A New Perspective on Thermal Transition in QCD

Abstract Motivated by the picture of partial deconfinement developed in recent years for large-N gauge theories, we propose a new way of analyzing and understanding thermal phase tsuppransition in QCD. We find nontrivial support for our proposal by analyzing the WHOT-QCD collaboration’s lattice conf...

Full description

Saved in:
Bibliographic Details
Published inProgress of theoretical and experimental physics Vol. 2024; no. 4
Main Authors Hanada, Masanori, Ohata, Hiroki, Shimada, Hidehiko, Watanabe, Hiromasa
Format Journal Article
LanguageEnglish
Published Oxford Oxford University Press 01.04.2024
Subjects
Online AccessGet full text
ISSN2050-3911
2050-3911
DOI10.1093/ptep/ptae044

Cover

Abstract Abstract Motivated by the picture of partial deconfinement developed in recent years for large-N gauge theories, we propose a new way of analyzing and understanding thermal phase tsuppransition in QCD. We find nontrivial support for our proposal by analyzing the WHOT-QCD collaboration’s lattice configurations for SU(3) QCD in 3 + 1 spacetime dimensions with up, down, and strange quarks. We find that the Polyakov line (the holonomy matrix around a thermal time circle) is governed by the Haar-random distribution at low temperatures. The deviation from the Haar-random distribution at higher temperatures can be measured via the character expansion, or equivalently, via the expectation values of the Polyakov loop defined by the various nontrivial representations of SU(3). We find that the Polyakov loop corresponding to the fundamental representation and loops in the higher representation condense at different temperatures. This suggests that there are three phases, one intermediate phase existing in between the completely-confined and the completely-deconfined phases. Our identification of the intermediate phase is supported also by the condensation of instantons: by studying the instanton numbers of the WHOT-QCD configurations, we find that the instanton condensation occurs for temperature regimes corresponding to what we identify as the completely-confined and intermediate phases, whereas the instantons do not condense in the completely-deconfined phase. Our characterization of confinement based on the Haar-randomness explains why the Polyakov loop is a good observable to distinguish the confinement and the deconfinement phases in QCD despite the absence of the $\mathbb {Z}_3$ center symmetry.
AbstractList Motivated by the picture of partial deconfinement developed in recent years for large-N gauge theories, we propose a new way of analyzing and understanding thermal phase tsuppransition in QCD. We find nontrivial support for our proposal by analyzing the WHOT-QCD collaboration’s lattice configurations for SU(3) QCD in 3 + 1 spacetime dimensions with up, down, and strange quarks. We find that the Polyakov line (the holonomy matrix around a thermal time circle) is governed by the Haar-random distribution at low temperatures. The deviation from the Haar-random distribution at higher temperatures can be measured via the character expansion, or equivalently, via the expectation values of the Polyakov loop defined by the various nontrivial representations of SU(3). We find that the Polyakov loop corresponding to the fundamental representation and loops in the higher representation condense at different temperatures. This suggests that there are three phases, one intermediate phase existing in between the completely-confined and the completely-deconfined phases. Our identification of the intermediate phase is supported also by the condensation of instantons: by studying the instanton numbers of the WHOT-QCD configurations, we find that the instanton condensation occurs for temperature regimes corresponding to what we identify as the completely-confined and intermediate phases, whereas the instantons do not condense in the completely-deconfined phase. Our characterization of confinement based on the Haar-randomness explains why the Polyakov loop is a good observable to distinguish the confinement and the deconfinement phases in QCD despite the absence of the $\mathbb {Z}_3$ center symmetry.
Abstract Motivated by the picture of partial deconfinement developed in recent years for large-N gauge theories, we propose a new way of analyzing and understanding thermal phase tsuppransition in QCD. We find nontrivial support for our proposal by analyzing the WHOT-QCD collaboration’s lattice configurations for SU(3) QCD in 3 + 1 spacetime dimensions with up, down, and strange quarks. We find that the Polyakov line (the holonomy matrix around a thermal time circle) is governed by the Haar-random distribution at low temperatures. The deviation from the Haar-random distribution at higher temperatures can be measured via the character expansion, or equivalently, via the expectation values of the Polyakov loop defined by the various nontrivial representations of SU(3). We find that the Polyakov loop corresponding to the fundamental representation and loops in the higher representation condense at different temperatures. This suggests that there are three phases, one intermediate phase existing in between the completely-confined and the completely-deconfined phases. Our identification of the intermediate phase is supported also by the condensation of instantons: by studying the instanton numbers of the WHOT-QCD configurations, we find that the instanton condensation occurs for temperature regimes corresponding to what we identify as the completely-confined and intermediate phases, whereas the instantons do not condense in the completely-deconfined phase. Our characterization of confinement based on the Haar-randomness explains why the Polyakov loop is a good observable to distinguish the confinement and the deconfinement phases in QCD despite the absence of the $\mathbb {Z}_3$ center symmetry.
