Irreversibility analysis of Cu-TiO2-H2O hybrid-nanofluid impinging on a 3-D stretching sheet in a porous medium with nonlinear radiation: Darcy-Forchhiemer’s model

The current research is conducted to investigate the slip effect and to analyze entropy production in both hybrid nanofluids, and common nanofluids flow past a convectively heated three-dimensional stretching sheet placed in a porous medium. The slip flow is considered in a Darcy-Forchheimer’s schem...

Full description

Saved in:
Bibliographic Details
Published inAlexandria engineering journal Vol. 59; no. 6; pp. 5247 - 5261
Main Authors Yusuf, T.A., Mabood, F., Khan, W.A., Gbadeyan, J.A.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.12.2020
Elsevier
Subjects
Online AccessGet full text
ISSN1110-0168
DOI10.1016/j.aej.2020.09.053

Cover

Loading…
Abstract The current research is conducted to investigate the slip effect and to analyze entropy production in both hybrid nanofluids, and common nanofluids flow past a convectively heated three-dimensional stretching sheet placed in a porous medium. The slip flow is considered in a Darcy-Forchheimer’s scheme by incorporating the nonlinear thermal radiation. Water is taken as base fluid, while Copper and Titanium dioxide nanoparticles are considered. The governing models are overset into dimensionless variables using similarity transformation, and the solution is acquired numerically. The impacts of pertinent factors on the flow, heat transfer, and entropy generation rates are explored. Additional plot portraying the streamlines and isotherms for both nanofluids are presented to examine the hydrothermal behavior. Skin friction and heat transport are discussed with sensible judgment. A comparison with earlier studies is unwrapped to ensure the model’s validity. The results communicate that temperature is enhanced with porosity, whereas velocity is found to be decelerated. Bejan number is decreasing with an increase in the nanoparticle volume fraction of nanoparticles. Furthermore, hybrid nanofluids generate less entropy than common nanofluids.
AbstractList The current research is conducted to investigate the slip effect and to analyze entropy production in both hybrid nanofluids, and common nanofluids flow past a convectively heated three-dimensional stretching sheet placed in a porous medium. The slip flow is considered in a Darcy-Forchheimer’s scheme by incorporating the nonlinear thermal radiation. Water is taken as base fluid, while Copper and Titanium dioxide nanoparticles are considered. The governing models are overset into dimensionless variables using similarity transformation, and the solution is acquired numerically. The impacts of pertinent factors on the flow, heat transfer, and entropy generation rates are explored. Additional plot portraying the streamlines and isotherms for both nanofluids are presented to examine the hydrothermal behavior. Skin friction and heat transport are discussed with sensible judgment. A comparison with earlier studies is unwrapped to ensure the model’s validity. The results communicate that temperature is enhanced with porosity, whereas velocity is found to be decelerated. Bejan number is decreasing with an increase in the nanoparticle volume fraction of nanoparticles. Furthermore, hybrid nanofluids generate less entropy than common nanofluids.
Author Gbadeyan, J.A.
Mabood, F.
Khan, W.A.
Yusuf, T.A.
Author_xml – sequence: 1
  givenname: T.A.
  surname: Yusuf
  fullname: Yusuf, T.A.
  email: tundeayusuf04@gmail.com
  organization: Department of Mathematics, University of Ilorin, Ilorin, Kwara State, Nigeria
– sequence: 2
  givenname: F.
  surname: Mabood
  fullname: Mabood, F.
  organization: Department of Information Technology, Fanshawe College London, ON Canada
– sequence: 3
  givenname: W.A.
  surname: Khan
  fullname: Khan, W.A.
  organization: Department of Mechanical Engineering, College of Engineering, Prince Mohammad Bin Fahd University, Al Khobar 31952, Saudi Arabia
– sequence: 4
  givenname: J.A.
  surname: Gbadeyan
  fullname: Gbadeyan, J.A.
  organization: Department of Mathematics, University of Ilorin, Ilorin, Kwara State, Nigeria
BookMark eNp9kU1uFDEQhXsRJELIAdj5At3Y7n9YoQkhI0WaTVhb1XY5Xa3u9sj2BM2Oa3CAXIyT4MkgFixSKqmkKn1PpffeZRerWzHLPgheCC6aj1MBOBWSS17wvuB1eZFdCiF4no7d2-w6hImnqtu-6pvL7HnrPT6hDzTQTPHIYIX5GCgwZ9nmkD_QTuZ3csfG4-DJ5Cuszs4HMoyWPa2PqZlbGbAyv2Eheox6PO3CiBgZnS57590hsAUNHRb2g-LI0s8zrQieeTAEkdz6id2A18f81nk9joQL-t8_fyXMGZzfZ28szAGv_86r7Pvt14fNXX6_-7bdfLnPdcWbmGMnTS-qru_rtjEoW4NWGj4IqKxpBgCora2arpWV7UwjOiPB1mU5SGt6XXflVbY96xoHk9p7WsAflQNSLwvnHxX4SHpGVZcDF5Zbrsu6qnQPyBvd6FaYTg4tQNISZy3tXQge7T89wdUpKjWpFJU6RaV4r1JUiWn_YzTFF3uiB5pfJT-fSUz2PBF6FTThqpPpHnVM_9Mr9B9_m7YQ
CitedBy_id crossref_primary_10_3390_fractalfract6120712
crossref_primary_10_1080_17455030_2021_1985185
crossref_primary_10_3390_nano12101745
crossref_primary_10_1007_s12668_024_01417_w
crossref_primary_10_1080_01430750_2022_2127892
crossref_primary_10_1016_j_icheatmasstransfer_2021_105603
crossref_primary_10_1016_j_jrras_2024_101220
crossref_primary_10_1038_s41598_021_95857_z
crossref_primary_10_1080_01430750_2022_2059004
crossref_primary_10_1002_zamm_202100458
crossref_primary_10_1615_SpecialTopicsRevPorousMedia_2022044874
crossref_primary_10_32604_fdmp_2023_021590
crossref_primary_10_58559_ijes_1263940
crossref_primary_10_1038_s41598_021_01747_9
crossref_primary_10_1088_1402_4896_abe324
crossref_primary_10_1002_zamm_202100419
