A New Perspective on Thermal Transition in QCD
Abstract Motivated by the picture of partial deconfinement developed in recent years for large-N gauge theories, we propose a new way of analyzing and understanding thermal phase tsuppransition in QCD. We find nontrivial support for our proposal by analyzing the WHOT-QCD collaboration’s lattice conf...
Saved in:
Published in | Progress of theoretical and experimental physics Vol. 2024; no. 4 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Oxford University Press
01.04.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2050-3911 2050-3911 |
DOI | 10.1093/ptep/ptae044 |
Cover
Abstract | Abstract
Motivated by the picture of partial deconfinement developed in recent years for large-N gauge theories, we propose a new way of analyzing and understanding thermal phase tsuppransition in QCD. We find nontrivial support for our proposal by analyzing the WHOT-QCD collaboration’s lattice configurations for SU(3) QCD in 3 + 1 spacetime dimensions with up, down, and strange quarks. We find that the Polyakov line (the holonomy matrix around a thermal time circle) is governed by the Haar-random distribution at low temperatures. The deviation from the Haar-random distribution at higher temperatures can be measured via the character expansion, or equivalently, via the expectation values of the Polyakov loop defined by the various nontrivial representations of SU(3). We find that the Polyakov loop corresponding to the fundamental representation and loops in the higher representation condense at different temperatures. This suggests that there are three phases, one intermediate phase existing in between the completely-confined and the completely-deconfined phases. Our identification of the intermediate phase is supported also by the condensation of instantons: by studying the instanton numbers of the WHOT-QCD configurations, we find that the instanton condensation occurs for temperature regimes corresponding to what we identify as the completely-confined and intermediate phases, whereas the instantons do not condense in the completely-deconfined phase. Our characterization of confinement based on the Haar-randomness explains why the Polyakov loop is a good observable to distinguish the confinement and the deconfinement phases in QCD despite the absence of the $\mathbb {Z}_3$ center symmetry. |
---|---|
AbstractList | Motivated by the picture of partial deconfinement developed in recent years for large-N gauge theories, we propose a new way of analyzing and understanding thermal phase tsuppransition in QCD. We find nontrivial support for our proposal by analyzing the WHOT-QCD collaboration’s lattice configurations for SU(3) QCD in 3 + 1 spacetime dimensions with up, down, and strange quarks. We find that the Polyakov line (the holonomy matrix around a thermal time circle) is governed by the Haar-random distribution at low temperatures. The deviation from the Haar-random distribution at higher temperatures can be measured via the character expansion, or equivalently, via the expectation values of the Polyakov loop defined by the various nontrivial representations of SU(3). We find that the Polyakov loop corresponding to the fundamental representation and loops in the higher representation condense at different temperatures. This suggests that there are three phases, one intermediate phase existing in between the completely-confined and the completely-deconfined phases. Our identification of the intermediate phase is supported also by the condensation of instantons: by studying the instanton numbers of the WHOT-QCD configurations, we find that the instanton condensation occurs for temperature regimes corresponding to what we identify as the completely-confined and intermediate phases, whereas the instantons do not condense in the completely-deconfined phase. Our characterization of confinement based on the Haar-randomness explains why the Polyakov loop is a good observable to distinguish the confinement and the deconfinement phases in QCD despite the absence of the $\mathbb {Z}_3$ center symmetry. Abstract Motivated by the picture of partial deconfinement developed in recent years for large-N gauge theories, we propose a new way of analyzing and understanding thermal phase tsuppransition in QCD. We find nontrivial support for our proposal by analyzing the WHOT-QCD collaboration’s lattice configurations for SU(3) QCD in 3 + 1 spacetime dimensions with up, down, and strange quarks. We find that the Polyakov line (the holonomy matrix around a thermal time circle) is governed by the Haar-random distribution at low temperatures. The deviation from the Haar-random distribution at higher temperatures can be measured via the character expansion, or equivalently, via the expectation values of the Polyakov loop defined by the various nontrivial representations of SU(3). We find that the Polyakov loop corresponding to the fundamental representation and loops in the higher representation condense at different temperatures. This suggests that there are three phases, one intermediate phase existing in between the completely-confined and the completely-deconfined phases. Our identification of the intermediate phase is supported also by the condensation of instantons: by studying the instanton numbers of the WHOT-QCD configurations, we find that the instanton condensation occurs for temperature regimes corresponding to what we identify as the completely-confined and intermediate phases, whereas the instantons do not condense in the completely-deconfined phase. Our characterization of confinement based on the Haar-randomness explains why the Polyakov loop is a good observable to distinguish the confinement and the deconfinement phases in QCD despite the absence of the $\mathbb {Z}_3$ center symmetry. |
Author | Ohata, Hiroki Shimada, Hidehiko Hanada, Masanori Watanabe, Hiromasa |
Author_xml | – sequence: 1 givenname: Masanori orcidid: 0000-0001-5174-2571 surname: Hanada fullname: Hanada, Masanori – sequence: 2 givenname: Hiroki orcidid: 0000-0002-7307-4284 surname: Ohata fullname: Ohata, Hiroki – sequence: 3 givenname: Hidehiko orcidid: 0000-0002-6713-9002 surname: Shimada fullname: Shimada, Hidehiko – sequence: 4 givenname: Hiromasa orcidid: 0000-0003-1515-1277 surname: Watanabe fullname: Watanabe, Hiromasa email: hiromasa.watanabe@yukawa.kyoto-u.ac.jp |
BookMark | eNp9kE1LAzEQhoNUsNbe_AELHry4dbKT3e4eS60fUPyAeg5JOsGUdndNUsV_75b2IIJeZobheecd3lPWq5uaGDvnMOJQ4XUbqe2KIhDiiPUzyCHFivPej_mEDUNYAQCH8RgE77PRJHmkz-SZfGjJRPdBSVMnizfyG7VOFl7VwUXXrVydvExvztixVetAw0MfsNfb2WJ6n86f7h6mk3lqBBQxJWtQEy9KKCuCnIyCfGmUQCTMylxjjtaKUkGlBSlbgC0rRI1Ca82FXuKAXezvtr5531KIctVsfd1ZSuRjLqoiQ95R2Z4yvgnBk5XGRbV7N3rl1pKD3EUjd9HIQzSd6OqXqPVuo_zXX_jlHm-27f_kN-_adco |
CitedBy_id | crossref_primary_10_1103_PhysRevD_110_034516 crossref_primary_10_1007_JHEP07_2024_203 |
Cites_doi | 10.1103/PhysRevD.102.096013 10.1007/JHEP09(2018)054 10.1007/JHEP08(2021)039 10.1016/S0370-2693(02)02415-2 10.1103/PhysRevD.77.034503 10.4310/ATMP.2004.v8.n4.a1 10.1007/JHEP12(2019)167 10.1103/PhysRevD.55.4488 10.1016/0550-3213(93)90042-N 10.1016/j.nuclphysb.2004.06.057 10.1038/nature05120 10.1103/PhysRevD.70.034511 10.1103/PhysRevD.92.094517 10.1016/S0550-3213(00)00044-4 10.1016/j.physletb.2006.10.021 10.1007/JHEP08(2010)071 10.1007/JHEP03(2022)118 10.1016/0550-3213(93)90403-C 10.1016/j.nuclphysa.2006.11.160 10.1007/JHEP02(2017)012 10.1016/0370-2693(78)90737-2 10.1103/PhysRevD.95.054502 10.1007/JHEP03(2024)013 10.1007/JHEP03(2019)145 10.1016/j.ppnp.2023.104049 10.1007/JHEP12(2023)030 10.1103/PhysRevLett.116.132001 10.1103/PhysRevD.20.2610 10.1103/PhysRevD.85.094508 |