Author Ohata, Hiroki
Shimada, Hidehiko
Hanada, Masanori
Watanabe, Hiromasa
Author_xml – sequence: 1
  givenname: Masanori
  orcidid: 0000-0001-5174-2571
  surname: Hanada
  fullname: Hanada, Masanori
– sequence: 2
  givenname: Hiroki
  orcidid: 0000-0002-7307-4284
  surname: Ohata
  fullname: Ohata, Hiroki
– sequence: 3
  givenname: Hidehiko
  orcidid: 0000-0002-6713-9002
  surname: Shimada
  fullname: Shimada, Hidehiko
– sequence: 4
  givenname: Hiromasa
  orcidid: 0000-0003-1515-1277
  surname: Watanabe
  fullname: Watanabe, Hiromasa
  email: hiromasa.watanabe@yukawa.kyoto-u.ac.jp
BookMark eNp9kE1LAzEQhoNUsNbe_AELHry4dbKT3e4eS60fUPyAeg5JOsGUdndNUsV_75b2IIJeZobheecd3lPWq5uaGDvnMOJQ4XUbqe2KIhDiiPUzyCHFivPej_mEDUNYAQCH8RgE77PRJHmkz-SZfGjJRPdBSVMnizfyG7VOFl7VwUXXrVydvExvztixVetAw0MfsNfb2WJ6n86f7h6mk3lqBBQxJWtQEy9KKCuCnIyCfGmUQCTMylxjjtaKUkGlBSlbgC0rRI1Ca82FXuKAXezvtr5531KIctVsfd1ZSuRjLqoiQ95R2Z4yvgnBk5XGRbV7N3rl1pKD3EUjd9HIQzSd6OqXqPVuo_zXX_jlHm-27f_kN-_adco
CitedBy_id crossref_primary_10_1103_PhysRevD_110_034516
crossref_primary_10_1007_JHEP07_2024_203
Cites_doi 10.1103/PhysRevD.102.096013
10.1007/JHEP09(2018)054
10.1007/JHEP08(2021)039
10.1016/S0370-2693(02)02415-2
10.1103/PhysRevD.77.034503
10.4310/ATMP.2004.v8.n4.a1
10.1007/JHEP12(2019)167
10.1103/PhysRevD.55.4488
10.1016/0550-3213(93)90042-N
10.1016/j.nuclphysb.2004.06.057
10.1038/nature05120
10.1103/PhysRevD.70.034511
10.1103/PhysRevD.92.094517
10.1016/S0550-3213(00)00044-4
10.1016/j.physletb.2006.10.021
10.1007/JHEP08(2010)071
10.1007/JHEP03(2022)118
10.1016/0550-3213(93)90403-C
10.1016/j.nuclphysa.2006.11.160
10.1007/JHEP02(2017)012
10.1016/0370-2693(78)90737-2
10.1103/PhysRevD.95.054502
10.1007/JHEP03(2024)013
10.1007/JHEP03(2019)145
10.1016/j.ppnp.2023.104049
10.1007/JHEP12(2023)030
10.1103/PhysRevLett.116.132001
10.1103/PhysRevD.20.2610
10.1103/PhysRevD.85.094508
ContentType Journal Article
Copyright The Author(s) 2024. Published by Oxford University Press on behalf of the Physical Society of Japan. 2024
The Author(s) 2024. Published by Oxford University Press on behalf of the Physical Society of Japan. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024. Published by Oxford University Press on behalf of the Physical Society of Japan. 2024
– notice: The Author(s) 2024. Published by Oxford University Press on behalf of the Physical Society of Japan. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID TOX
AAYXX
CITATION
3V.
