Understanding of the electrochemical behaviors of aqueous zinc–manganese batteries: Reaction processes and failure mechanisms
As one of the most common cathode materials for aqueous zinc-ion batteries (AZIBs), manganese oxides have the advantages of abundant reserves, low cost, and low toxicity. However, the electrochemical mechanism at the cathode of aqueous zinc–manganese batteries (AZMBs) is complicated due to different...
Saved in:
Published in | Green energy & environment Vol. 7; no. 5; pp. 858 - 899 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
KeAi Communications Co., Ltd
01.10.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 2468-0257 2468-0257 |
DOI | 10.1016/j.gee.2021.08.006 |
Cover
Loading…
Abstract | As one of the most common cathode materials for aqueous zinc-ion batteries (AZIBs), manganese oxides have the advantages of abundant reserves, low cost, and low toxicity. However, the electrochemical mechanism at the cathode of aqueous zinc–manganese batteries (AZMBs) is complicated due to different electrode materials, electrolytes and working conditions. These complicated mechanisms severely limit the research progress of AZMBs system and the design of cells with better performance. Hence, the mechanism of AZMBs currently recognized by most researchers according to the classification of the main ions involved in the faradaic reaction is introduced in the review. Then a series of reasons that affect the electrochemical behavior of the battery are summarized. Finally, the failure mechanisms of AZMBs over prolonged cycling are discussed, and the current insufficient research areas of the system are explained, along with the direction of further research being prospected. |
---|---|
AbstractList | As one of the most common cathode materials for aqueous zinc-ion batteries (AZIBs), manganese oxides have the advantages of abundant reserves, low cost, and low toxicity. However, the electrochemical mechanism at the cathode of aqueous zinc–manganese batteries (AZMBs) is complicated due to different electrode materials, electrolytes and working conditions. These complicated mechanisms severely limit the research progress of AZMBs system and the design of cells with better performance. Hence, the mechanism of AZMBs currently recognized by most researchers according to the classification of the main ions involved in the faradaic reaction is introduced in the review. Then a series of reasons that affect the electrochemical behavior of the battery are summarized. Finally, the failure mechanisms of AZMBs over prolonged cycling are discussed, and the current insufficient research areas of the system are explained, along with the direction of further research being prospected. |
Author | Zhang, Fengbao Luo, Xinyu Li, Yang Peng, Wenchao Fan, Xiaobin |
Author_xml | – sequence: 1 givenname: Xinyu surname: Luo fullname: Luo, Xinyu – sequence: 2 givenname: Wenchao surname: Peng fullname: Peng, Wenchao – sequence: 3 givenname: Yang surname: Li fullname: Li, Yang – sequence: 4 givenname: Fengbao surname: Zhang fullname: Zhang, Fengbao – sequence: 5 givenname: Xiaobin surname: Fan fullname: Fan, Xiaobin |
BookMark | eNp9kcGKFDEQhoOs4LruA3jLC0ybpNPdGW-yqLuwIIh7DpXqykyG7mRNMoJe9B18Q5_EjCsiHjxVUVX_90P9T9lZTJEYey5FJ4UcXxy6HVGnhJKdMJ0Q4yN2rvRoNkIN09lf_RN2WcpBCKG01HLQ5-zrXZwplwpxDnHHk-d1T5wWwpoT7mkNCAt3tIdPIeVyOoCPR0rHwr-EiD--fV8h7iBSIe6gVsqBykv-ngBrSJHfNwqVQoU3B-4hLMdMfCXcQwxlLc_YYw9Locvf9YLdvXn94ep6c_vu7c3Vq9sNajHWDTlwmvrBid6jls4oJ43RW5jFVsJk2nbQtG17MXkzSYRBmlE6jzQ6Iuwv2M0Dd05wsPc5rJA_2wTB_hqkvLOQa8CFrMdeKUTlx9nraRJuUr3rUTVr6L3cNpZ8YGFOpWTyf3hS2FMg9mBbIPYUiBXGtkCaZvpHg6HC6UU1t6f8R_kTlbqYGA |
CitedBy_id | crossref_primary_10_1016_j_jechem_2024_08_061 crossref_primary_10_1021_acsenergylett_3c01407 crossref_primary_10_1021_acs_inorgchem_4c00622 crossref_primary_10_1007_s11581_023_04927_x crossref_primary_10_1021_acsaem_2c03360 crossref_primary_10_1002_aenm_202406171 crossref_primary_10_1016_j_cej_2023_141824 crossref_primary_10_1021_acs_cgd_4c00132 crossref_primary_10_1002_smll_202208233 crossref_primary_10_1039_D4CP02704C crossref_primary_10_1021_acs_nanolett_4c03191 crossref_primary_10_1002_adma_202305532 crossref_primary_10_1016_j_gee_2022_09_005 crossref_primary_10_1016_j_ensm_2024_103300 crossref_primary_10_1016_j_jpowsour_2024_236114 crossref_primary_10_1002_ckon_202200069 crossref_primary_10_1002_adfm_202308015 crossref_primary_10_1016_j_cej_2024_154394 crossref_primary_10_1002_ente_202300723 crossref_primary_10_1016_j_jallcom_2023_169366 crossref_primary_10_1002_aenm_202401275 crossref_primary_10_1038_s41467_025_57579_y crossref_primary_10_1016_j_ssi_2024_116476 crossref_primary_10_1021_acsnano_4c04517 crossref_primary_10_1016_j_ensm_2023_102966 crossref_primary_10_1021_acssuschemeng_4c09979 crossref_primary_10_1002_aenm_202300627 crossref_primary_10_1007_s12598_022_02207_7 crossref_primary_10_1002_celc_202300495 crossref_primary_10_1016_j_gee_2024_05_012 crossref_primary_10_1021_acsami_2c20194 crossref_primary_10_1039_D4YA00332B crossref_primary_10_1016_j_est_2023_109879 |
Cites_doi | 10.1016/j.jpowsour.2011.05.015 10.1016/j.electacta.2017.10.166 10.1002/anie.201410031 10.1039/C5NR04682C 10.1021/ed500587a 10.1016/S0020-1693(00)82175-1 10.1039/D0TA00748J 10.1002/smll.201803978 10.1039/C9TA05101E 10.1021/cm000920g 10.1007/s40820-019-0278-9 10.1038/nenergy.2016.39 10.1021/acsami.0c08812 10.1021/ja8057309 10.1002/cssc.202002493 10.1002/aenm.201900196 10.1149/2.0721605jes 10.1039/C5CC02585K 10.1016/j.apsusc.2018.04.081 10.1038/srep01084 10.1016/j.mtener.2020.100548 10.1016/j.electacta.2018.04.012 10.1039/C9EE02526J 10.1002/adfm.201802564 10.1002/adfm.202101579 10.1021/ja3091438 10.1002/advs.201902795 10.1016/j.nanoen.2019.103942 10.1016/j.jpowsour.2021.229758 10.1002/anie.201904174 10.1002/adma.201700274 10.1039/C6CE00191B 10.1021/acs.chemmater.7b00852 10.1002/anie.201509364 10.1016/j.electacta.2013.08.136 10.1016/j.mattod.2020.12.003 10.1021/acsami.9b22758 10.1039/D0TC04984K 10.1002/adma.202002450 10.1021/acs.chemmater.8b01317 10.1002/aenm.201801445 10.1016/j.elecom.2015.08.019 10.1016/j.jpowsour.2003.12.018 10.1039/C7TA03476H 10.1039/C9TA05836B 10.1021/acs.chemmater.6b00232 10.1021/jp911746g 10.1016/j.elecom.2016.05.014 10.2138/am.2006.1925 10.1039/C8CC07730D 10.1039/C7SE00540G 10.1016/j.ensm.2018.08.008 10.1039/C8EE00378E 10.1016/j.mtener.2020.100396 10.1039/C3CC48382G 10.1016/j.matlet.2011.01.073 10.1002/adfm.201901336 10.1039/D0TA01553A 10.1016/j.ensm.2019.07.030 10.1039/C8TA12515E 10.1557/JMR.2010.0211 10.1002/aenm.202002904 10.1021/acs.nanolett.9b05148 10.1002/anie.202017098 10.1002/anie.201814646 10.1088/1361-6528/ab5b38 10.1016/j.jpowsour.2005.03.184 10.1016/j.jpcs.2011.11.038 10.1039/D1TC00531F 10.1038/ncomms12122 10.1021/acsenergylett.8b01105 10.1002/anie.202005603 10.1021/jp970490q 10.1002/inf2.12042 10.1039/C9TA05053A 10.1038/nmat3601 10.1039/C9TA04735B 10.1039/C9TA08049J 10.1016/j.apsusc.2020.145949 10.1021/acsnano.9b07042 10.1039/C7TA07834J 10.1016/j.nanoen.2019.05.059 10.1016/j.apsusc.2017.02.009 10.1039/c0jm03548c 10.1002/aenm.201802707 10.1039/D0TA08638J 10.1016/j.ensm.2020.12.010 10.1038/nenergy.2016.119 10.1021/cm901452z 10.1039/C6TA08736A 10.1039/D0TA00858C 10.1016/j.jpowsour.2019.227345 10.1021/acsami.9b20531 10.1021/jp074464w 10.1021/jp7108785 10.1002/adfm.201808375 10.1016/j.electacta.2014.07.076 10.1021/acsenergylett.9b01643 10.1002/aenm.201400930 10.1016/j.jcis.2009.10.034 10.1016/j.ensm.2019.04.022 10.1002/cssc.201600702 10.1002/adfm.201804560 10.1021/jacs.7b04471 10.1016/j.electacta.2017.01.163 10.1016/j.ensm.2019.10.028 10.1016/j.cej.2018.08.033 10.1021/jacs.6b05958 10.1016/j.jpowsour.2019.226951 10.1039/C7TA00459A 