4Rqi57bHtoPI2dUII18LwzKKrOxPx3Tk9E6O1PJWrOyGI8rAwN9Wp6NfkT8G4IRP22bYy-_f_uSebhektwDjRla557NROOl9ASWiCbGWLDT5Cs_cNMO37SOyGE2UaT19F2OSUFHJ-RgJ3zgKXlvJvEfgDZoo98ZPPYrDbHyKHQJzQCL2Zyutri1L4nFTBXiu6Tphqst3YwFFRSuoD6KLTOp7EZTdCzMVyJiSHABjUQ0T3Tn-pXqKTwuXlFAY8zi9QyzaukI7o15jV_ElqbqkDMybDWfGm2WJVpgCvg8ZmFVV2VoQiFd6TrKUG4An2ZNcE9UAc3A1FIaruTasUxLB6YINFccPaZSeYFjnZNiNI_0BaEcVmCWVNwAK1sangyA_w0zFI7klukEJVLNm9hXWRRyTIYx9XO52cQHVHxExU9RKZG7zyqLNATHX8Z2jpv_rR_5QBG_V7v8X7Urso9HqSDwmhTj5VrfwCQlluWkF5bJXr3Tbfew7Pafux8f_unh
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60HtSD-MT63IMnYWnz3OYoRWl9FFELvYXdzQZa2rS0abW_xL_rTB6ioB48BZKdJOxs5tvNfPsNwEWMqB4L6fKggctVxOMGl0J5nJRfcAZtKLdEbIuO3-q6tz2vtwLNci8M0SqL2J_H9CxaF2dqRW_WJv1-7dminFbgUh6R_oY4q7BG6lReBdau2netzmdA9oOsvge152RQJjczmpc2A1wl2iSz4Ob1V36Apy-Qc7MNW8VckV3lr7MDKybZhc0vCoJ78H6dSUAgcrDmU_v58anWlLOA4agwHN0xGrPZknb3ZXLMTJOLpyzfc7Vki75kkuEVokjxacGWXRhGuYXxTCacMC5iiUzGGfXcvDEzxMelM4YO6fN0PqLCWibBe1Np41e5ZDlBZB-6N9cvzRYvai1wjZCe8rhu6iq28aB85Xva0n6EX2dDikDW0aGRbZSyfCWM59iOiWwZGaEFJU2VDiLPOYBKMk7MITCBizBHaWFhK1dZgYpwCmDZsfSUcGwvqkK97OJQF0LkVA9jGJaMs0GIXgnJK2HulSpcfppMchWOvxq7pd_Cb0MpRJT43ezof2bnsN56ebgP79udu2PYoCs5P_AEKul0bk5xzpKqs2JMfgDMaerv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+CRISPR%2FCas9+gene-chemo+synergistic+cancer+therapy+via+a+stimuli-responsive+chitosan-based+nanocomplex+elicits+anti-tumorigenic+pathway+effect&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Zhang%2C+Bing-Chen&rft.au=Wu%2C+Peng-Yu&rft.au=Zou%2C+Jun-Jie&rft.au=Jiang%2C+Jia-Li&rft.date=2020-08-01&rft.issn=1385-8947&rft.volume=393&rft.spage=124688&rft_id=info:doi/10.1016%2Fj.cej.2020.124688&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cej_2020_124688
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon