Irreversibility analysis of Cu-TiO2-H2O hybrid-nanofluid impinging on a 3-D stretching sheet in a porous medium with nonlinear radiation: Darcy-Forchhiemer’s model
The current research is conducted to investigate the slip effect and to analyze entropy production in both hybrid nanofluids, and common nanofluids flow past a convectively heated three-dimensional stretching sheet placed in a porous medium. The slip flow is considered in a Darcy-Forchheimer’s schem...
Saved in:
Published in | Alexandria engineering journal Vol. 59; no. 6; pp. 5247 - 5261 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.12.2020
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 1110-0168 |
DOI | 10.1016/j.aej.2020.09.053 |
Cover
Loading…
Abstract | The current research is conducted to investigate the slip effect and to analyze entropy production in both hybrid nanofluids, and common nanofluids flow past a convectively heated three-dimensional stretching sheet placed in a porous medium. The slip flow is considered in a Darcy-Forchheimer’s scheme by incorporating the nonlinear thermal radiation. Water is taken as base fluid, while Copper and Titanium dioxide nanoparticles are considered. The governing models are overset into dimensionless variables using similarity transformation, and the solution is acquired numerically. The impacts of pertinent factors on the flow, heat transfer, and entropy generation rates are explored. Additional plot portraying the streamlines and isotherms for both nanofluids are presented to examine the hydrothermal behavior. Skin friction and heat transport are discussed with sensible judgment. A comparison with earlier studies is unwrapped to ensure the model’s validity. The results communicate that temperature is enhanced with porosity, whereas velocity is found to be decelerated. Bejan number is decreasing with an increase in the nanoparticle volume fraction of nanoparticles. Furthermore, hybrid nanofluids generate less entropy than common nanofluids. |
---|---|
AbstractList | The current research is conducted to investigate the slip effect and to analyze entropy production in both hybrid nanofluids, and common nanofluids flow past a convectively heated three-dimensional stretching sheet placed in a porous medium. The slip flow is considered in a Darcy-Forchheimer’s scheme by incorporating the nonlinear thermal radiation. Water is taken as base fluid, while Copper and Titanium dioxide nanoparticles are considered. The governing models are overset into dimensionless variables using similarity transformation, and the solution is acquired numerically. The impacts of pertinent factors on the flow, heat transfer, and entropy generation rates are explored. Additional plot portraying the streamlines and isotherms for both nanofluids are presented to examine the hydrothermal behavior. Skin friction and heat transport are discussed with sensible judgment. A comparison with earlier studies is unwrapped to ensure the model’s validity. The results communicate that temperature is enhanced with porosity, whereas velocity is found to be decelerated. Bejan number is decreasing with an increase in the nanoparticle volume fraction of nanoparticles. Furthermore, hybrid nanofluids generate less entropy than common nanofluids. |
Author | Gbadeyan, J.A. Mabood, F. Khan, W.A. Yusuf, T.A. |
Author_xml | – sequence: 1 givenname: T.A. surname: Yusuf fullname: Yusuf, T.A. email: tundeayusuf04@gmail.com organization: Department of Mathematics, University of Ilorin, Ilorin, Kwara State, Nigeria – sequence: 2 givenname: F. surname: Mabood fullname: Mabood, F. organization: Department of Information Technology, Fanshawe College London, ON Canada – sequence: 3 givenname: W.A. surname: Khan fullname: Khan, W.A. organization: Department of Mechanical Engineering, College of Engineering, Prince Mohammad Bin Fahd University, Al Khobar 31952, Saudi Arabia – sequence: 4 givenname: J.A. surname: Gbadeyan fullname: Gbadeyan, J.A. organization: Department of Mathematics, University of Ilorin, Ilorin, Kwara State, Nigeria |