ContentType | Journal Article |
Copyright | The Author(s) 2024. Published by Oxford University Press on behalf of the Physical Society of Japan. 2024 The Author(s) 2024. Published by Oxford University Press on behalf of the Physical Society of Japan. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024. Published by Oxford University Press on behalf of the Physical Society of Japan. 2024 – notice: The Author(s) 2024. Published by Oxford University Press on behalf of the Physical Society of Japan. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | TOX AAYXX CITATION 3V. 7XB 88I 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ HCIFZ M2P PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U |
DOI | 10.1093/ptep/ptae044 |
DatabaseName | Oxford Journals Open Access Collection CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea ProQuest Central Student ProQuest SciTech Premium Collection Science Database Proquest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Science Journals (Alumni Edition) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: TOX name: Oxford Journals Open Access (Activated by CARLI) url: https://academic.oup.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 2050-3911 |
ExternalDocumentID | 10_1093_ptep_ptae044 10.1093/ptep/ptae044 |
GroupedDBID | .I3 0R~ 4.4 5VS 88I AAFWJ AAMVS AAPXW AAVAP ABEJV ABGNP ABPTD ABUWG ABXVV ACGFS ADHZD AENEX AENZO AFKRA AFPKN AIBLX ALMA_UNASSIGNED_HOLDINGS ALUQC AMNDL AZQEC BAYMD BENPR CCPQU CIDKT DWQXO D~K EBS EJD ER. GNUQQ GROUPED_DOAJ H13 HCIFZ IAO ISR ITC KQ8 KSI M2P M~E O9- OAWHX OJQWA OK1 PEELM PIMPY ROL RXO TOX ~D7 AAYXX CITATION PHGZM PHGZT 3V. 7XB 8FK PKEHL PQEST PQQKQ PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c406t-efc3be168089e05eca05dca433e3285b353ff48a09b4eaf60f8933b34bbb14bd3 |
IEDL.DBID | BENPR |
ISSN | 2050-3911 |
IngestDate | Mon Jun 30 12:26:03 EDT 2025 Tue Jul 01 02:09:16 EDT 2025 Thu Apr 24 23:07:02 EDT 2025 Wed Apr 02 07:04:08 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | Funded by SCOAP3 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c406t-efc3be168089e05eca05dca433e3285b353ff48a09b4eaf60f8933b34bbb14bd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7307-4284 0000-0003-1515-1277 0000-0002-6713-9002 0000-0001-5174-2571 |
OpenAccessLink | https://www.proquest.com/docview/3171496231?pq-origsite=%requestingapplication% |
PQID | 3171496231 |
PQPubID | 7121340 |
ParticipantIDs | proquest_journals_3171496231 crossref_citationtrail_10_1093_ptep_ptae044 crossref_primary_10_1093_ptep_ptae044 oup_primary_10_1093_ptep_ptae044 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-04-01 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Progress of theoretical and experimental physics |
PublicationYear | 2024 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Lüscher (2024041612364643200_bib13) 2010; 08 Mykkanen (2024041612364643200_bib26) 2012; 05 Wadia (2024041612364643200_bib19) 2012 Cohen (2024041612364643200_bib31) 2023 Sundborg (2024041612364643200_bib3) 2000; 573 Gross (2024041612364643200_bib33) 1993; 403 Hanada (2024041612364643200_bib14) 2017; 02 Kaczmarek (2024041612364643200_bib22) 2002; 543 Polyakov (2024041612364643200_bib1) 1978; 72 Bergner (2024041612364643200_bib28) 2024; 03 Gupta (2024041612364643200_bib24) 2007; 785 Hanada (2024041612364643200_bib6) 2021; 08 Hanada (2024041612364643200_bib20) 2022; 03 Asakawa (2024041612364643200_bib29) 1997; 55 Susskind (2024041612364643200_bib2) 1979; 20 Schnitzer (2024041612364643200_bib5) 2004; 695 Berenstein (2024041612364643200_bib34) 2023; 12 Taniguchi (2024041612364643200_bib12) 2017; 95 Dumitru (2024041612364643200_bib23) 2004; 70 Petreczky (2024041612364643200_bib27) 2015; 92 Hanada (2024041612364643200_bib17) 2019; 12 Aoki (2024041612364643200_bib10) 2006; 443 Aoki (2024041612364643200_bib9) 2006; 643 Umeda (2024041612364643200_bib8) 2012; 85 Hanada (2024041612364643200_bib11) 2020; 102 Gupta (2024041612364643200_bib25) 2008; 77 Hanada (2024041612364643200_bib16) 2019; 03 Buividovich (2024041612364643200_bib21) 2016; 116 Hanada (2024041612364643200_bib7) 2023 Gross (2024041612364643200_bib32) 1993; 400 Berenstein (2024041612364643200_bib15) 2018; 09 Gross (2024041612364643200_bib18) 1980; D21 Aharony (2024041612364643200_bib4) 2004; 8 Glozman (2024041612364643200_bib30) 2023; 131 |