crossref_primary_10_1016_j_inoche_2023_111569
crossref_primary_10_1038_s41598_022_24294_3
crossref_primary_10_1515_phys_2022_0166
crossref_primary_10_1016_j_csite_2024_104712
crossref_primary_10_1016_j_rineng_2024_101980
crossref_primary_10_1080_10407782_2023_2291125
crossref_primary_10_1007_s11587_021_00606_z
crossref_primary_10_1063_5_0201663
crossref_primary_10_1007_s10973_023_12853_3
crossref_primary_10_1016_j_csite_2023_103028
crossref_primary_10_1515_ntrev_2023_0161
crossref_primary_10_1088_1742_6596_2371_1_012007
crossref_primary_10_1007_s12572_025_00388_9
crossref_primary_10_1088_1674_1056_ad8a45
crossref_primary_10_1016_j_rineng_2024_102652
crossref_primary_10_1007_s10891_022_02613_9
crossref_primary_10_1016_j_ijft_2024_100750
crossref_primary_10_1080_01430750_2021_1874527
crossref_primary_10_1016_j_aej_2022_12_051
crossref_primary_10_3390_fluids6030109
crossref_primary_10_1002_zamm_202000372
crossref_primary_10_1080_17455030_2022_2086318
crossref_primary_10_1016_j_cjph_2022_03_006
crossref_primary_10_1016_j_csite_2021_101015
crossref_primary_10_1080_10407790_2023_2300704
crossref_primary_10_1007_s10973_022_11540_z
crossref_primary_10_1080_01430750_2022_2132287
crossref_primary_10_1080_16583655_2022_2040281
crossref_primary_10_1038_s41598_023_33650_w
crossref_primary_10_1142_S0217984924504967
crossref_primary_10_1016_j_icheatmasstransfer_2021_105484
crossref_primary_10_1016_j_mseb_2021_115586
crossref_primary_10_1016_j_cjph_2021_12_011
crossref_primary_10_1038_s41598_023_48676_3
crossref_primary_10_2514_1_T6488
crossref_primary_10_1080_02286203_2023_2270881
crossref_primary_10_1016_j_csite_2021_101300
crossref_primary_10_1080_10407790_2024_2386584
crossref_primary_10_1142_S0217984924500477
crossref_primary_10_1177_09544089241285666
crossref_primary_10_1142_S021797922150315X
crossref_primary_10_1108_MMMS_07_2024_0179
crossref_primary_10_1016_j_icheatmasstransfer_2021_105671
crossref_primary_10_1080_17455030_2022_2128233
crossref_primary_10_1016_j_asej_2024_102892
crossref_primary_10_1016_j_icheatmasstransfer_2021_105215
crossref_primary_10_1016_j_jppr_2021_11_004
crossref_primary_10_1080_10407782_2023_2193708
crossref_primary_10_1155_2022_3629416
crossref_primary_10_3390_mi14020338
crossref_primary_10_1155_ijde_4138176
crossref_primary_10_1080_17455030_2021_2019352
crossref_primary_10_1038_s41598_021_88947_5
crossref_primary_10_1002_htj_22526
crossref_primary_10_1016_j_cjph_2020_11_019
crossref_primary_10_1080_01430750_2022_2029766
crossref_primary_10_1002_htj_22168
crossref_primary_10_1177_09544089211040598
crossref_primary_10_1007_s12668_023_01280_1
crossref_primary_10_1016_j_ijheatfluidflow_2024_109464
crossref_primary_10_1016_j_matpr_2023_03_737
crossref_primary_10_1038_s41598_023_29137_3
Cites_doi 10.1139/cjp-2015-0799
10.1108/HFF-03-2012-0065
10.1140/epjp/i2016-16003-1
10.1002/zamm.200310052
10.1016/j.jmmm.2015.07.091
10.1016/j.jclepro.2020.121206
10.1007/s11771-019-4074-y
10.1016/j.ijheatmasstransfer.2017.10.113
10.1007/s40819-018-0484-z
10.1016/j.jmrt.2020.04.074
10.1016/j.cmpb.2020.105362
10.1016/j.cmpb.2020.105363
10.1016/j.ijheatmasstransfer.2018.06.005
10.18869/acadpub.jafm.67.223.22916
10.1007/s10973-020-09720-w
10.1016/j.rinp.2017.07.052
10.1016/j.ijheatmasstransfer.2015.10.014
10.1590/0104-6632.20150322s00001918
10.1016/j.jksus.2016.05.003
10.1016/j.rinp.2017.08.016
10.1016/j.jmrt.2020.04.079
10.1038/s41598-018-36243-0
10.1063/1.5021524
10.1007/s13204-019-01123-0
10.1016/j.physa.2019.123150
10.1016/j.apt.2016.04.005
ContentType Journal Article
Copyright 2020 Faculty of Engineering, Alexandria University
Copyright_xml – notice: 2020 Faculty of Engineering, Alexandria University
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.aej.2020.09.053
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 5261
ExternalDocumentID oai_doaj_org_article_53b01f0f0c3544c9ae06c6c71d82b7aa
10_1016_j_aej_2020_09_053
S1110016820304968
GroupedDBID --K
0R~
0SF
4.4
457
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HZ~
IPNFZ
IXB
KQ8
M41
NCXOZ
O-L
O9-
OK1
P2P
RIG
ROL
SES
SSZ
XH2
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
CITATION
ID FETCH-LOGICAL-c406t-e82d914899576de27def2d0b1a4fd6baaa5ff468724f8d618d2af533b2fd9c583
IEDL.DBID DOA
ISSN 1110-0168
IngestDate Wed Aug 27 01:32:29 EDT 2025
Tue Jul 01 04:24:48 EDT 2025
Thu Apr 24 22:53:08 EDT 2025
Wed May 17 01:16:46 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords MHD
Entropy generation rate
Irreversibility
3D-flow
Hybrid-nanofluid
Non-linear radiation
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-e82d914899576de27def2d0b1a4fd6baaa5ff468724f8d618d2af533b2fd9c583
OpenAccessLink https://doaj.org/article/53b01f0f0c3544c9ae06c6c71d82b7aa
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_53b01f0f0c3544c9ae06c6c71d82b7aa
crossref_primary_10_1016_j_aej_2020_09_053
crossref_citationtrail_10_1016_j_aej_2020_09_053
elsevier_sciencedirect_doi_10_1016_j_aej_2020_09_053
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2020
2020-12-00
2020-12-01
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: December 2020
PublicationDecade 2020
PublicationTitle Alexandria engineering journal
PublicationYear 2020
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References T. Hayat, M. Imtiaz, A. Alsaedi, M.A. Kutbi, MHD three-dimensional flow of nanofluid with velocity slip and nonlinear thermal radiation, J. Magnet. Magnet. Mater., 396 (2015) 31–37.