10.1039/C5TA06482A 10.1002/aenm.202001050 10.1038/s41563-018-0063-z 10.1016/j.isci.2019.100797 10.1021/acssuschemeng.8b02502 10.1016/j.jpowsour.2020.228652 10.1149/1.3106112 10.1016/j.jpowsour.2016.10.083 10.1038/s41560-020-0584-y 10.1149/1.1836981 10.1149/1.2509021 10.1002/anie.201916529 10.1002/anie.201908913 10.1002/celc.201900376 10.1002/cssc.201403143 10.1002/adfm.201800003 10.1039/C7RA06294J 10.1002/aenm.201901838 10.1002/aenm.201902085 10.1016/j.electacta.2019.05.147 10.1016/j.cej.2020.124405 10.1016/j.ensm.2018.12.019 10.1039/C9TA08418E 10.1021/am900094e 10.1021/cm504717p 10.1016/j.jpowsour.2018.11.017 10.1002/aenm.202002578 10.1002/smll.202005406 10.1002/adma.201703725 10.1016/j.jpowsour.2019.227244 10.1038/nmat2612 10.1039/C8TA01031E 10.1016/j.jpowsour.2015.02.123 10.1016/j.ensm.2018.08.003 10.1039/C8TA01172A 10.1021/acsnano.0c09205 10.1016/j.apcatb.2016.11.036 10.1038/s41467-018-04949-4 10.1038/nmat4810 10.1016/j.electacta.2014.04.001 10.1016/j.cplett.2016.02.067 10.1039/D0EE02620D 10.1039/C8EE02892C 10.1016/j.nanoen.2018.06.039 10.1002/anie.201106307 10.1016/j.gee.2020.03.001 10.1038/s41528-018-0034-0 10.1002/cssc.201801200 10.1021/cm503544e 10.1002/aenm.202000968 10.1063/1.1734212 10.1021/acs.jpcc.7b12084 10.1021/acsenergylett.8b01426 10.1021/cm9801789 10.1021/ja953943i 10.1002/smtd.201900828 10.1021/acssuschemeng.9b06798 10.1039/D0TA03706K 10.1016/j.jpowsour.2017.03.138 10.1039/C9TA03541A 10.1016/j.mtener.2021.100646 10.1016/j.electacta.2016.10.155 10.1021/nn901311t 10.1016/j.jpowsour.2004.06.049 10.1016/j.joule.2020.03.002 10.1016/j.joule.2018.07.009 10.1039/C5RA05892A 10.1016/j.gee.2017.10.001 10.1149/2.1431709jes 10.1021/ja306499n 10.1021/acsaem.8b00355 10.1016/j.ensm.2020.12.015 10.1002/aenm.201803815 10.1007/s12274-017-1771-4 10.1039/C8TA08133F 10.1149/1.3065967 10.1002/adfm.202007397 10.1038/ncomms14424 10.1016/j.jpowsour.2008.10.134 10.1002/admi.201801506 10.1038/srep06066 10.1021/ic5024532 10.1039/D0TA07232J 10.1039/C9EE00718K 10.1021/acs.chemmater.8b05093 10.1021/acsnano.9b04916 10.1126/science.aab1595 10.1039/C8CC00987B 10.1039/c3ee40871j 10.1002/ente.201900442 10.1016/j.gca.2008.11.033 10.1039/D0TA04175K 10.1039/C9TA13497B 10.1002/aenm.201904163 10.1002/admi.201900387 10.1002/advs.202002636 10.1016/j.ensm.2018.03.023 10.1016/j.gca.2005.08.029 10.1016/j.ensm.2019.03.007 10.1038/am.2016.82 10.1039/C3EE42351D 10.1039/C8TA01198B 10.1038/s41467-018-04917-y 10.1016/0022-4596(81)90323-6 10.1002/aenm.202002354 10.1016/j.nanoen.2016.04.051 10.1021/nl303619s 10.1016/j.jpowsour.2015.04.140 10.1016/j.gee.2020.09.012 10.1021/acsami.8b07756 10.1038/35104644 10.1016/j.jpowsour.2014.11.010 10.1016/j.mser.2018.10.002 10.1038/s41467-017-00467-x 10.1002/adfm.202002711 10.1039/C9EE03702K 10.1016/j.jechem.2017.04.002 10.1016/j.ensm.2018.06.019 10.1021/acsenergylett.1c00555 10.1021/acs.chemmater.5b02488 10.1016/j.ensm.2020.10.011 10.1002/cssc.202001216 10.1002/smtd.201800272 10.1002/chem.201902660 10.1016/j.mattod.2020.08.021 10.1016/j.electacta.2018.04.139 10.1016/j.ensm.2020.10.019 10.1007/s40820-020-00445-x 10.1038/s41467-018-04060-8 10.1021/ja409027s 10.1002/er.3499 10.1016/j.gee.2017.08.002 10.1039/C5CP07718D 10.1016/j.ensm.2018.02.010 10.1021/acsami.8b12486 10.1021/jp411687n 10.1038/s41467-018-07595-y 10.1016/j.cej.2021.130253 10.1002/ente.201700648 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.1016/j.gee.2021.08.006 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2468-0257 |
EndPage | 899 |
ExternalDocumentID | oai_doaj_org_article_fc322cc2f6df4770b723b3c203fa3f19 10_1016_j_gee_2021_08_006 |
GroupedDBID | -03 -0C -SC -S~ 0R~ 5VR 92M 9D9 9DC AAEDW AALRI AAXUO AAYWO AAYXX ABJCF ABMAC ACGFS ACVFH ADBBV ADCNI ADVLN AEUPX AEXQZ AFKRA AFPUW AFTJW AFUIB AIGII AITUG AKBMS AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ATCPS BCNDV BENPR BGLVJ BHPHI CAJEC CCPQU CITATION EBS EJD FDB GROUPED_DOAJ HCIFZ M41 M7S M~E OK1 PATMY PHGZM PHGZT PIMPY PTHSS PYCSY Q-- ROL RT3 SSZ T8S U1F U1G U5C U5M |
ID | FETCH-LOGICAL-c406t-ebab4e35b03fc41b82b18849ad091a78ab454e95b007f871ca51861bfce6beec3 |
IEDL.DBID | DOA |
ISSN | 2468-0257 |
IngestDate | Wed Aug 27 01:22:01 EDT 2025 Thu Apr 24 23:13:11 EDT 2025 Tue Jul 01 02:20:50 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c406t-ebab4e35b03fc41b82b18849ad091a78ab454e95b007f871ca51861bfce6beec3 |
OpenAccessLink | https://doaj.org/article/fc322cc2f6df4770b723b3c203fa3f19 |
PageCount | 42 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_fc322cc2f6df4770b723b3c203fa3f19 crossref_primary_10_1016_j_gee_2021_08_006 crossref_citationtrail_10_1016_j_gee_2021_08_006 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-00 2022-10-01 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-00 |
PublicationDecade | 2020 |
PublicationTitle | Green energy & environment |
PublicationYear | 2022 |
Publisher | KeAi Communications Co., Ltd |
Publisher_xml | – name: KeAi Communications Co., Ltd |
References | Wang (10.1016/j.gee.2021.08.006_bib23) 2019; 5 Alfaruqi (10.1016/j.gee.2021.08.006_bib258) 2016; 650 Goodenough (10.1016/j.gee.2021.08.006_bib5) 2010; 22 Wang (10.1016/j.gee.2021.08.006_bib118) 2019; 438 Yong (10.1016/j.gee.2021.08.006_bib49) 2020; 10 Alfaruqi (10.1016/j.gee.2021.08.006_bib246) 2015; 60 Song (10.1016/j.gee.2021.08.006_bib13) 2018; 28 Blanc (10.1016/j.gee.2021.08.006_bib45) 2020; 4 Ye (10.1016/j.gee.2021.08.006_bib235) 2014; 141 Brezesinski (10.1016/j.gee.2021.08.006_bib192) 2009; 131 Huang (10.1016/j.gee.2021.08.006_bib54) 2019; 25 He (10.1016/j.gee.2021.08.006_bib19) 2020; 8 Zhao (10.1016/j.gee.2021.08.006_bib240) 2017; 353 Irish (10.1016/j.gee.2021.08.006_bib160) 1963; 39 Tan (10.1016/j.gee.2021.08.006_bib111) 2020; 10 Liu (10.1016/j.gee.2021.08.006_bib255) 2021; 35 Yamamoto (10.1016/j.gee.2021.08.006_bib259) 1986; 117 Chen (10.1016/j.gee.2021.08.006_bib61) 2021; 20 Kim (10.1016/j.gee.2021.08.006_bib221) 2012; 12 Zhang (10.1016/j.gee.2021.08.006_bib17) 2020; 8 Wang (10.1016/j.gee.2021.08.006_bib58) 2020; 11 Jiang (10.1016/j.gee.2021.08.006_bib202) 2020; 10 Peng (10.1016/j.gee.2021.08.006_bib153) 2018; 54 Zhao (10.1016/j.gee.2021.08.006_bib102) 2018; 6 Chen (10.1016/j.gee.2021.08.006_bib9) 2018; 11 Luo (10.1016/j.gee.2021.08.006_bib218) 2019; 29 Huang (10.1016/j.gee.2021.08.006_bib30) 2020; 8 Zhu (10.1016/j.gee.2021.08.006_bib139) 2018; 11 Liu (10.1016/j.gee.2021.08.006_bib248) 2019; 7 Li (10.1016/j.gee.2021.08.006_bib180) 2020; 12 Liang (10.1016/j.gee.2021.08.006_bib186) 2020; 36 Alfaruqi (10.1016/j.gee.2021.08.006_bib64) 2015; 27 Lee (10.1016/j.gee.2021.08.006_bib71) 2014; 4 Trocoli (10.1016/j.gee.2021.08.006_bib32) 2015; 8 Gao (10.1016/j.gee.2021.08.006_bib6) 2021; 6 Zhang (10.1016/j.gee.2021.08.006_bib66) 2017; 8 Xiong (10.1016/j.gee.2021.08.006_bib124) 2019; 9 Zeng (10.1016/j.gee.2021.08.006_bib122) 2017; 29 Qiu (10.1016/j.gee.2021.08.006_bib95) 2018; 272 Kundu (10.1016/j.gee.2021.08.006_bib131) 2018; 11 Qin (10.1016/j.gee.2021.08.006_bib27) 2018; 6 Jin (10.1016/j.gee.2021.08.006_bib98) 2019; 31 Zhang (10.1016/j.gee.2021.08.006_bib140) 2018; 54 Zhao (10.1016/j.gee.2021.08.006_bib219) 2020; 32 Liu (10.1016/j.gee.2021.08.006_bib217) 2019; 443 Wang (10.1016/j.gee.2021.08.006_bib229) 2017; 204 Suo (10.1016/j.gee.2021.08.006_bib227) 2015; 350 Hunter (10.1016/j.gee.2021.08.006_bib88) 1981; 39 Sun (10.1016/j.gee.2021.08.006_bib21) 2017; 139 Sun (10.1016/j.gee.2021.08.006_bib225) 2019; 6 Zhao (10.1016/j.gee.2021.08.006_bib94) 2019; 15 Mainar (10.1016/j.gee.2021.08.006_bib141) 2016; 40 Shi (10.1016/j.gee.2021.08.006_bib57) 2021; 14 Nam (10.1016/j.gee.2021.08.006_bib253) 2019; 12 Chen (10.1016/j.gee.2021.08.006_bib50) 2019; 6 Xu (10.1016/j.gee.2021.08.006_bib150) 2011; 25 Wang (10.1016/j.gee.2021.08.006_bib251) 2019; 7 Mo (10.1016/j.gee.2021.08.006_bib62) 2019; 12 Häupler (10.1016/j.gee.2021.08.006_bib33) 2016; 8 Wang (10.1016/j.gee.2021.08.006_bib182) 2021; 60 Alfaruqi (10.1016/j.gee.2021.08.006_bib243) 2017; 404 Huang (10.1016/j.gee.2021.08.006_bib12) 2019; 3 Alfaruqi (10.1016/j.gee.2021.08.006_bib75) 2015; 288 Bi (10.1016/j.gee.2021.08.006_bib133) 2020; 18 Du (10.1016/j.gee.2021.08.006_bib168) 2011; 65 Massé (10.1016/j.gee.2021.08.006_bib261) 2014; 92 Hu (10.1016/j.gee.2021.08.006_bib106) 2019; 7 Shen (10.1016/j.gee.2021.08.006_bib172) 2021; 31 Hu (10.1016/j.gee.2021.08.006_bib244) 2015; 7 Tarascon (10.1016/j.gee.2021.08.006_bib4) 2001; 414 Li (10.1016/j.gee.2021.08.006_bib127) 2019; 31 Soundharrajan (10.1016/j.gee.2021.08.006_bib175) 2018; 3 Pan (10.1016/j.gee.2021.08.006_bib22) 2016; 1 Ghosh (10.1016/j.gee.2021.08.006_bib25) 2019; 7 Lee (10.1016/j.gee.2021.08.006_bib105) 2013; 112 Jiao (10.1016/j.gee.2021.08.006_bib238) 2020; 8 Xia (10.1016/j.gee.2021.08.006_bib134) 2015; 283 Chen (10.1016/j.gee.2021.08.006_bib201) 2020; 8 Li (10.1016/j.gee.2021.08.006_bib129) 2018; 1 Huang (10.1016/j.gee.2021.08.006_bib93) 2020; 12 Zeng (10.1016/j.gee.2021.08.006_bib78) 2020; 10 Pang (10.1016/j.gee.2021.08.006_bib260) 2020; 8 Liu (10.1016/j.gee.2021.08.006_bib29) 2020; 389 Wang (10.1016/j.gee.2021.08.006_bib204) 2020; 59 Young (10.1016/j.gee.2021.08.006_bib234) 2015; 27 Chen (10.1016/j.gee.2021.08.006_bib8) 2017; 5 Wang (10.1016/j.gee.2021.08.006_bib230) 2015; 54 Yadav (10.1016/j.gee.2021.08.006_bib115) 2019; 4 Lu (10.1016/j.gee.2021.08.006_bib16) 2017; 5 Wilcox (10.1016/j.gee.2021.08.006_bib158) 2015; 54 Nolis (10.1016/j.gee.2021.08.006_bib151) 2018; 122 Xu (10.1016/j.gee.2021.08.006_bib69) 2012; 51 Zhang (10.1016/j.gee.2021.08.006_bib31) 2015; 5 Tang (10.1016/j.gee.2021.08.006_bib173) 2021; 6 Zhang (10.1016/j.gee.2021.08.006_bib156) 2014; 50 Ingale (10.1016/j.gee.2021.08.006_bib183) 2015; 276 Venkata Narayanan (10.1016/j.gee.2021.08.006_bib152) 2010; 342 Kasiri (10.1016/j.gee.2021.08.006_bib147) 2016; 222 Zeng (10.1016/j.gee.2021.08.006_bib40) 2019; 20 Kasnatscheew (10.1016/j.gee.2021.08.006_bib170) 2016; 18 Wang (10.1016/j.gee.2021.08.006_bib215) 2020; 31 Liang (10.1016/j.gee.2021.08.006_bib91) 2019; 9 Liu (10.1016/j.gee.2021.08.006_bib162) 2016; 55 Liang (10.1016/j.gee.2021.08.006_bib143) 2020; 25 Yan (10.1016/j.gee.2021.08.006_bib212) 2013; 135 Alfaruqi (10.1016/j.gee.2021.08.006_bib107) 2018; 276 Ahn (10.1016/j.gee.2021.08.006_bib252) 2011; 21 Wei (10.1016/j.gee.2021.08.006_bib112) 2012; 73 Song (10.1016/j.gee.2021.08.006_bib48) 2021; 45 Chen (10.1016/j.gee.2021.08.006_bib15) 2019; 317 Jiang (10.1016/j.gee.2021.08.006_bib181) 2019; 58 Zong (10.1016/j.gee.2021.08.006_bib233) 2018; 10 Kim (10.1016/j.gee.2021.08.006_bib189) 2017; 16 Minakshi (10.1016/j.gee.2021.08.006_bib178) 2006; 153 Li (10.1016/j.gee.2021.08.006_bib257) 2020; 12 Li (10.1016/j.gee.2021.08.006_bib241) 2017; 164 Liu (10.1016/j.gee.2021.08.006_bib35) 2019; 410 Wang (10.1016/j.gee.2021.08.006_bib59) 2019; 13 Simon (10.1016/j.gee.2021.08.006_bib103) 2004; 47 Liang (10.1016/j.gee.2021.08.006_bib11) 2021; 495 Deng (10.1016/j.gee.2021.08.006_bib198) 2018; 6 Islam (10.1016/j.gee.2021.08.006_bib68) 2021; 8 Han (10.1016/j.gee.2021.08.006_bib81) 2020; 23 Biswal (10.1016/j.gee.2021.08.006_bib174) 2015; 5 Wang (10.1016/j.gee.2021.08.006_bib14) 2018; 17 Xu (10.1016/j.gee.2021.08.006_bib63) 2009; 12 Zhao (10.1016/j.gee.2021.08.006_bib231) 2018; 51 Kundu (10.1016/j.gee.2021.08.006_bib34) 2018; 30 Pang (10.1016/j.gee.2021.08.006_bib85) 2014; 118 Lin (10.1016/j.gee.2021.08.006_bib207) 2019; 31 Fan (10.1016/j.gee.2021.08.006_bib1) 2018; 3 Liu (10.1016/j.gee.2021.08.006_bib46) 2020; 31 You (10.1016/j.gee.2021.08.006_bib119) 2020; 514 Zhang (10.1016/j.gee.2021.08.006_bib223) 2019; 21 Toner (10.1016/j.gee.2021.08.006_bib74) 2006; 70 Zhou (10.1016/j.gee.2021.08.006_bib214) 2021; 9 Chao (10.1016/j.gee.2021.08.006_bib92) 2019; 58 Chen (10.1016/j.gee.2021.08.006_bib157) 2019; 9 Fang (10.1016/j.gee.2021.08.006_bib82) 2019; 29 Lu (10.1016/j.gee.2021.08.006_bib203) 2020; 20 Minakshi (10.1016/j.gee.2021.08.006_bib145) 2004; 138 Takashima (10.1016/j.gee.2021.08.006_bib84) 2012; 134 Zhang (10.1016/j.gee.2021.08.006_bib206) 2019; 7 Liu (10.1016/j.gee.2021.08.006_bib26) 2021; 9 Fenta (10.1016/j.gee.2021.08.006_bib120) 2020; 8 Xia (10.1016/j.gee.2021.08.006_bib236) 2018; 9 Liu (10.1016/j.gee.2021.08.006_bib138) 2019; 23 Li (10.1016/j.gee.2021.08.006_bib250) 2016; 18 Fang (10.1016/j.gee.2021.08.006_bib38) 2018; 3 Villalobos (10.1016/j.gee.2021.08.006_bib72) 2006; 91 Chamoun (10.1016/j.gee.2021.08.006_bib101) 2018; 15 Ouyang (10.1016/j.gee.2021.08.006_bib86) 2010; 114 Zhang (10.1016/j.gee.2021.08.006_bib167) 2019; 15 Lindström (10.1016/j.gee.2021.08.006_bib190) 1997; 101 Guo (10.1016/j.gee.2021.08.006_bib220) 2019; 13 Sada (10.1016/j.gee.2021.08.006_bib37) 2019; 7 Zhu (10.1016/j.gee.2021.08.006_bib116) 2018; 28 Radhamani (10.1016/j.gee.2021.08.006_bib242) 2018; 450 Ling (10.1016/j.gee.2021.08.006_bib184) 2015; 27 Li (10.1016/j.gee.2021.08.006_bib80) 2020; 10 Shen (10.1016/j.gee.2021.08.006_bib52) 2021; 34 Liu (10.1016/j.gee.2021.08.006_bib42) 2021; 42 Liu (10.1016/j.gee.2021.08.006_bib104) 2019; 64 Huang (10.1016/j.gee.2021.08.006_bib211) 2018; 2 Xu (10.1016/j.gee.2021.08.006_bib149) 2009; 156 Zhang (10.1016/j.gee.2021.08.006_bib132) 2020; 30 McOwen (10.1016/j.gee.2021.08.006_bib200) 2014; 7 Chen (10.1016/j.gee.2021.08.006_bib28) 2020; 477 Xu (10.1016/j.gee.2021.08.006_bib144) 2018; 2 Long (10.1016/j.gee.2021.08.006_bib209) 2019; 7 Thirunakaran (10.1016/j.gee.2021.08.006_bib176) 2009; 187 He (10.1016/j.gee.2021.08.006_bib18) 2020; 8 Wang (10.1016/j.gee.2021.08.006_bib137) 2018; 6 Xia (10.1016/j.gee.2021.08.006_bib196) 2007; 154 Guo (10.1016/j.gee.2021.08.006_bib77) 2020; 16 Tang (10.1016/j.gee.2021.08.006_bib44) 2019; 12 Katz (10.1016/j.gee.2021.08.006_bib99) 1996; 118 Zhao (10.1016/j.gee.2021.08.006_bib159) 2016; 69 Zhong (10.1016/j.gee.2021.08.006_bib79) 2020; 5 Zhao (10.1016/j.gee.2021.08.006_bib47) 2019; 2 Huang (10.1016/j.gee.2021.08.006_bib161) 2018; 9 Chae (10.1016/j.gee.2021.08.006_bib148) 2017; 337 Tang (10.1016/j.gee.2021.08.006_bib56) 2018; 12 Li (10.1016/j.gee.2021.08.006_bib41) 2019; 62 Lee (10.1016/j.gee.2021.08.006_bib70) 2015; 51 Jiang (10.1016/j.gee.2021.08.006_bib121) 2017; 229 Hertzberg (10.1016/j.gee.2021.08.006_bib185) 2016; 28 Ghodbane (10.1016/j.gee.2021.08.006_bib113) 2009; 1 Zhu (10.1016/j.gee.2021.08.006_bib195) 2013; 3 Nian (10.1016/j.gee.2021.08.006_bib197) 2021; 423 Lee (10.1016/j.gee.2021.08.006_bib76) 2016; 9 Jiang (10.1016/j.gee.2021.08.006_bib60) 2020; 7 Yoo (10.1016/j.gee.2021.08.006_bib126) 2013; 6 Zhang (10.1016/j.gee.2021.08.006_bib53) 2020; 13 Zhu (10.1016/j.gee.2021.08.006_bib10) 2017; 7 Xiong (10.1016/j.gee.2021.08.006_bib187) 2018; 15 Fu (10.1016/j.gee.2021.08.006_bib208) 2018; 8 Sun (10.1016/j.gee.2021.08.006_bib228) 2020; 16 Goodenough (10.1016/j.gee.2021.08.006_bib7) 2013; 135 Hou (10.1016/j.gee.2021.08.006_bib164) 2017; 5 Wang (10.1016/j.gee.2021.08.006_bib191) 2007; 111 Wang (10.1016/j.gee.2021.08.006_bib135) 2018; 14 Wu (10.1016/j.gee.2021.08.006_bib65) 2018; 14 Shan (10.1016/j.gee.2021.08.006_bib24) 2019; 18 Wang (10.1016/j.gee.2021.08.006_bib123) 2020; 12 Xu (10.1016/j.gee.2021.08.006_bib222) 2019; 6 Wang (10.1016/j.gee.2021.08.006_bib128) 2018; 28 Zhang (10.1016/j.gee.2021.08.006_bib232) 2020; 4 Chen (10.1016/j.gee.2021.08.006_ |
References_xml | – volume: 196 start-page: 7860 year: 2011 ident: 10.1016/j.gee.2021.08.006_bib249 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2011.05.015 – volume: 259 start-page: 170 year: 2018 ident: 10.1016/j.gee.2021.08.006_bib110 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.10.166 – volume: 54 start-page: 1195 year: 2015 ident: 10.1016/j.gee.2021.08.006_bib230 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201410031 – volume: 7 start-page: 16094 year: 2015 ident: 10.1016/j.gee.2021.08.006_bib244 publication-title: Nanoscale doi: 10.1039/C5NR04682C – volume: 92 start-page: 110 year: 2014 ident: 10.1016/j.gee.2021.08.006_bib261 publication-title: J. Chem. Educ. doi: 10.1021/ed500587a – volume: 117 start-page: L27 year: 1986 ident: 10.1016/j.gee.2021.08.006_bib259 publication-title: Inorg. Chim. Acta. doi: 10.1016/S0020-1693(00)82175-1 – volume: 8 start-page: 7836 year: 2020 ident: 10.1016/j.gee.2021.08.006_bib18 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA00748J – volume: 14 start-page: 1803978 year: 2018 ident: 10.1016/j.gee.2021.08.006_bib135 publication-title: Small doi: 10.1002/smll.201803978 – volume: 7 start-page: 17854 year: 2019 ident: 10.1016/j.gee.2021.08.006_bib209 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA05101E – volume: 13 start-page: 1758 year: 2001 ident: 10.1016/j.gee.2021.08.006_bib125 publication-title: Chem. Mater. doi: 10.1021/cm000920g – volume: 11 start-page: 49 year: 2019 ident: 10.1016/j.gee.2021.08.006_bib171 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-019-0278-9 – volume: 1 start-page: 16039 year: 2016 ident: 10.1016/j.gee.2021.08.006_bib22 publication-title: Nat. Energy doi: 10.1038/nenergy.2016.39 – volume: 12 start-page: 34949 year: 2020 ident: 10.1016/j.gee.2021.08.006_bib123 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c08812 – volume: 131 start-page: 1802 year: 2009 ident: 10.1016/j.gee.2021.08.006_bib192 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja8057309 – volume: 14 start-page: 1634 year: 2021 ident: 10.1016/j.gee.2021.08.006_bib57 publication-title: ChemSusChem doi: 10.1002/cssc.202002493 – volume: 9 start-page: 1900196 year: 2019 ident: 10.1016/j.gee.2021.08.006_bib157 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201900196 – volume: 163 start-page: H305 year: 2016 ident: 10.1016/j.gee.2021.08.006_bib166 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0721605jes – volume: 51 start-page: 9265 year: 2015 ident: 10.1016/j.gee.2021.08.006_bib70 publication-title: Chem. Commun. doi: 10.1039/C5CC02585K – volume: 450 start-page: 209 year: 2018 ident: 10.1016/j.gee.2021.08.006_bib242 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.04.081 – volume: 3 start-page: 1084 year: 2013 ident: 10.1016/j.gee.2021.08.006_bib195 publication-title: Sci. Rep. doi: 10.1038/srep01084 – volume: 18 start-page: 100548 year: 2020 ident: 10.1016/j.gee.2021.08.006_bib133 publication-title: Mater. Today Energy doi: 10.1016/j.mtener.2020.100548 – volume: 272 start-page: 154 year: 2018 ident: 10.1016/j.gee.2021.08.006_bib95 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.04.012 – volume: 12 start-page: 3288 year: 2019 ident: 10.1016/j.gee.2021.08.006_bib44 publication-title: Energy Environ. Sci. doi: 10.1039/C9EE02526J – volume: 28 start-page: 1802564 year: 2018 ident: 10.1016/j.gee.2021.08.006_bib13 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201802564 – volume: 31 start-page: 2101579 year: 2021 ident: 10.1016/j.gee.2021.08.006_bib172 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202101579 – volume: 135 start-page: 1167 year: 2013 ident: 10.1016/j.gee.2021.08.006_bib7 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja3091438 – volume: 7 start-page: 1902795 year: 2020 ident: 10.1016/j.gee.2021.08.006_bib60 publication-title: Adv. Sci. doi: 10.1002/advs.201902795 – volume: 64 start-page: 103942 year: 2019 ident: 10.1016/j.gee.2021.08.006_bib104 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.103942 – volume: 495 start-page: 229758 year: 2021 ident: 10.1016/j.gee.2021.08.006_bib11 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2021.229758 – volume: 58 start-page: 7823 year: 2019 ident: 10.1016/j.gee.2021.08.006_bib92 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201904174 – volume: 29 start-page: 1700274 year: 2017 ident: 10.1016/j.gee.2021.08.006_bib122 publication-title: Adv. Mater. doi: 10.1002/adma.201700274 – volume: 18 start-page: 3136 year: 2016 ident: 10.1016/j.gee.2021.08.006_bib250 publication-title: CrystEngComm doi: 10.1039/C6CE00191B – volume: 29 start-page: 4874 year: 2017 ident: 10.1016/j.gee.2021.08.006_bib130 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b00852 – volume: 55 start-page: 2889 year: 2016 ident: 10.1016/j.gee.2021.08.006_bib162 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201509364 – volume: 5 year: 2019 ident: 10.1016/j.gee.2021.08.006_bib23 publication-title: Sci. Adv. – volume: 112 start-page: 138 year: 2013 ident: 10.1016/j.gee.2021.08.006_bib105 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2013.08.136 – volume: 45 start-page: 191 year: 2021 ident: 10.1016/j.gee.2021.08.006_bib48 publication-title: Mater. Today doi: 10.1016/j.mattod.2020.12.003 – volume: 12 start-page: 12834 year: 2020 ident: 10.1016/j.gee.2021.08.006_bib257 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b22758 – volume: 9 start-page: 1326 year: 2021 ident: 10.1016/j.gee.2021.08.006_bib214 publication-title: J. Mater. Chem. C doi: 10.1039/D0TC04984K – volume: 32 start-page: 2002450 year: 2020 ident: 10.1016/j.gee.2021.08.006_bib219 publication-title: Adv. Mater. doi: 10.1002/adma.202002450 – volume: 30 start-page: 3874 year: 2018 ident: 10.1016/j.gee.2021.08.006_bib34 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b01317 – volume: 8 start-page: 1801445 year: 2018 ident: 10.1016/j.gee.2021.08.006_bib208 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201801445 – volume: 60 start-page: 121 year: 2015 ident: 10.1016/j.gee.2021.08.006_bib246 publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2015.08.019 – volume: 130 start-page: 254 year: 2004 ident: 10.1016/j.gee.2021.08.006_bib177 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2003.12.018 – volume: 47 start-page: 267 year: 2004 ident: 10.1016/j.gee.2021.08.006_bib103 publication-title: Adv. X–ray Anal. – start-page: 454 year: 2009 ident: 10.1016/j.gee.2021.08.006_bib142 – volume: 5 start-page: 16914 year: 2017 ident: 10.1016/j.gee.2021.08.006_bib239 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA03476H – volume: 7 start-page: 23981 year: 2019 ident: 10.1016/j.gee.2021.08.006_bib37 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA05836B – volume: 28 start-page: 4536 year: 2016 ident: 10.1016/j.gee.2021.08.006_bib185 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b00232 – volume: 114 start-page: 4756 year: 2010 ident: 10.1016/j.gee.2021.08.006_bib86 publication-title: J. Phys. Chem. C doi: 10.1021/jp911746g – volume: 14 year: 2018 ident: 10.1016/j.gee.2021.08.006_bib65 publication-title: Small – volume: 69 start-page: 6 year: 2016 ident: 10.1016/j.gee.2021.08.006_bib159 publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2016.05.014 – volume: 91 start-page: 489 year: 2006 ident: 10.1016/j.gee.2021.08.006_bib72 publication-title: Am. Mineral. doi: 10.2138/am.2006.1925 – volume: 54 start-page: 14097 year: 2018 ident: 10.1016/j.gee.2021.08.006_bib140 publication-title: Chem. Commun. doi: 10.1039/C8CC07730D – volume: 2 start-page: 626 year: 2018 ident: 10.1016/j.gee.2021.08.006_bib179 publication-title: Sustain. Energy Fuels doi: 10.1039/C7SE00540G – volume: 18 start-page: 10 year: 2019 ident: 10.1016/j.gee.2021.08.006_bib24 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2018.08.008 – volume: 11 start-page: 881 year: 2018 ident: 10.1016/j.gee.2021.08.006_bib131 publication-title: Energy Environ. Sci. doi: 