References_xml | – volume: 102 start-page: 096013 issue: 9 year: 2020 ident: 2024041612364643200_bib11 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.102.096013 – volume: 09 start-page: 054 year: 2018 ident: 2024041612364643200_bib15 publication-title: J. High Energy Phys. doi: 10.1007/JHEP09(2018)054 – volume: 08 start-page: 039 year: 2021 ident: 2024041612364643200_bib6 publication-title: J. High Energy Phys. doi: 10.1007/JHEP08(2021)039 – volume: 543 start-page: 41 year: 2002 ident: 2024041612364643200_bib22 publication-title: Phys. Lett. B doi: 10.1016/S0370-2693(02)02415-2 – volume: 77 start-page: 034503 year: 2008 ident: 2024041612364643200_bib25 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.77.034503 – volume: 8 start-page: 603 year: 2004 ident: 2024041612364643200_bib4 publication-title: Adv. Theor. Math. Phys. doi: 10.4310/ATMP.2004.v8.n4.a1 – volume: 12 start-page: 167 year: 2019 ident: 2024041612364643200_bib17 publication-title: J. High Energy Phys. doi: 10.1007/JHEP12(2019)167 – volume: 55 start-page: 4488 year: 1997 ident: 2024041612364643200_bib29 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.55.4488 – volume: 403 start-page: 395 year: 1993 ident: 2024041612364643200_bib33 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(93)90042-N – volume: 695 start-page: 267 year: 2004 ident: 2024041612364643200_bib5 publication-title: Nucl. Phys. B doi: 10.1016/j.nuclphysb.2004.06.057 – volume: 443 start-page: 675 year: 2006 ident: 2024041612364643200_bib10 publication-title: Nature doi: 10.1038/nature05120 – volume: 70 start-page: 034511 year: 2004 ident: 2024041612364643200_bib23 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.70.034511 – volume: 92 start-page: 094517 year: 2015 ident: 2024041612364643200_bib27 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.92.094517 – volume: 573 start-page: 349 year: 2000 ident: 2024041612364643200_bib3 publication-title: Nucl. Phys. B doi: 10.1016/S0550-3213(00)00044-4 – volume: 05 start-page: 069 year: 2012 ident: 2024041612364643200_bib26 publication-title: J. High Energy Phys – volume: 643 start-page: 46 year: 2006 ident: 2024041612364643200_bib9 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2006.10.021 – volume: 08 start-page: 071 year: 2010 ident: 2024041612364643200_bib13 publication-title: J. High Energy Phys. doi: 10.1007/JHEP08(2010)071 – year: 2012 ident: 2024041612364643200_bib19 article-title: A study of U(N) lattice gauge theory in 2-dimensions – volume: 03 start-page: 118 year: 2022 ident: 2024041612364643200_bib20 publication-title: J. High Energy Phys. doi: 10.1007/JHEP03(2022)118 – volume: 400 start-page: 181 year: 1993 ident: 2024041612364643200_bib32 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(93)90403-C – volume: 785 start-page: 278 year: 2007 ident: 2024041612364643200_bib24 publication-title: Nucl. Phys. A doi: 10.1016/j.nuclphysa.2006.11.160 – volume: 02 start-page: 012 year: 2017 ident: 2024041612364643200_bib14 publication-title: J. High Energy Phys. doi: 10.1007/JHEP02(2017)012 – volume: 72 start-page: 477 year: 1978 ident: 2024041612364643200_bib1 publication-title: Phys. Lett. B doi: 10.1016/0370-2693(78)90737-2 – year: 2023 ident: 2024041612364643200_bib31 article-title: Large Nc QCD phase diagram at μB = 0 – volume: D21 start-page: 446 year: 1980 ident: 2024041612364643200_bib18 publication-title: Phys. Rev. – volume: 95 start-page: 054502 year: 2017 ident: 2024041612364643200_bib12 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.95.054502 – volume: 03 start-page: 013 year: 2024 ident: 2024041612364643200_bib28 publication-title: J. High Energy Phys. doi: 10.1007/JHEP03(2024)013 – volume: 03 start-page: 145 year: 2019 ident: 2024041612364643200_bib16 publication-title: J. High Energy Phys. doi: 10.1007/JHEP03(2019)145 – year: 2023 ident: 2024041612364643200_bib7 article-title: On thermal transition in QCD – volume: 131 start-page: 104049 year: 2023 ident: 2024041612364643200_bib30 publication-title: Prog. Part. Nucl. Phys. doi: 10.1016/j.ppnp.2023.104049 – volume: 12 start-page: 030 year: 2023 ident: 2024041612364643200_bib34 publication-title: J. High Energy Phys. doi: 10.1007/JHEP12(2023)030 – volume: 116 start-page: 132001 year: 2016 ident: 2024041612364643200_bib21 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.116.132001 – volume: 20 start-page: 2610 year: 1979 ident: 2024041612364643200_bib2 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.20.2610 – volume: 85 start-page: 094508 year: 2012 ident: 2024041612364643200_bib8 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.85.094508 |
SSID | ssj0001077041 |
Score | 2.3232415 |
Snippet | Abstract
Motivated by the picture of partial deconfinement developed in recent years for large-N gauge theories, we propose a new way of analyzing and... Motivated by the picture of partial deconfinement developed in recent years for large-N gauge theories, we propose a new way of analyzing and understanding... |
SourceID | proquest crossref oup |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Collaboration Eigenvalues Phase transitions Quarks Symmetry |
Title | A New Perspective on Thermal Transition in QCD |
URI | https://www.proquest.com/docview/3171496231 |
Volume | 2024 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NT8IwFG8ULl78NqJIetCTqXRrx7aTQYQQExENJNyWtmsTEzKmzP_f162TcFAvTZa903vt7_36-j4Qug5FJLVPGekxzxAODIHAtySx0QoYhPS4scXJz5PeeM6fFsHCBdzWLq2yxsQSqNOVsjHyLrOTumNw1t59_kHs1Cj7uupGaOyiJkBwBPu8-TCcTN82URYahpR7LuMdbu_dvNA5LEJTzrd80VZ9Ww3IpZcZHaJ9Rw9xv7LnEdrR2TE6cFQRu4O4PkF3fQzwhKebUkm8yjDYHHB2iUsHVOZi4fcMvw4eT9F8NJwNxsSNPiAKPGxBtFFMas_OxYg1DbQSNEiV4Ixp5keBZAEzhkeCxpJrYXrUAO9gknEpQb0yZWeoka0yfY6wH4vAtgUzAG2cCh5H3HAvpSLSSod-1EK3tRIS5fqC2_EUy6R6n2aJVVniVNZCNz_SedUP4xc5DPr8R6RdKztxB2edbMx88ffvS7TnA7-okmjaqFF8fukr4AeF7LhN0Cnv17DOXhbfBy2-Ow |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT8JAEJ0gHPTitxFF3YOeTGXb3UJ7MAY_CAgSNZJwq7tlNzEhBQVj_FP-RmfpVsJBPXFp0nTSNG9nZ153Z_YBHFdFIJVHmVNhrnY4MgQH76UTahUjg5Au16Y5-a5TaXT5bc_v5eAr64UxZZVZTJwG6v4wNmvkZWaUukNM1u7F6NUxqlFmdzWT0EjdoqU-P_CXbXzevMbxPfG8-s3TVcOxqgJOjMlr4igdM6lcIzkRKuqrWFC_HwvOmGJe4EvmM615IGgouRK6QrVRpJeMS4lfLvsM37sEBW46WvNQuLzp3D_OVnVotUq5ayvsacjKo4ka4UUoyvlc7pvrp8sSwDSr1ddh1dJRUkv9ZwNyKtmENUtNiZ344y04qxEMh-R-1ppJhglBH8O4PiDThDet_SIvCXm4ut6G7kJA2YF8MkzULhAvFL45hkxjKOVU8DDgmrt9KgIVq6oXFOE0AyGK7TnkRg5jEKX74SwykEUWsiKc_FiP0vM3frEjiOc_JqUM7MhO1HE0c6u9vx8fwXLj6a4dtZud1j6seMht0gKeEuQnb-_qALnJRB5ahyDwvGgf_AZLuPo9 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+New+Perspective+on+Thermal+Transition+in+QCD&rft.jtitle=Progress+of+theoretical+and+experimental+physics&rft.au=Hanada%2C+Masanori&rft.au=Ohata%2C+Hiroki&rft.au=Shimada%2C+Hidehiko&rft.au=Watanabe%2C+Hiromasa&rft.date=2024-04-01&rft.pub=Oxford+University+Press&rft.eissn=2050-3911&rft.volume=2024&rft.issue=4&rft_id=info:doi/10.1093%2Fptep%2Fptae044 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-3911&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-3911&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-3911&client=summon |