Sheikholeslami, Jafaryar, Shafee, Babazadeh (b0130) 2020; 261
Adesanya, Dairo, Yusuf, Onanaye, Arekete (b0045) 2020; 540
Muhammad, Alsaedi, Hayat, Shehzad (b0075) 2017; 7
Awais, Hayat, Nawaz, Alsaedi (b0090) 2015; 32
Ariel (b0195) 2003; 83
Ullah, Shafie, Khan (b0105) 2017; 29
M.I. Khan, S. Qayyum, S. Kadry, W.A. Khan, S.Z. Abbas, Irreversibility Analysis and Heat Transport in Squeezing Nanoliquid Flow of Non–Newtonian (Second–Grade) Fluid between Infnite Plates with Activation Energy, Arabian J. Sci. Eng. 10.1007/s13369-020-04442-5.
Reddy, Chamkha (b0180) 2016; 27
Yusuf, Adesanya, Gbadeyan (b0055) 2020
S.S.U. Devi, S.P.A. Devi, Numerical investigation of three-dimensional hybrid Cu–Al2O3/ water nanofluid flow over a stretching sheet with effecting Lorentz force subject to Newtonian heating, Can. J. Phys. 94: 490–496 (2016) http://dx.doi.org/10.1139/cjp- 2015-0799.
Ijaz Khan, Alzahrani, Hobiny (b0190) 2020; 9
F. Mabood, T.A. Yusuf, W.A. Khan, Cu–Al2O3–H2O hybrid nanofluid flow with melting heat transfer, irreversibility analysis and nonlinear thermal radiation, J. Therm. Anal. Calorimetry, http://doi.org/10.1007/s10973-020-09720-w.
Acharya, Maity, Kundu (b0145) 2020; 10
Rashidi, Mohammadi, Abbasbandy, Alhuthali (b0010) 2015; 8
Mondal, Almakki, Sibanda (b0040) 2019; 6
D. Khan, A. Khan, I. Khan, F. Ali, F. Karim & I. Tlili, Effects of relative magnetic field, chemical reaction, heat generation and Newtonian heating on convection flow of casson fluid over a moving vertical plate embedded in a porous medium, SCIENTIFIC REPORTS 9 (2019) 400 | 10.1038/S41598-018-36243-0.
Abbas, Ijaz Khan, Kadry, Khan, Israr-Ur-Rehman, Waqas (b0060) 2020
Maleki, Alsarraf, Moghanizadeh, Hajabdollahi, Safaei (b0125) 2019; 26
Hayat, Shehzad, Qasim (b0085) 2014; 24
R. Jusoh, R. Nazar, I. Pop, Three-dimensional flow of a nanofluid over a permeable stretching/shrinking surface with velocity slip: A revised model, Phys. Fluids 30, 033604 (2018); http://doi.org/10.1063/1.5021524.
Nayak, Shaw, Khan, Pandey, Nazeer (b0185) 2020; 9
Mahanthesh, Gireesha, Prasannakumara, Sampath Kumar (b0160) 2017; 7
S.S.U. Devi, S.P.A. Devi, Numerical investigation of three-dimensional hybrid Cu–Al2O3/water nanofluid flow over a stretching sheet with effecting Lorentz force subject to Newtonian heating, Can. J. Phys. 94 (2016) 490–496. http://dx.doi.org/10.1139/cjp-2015-0799.
A.G. Hansen, H.Z. Herzig, On possible similarity solutions for three-dimensional incompressible laminar boundary layers I: Similarity with respect to stationary rectangular coordinates, NACA TN 3768, 1956.
Wang, Muhammad, Ijaz Khan, Khan, Abbas (b0005) 2019
Sheikholeslami, Shehzad (b0155) 2018; 118
Nayak, Abdul Hakeem, Ganga, Ijaz Khan, Waqas, Makinde (b0020) 2019
Xu, Lee (b0200) 2013; 5
Usman, Hamid, Zubair, Haq, Wang (b0140) 2018; 126
Abbas, Khan, Kadry, Khan, Waqas, Khan (b0025) 2020; 190
Mabood, Das (b0120) 2016; 131
A.G. Hansen, H.Z. Herzig, On possible similarity solutions for three-dimensional incompressible laminar boundary layers II: Similarity with respect to stationary polar coordinates, NACATN 3768, 1956.
Kuttan, Jayanthi, Chamkha, Gireesha (b0165) 2019; 5
Muhammad, Ijaz Khan (b0015) 2019
Riaz Muhammad, Khan, Jameel, Khan (b0050) 2019
Afridi, Qasim (b0035) 2018; 4
Mabood, Ibrahim, Rashidi, Shadloo, Lorenzini (b0095) 2016; 93
C.R. Reddy, P. Naveen, D. Srinivasacharya, Nonlinear Convective Flow of Non-Newtonian Fluid over an Inclined Plate with Convective Surface Condition: A Darcy–Forchheimer Model, Int. J. Appl. Comput. Math. 4, 51 (2018). http://doi.org/10.1007/s40819-018-0484-z.
Al-Mdallal, Indumathi, Ganga, Abdul Hakeem (b0150) 2020; 17
Riaz Muhammad (10.1016/j.aej.2020.09.053_b0050) 2019
10.1016/j.aej.2020.09.053_b0070
Rashidi (10.1016/j.aej.2020.09.053_b0010) 2015; 8
Muhammad (10.1016/j.aej.2020.09.053_b0015) 2019
Nayak (10.1016/j.aej.2020.09.053_b0020) 2019
Hayat (10.1016/j.aej.2020.09.053_b0085) 2014; 24
Abbas (10.1016/j.aej.2020.09.053_b0025) 2020; 190
Al-Mdallal (10.1016/j.aej.2020.09.053_b0150) 2020; 17
10.1016/j.aej.2020.09.053_b0135
10.1016/j.aej.2020.09.053_b0115
10.1016/j.aej.2020.09.053_b0175
Ijaz Khan (10.1016/j.aej.2020.09.053_b0190) 2020; 9
10.1016/j.aej.2020.09.053_b0110
Usman (10.1016/j.aej.2020.09.053_b0140) 2018; 126
Kuttan (10.1016/j.aej.2020.09.053_b0165) 2019; 5
Acharya (10.1016/j.aej.2020.09.053_b0145) 2020; 10
Muhammad (10.1016/j.aej.2020.09.053_b0075) 2017; 7
10.1016/j.aej.2020.09.053_b0170
Afridi (10.1016/j.aej.2020.09.053_b0035) 2018; 4
10.1016/j.aej.2020.09.053_b0030
Mahanthesh (10.1016/j.aej.2020.09.053_b0160) 2017; 7
Ullah (10.1016/j.aej.2020.09.053_b0105) 2017; 29
10.1016/j.aej.2020.09.053_b0080
Maleki (10.1016/j.aej.2020.09.053_b0125) 2019; 26
Reddy (10.1016/j.aej.2020.09.053_b0180) 2016; 27
Ariel (10.1016/j.aej.2020.09.053_b0195) 2003; 83
Mabood (10.1016/j.aej.2020.09.053_b0095) 2016; 93
Nayak (10.1016/j.aej.2020.09.053_b0185) 2020; 9
Abbas (10.1016/j.aej.2020.09.053_b0060) 2020
Wang (10.1016/j.aej.2020.09.053_b0005) 2019
Xu (10.1016/j.aej.2020.09.053_b0200) 2013; 5
Sheikholeslami (10.1016/j.aej.2020.09.053_b0130) 2020; 261
Sheikholeslami (10.1016/j.aej.2020.09.053_b0155) 2018; 118
Awais (10.1016/j.aej.2020.09.053_b0090) 2015; 32
Mabood (10.1016/j.aej.2020.09.053_b0120) 2016; 131
Adesanya (10.1016/j.aej.2020.09.053_b0045) 2020; 540
10.1016/j.aej.2020.09.053_b0065
Mondal (10.1016/j.aej.2020.09.053_b0040) 2019; 6
10.1016/j.aej.2020.09.053_b0100
Yusuf (10.1016/j.aej.2020.09.053_b0055) 2020
References_xml – year: 2020
  ident: b0060
  article-title: Fully developed entropy optimized second order velocity slip MHD nanofluid flow with activation energy
  publication-title: Comput. Methods Programs Biomed.
– reference: A.G. Hansen, H.Z. Herzig, On possible similarity solutions for three-dimensional incompressible laminar boundary layers II: Similarity with respect to stationary polar coordinates, NACATN 3768, 1956.
– volume: 27
  start-page: 1207
  year: 2016
  end-page: 1218
  ident: b0180
  article-title: Soret and Dufour effects on MHD convective flow of Al2O3–water and TiO2–water nanofluids past a stretching sheet in porous media with heat generation/absorption
  publication-title: Adv. Powder Technol.
– volume: 93
  start-page: 674
  year: 2016
  end-page: 682
  ident: b0095
  article-title: Non-uniform heat source/sink and Soret effects on MHD non-Darcian convective flow past a stretching sheet in a micropolar fluid with radiation
  publication-title: Int. J. Heat Mass Transfer
– reference: S.S.U. Devi, S.P.A. Devi, Numerical investigation of three-dimensional hybrid Cu–Al2O3/water nanofluid flow over a stretching sheet with effecting Lorentz force subject to Newtonian heating, Can. J. Phys. 94 (2016) 490–496. http://dx.doi.org/10.1139/cjp-2015-0799.
– volume: 126
  start-page: 1347
  year: 2018
  end-page: 1356
  ident: b0140
  article-title: Cu-Al2O3/Water hybrid nanofluid through a permeable surface in the presence of nonlinear radiation and variable thermal conductivity via LSM
  publication-title: Int. J. Heat Mass Transfer
– volume: 10
  start-page: 633
  year: 2020
  end-page: 647
  ident: b0145
  article-title: Influence of inclined magnetic field on the flow of condensed nanomaterial over a slippery surface: the hybrid visualization
  publication-title: Appl. Nanosci.
– volume: 540
  year: 2020
  ident: b0045
  article-title: Thermodynamics Analysis for heated gravity-driven hydromagnetic Couple Stress film with viscous dissipation effects
  publication-title: Physica A
– volume: 190
  year: 2020
  ident: b0025
  article-title: Entropy optimized Darcy-Forchheimer nanofluid (Silicon dioxide, Molybdenum disulfide) subject to temperature dependent viscosity
  publication-title: Comput. Methods Programs Biomed.
– year: 2019
  ident: b0005
  article-title: Entropy optimized MHD nanomaterial flow subject to variable thicked surface
  publication-title: Comput. Methods Progr. Biomed.
– volume: 24
  start-page: 342
  year: 2014
  end-page: 358
  ident: b0085
  article-title: Asghar. Three-dimensional stretched flow via convective boundary condition and heat generation/absorption
  publication-title: International Journal of Numerical Methods for Heat & Fluid Flow
– volume: 32
  start-page: 555
  year: 2015
  end-page: 561
  ident: b0090
  article-title: Newtonian heating, thermal-diffusion and diffusion-thermo effects in an axisymmetric flow of a Jeffery fluid over a stretching surface
  publication-title: Braz. J. Chem. Eng.
– volume: 131
  start-page: 3
  year: 2016
  ident: b0120
  article-title: Melting heat transfer on hydromagnetic flow of a nanofluid over a stretching sheet with radiation and second-order slip
  publication-title: Eur. Phys. J. Plus
– volume: 7
  start-page: 2990
  year: 2017
  end-page: 2996
  ident: b0160
  article-title: Magneto-Thermo-Marangoni convective flow of Cu-H2O nanoliquid past an infinite disk with particle shape and exponential space based heat source effects
  publication-title: Results. Phys.
– volume: 4
  start-page: 1
  year: 2018
  end-page: 11
  ident: b0035
  article-title: Entropy Generation in Three-Dimensional Flow of Dissipative Fluid
  publication-title: Int. J. Appl. Comput. Math
– reference: D. Khan, A. Khan, I. Khan, F. Ali, F. Karim & I. Tlili, Effects of relative magnetic field, chemical reaction, heat generation and Newtonian heating on convection flow of casson fluid over a moving vertical plate embedded in a porous medium, SCIENTIFIC REPORTS 9 (2019) 400 | 10.1038/S41598-018-36243-0.
– reference: S.S.U. Devi, S.P.A. Devi, Numerical investigation of three-dimensional hybrid Cu–Al2O3/ water nanofluid flow over a stretching sheet with effecting Lorentz force subject to Newtonian heating, Can. J. Phys. 94: 490–496 (2016) http://dx.doi.org/10.1139/cjp- 2015-0799.
– volume: 8
  start-page: 753
  year: 2015
  end-page: 765
  ident: b0010
  article-title: Entropy generation analysis for stagnation point flow in a porous medium over a permeable stretching surface
  publication-title: J. Appl. Fluid Mech.
– year: 2019
  ident: b0015
  article-title: Magnetohydrodynamics (MHD) radiated nanomaterial viscous material flow by a curved surface with second order slip and entropy generation
  publication-title: Comput. Methods Programs Biomed.
– volume: 5
  year: 2019
  ident: b0165
  article-title: Heat transfer enhancement in the boundary layer flow of hybrid nanofluids due to variable viscosity and natural convection
  publication-title: Heliyon
– volume: 261
  year: 2020
  ident: b0130
  article-title: Acceleration of discharge process of clean energy storage unit with insertion of porous foam considering nanoparticle enhanced paraffin
  publication-title: J. Cleaner Prod.
– volume: 6
  start-page: 657
  year: 2019
  end-page: 665
  ident: b0040
  article-title: Dual solutions for three-dimensional magnetohydrodynamic nanofluid flow with entropy generation
  publication-title: J. Comput. Des. Eng.
– volume: 5
  start-page: pages
  year: 2013
  ident: b0200
  article-title: Variational iteration method for the magnetohydrodynamic flow over a nonlinear stretching sheet
  publication-title: Abst. Appl. Anal.
– volume: 17
  year: 2020
  ident: b0150
  article-title: Marangoni radiative effects of hybrid-nanofluids flow past a permeable surface with inclined magnetic field, Case Studies
  publication-title: Therm. Eng.
– reference: T. Hayat, M. Imtiaz, A. Alsaedi, M.A. Kutbi, MHD three-dimensional flow of nanofluid with velocity slip and nonlinear thermal radiation, J. Magnet. Magnet. Mater., 396 (2015) 31–37.
– volume: 26
  start-page: 1099
  year: 2019
  end-page: 1115
  ident: b0125
  article-title: Heat transfer and nanofluid flow over a porous plate with radiation and slip boundary conditions
  publication-title: J. Cent. South Univ.
– reference: F. Mabood, T.A. Yusuf, W.A. Khan, Cu–Al2O3–H2O hybrid nanofluid flow with melting heat transfer, irreversibility analysis and nonlinear thermal radiation, J. Therm. Anal. Calorimetry, http://doi.org/10.1007/s10973-020-09720-w.
– reference: A.G. Hansen, H.Z. Herzig, On possible similarity solutions for three-dimensional incompressible laminar boundary layers I: Similarity with respect to stationary rectangular coordinates, NACA TN 3768, 1956.
– volume: 29
  start-page: 250
  year: 2017
  end-page: 259
  ident: b0105
  article-title: Effects of slip condition and Newtonian heating on MHD flow of Casson fluid over a nonlinearly stretching sheet saturated in a porous medium
  publication-title: J. King Saud Univ. – Sci.
– start-page: 1
  year: 2020
  end-page: 18
  ident: b0055
  article-title: Entropy generation in MHD Williamson nanofluid over a convectively heated stretching plate with chemical reaction
  publication-title: Heat Transfer.
– volume: 7
  start-page: 2791
  year: 2017
  end-page: 2797
  ident: b0075
  article-title: A revised model for Darcy-Forchheimer three-dimensional flow of nanofluid subject to convective boundary condition
  publication-title: Results Phys.
– reference: C.R. Reddy, P. Naveen, D. Srinivasacharya, Nonlinear Convective Flow of Non-Newtonian Fluid over an Inclined Plate with Convective Surface Condition: A Darcy–Forchheimer Model, Int. J. Appl. Comput. Math. 4, 51 (2018). http://doi.org/10.1007/s40819-018-0484-z.
– volume: 83
  start-page: 844
  year: 2003
  end-page: 852
  ident: b0195
  article-title: Generalized three-dimensional flow due to a stretching surface
  publication-title: Z. Angew. Math. Mech.
– reference: M.I. Khan, S. Qayyum, S. Kadry, W.A. Khan, S.Z. Abbas, Irreversibility Analysis and Heat Transport in Squeezing Nanoliquid Flow of Non–Newtonian (Second–Grade) Fluid between Infnite Plates with Activation Energy, Arabian J. Sci. Eng. 10.1007/s13369-020-04442-5.
– reference: R. Jusoh, R. Nazar, I. Pop, Three-dimensional flow of a nanofluid over a permeable stretching/shrinking surface with velocity slip: A revised model, Phys. Fluids 30, 033604 (2018); http://doi.org/10.1063/1.5021524.
– volume: 118
  start-page: 182
  year: 2018
  end-page: 192
  ident: b0155
  article-title: Numerical analysis of Fe3O4–H2O nanofluid flow in permeable media under the effect of external magnetic source
  publication-title: Int. J. Heat Mass Transf.
– volume: 9
  start-page: 7335
  year: 2020
  end-page: 7340
  ident: b0190
  article-title: Simulation and modeling of second order velocity slip flow of micropolar ferrofluid with Darcy-Forchheimer porous medium
  publication-title: J. Mater. Res. Technol.
– year: 2019
  ident: b0020
  article-title: Entropy optimized MHD 3D nanomaterial of non-Newtonian fluid: A combined approach to good absorber of solar energy and intensification of heat transport
  publication-title: Comput. Methods Programs Biomed.
– volume: 9
  start-page: 7387
  year: 2020
  end-page: 7408
  ident: b0185
  article-title: Flow and thermal analysis on Darcy-Forchheimer flow of copper-water nanofluid due to a rotating disk: A static and dynamic approach
  publication-title: J. Mater. Res. Technol.
– year: 2019
  ident: b0050
  article-title: Fully developed Darcy-Forchheimer mixed convective flow over a curved surface with activation energy and entropy generation
  publication-title: Comput. Methods Programs Biomed.
– ident: 10.1016/j.aej.2020.09.053_b0170
  doi: 10.1139/cjp-2015-0799
– volume: 24
  start-page: 342
  issue: 2
  year: 2014
  ident: 10.1016/j.aej.2020.09.053_b0085
  article-title: Asghar. Three-dimensional stretched flow via convective boundary condition and heat generation/absorption
  publication-title: International Journal of Numerical Methods for Heat & Fluid Flow
  doi: 10.1108/HFF-03-2012-0065
– ident: 10.1016/j.aej.2020.09.053_b0065
– ident: 10.1016/j.aej.2020.09.053_b0135
  doi: 10.1139/cjp-2015-0799
– volume: 131
  start-page: 3
  year: 2016
  ident: 10.1016/j.aej.2020.09.053_b0120
  article-title: Melting heat transfer on hydromagnetic flow of a nanofluid over a stretching sheet with radiation and second-order slip
  publication-title: Eur. Phys. J. Plus
  doi: 10.1140/epjp/i2016-16003-1
– year: 2019
  ident: 10.1016/j.aej.2020.09.053_b0015
  article-title: Magnetohydrodynamics (MHD) radiated nanomaterial viscous material flow by a curved surface with second order slip and entropy generation
  publication-title: Comput. Methods Programs Biomed.
– volume: 83
  start-page: 844
  year: 2003
  ident: 10.1016/j.aej.2020.09.053_b0195
  article-title: Generalized three-dimensional flow due to a stretching surface
  publication-title: Z. Angew. Math. Mech.
  doi: 10.1002/zamm.200310052
– volume: 4
  start-page: 1
  issue: 16
  year: 2018
  ident: 10.1016/j.aej.2020.09.053_b0035
  article-title: Entropy Generation in Three-Dimensional Flow of Dissipative Fluid
  publication-title: Int. J. Appl. Comput. Math
– ident: 10.1016/j.aej.2020.09.053_b0115
  doi: 10.1016/j.jmmm.2015.07.091
– volume: 261
  year: 2020
  ident: 10.1016/j.aej.2020.09.053_b0130
  article-title: Acceleration of discharge process of clean energy storage unit with insertion of porous foam considering nanoparticle enhanced paraffin
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2020.121206
– volume: 26
  start-page: 1099
  year: 2019
  ident: 10.1016/j.aej.2020.09.053_b0125
  article-title: Heat transfer and nanofluid flow over a porous plate with radiation and slip boundary conditions
  publication-title: J. Cent. South Univ.
  doi: 10.1007/s11771-019-4074-y
– year: 2019
  ident: 10.1016/j.aej.2020.09.053_b0050
  article-title: Fully developed Darcy-Forchheimer mixed convective flow over a curved surface with activation energy and entropy generation
  publication-title: Comput. Methods Programs Biomed.
– volume: 118
  start-page: 182
  year: 2018
  ident: 10.1016/j.aej.2020.09.053_b0155
  article-title: Numerical analysis of Fe3O4–H2O nanofluid flow in permeable media under the effect of external magnetic source
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2017.10.113
– ident: 10.1016/j.aej.2020.09.053_b0100
  doi: 10.1007/s40819-018-0484-z
– volume: 9
  start-page: 7387
  issue: xx
  year: 2020
  ident: 10.1016/j.aej.2020.09.053_b0185
  article-title: Flow and thermal analysis on Darcy-Forchheimer flow of copper-water nanofluid due to a rotating disk: A static and dynamic approach
  publication-title: J. Mater. Res. Technol.
  doi: 10.1016/j.jmrt.2020.04.074
– year: 2019
  ident: 10.1016/j.aej.2020.09.053_b0005
  article-title: Entropy optimized MHD nanomaterial flow subject to variable thicked surface
  publication-title: Comput. Methods Progr. Biomed.
– start-page: 1
  year: 2020
  ident: 10.1016/j.aej.2020.09.053_b0055
  article-title: Entropy generation in MHD Williamson nanofluid over a convectively heated stretching plate with chemical reaction
  publication-title: Heat Transfer.
– year: 2020
  ident: 10.1016/j.aej.2020.09.053_b0060
  article-title: Fully developed entropy optimized second order velocity slip MHD nanofluid flow with activation energy
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2020.105362
– volume: 190
  year: 2020
  ident: 10.1016/j.aej.2020.09.053_b0025
  article-title: Entropy optimized Darcy-Forchheimer nanofluid (Silicon dioxide, Molybdenum disulfide) subject to temperature dependent viscosity
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2020.105363
– volume: 126
  start-page: 1347
  year: 2018
  ident: 10.1016/j.aej.2020.09.053_b0140
  article-title: Cu-Al2O3/Water hybrid nanofluid through a permeable surface in the presence of nonlinear radiation and variable thermal conductivity via LSM
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2018.06.005
– volume: 8
  start-page: 753
  issue: 4
  year: 2015
  ident: 10.1016/j.aej.2020.09.053_b0010
  article-title: Entropy generation analysis for stagnation point flow in a porous medium over a permeable stretching surface
  publication-title: J. Appl. Fluid Mech.
  doi: 10.18869/acadpub.jafm.67.223.22916
– volume: 17
  year: 2020
  ident: 10.1016/j.aej.2020.09.053_b0150
  article-title: Marangoni radiative effects of hybrid-nanofluids flow past a permeable surface with inclined magnetic field, Case Studies
  publication-title: Therm. Eng.
– ident: 10.1016/j.aej.2020.09.053_b0175
  doi: 10.1007/s10973-020-09720-w
– volume: 7
  start-page: 2791
  year: 2017
  ident: 10.1016/j.aej.2020.09.053_b0075
  article-title: A revised model for Darcy-Forchheimer three-dimensional flow of nanofluid subject to convective boundary condition
  publication-title: Results Phys.
  doi: 10.1016/j.rinp.2017.07.052
– volume: 93
  start-page: 674
  year: 2016
  ident: 10.1016/j.aej.2020.09.053_b0095
  article-title: Non-uniform heat source/sink and Soret effects on MHD non-Darcian convective flow past a stretching sheet in a micropolar fluid with radiation
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2015.10.014
– volume: 32
  start-page: 555
  issue: 2
  year: 2015
  ident: 10.1016/j.aej.2020.09.053_b0090
  article-title: Newtonian heating, thermal-diffusion and diffusion-thermo effects in an axisymmetric flow of a Jeffery fluid over a stretching surface
  publication-title: Braz. J. Chem. Eng.
  doi: 10.1590/0104-6632.20150322s00001918
– volume: 5
  start-page: pages
  year: 2013
  ident: 10.1016/j.aej.2020.09.053_b0200
  article-title: Variational iteration method for the magnetohydrodynamic flow over a nonlinear stretching sheet
  publication-title: Abst. Appl. Anal.
– year: 2019
  ident: 10.1016/j.aej.2020.09.053_b0020
  article-title: Entropy optimized MHD 3D nanomaterial of non-Newtonian fluid: A combined approach to good absorber of solar energy and intensification of heat transport
  publication-title: Comput. Methods Programs Biomed.
– volume: 29
  start-page: 250
  year: 2017
  ident: 10.1016/j.aej.2020.09.053_b0105
  article-title: Effects of slip condition and Newtonian heating on MHD flow of Casson fluid over a nonlinearly stretching sheet saturated in a porous medium
  publication-title: J. King Saud Univ. – Sci.
  doi: 10.1016/j.jksus.2016.05.003
– volume: 6
  start-page: 657
  year: 2019
  ident: 10.1016/j.aej.2020.09.053_b0040
  article-title: Dual solutions for three-dimensional magnetohydrodynamic nanofluid flow with entropy generation
  publication-title: J. Comput. Des. Eng.
– volume: 7
  start-page: 2990
  year: 2017
  ident: 10.1016/j.aej.2020.09.053_b0160
  article-title: Magneto-Thermo-Marangoni convective flow of Cu-H2O nanoliquid past an infinite disk with particle shape and exponential space based heat source effects
  publication-title: Results. Phys.
  doi: 10.1016/j.rinp.2017.08.016
– ident: 10.1016/j.aej.2020.09.053_b0070
– volume: 9
  start-page: 7335
  issue: xx
  year: 2020
  ident: 10.1016/j.aej.2020.09.053_b0190
  article-title: Simulation and modeling of second order velocity slip flow of micropolar ferrofluid with Darcy-Forchheimer porous medium
  publication-title: J. Mater. Res. Technol.
  doi: 10.1016/j.jmrt.2020.04.079
– ident: 10.1016/j.aej.2020.09.053_b0080
  doi: 10.1038/s41598-018-36243-0
– ident: 10.1016/j.aej.2020.09.053_b0110
  doi: 10.1063/1.5021524
– ident: 10.1016/j.aej.2020.09.053_b0030
– volume: 10
  start-page: 633
  year: 2020
  ident: 10.1016/j.aej.2020.09.053_b0145
  article-title: Influence of inclined magnetic field on the flow of condensed nanomaterial over a slippery surface: the hybrid visualization
  publication-title: Appl. Nanosci.
  doi: 10.1007/s13204-019-01123-0
– volume: 540
  year: 2020
  ident: 10.1016/j.aej.2020.09.053_b0045
  article-title: Thermodynamics Analysis for heated gravity-driven hydromagnetic Couple Stress film with viscous dissipation effects
  publication-title: Physica A
  doi: 10.1016/j.physa.2019.123150
– volume: 5
  year: 2019
  ident: 10.1016/j.aej.2020.09.053_b0165
  article-title: Heat transfer enhancement in the boundary layer flow of hybrid nanofluids due to variable viscosity and natural convection
  publication-title: Heliyon
– volume: 27
  start-page: 1207
  year: 2016
  ident: 10.1016/j.aej.2020.09.053_b0180
  article-title: Soret and Dufour effects on MHD convective flow of Al2O3–water and TiO2–water nanofluids past a stretching sheet in porous media with heat generation/absorption
  publication-title: Adv. Powder Technol.