10.1039/C8EE00378E – volume: 16 start-page: 100396 year: 2020 ident: 10.1016/j.gee.2021.08.006_bib77 publication-title: Mater. Today Energy doi: 10.1016/j.mtener.2020.100396 – volume: 50 start-page: 1209 year: 2014 ident: 10.1016/j.gee.2021.08.006_bib156 publication-title: Chem. Commun. doi: 10.1039/C3CC48382G – volume: 65 start-page: 1319 year: 2011 ident: 10.1016/j.gee.2021.08.006_bib168 publication-title: Mater. Lett. doi: 10.1016/j.matlet.2011.01.073 – volume: 29 start-page: 1901336 year: 2019 ident: 10.1016/j.gee.2021.08.006_bib218 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201901336 – volume: 8 start-page: 6828 year: 2020 ident: 10.1016/j.gee.2021.08.006_bib201 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA01553A – volume: 24 start-page: 394 year: 2020 ident: 10.1016/j.gee.2021.08.006_bib117 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2019.07.030 – volume: 7 start-page: 7118 year: 2019 ident: 10.1016/j.gee.2021.08.006_bib106 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA12515E – volume: 25 start-page: 1421 year: 2011 ident: 10.1016/j.gee.2021.08.006_bib150 publication-title: J. Mater. Res. doi: 10.1557/JMR.2010.0211 – volume: 16 year: 2020 ident: 10.1016/j.gee.2021.08.006_bib256 publication-title: Small – volume: 11 start-page: 2002904 year: 2020 ident: 10.1016/j.gee.2021.08.006_bib58 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202002904 – volume: 20 start-page: 1907 year: 2020 ident: 10.1016/j.gee.2021.08.006_bib203 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b05148 – volume: 60 start-page: 7056 year: 2021 ident: 10.1016/j.gee.2021.08.006_bib182 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202017098 – volume: 58 start-page: 5286 year: 2019 ident: 10.1016/j.gee.2021.08.006_bib181 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201814646 – volume: 31 start-page: 122001 year: 2020 ident: 10.1016/j.gee.2021.08.006_bib46 publication-title: Nanotechnology doi: 10.1088/1361-6528/ab5b38 – volume: 153 start-page: 165 year: 2006 ident: 10.1016/j.gee.2021.08.006_bib178 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2005.03.184 – volume: 73 start-page: 1487 year: 2012 ident: 10.1016/j.gee.2021.08.006_bib112 publication-title: J. Phys. Chem. Solids doi: 10.1016/j.jpcs.2011.11.038 – volume: 9 start-page: 6308 year: 2021 ident: 10.1016/j.gee.2021.08.006_bib26 publication-title: J. Mater. Chem. C doi: 10.1039/D1TC00531F – volume: 15 year: 2019 ident: 10.1016/j.gee.2021.08.006_bib94 publication-title: Small – volume: 7 start-page: 12122 year: 2016 ident: 10.1016/j.gee.2021.08.006_bib194 publication-title: Nat. Commun. doi: 10.1038/ncomms12122 – volume: 3 start-page: 1998 year: 2018 ident: 10.1016/j.gee.2021.08.006_bib175 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b01105 – volume: 59 start-page: 14577 year: 2020 ident: 10.1016/j.gee.2021.08.006_bib204 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202005603 – volume: 101 start-page: 7717 year: 1997 ident: 10.1016/j.gee.2021.08.006_bib190 publication-title: J. Phys. Chem. B doi: 10.1021/jp970490q – volume: 2 start-page: 237 year: 2019 ident: 10.1016/j.gee.2021.08.006_bib47 publication-title: InfoMat doi: 10.1002/inf2.12042 – volume: 7 start-page: 18209 year: 2019 ident: 10.1016/j.gee.2021.08.006_bib51 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA05053A – volume: 12 start-page: 518 year: 2013 ident: 10.1016/j.gee.2021.08.006_bib188 publication-title: Nat. Mater. doi: 10.1038/nmat3601 – volume: 7 start-page: 20519 year: 2019 ident: 10.1016/j.gee.2021.08.006_bib43 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA04735B – volume: 7 start-page: 20806 year: 2019 ident: 10.1016/j.gee.2021.08.006_bib248 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA08049J – volume: 514 start-page: 145949 year: 2020 ident: 10.1016/j.gee.2021.08.006_bib119 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.145949 – volume: 13 start-page: 13456 year: 2019 ident: 10.1016/j.gee.2021.08.006_bib220 publication-title: ACS Nano doi: 10.1021/acsnano.9b07042 – volume: 5 start-page: 23628 year: 2017 ident: 10.1016/j.gee.2021.08.006_bib16 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA07834J – volume: 62 start-page: 550 year: 2019 ident: 10.1016/j.gee.2021.08.006_bib41 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.05.059 – volume: 404 start-page: 435 year: 2017 ident: 10.1016/j.gee.2021.08.006_bib243 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.02.009 – volume: 21 start-page: 5282 year: 2011 ident: 10.1016/j.gee.2021.08.006_bib252 publication-title: J. Mater. Chem. doi: 10.1039/c0jm03548c – volume: 9 start-page: 1802707 year: 2019 ident: 10.1016/j.gee.2021.08.006_bib254 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201802707 – volume: 8 start-page: 22075 year: 2020 ident: 10.1016/j.gee.2021.08.006_bib238 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA08638J – volume: 35 start-page: 731 year: 2021 ident: 10.1016/j.gee.2021.08.006_bib255 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2020.12.010 – volume: 1 start-page: 16119 year: 2016 ident: 10.1016/j.gee.2021.08.006_bib154 publication-title: Nat. Energy doi: 10.1038/nenergy.2016.119 – volume: 22 start-page: 587 year: 2010 ident: 10.1016/j.gee.2021.08.006_bib5 publication-title: Chem. Mater. doi: 10.1021/cm901452z – volume: 5 start-page: 730 year: 2017 ident: 10.1016/j.gee.2021.08.006_bib164 publication-title: J. Mater. Chem. A doi: 10.1039/C6TA08736A – volume: 8 start-page: 9567 year: 2020 ident: 10.1016/j.gee.2021.08.006_bib260 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA00858C – volume: 446 start-page: 227345 year: 2020 ident: 10.1016/j.gee.2021.08.006_bib226 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2019.227345 – volume: 12 start-page: 13790 year: 2020 ident: 10.1016/j.gee.2021.08.006_bib180 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b20531 – volume: 111 start-page: 14925 year: 2007 ident: 10.1016/j.gee.2021.08.006_bib191 publication-title: J. Phys. Chem. C doi: 10.1021/jp074464w – volume: 31 year: 2019 ident: 10.1016/j.gee.2021.08.006_bib98 publication-title: Adv. Mater. – volume: 112 start-page: 4406 year: 2008 ident: 10.1016/j.gee.2021.08.006_bib114 publication-title: J. Phys. Chem. C doi: 10.1021/jp7108785 – volume: 29 start-page: 1808375 year: 2019 ident: 10.1016/j.gee.2021.08.006_bib82 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201808375 – volume: 141 start-page: 286 year: 2014 ident: 10.1016/j.gee.2021.08.006_bib235 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2014.07.076 – volume: 4 start-page: 2144 year: 2019 ident: 10.1016/j.gee.2021.08.006_bib115 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.9b01643 – volume: 5 start-page: 1400930 year: 2015 ident: 10.1016/j.gee.2021.08.006_bib31 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201400930 – volume: 342 start-page: 505 year: 2010 ident: 10.1016/j.gee.2021.08.006_bib152 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2009.10.034 – volume: 20 start-page: 410 year: 2019 ident: 10.1016/j.gee.2021.08.006_bib40 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2019.04.022 – volume: 9 start-page: 2948 year: 2016 ident: 10.1016/j.gee.2021.08.006_bib76 publication-title: ChemSusChem doi: 10.1002/cssc.201600702 – volume: 28 start-page: 1804560 year: 2018 ident: 10.1016/j.gee.2021.08.006_bib128 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201804560 – volume: 139 start-page: 9775 year: 2017 ident: 10.1016/j.gee.2021.08.006_bib21 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b04471 – volume: 229 start-page: 422 year: 2017 ident: 10.1016/j.gee.2021.08.006_bib121 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.01.163 – volume: 25 start-page: 86 year: 2020 ident: 10.1016/j.gee.2021.08.006_bib143 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2019.10.028 – volume: 354 start-page: 1050 year: 2018 ident: 10.1016/j.gee.2021.08.006_bib237 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.08.033 – volume: 138 start-page: 12894 year: 2016 ident: 10.1016/j.gee.2021.08.006_bib20 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b05958 – volume: 438 start-page: 226951 year: 2019 ident: 10.1016/j.gee.2021.08.006_bib118 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2019.226951 – volume: 5 start-page: 5880 year: 2017 ident: 10.1016/j.gee.2021.08.006_bib8 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA00459A – volume: 3 start-page: 21077 year: 2015 ident: 10.1016/j.gee.2021.08.006_bib67 publication-title: J. Mater. Chem. A doi: 10.1039/C5TA06482A – volume: 10 start-page: 2001050 year: 2020 ident: 10.1016/j.gee.2021.08.006_bib111 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202001050 – volume: 17 start-page: 543 year: 2018 ident: 10.1016/j.gee.2021.08.006_bib14 publication-title: Nat. Mater. doi: 10.1038/s41563-018-0063-z – volume: 23 start-page: 100797 year: 2020 ident: 10.1016/j.gee.2021.08.006_bib81 publication-title: iScience doi: 10.1016/j.isci.2019.100797 – volume: 6 start-page: 16055 year: 2018 ident: 10.1016/j.gee.2021.08.006_bib109 publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.8b02502 – volume: 477 start-page: 228652 year: 2020 ident: 10.1016/j.gee.2021.08.006_bib28 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2020.228652 – volume: 156 start-page: A435 year: 2009 ident: 10.1016/j.gee.2021.08.006_bib149 publication-title: J. Electrochem. Soc. doi: 10.1149/1.3106112 – volume: 337 start-page: 204 year: 2017 ident: 10.1016/j.gee.2021.08.006_bib148 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.10.083 – volume: 5 start-page: 440 year: 2020 ident: 10.1016/j.gee.2021.08.006_bib79 publication-title: Nat. Energy doi: 10.1038/s41560-020-0584-y – volume: 143 start-page: 2204 year: 1996 ident: 10.1016/j.gee.2021.08.006_bib89 publication-title: J. Electrochem. Soc. doi: 10.1149/1.1836981 – volume: 154 start-page: A337 year: 2007 ident: 10.1016/j.gee.2021.08.006_bib196 publication-title: J. Electrochem. Soc. doi: 10.1149/1.2509021 – volume: 59 start-page: 4920 year: 2020 ident: 10.1016/j.gee.2021.08.006_bib36 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201916529 – volume: 58 start-page: 16994 year: 2019 ident: 10.1016/j.gee.2021.08.006_bib165 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201908913 – volume: 6 start-page: 2510 year: 2019 ident: 10.1016/j.gee.2021.08.006_bib225 publication-title: ChemElectroChem doi: 10.1002/celc.201900376 – volume: 8 start-page: 481 year: 2015 ident: 10.1016/j.gee.2021.08.006_bib32 publication-title: ChemSusChem doi: 10.1002/cssc.201403143 – volume: 28 start-page: 1800003 year: 2018 ident: 10.1016/j.gee.2021.08.006_bib116 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201800003 – volume: 7 start-page: 38119 year: 2017 ident: 10.1016/j.gee.2021.08.006_bib10 publication-title: RSC Adv. doi: 10.1039/C7RA06294J – volume: 9 start-page: 1901838 year: 2019 ident: 10.1016/j.gee.2021.08.006_bib91 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201901838 – volume: 10 start-page: 1902085 year: 2020 ident: 10.1016/j.gee.2021.08.006_bib80 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201902085 – volume: 317 start-page: 155 year: 2019 ident: 10.1016/j.gee.2021.08.006_bib15 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2019.05.147 – volume: 389 start-page: 124405 year: 2020 ident: 10.1016/j.gee.2021.08.006_bib29 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.124405 – volume: 21 start-page: 154 year: 2019 ident: 10.1016/j.gee.2021.08.006_bib223 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2018.12.019 – volume: 7 start-page: 22079 year: 2019 ident: 10.1016/j.gee.2021.08.006_bib206 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA08418E – volume: 1 start-page: 1130 year: 2009 ident: 10.1016/j.gee.2021.08.006_bib113 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am900094e – volume: 28 year: 2021 ident: 10.1016/j.gee.2021.08.006_bib224 publication-title: Sustain. Mater. Technol – volume: 27 start-page: 3609 year: 2015 ident: 10.1016/j.gee.2021.08.006_bib64 publication-title: Chem. Mater. doi: 10.1021/cm504717p – volume: 410 start-page: 137 year: 2019 ident: 10.1016/j.gee.2021.08.006_bib35 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.11.017 – volume: 10 start-page: 2002578 year: 2020 ident: 10.1016/j.gee.2021.08.006_bib100 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202002578 – volume: 16 start-page: 2005406 year: 2020 ident: 10.1016/j.gee.2021.08.006_bib96 publication-title: Small doi: 10.1002/smll.202005406 – volume: 16 year: 2020 ident: 10.1016/j.gee.2021.08.006_bib228 publication-title: Small – volume: 30 start-page: 1703725 year: 2018 ident: 10.1016/j.gee.2021.08.006_bib245 publication-title: Adv. Mater. doi: 10.1002/adma.201703725 – volume: 443 start-page: 227244 year: 2019 ident: 10.1016/j.gee.2021.08.006_bib217 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2019.227244 – volume: 9 start-page: 146 year: 2010 ident: 10.1016/j.gee.2021.08.006_bib193 publication-title: Nat. Mater. doi: 10.1038/nmat2612 – volume: 6 start-page: 5733 year: 2018 ident: 10.1016/j.gee.2021.08.006_bib102 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA01031E – volume: 283 start-page: 125 year: 2015 ident: 10.1016/j.gee.2021.08.006_bib134 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.02.123 – volume: 17 start-page: 38 year: 2019 ident: 10.1016/j.gee.2021.08.006_bib199 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2018.08.003 – volume: 6 start-page: 8549 year: 2018 ident: 10.1016/j.gee.2021.08.006_bib137 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA01172A – volume: 15 start-page: 2971 year: 2021 ident: 10.1016/j.gee.2021.08.006_bib205 publication-title: ACS Nano doi: 10.1021/acsnano.0c09205 – volume: 204 start-page: 147 year: 2017 ident: 10.1016/j.gee.2021.08.006_bib229 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2016.11.036 – volume: 9 start-page: 2906 year: 2018 ident: 10.1016/j.gee.2021.08.006_bib161 publication-title: Nat. Commun. doi: 10.1038/s41467-018-04949-4 – volume: 16 start-page: 454 year: 2017 ident: 10.1016/j.gee.2021.08.006_bib189 publication-title: Nat. Mater. doi: 10.1038/nmat4810 – volume: 133 start-page: 254 year: 2014 ident: 10.1016/j.gee.2021.08.006_bib216 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2014.04.001 – volume: 650 start-page: 64 year: 2016 ident: 10.1016/j.gee.2021.08.006_bib258 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2016.02.067 – volume: 13 start-page: 4625 year: 2020 ident: 10.1016/j.gee.2021.08.006_bib53 publication-title: Energy Environ. Sci. doi: 10.1039/D0EE02620D – volume: 12 start-page: 706 year: 2019 ident: 10.1016/j.gee.2021.08.006_bib62 publication-title: Energy Environ. Sci. doi: 10.1039/C8EE02892C – volume: 51 start-page: 91 year: 2018 ident: 10.1016/j.gee.2021.08.006_bib231 publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.06.039 – volume: 51 start-page: 933 year: 2012 ident: 10.1016/j.gee.2021.08.006_bib69 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201106307 – volume: 6 start-page: 114 year: 2021 ident: 10.1016/j.gee.2021.08.006_bib6 publication-title: Green Energy Environ. doi: 10.1016/j.gee.2020.03.001 – volume: 2 start-page: 21 year: 2018 ident: 10.1016/j.gee.2021.08.006_bib211 publication-title: npj Flex. Electron. doi: 10.1038/s41528-018-0034-0 – volume: 11 start-page: 2677 year: 