7XB
88I
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
HCIFZ
M2P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1093/ptep/ptae044
DatabaseName Oxford Journals Open Access Collection
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
ProQuest Central Student
ProQuest SciTech Premium Collection
Science Database
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: TOX
  name: Oxford Journals Open Access (Activated by CARLI)
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 2050-3911
ExternalDocumentID 10_1093_ptep_ptae044
10.1093/ptep/ptae044
GroupedDBID .I3
0R~
4.4
5VS
88I
AAFWJ
AAMVS
AAPXW
AAVAP
ABEJV
ABGNP
ABPTD
ABUWG
ABXVV
ACGFS
ADHZD
AENEX
AENZO
AFKRA
AFPKN
AIBLX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
AMNDL
AZQEC
BAYMD
BENPR
CCPQU
CIDKT
DWQXO
D~K
EBS
EJD
ER.
GNUQQ
GROUPED_DOAJ
H13
HCIFZ
IAO
ISR
ITC
KQ8
KSI
M2P
M~E
O9-
OAWHX
OJQWA
OK1
PEELM
PIMPY
ROL
RXO
TOX
~D7
AAYXX
CITATION
PHGZM
PHGZT
3V.
7XB
8FK
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c406t-efc3be168089e05eca05dca433e3285b353ff48a09b4eaf60f8933b34bbb14bd3
IEDL.DBID BENPR
ISSN 2050-3911
IngestDate Mon Jun 30 12:26:03 EDT 2025
Tue Jul 01 02:09:16 EDT 2025
Thu Apr 24 23:07:02 EDT 2025
Wed Apr 02 07:04:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Funded by SCOAP3
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-efc3be168089e05eca05dca433e3285b353ff48a09b4eaf60f8933b34bbb14bd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7307-4284
0000-0003-1515-1277
0000-0002-6713-9002
0000-0001-5174-2571
OpenAccessLink https://www.proquest.com/docview/3171496231?pq-origsite=%requestingapplication%
PQID 3171496231
PQPubID 7121340
ParticipantIDs proquest_journals_3171496231
crossref_citationtrail_10_1093_ptep_ptae044
crossref_primary_10_1093_ptep_ptae044
oup_primary_10_1093_ptep_ptae044
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Progress of theoretical and experimental physics
PublicationYear 2024
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Lüscher (2024041612364643200_bib13) 2010; 08
Mykkanen (2024041612364643200_bib26) 2012; 05
Wadia (2024041612364643200_bib19) 2012
Cohen (2024041612364643200_bib31) 2023
Sundborg (2024041612364643200_bib3) 2000; 573
Gross (2024041612364643200_bib33) 1993; 403
Hanada (2024041612364643200_bib14) 2017; 02
Kaczmarek (2024041612364643200_bib22) 2002; 543
Polyakov (2024041612364643200_bib1) 1978; 72
Bergner (2024041612364643200_bib28) 2024; 03
Gupta (2024041612364643200_bib24) 2007; 785
Hanada (2024041612364643200_bib6) 2021; 08
Hanada (2024041612364643200_bib20) 2022; 03
Asakawa (2024041612364643200_bib29) 1997; 55
Susskind (2024041612364643200_bib2) 1979; 20
Schnitzer (2024041612364643200_bib5) 2004; 695
Berenstein (2024041612364643200_bib34) 2023; 12
Taniguchi (2024041612364643200_bib12) 2017; 95
Dumitru (2024041612364643200_bib23) 2004; 70
Petreczky (2024041612364643200_bib27) 2015; 92
Hanada (2024041612364643200_bib17) 2019; 12
Aoki (2024041612364643200_bib10) 2006; 443
Aoki (2024041612364643200_bib9) 2006; 643
Umeda (2024041612364643200_bib8) 2012; 85
Hanada (2024041612364643200_bib11) 2020; 102
Gupta (2024041612364643200_bib25) 2008; 77
Hanada (2024041612364643200_bib16) 2019; 03
Buividovich (2024041612364643200_bib21) 2016; 116
Hanada (2024041612364643200_bib7) 2023
Gross (2024041612364643200_bib32) 1993; 400
Berenstein (2024041612364643200_bib15) 2018; 09
Gross (2024041612364643200_bib18) 1980; D21
Aharony (2024041612364643200_bib4) 2004; 8
Glozman (2024041612364643200_bib30) 2023; 131
References_xml – volume: 102
  start-page: 096013
  issue: 9
  year: 2020
  ident: 2024041612364643200_bib11
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.102.096013
– volume: 09
  start-page: 054
  year: 2018
  ident: 2024041612364643200_bib15
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP09(2018)054
– volume: 08
  start-page: 039
  year: 2021
  ident: 2024041612364643200_bib6
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP08(2021)039
– volume: 543
  start-page: 41
  year: 2002
  ident: 2024041612364643200_bib22
  publication-title: Phys. Lett. B
  doi: 10.1016/S0370-2693(02)02415-2
– volume: 77
  start-page: 034503
  year: 2008
  ident: 2024041612364643200_bib25
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.77.034503
– volume: 8
  start-page: 603
  year: 2004
  ident: 2024041612364643200_bib4
  publication-title: Adv. Theor. Math. Phys.