  doi: 10.1016/j.apt.2016.04.005
SSID ssj0000579496
Score 2.4675887
Snippet The current research is conducted to investigate the slip effect and to analyze entropy production in both hybrid nanofluids, and common nanofluids flow past a...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 5247
SubjectTerms 3D-flow
Entropy generation rate
Hybrid-nanofluid
Irreversibility
MHD
Non-linear radiation
SummonAdditionalLinks – databaseName: Elsevier ScienceDirect Open Access Journals
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELaqnsoBQQFRCpUPnJCsdRzHibm1264WJOillfYWOf5hU7VJlSaHvfEafQBejCdhJj-r7QEOSLkksRMrM_bMxPN9Q8jHBNxUGyA6Sbl0DDTEMR0iz0TkhQ3cuKyvovDtu1pey6-rZLVH5hMWBtMqx7V_WNP71Xq8Mhu_5uy-LGcwD5E_SIEJw60ihYBfRJUiiG91tv3PgmBL2ZfpwvYMO0ybm32al_E3ECUK3rOdJvET89Sz-O9YqR3Ls3hBno8uIz0dRvWS7PnqkDzbIRJ8RX59aZCKqRlzXTfUjFwjtA503rGr8lKwpbik6w0itFhlqjrcdqWj5R0CpuCgdUUNjdk5RfhI26dY0oe19y0t8Q746XX3QHEvvruj-PuWVgPNhmlogwwHKOLP9BxmzoYtapg_6xLRx79_PkI3LLjzmlwvLq7mSzYWYGAW7HzLfCachnhJa4hKnBep80E4XkRGBqcKY0wSglRZKmTInIoyJ0wA_7EQwWmbZPEbsg9D8W8JjZxSmeYqaG5lIuOigOBPpDpxmYpCYY4In757bkd2ciyScZtPaWg3OYgqR1HlXOcgqiPyadvlfqDm-FfjMxTmtiGyavcX6uZHPqpVnsQFjwIP3MaJlFYbz5VVNo1cJorUwCDlpAr5EyWFR5V_f_e7_-t2TA7wbMideU_226bzH8ADaouTXsX_AMmrBVo
  priority: 102
  providerName: Elsevier
Title Irreversibility analysis of Cu-TiO2-H2O hybrid-nanofluid impinging on a 3-D stretching sheet in a porous medium with nonlinear radiation: Darcy-Forchhiemer’s model
URI https://dx.doi.org/10.1016/j.aej.2020.09.053
https://doaj.org/article/53b01f0f0c3544c9ae06c6c71d82b7aa
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQe4EDovyILbTygROShePYjs2tf6stFVRCrdhb5PhHm6pNUJoc9sZr9AH6YjwJ4yRbhQNwQYpySOzY8ow138Qz3yD0TgBMtQG8k4xyR0BDHNEh8YQlntlAjVN9FYXPX-Tikn9aiuWk1FeMCRvogYeF-yDSgiaBBmpTwbnVxlNppc0Sp1iRmR4aUU0nztTA6g161hfngr0cI6-k2hxp9sFdxl-Bb8hoz3Eq0t-MUs_dP7FNE3szf4aejkARHwwT3EGPfPUcPZnQB75A96dNJGBqxgjXNTYjwwiuAz7qyEV5zsiCnePVOuZlkcpUdbjuSofLm5gmBReuK2xwSo5xTBpp-8BKfLvyvsVlfAPovO5ucTyB725w_GmLq4FcwzS4ibwGUbAf8THslzWZ17BrVmXMOf754w66xTI7L9Hl_OTiaEHGsgvEgnVviVfMafCStAZfxHmWOR-Yo0VieHCyMMaIELhUGeNBOZkox0wA1Fiw4LQVKn2FtmAq_jXCiZNSaSqDppYLnhYFuHws08IpmYTCzBDdrHtuR07yWBrjOt8En13lIKo8iiqnOgdRzdD7hy7fB0KOvzU-jMJ8aBi5tPsHoGH5qGH5vzRshvhGFfIRlgxwAz5V_nns3f8x9hv0OH5yiJ95i7bapvN7gILaYh9tH5x9_Xa23ys-3E-Xh78A7OQIcA
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKOQAHxFOUpw-ckKx1HMdxuNEtq13o47KV9hY5sd1N1SZVmhz2xt_gB_DH-CXM5LHaHuCAlJPjSSzP2DNjz3xDyMcIzNTcg3cSc2kZSIhliQ8cE4ETuefG6q6Kwsmpmp_Lb6totUemYy4MhlUOe3-_p3e79dAyGWZzclMUE1iHiB-kQIXhVZHS98h9sAYUAugvVofbgxbMtpRdnS4kYEgx3m52cV7GXYKbKHgHdxqFd_RTB-O_o6Z2VM_sCXk82Iz0Sz-sp2TPlc_Iox0kwefk16JGLKZ6CHbdUDOAjdDK02nLlsWZYHNxRtcbTNFipSkrf9UWlhbXmDEFD61KamjIjijmjzRdjCW9XTvX0ALfgKFetbcUL-Pba4rnt7TscTZMTWuEOEAef6ZHsHQ2bFbBAloXmH78-8dPIMOKOy_I-ezrcjpnQwUGloOib5jTwibgMCUJuCXWidg6LyzPAiO9VZkxJvJeKh0L6bVVgbbCeDAgM-Ftkkc6fEn2YSjuFaGBVUonXPmE5zKSYZaB9yfiJLJaBT4zB4SP857mAzw5Vsm4Ssc4tMsUWJUiq1KepMCqA_JpS3LTY3P8q_MhMnPbEWG1u4aqvkgHuUqjMOOB557nYSRlnhjHVa7yOLBaZLGBQcpRFNI7UgqfKv7-79f_R_aBPJgvT47T48Xp9zfkIb7pA2nekv2mbt07MIea7H0n7n8A-mkIfg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Irreversibility+analysis+of+Cu-TiO2-H2O+hybrid-nanofluid+impinging+on+a+3-D+stretching+sheet+in+a+porous+medium+with+nonlinear+radiation%3A+Darcy-Forchhiemer%E2%80%99s+model&rft.jtitle=Alexandria+engineering+journal&rft.au=T.A.+Yusuf&rft.au=F.+Mabood&rft.au=W.A.+Khan&rft.au=J.A.+Gbadeyan&rft.date=2020-12-01&rft.pub=Elsevier&rft.issn=1110-0168&rft.volume=59&rft.issue=6&rft.spage=5247&rft.epage=5261&rft_id=info:doi/10.1016%2Fj.aej.2020.09.053&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_53b01f0f0c3544c9ae06c6c71d82b7aa
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1110-0168&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1110-0168&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1110-0168&client=summon