2018 ident: 10.1016/j.gee.2021.08.006_bib9 publication-title: ChemSusChem doi: 10.1002/cssc.201801200 – volume: 27 start-page: 1172 year: 2015 ident: 10.1016/j.gee.2021.08.006_bib234 publication-title: Chem. Mater. doi: 10.1021/cm503544e – volume: 10 start-page: 2000968 year: 2020 ident: 10.1016/j.gee.2021.08.006_bib202 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202000968 – volume: 39 start-page: 3436 year: 1963 ident: 10.1016/j.gee.2021.08.006_bib160 publication-title: J. Chem. Phys. doi: 10.1063/1.1734212 – volume: 122 start-page: 4182 year: 2018 ident: 10.1016/j.gee.2021.08.006_bib151 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.7b12084 – volume: 3 start-page: 2480 year: 2018 ident: 10.1016/j.gee.2021.08.006_bib38 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b01426 – volume: 10 start-page: 3058 year: 1998 ident: 10.1016/j.gee.2021.08.006_bib87 publication-title: Chem. Mater. doi: 10.1021/cm9801789 – volume: 118 start-page: 5752 year: 1996 ident: 10.1016/j.gee.2021.08.006_bib99 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja953943i – volume: 4 start-page: 1900828 year: 2020 ident: 10.1016/j.gee.2021.08.006_bib232 publication-title: Small Methods doi: 10.1002/smtd.201900828 – volume: 8 start-page: 5040 year: 2020 ident: 10.1016/j.gee.2021.08.006_bib146 publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.9b06798 – volume: 8 start-page: 11642 year: 2020 ident: 10.1016/j.gee.2021.08.006_bib17 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA03706K – volume: 353 start-page: 77 year: 2017 ident: 10.1016/j.gee.2021.08.006_bib240 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.03.138 – volume: 7 start-page: 13727 year: 2019 ident: 10.1016/j.gee.2021.08.006_bib251 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA03541A – volume: 20 start-page: 100646 year: 2021 ident: 10.1016/j.gee.2021.08.006_bib61 publication-title: Mater. Today Energy doi: 10.1016/j.mtener.2021.100646 – volume: 222 start-page: 74 year: 2016 ident: 10.1016/j.gee.2021.08.006_bib147 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.10.155 – volume: 4 start-page: 2822 year: 2010 ident: 10.1016/j.gee.2021.08.006_bib213 publication-title: ACS Nano doi: 10.1021/nn901311t – volume: 138 start-page: 319 year: 2004 ident: 10.1016/j.gee.2021.08.006_bib145 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2004.06.049 – volume: 4 start-page: 771 year: 2020 ident: 10.1016/j.gee.2021.08.006_bib45 publication-title: Joule doi: 10.1016/j.joule.2020.03.002 – volume: 2 start-page: 1991 year: 2018 ident: 10.1016/j.gee.2021.08.006_bib144 publication-title: Joule doi: 10.1016/j.joule.2018.07.009 – volume: 5 start-page: 58255 year: 2015 ident: 10.1016/j.gee.2021.08.006_bib174 publication-title: RSC Adv. doi: 10.1039/C5RA05892A – volume: 3 start-page: 20 year: 2018 ident: 10.1016/j.gee.2021.08.006_bib3 publication-title: Green Energy Environ. doi: 10.1016/j.gee.2017.10.001 – volume: 164 start-page: A2151 year: 2017 ident: 10.1016/j.gee.2021.08.006_bib241 publication-title: J. Electrochem. Soc. doi: 10.1149/2.1431709jes – volume: 134 start-page: 18153 year: 2012 ident: 10.1016/j.gee.2021.08.006_bib84 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja306499n – volume: 1 start-page: 2664 year: 2018 ident: 10.1016/j.gee.2021.08.006_bib129 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.8b00355 – volume: 36 start-page: 478 year: 2020 ident: 10.1016/j.gee.2021.08.006_bib186 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2020.12.015 – volume: 9 start-page: 1803815 year: 2019 ident: 10.1016/j.gee.2021.08.006_bib124 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201803815 – volume: 11 start-page: 1554 year: 2018 ident: 10.1016/j.gee.2021.08.006_bib139 publication-title: Nano Res. doi: 10.1007/s12274-017-1771-4 – volume: 6 start-page: 23757 year: 2018 ident: 10.1016/j.gee.2021.08.006_bib27 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA08133F – volume: 12 start-page: A61 year: 2009 ident: 10.1016/j.gee.2021.08.006_bib63 publication-title: Electrochem. Solid-State Lett. doi: 10.1149/1.3065967 – volume: 31 start-page: 2007397 year: 2020 ident: 10.1016/j.gee.2021.08.006_bib215 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202007397 – volume: 8 start-page: 14424 year: 2017 ident: 10.1016/j.gee.2021.08.006_bib169 publication-title: Nat. Commun. doi: 10.1038/ncomms14424 – volume: 187 start-page: 565 year: 2009 ident: 10.1016/j.gee.2021.08.006_bib176 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2008.10.134 – volume: 6 start-page: 1801506 year: 2019 ident: 10.1016/j.gee.2021.08.006_bib222 publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201801506 – volume: 4 start-page: 6066 year: 2014 ident: 10.1016/j.gee.2021.08.006_bib71 publication-title: Sci. Rep. doi: 10.1038/srep06066 – volume: 54 start-page: 1109 year: 2015 ident: 10.1016/j.gee.2021.08.006_bib158 publication-title: Inorg. Chem. doi: 10.1021/ic5024532 – volume: 8 start-page: 22100 year: 2020 ident: 10.1016/j.gee.2021.08.006_bib19 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA07232J – volume: 12 start-page: 1999 year: 2019 ident: 10.1016/j.gee.2021.08.006_bib253 publication-title: Energy Environ. Sci. doi: 10.1039/C9EE00718K – volume: 31 start-page: 2036 year: 2019 ident: 10.1016/j.gee.2021.08.006_bib127 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b05093 – volume: 32 year: 2020 ident: 10.1016/j.gee.2021.08.006_bib163 publication-title: Adv. Mater. – volume: 13 start-page: 10643 year: 2019 ident: 10.1016/j.gee.2021.08.006_bib59 publication-title: ACS Nano doi: 10.1021/acsnano.9b04916 – volume: 350 start-page: 938 year: 2015 ident: 10.1016/j.gee.2021.08.006_bib227 publication-title: Science doi: 10.1126/science.aab1595 – volume: 54 start-page: 4041 year: 2018 ident: 10.1016/j.gee.2021.08.006_bib153 publication-title: Chem. Commun. doi: 10.1039/C8CC00987B – volume: 6 start-page: 2265 year: 2013 ident: 10.1016/j.gee.2021.08.006_bib126 publication-title: Energy Environ. Sci. doi: 10.1039/c3ee40871j – volume: 7 start-page: 1900442 year: 2019 ident: 10.1016/j.gee.2021.08.006_bib25 publication-title: Energy Technol. doi: 10.1002/ente.201900442 – volume: 73 start-page: 1273 year: 2009 ident: 10.1016/j.gee.2021.08.006_bib73 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2008.11.033 – volume: 8 start-page: 17595 year: 2020 ident: 10.1016/j.gee.2021.08.006_bib120 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA04175K – volume: 15 year: 2019 ident: 10.1016/j.gee.2021.08.006_bib167 publication-title: Small – volume: 8 start-page: 6631 year: 2020 ident: 10.1016/j.gee.2021.08.006_bib30 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA13497B – volume: 10 start-page: 1904163 year: 2020 ident: 10.1016/j.gee.2021.08.006_bib78 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201904163 – volume: 6 start-page: 1900387 year: 2019 ident: 10.1016/j.gee.2021.08.006_bib50 publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201900387 – volume: 8 start-page: 2002636 year: 2021 ident: 10.1016/j.gee.2021.08.006_bib68 publication-title: Adv. Sci. doi: 10.1002/advs.202002636 – volume: 15 start-page: 131 year: 2018 ident: 10.1016/j.gee.2021.08.006_bib187 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2018.03.023 – volume: 70 start-page: 27 year: 2006 ident: 10.1016/j.gee.2021.08.006_bib74 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2005.08.029 – volume: 23 start-page: 636 year: 2019 ident: 10.1016/j.gee.2021.08.006_bib138 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2019.03.007 – volume: 8 year: 2016 ident: 10.1016/j.gee.2021.08.006_bib33 publication-title: NPG Asia Mater. doi: 10.1038/am.2016.82 – volume: 7 start-page: 