  doi: 10.4310/ATMP.2004.v8.n4.a1
– volume: 12
  start-page: 167
  year: 2019
  ident: 2024041612364643200_bib17
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP12(2019)167
– volume: 55
  start-page: 4488
  year: 1997
  ident: 2024041612364643200_bib29
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.55.4488
– volume: 403
  start-page: 395
  year: 1993
  ident: 2024041612364643200_bib33
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(93)90042-N
– volume: 695
  start-page: 267
  year: 2004
  ident: 2024041612364643200_bib5
  publication-title: Nucl. Phys. B
  doi: 10.1016/j.nuclphysb.2004.06.057
– volume: 443
  start-page: 675
  year: 2006
  ident: 2024041612364643200_bib10
  publication-title: Nature
  doi: 10.1038/nature05120
– volume: 70
  start-page: 034511
  year: 2004
  ident: 2024041612364643200_bib23
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.70.034511
– volume: 92
  start-page: 094517
  year: 2015
  ident: 2024041612364643200_bib27
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.92.094517
– volume: 573
  start-page: 349
  year: 2000
  ident: 2024041612364643200_bib3
  publication-title: Nucl. Phys. B
  doi: 10.1016/S0550-3213(00)00044-4
– volume: 05
  start-page: 069
  year: 2012
  ident: 2024041612364643200_bib26
  publication-title: J. High Energy Phys
– volume: 643
  start-page: 46
  year: 2006
  ident: 2024041612364643200_bib9
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2006.10.021
– volume: 08
  start-page: 071
  year: 2010
  ident: 2024041612364643200_bib13
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP08(2010)071
– year: 2012
  ident: 2024041612364643200_bib19
  article-title: A study of U(N) lattice gauge theory in 2-dimensions
– volume: 03
  start-page: 118
  year: 2022
  ident: 2024041612364643200_bib20
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP03(2022)118
– volume: 400
  start-page: 181
  year: 1993
  ident: 2024041612364643200_bib32
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(93)90403-C
– volume: 785
  start-page: 278
  year: 2007
  ident: 2024041612364643200_bib24
  publication-title: Nucl. Phys. A
  doi: 10.1016/j.nuclphysa.2006.11.160
– volume: 02
  start-page: 012
  year: 2017
  ident: 2024041612364643200_bib14
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP02(2017)012
– volume: 72
  start-page: 477
  year: 1978
  ident: 2024041612364643200_bib1
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(78)90737-2
– year: 2023
  ident: 2024041612364643200_bib31
  article-title: Large Nc QCD phase diagram at μB = 0
– volume: D21
  start-page: 446
  year: 1980
  ident: 2024041612364643200_bib18
  publication-title: Phys. Rev.
– volume: 95
  start-page: 054502
  year: 2017
  ident: 2024041612364643200_bib12
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.95.054502
– volume: 03
  start-page: 013
  year: 2024
  ident: 2024041612364643200_bib28
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP03(2024)013
– volume: 03
  start-page: 145
  year: 2019
  ident: 2024041612364643200_bib16
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP03(2019)145
– year: 2023
  ident: 2024041612364643200_bib7
  article-title: On thermal transition in QCD
– volume: 131
  start-page: 104049
  year: 2023
  ident: 2024041612364643200_bib30
  publication-title: Prog. Part. Nucl. Phys.
  doi: 10.1016/j.ppnp.2023.104049
– volume: 12
  start-page: 030
  year: 2023
  ident: 2024041612364643200_bib34
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP12(2023)030
– volume: 116
  start-page: 132001
  year: 2016
  ident: 2024041612364643200_bib21
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.116.132001
– volume: 20
  start-page: 2610
  year: 1979
  ident: 2024041612364643200_bib2
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.20.2610
– volume: 85
  start-page: 094508
  year: 2012
  ident: 2024041612364643200_bib8
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.85.094508
SSID ssj0001077041
Score 2.3232415
Snippet Abstract Motivated by the picture of partial deconfinement developed in recent years for large-N gauge theories, we propose a new way of analyzing and...
Motivated by the picture of partial deconfinement developed in recent years for large-N gauge theories, we propose a new way of analyzing and understanding...
SourceID proquest
crossref
oup
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Collaboration
Eigenvalues
Phase transitions
Quarks
Symmetry
Title A New Perspective on Thermal Transition in QCD
URI https://www.proquest.com/docview/3171496231
Volume 2024
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NT8IwFG8ULl78NqJIetCTqXRrx7aTQYQQExENJNyWtmsTEzKmzP_f162TcFAvTZa903vt7_36-j4Qug5FJLVPGekxzxAODIHAtySx0QoYhPS4scXJz5PeeM6fFsHCBdzWLq2yxsQSqNOVsjHyLrOTumNw1t59_kHs1Cj7uupGaOyiJkBwBPu8-TCcTN82URYahpR7LuMdbu_dvNA5LEJTzrd80VZ9Ww3IpZcZHaJ9Rw9xv7LnEdrR2TE6cFQRu4O4PkF3fQzwhKebUkm8yjDYHHB2iUsHVOZi4fcMvw4eT9F8NJwNxsSNPiAKPGxBtFFMas_OxYg1DbQSNEiV4Ixp5keBZAEzhkeCxpJrYXrUAO9gknEpQb0yZWeoka0yfY6wH4vAtgUzAG2cCh5H3HAvpSLSSod-1EK3tRIS5fqC2_EUy6R6n2aJVVniVNZCNz_SedUP4xc5DPr8R6RdKztxB2edbMx88ffvS7TnA7-okmjaqFF8fukr4AeF7LhN0Cnv17DOXhbfBy2-Ow
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT8JAEJ0gHPTitxFF3YOeTGXb3UJ7MAY_CAgSNZJwq7tlNzEhBQVj_FP-RmfpVsJBPXFp0nTSNG9nZ153Z_YBHFdFIJVHmVNhrnY4MgQH76UTahUjg5Au16Y5-a5TaXT5bc_v5eAr64UxZZVZTJwG6v4wNmvkZWaUukNM1u7F6NUxqlFmdzWT0EjdoqU-P_CXbXzevMbxPfG8-s3TVcOxqgJOjMlr4igdM6lcIzkRKuqrWFC_HwvOmGJe4EvmM615IGgouRK6QrVRpJeMS4lfLvsM37sEBW46WvNQuLzp3D_OVnVotUq5ayvsacjKo4ka4UUoyvlc7pvrp8sSwDSr1ddh1dJRUkv9ZwNyKtmENUtNiZ344y04qxEMh-R-1ppJhglBH8O4PiDThDet_SIvCXm4ut6G7kJA2YF8MkzULhAvFL45hkxjKOVU8DDgmrt9KgIVq6oXFOE0AyGK7TnkRg5jEKX74SwykEUWsiKc_FiP0vM3frEjiOc_JqUM7MhO1HE0c6u9vx8fwXLj6a4dtZud1j6seMht0gKeEuQnb-_qALnJRB5ahyDwvGgf_AZLuPo9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+New+Perspective+on+Thermal+Transition+in+QCD&rft.jtitle=Progress+of+theoretical+and+experimental+physics&rft.au=Hanada%2C+Masanori&rft.au=Ohata%2C+Hiroki&rft.au=Shimada%2C+Hidehiko&rft.au=Watanabe%2C+Hiromasa&rft.date=2024-04-01&rft.pub=Oxford+University+Press&rft.eissn=2050-3911&rft.volume=2024&rft.issue=4&rft_id=info:doi/10.1093%2Fptep%2Fptae044
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-3911&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-3911&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-3911&client=summon