416 year: 2014 ident: 10.1016/j.gee.2021.08.006_bib200 publication-title: Energy Environ. Sci. doi: 10.1039/C3EE42351D – volume: 6 start-page: 9677 year: 2018 ident: 10.1016/j.gee.2021.08.006_bib108 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA01198B – volume: 9 start-page: 2553 year: 2018 ident: 10.1016/j.gee.2021.08.006_bib247 publication-title: Nat. Commun. doi: 10.1038/s41467-018-04917-y – volume: 39 start-page: 142 year: 1981 ident: 10.1016/j.gee.2021.08.006_bib88 publication-title: J. Solid State Chem. doi: 10.1016/0022-4596(81)90323-6 – volume: 10 start-page: 2002354 year: 2020 ident: 10.1016/j.gee.2021.08.006_bib49 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202002354 – volume: 25 start-page: 211 year: 2016 ident: 10.1016/j.gee.2021.08.006_bib155 publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.04.051 – volume: 12 start-page: 6358 year: 2012 ident: 10.1016/j.gee.2021.08.006_bib221 publication-title: Nano Lett. doi: 10.1021/nl303619s – volume: 288 start-page: 320 year: 2015 ident: 10.1016/j.gee.2021.08.006_bib75 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.04.140 – volume: 6 start-page: 5 year: 2021 ident: 10.1016/j.gee.2021.08.006_bib2 publication-title: Green Energy Environ. doi: 10.1016/j.gee.2020.09.012 – volume: 10 start-page: 24573 year: 2018 ident: 10.1016/j.gee.2021.08.006_bib136 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b07756 – volume: 414 start-page: 359 year: 2001 ident: 10.1016/j.gee.2021.08.006_bib4 publication-title: Nature doi: 10.1038/35104644 – volume: 276 start-page: 7 year: 2015 ident: 10.1016/j.gee.2021.08.006_bib183 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.11.010 – volume: 135 start-page: 58 year: 2019 ident: 10.1016/j.gee.2021.08.006_bib39 publication-title: Mater. Sci. Eng. R doi: 10.1016/j.mser.2018.10.002 – volume: 8 start-page: 405 year: 2017 ident: 10.1016/j.gee.2021.08.006_bib66 publication-title: Nat. Commun. doi: 10.1038/s41467-017-00467-x – volume: 30 start-page: 2002711 year: 2020 ident: 10.1016/j.gee.2021.08.006_bib132 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202002711 – volume: 13 start-page: 135 year: 2020 ident: 10.1016/j.gee.2021.08.006_bib90 publication-title: Energy Environ. Sci. doi: 10.1039/C9EE03702K – volume: 26 start-page: 815 year: 2017 ident: 10.1016/j.gee.2021.08.006_bib210 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2017.04.002 – volume: 15 start-page: 351 year: 2018 ident: 10.1016/j.gee.2021.08.006_bib101 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2018.06.019 – volume: 6 start-page: 1859 year: 2021 ident: 10.1016/j.gee.2021.08.006_bib173 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.1c00555 – volume: 31 year: 2019 ident: 10.1016/j.gee.2021.08.006_bib207 publication-title: Adv. Mater. – volume: 27 start-page: 5799 year: 2015 ident: 10.1016/j.gee.2021.08.006_bib184 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b02488 – volume: 34 start-page: 461 year: 2021 ident: 10.1016/j.gee.2021.08.006_bib52 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2020.10.011 – volume: 13 start-page: 4103 year: 2020 ident: 10.1016/j.gee.2021.08.006_bib83 publication-title: ChemSusChem doi: 10.1002/cssc.202001216 – volume: 3 start-page: 1800272 year: 2019 ident: 10.1016/j.gee.2021.08.006_bib12 publication-title: Small Methods doi: 10.1002/smtd.201800272 – volume: 25 start-page: 14480 year: 2019 ident: 10.1016/j.gee.2021.08.006_bib54 publication-title: Chem. Eur. J. doi: 10.1002/chem.201902660 – volume: 42 start-page: 73 year: 2021 ident: 10.1016/j.gee.2021.08.006_bib42 publication-title: Mater. Today doi: 10.1016/j.mattod.2020.08.021 – volume: 276 start-page: 1 year: 2018 ident: 10.1016/j.gee.2021.08.006_bib107 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.04.139 – volume: 34 start-page: 545 year: 2021 ident: 10.1016/j.gee.2021.08.006_bib55 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2020.10.019 – volume: 12 start-page: 110 year: 2020 ident: 10.1016/j.gee.2021.08.006_bib93 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-020-00445-x – volume: 9 start-page: 1656 year: 2018 ident: 10.1016/j.gee.2021.08.006_bib97 publication-title: Nat. Commun. doi: 10.1038/s41467-018-04060-8 – volume: 135 start-page: 18176 year: 2013 ident: 10.1016/j.gee.2021.08.006_bib212 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja409027s – volume: 40 start-page: 1032 year: 2016 ident: 10.1016/j.gee.2021.08.006_bib141 publication-title: Int. J. Energy Res. doi: 10.1002/er.3499 – volume: 3 start-page: 2 year: 2018 ident: 10.1016/j.gee.2021.08.006_bib1 publication-title: Green Energy Environ. doi: 10.1016/j.gee.2017.08.002 – volume: 18 start-page: 3956 year: 2016 ident: 10.1016/j.gee.2021.08.006_bib170 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C5CP07718D – volume: 12 start-page: 284 year: 2018 ident: 10.1016/j.gee.2021.08.006_bib56 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2018.02.010 – volume: 10 start-page: 37233 year: 2018 ident: 10.1016/j.gee.2021.08.006_bib233 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b12486 – volume: 118 start-page: 3976 year: 2014 ident: 10.1016/j.gee.2021.08.006_bib85 publication-title: J. Phys. Chem. C doi: 10.1021/jp411687n – volume: 9 start-page: 5100 year: 2018 ident: 10.1016/j.gee.2021.08.006_bib236 publication-title: Nat. Commun. doi: 10.1038/s41467-018-07595-y – volume: 423 start-page: 130253 year: 2021 ident: 10.1016/j.gee.2021.08.006_bib197 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.130253 – volume: 6 start-page: 605 year: 2018 ident: 10.1016/j.gee.2021.08.006_bib198 publication-title: Energy Technol. doi: 10.1002/ente.201700648 |
SSID | ssj0002414154 |
Score | 2.4086833 |
SecondaryResourceType | review_article |
Snippet | As one of the most common cathode materials for aqueous zinc-ion batteries (AZIBs), manganese oxides have the advantages of abundant reserves, low cost, and... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 858 |
SubjectTerms | Aqueous zinc-ion batteries Conversion Insertion/Extraction Manganese oxides Mechanism |
Title | Understanding of the electrochemical behaviors of aqueous zinc–manganese batteries: Reaction processes and failure mechanisms |
URI | https://doaj.org/article/fc322cc2f6df4770b723b3c203fa3f19 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8sCEFOHYTuKwAaKqkGBAVOoW2Y5dFdG0ImVhgf_AP-SXcJdHlQkW1viR6Hzyd6fc9x0hZwCR1lvNA2lCE0jN8iBVzARCOQvRQiq0RO7w_UM8HMm7cTTutPrCmrBaHrg23IWHJdxa7uPcyyRhJuHCCMuZ8Fr4SvCTA-Z1kim8gwGXAJnwlzJHahEAe9L-0qyKuyYOJTJ5Ld-J3Y46oNTR7q9AZrBFNpvokF7VX7VN1lyxQzY6moG75GPUpaPQuacQwtGmm41t6P-0Zd-XOEHD3Q8JPn2fFvb782umi4nGxpPUVOKakCtf0kdXMxzoomYOuJLCG6jXU6xbpzOHDOFpOSv3yGhw-3QzDJouCoEFsF4GzmgjnYgMWMzK0ChuQqVkqnMwm04UjEbSpTDOEg_pk9VRqOLQeOti4-DE9kmvmBfugNAoTnIlRB7FMpFwHMqZlGnYKZWGexb1CWvNmNlGYhw7XbxkbS3ZcwaWz9DyGXa_ZHGfnK-WLGp9jd8mX-PZrCaiNHb1ABwmaxwm-8thDv9jkyOyzpEHUVX1HZPe8vXNnUB0sjSnlSP-AG_L5PE |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Understanding+of+the+electrochemical+behaviors+of+aqueous+zinc%E2%80%93manganese+batteries%3A+Reaction+processes+and+failure+mechanisms&rft.jtitle=Green+energy+%26+environment&rft.au=Xinyu+Luo&rft.au=Wenchao+Peng&rft.au=Yang+Li&rft.au=Fengbao+Zhang&rft.date=2022-10-01&rft.pub=KeAi+Communications+Co.%2C+Ltd&rft.issn=2468-0257&rft.eissn=2468-0257&rft.volume=7&rft.issue=5&rft.spage=858&rft.epage=899&rft_id=info:doi/10.1016%2Fj.gee.2021.08.006&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_fc322cc2f6df4770b723b3c203fa3f19 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2468-0257&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2468-0257&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2468-0257&client=summon |