BookMark | eNp9kU1uFDEQhXsRJELIAdj5At3Y7n9YoQkhI0WaTVhb1XY5Xa3u9sj2BM2Oa3CAXIyT4MkgFixSKqmkKn1PpffeZRerWzHLPgheCC6aj1MBOBWSS17wvuB1eZFdCiF4no7d2-w6hImnqtu-6pvL7HnrPT6hDzTQTPHIYIX5GCgwZ9nmkD_QTuZ3csfG4-DJ5Cuszs4HMoyWPa2PqZlbGbAyv2Eheox6PO3CiBgZnS57590hsAUNHRb2g-LI0s8zrQieeTAEkdz6id2A18f81nk9joQL-t8_fyXMGZzfZ28szAGv_86r7Pvt14fNXX6_-7bdfLnPdcWbmGMnTS-qru_rtjEoW4NWGj4IqKxpBgCora2arpWV7UwjOiPB1mU5SGt6XXflVbY96xoHk9p7WsAflQNSLwvnHxX4SHpGVZcDF5Zbrsu6qnQPyBvd6FaYTg4tQNISZy3tXQge7T89wdUpKjWpFJU6RaV4r1JUiWn_YzTFF3uiB5pfJT-fSUz2PBF6FTThqpPpHnVM_9Mr9B9_m7YQ |
CitedBy_id | crossref_primary_10_3390_fractalfract6120712 crossref_primary_10_1080_17455030_2021_1985185 crossref_primary_10_3390_nano12101745 crossref_primary_10_1007_s12668_024_01417_w crossref_primary_10_1080_01430750_2022_2127892 crossref_primary_10_1016_j_icheatmasstransfer_2021_105603 crossref_primary_10_1016_j_jrras_2024_101220 crossref_primary_10_1038_s41598_021_95857_z crossref_primary_10_1080_01430750_2022_2059004 crossref_primary_10_1002_zamm_202100458 crossref_primary_10_1615_SpecialTopicsRevPorousMedia_2022044874 crossref_primary_10_32604_fdmp_2023_021590 crossref_primary_10_58559_ijes_1263940 crossref_primary_10_1038_s41598_021_01747_9 crossref_primary_10_1088_1402_4896_abe324 crossref_primary_10_1002_zamm_202100419 crossref_primary_10_1016_j_inoche_2023_111569 crossref_primary_10_1038_s41598_022_24294_3 crossref_primary_10_1515_phys_2022_0166 crossref_primary_10_1016_j_csite_2024_104712 crossref_primary_10_1016_j_rineng_2024_101980 crossref_primary_10_1080_10407782_2023_2291125 crossref_primary_10_1007_s11587_021_00606_z crossref_primary_10_1063_5_0201663 crossref_primary_10_1007_s10973_023_12853_3 crossref_primary_10_1016_j_csite_2023_103028 crossref_primary_10_1515_ntrev_2023_0161 crossref_primary_10_1088_1742_6596_2371_1_012007 crossref_primary_10_1007_s12572_025_00388_9 crossref_primary_10_1088_1674_1056_ad8a45 crossref_primary_10_1016_j_rineng_2024_102652 crossref_primary_10_1007_s10891_022_02613_9 crossref_primary_10_1016_j_ijft_2024_100750 crossref_primary_10_1080_01430750_2021_1874527 crossref_primary_10_1016_j_aej_2022_12_051 crossref_primary_10_3390_fluids6030109 crossref_primary_10_1002_zamm_202000372 crossref_primary_10_1080_17455030_2022_2086318 crossref_primary_10_1016_j_cjph_2022_03_006 crossref_primary_10_1016_j_csite_2021_101015 crossref_primary_10_1080_10407790_2023_2300704 crossref_primary_10_1007_s10973_022_11540_z crossref_primary_10_1080_01430750_2022_2132287 crossref_primary_10_1080_16583655_2022_2040281 crossref_primary_10_1038_s41598_023_33650_w crossref_primary_10_1142_S0217984924504967 crossref_primary_10_1016_j_icheatmasstransfer_2021_105484 crossref_primary_10_1016_j_mseb_2021_115586 crossref_primary_10_1016_j_cjph_2021_12_011 crossref_primary_10_1038_s41598_023_48676_3 crossref_primary_10_2514_1_T6488 crossref_primary_10_1080_02286203_2023_2270881 crossref_primary_10_1016_j_csite_2021_101300 crossref_primary_10_1080_10407790_2024_2386584 crossref_primary_10_1142_S0217984924500477 crossref_primary_10_1177_09544089241285666 crossref_primary_10_1142_S021797922150315X crossref_primary_10_1108_MMMS_07_2024_0179 crossref_primary_10_1016_j_icheatmasstransfer_2021_105671 crossref_primary_10_1080_17455030_2022_2128233 crossref_primary_10_1016_j_asej_2024_102892 crossref_primary_10_1016_j_icheatmasstransfer_2021_105215 crossref_primary_10_1016_j_jppr_2021_11_004 crossref_primary_10_1080_10407782_2023_2193708 crossref_primary_10_1155_2022_3629416 crossref_primary_10_3390_mi14020338 crossref_primary_10_1155_ijde_4138176 crossref_primary_10_1080_17455030_2021_2019352 crossref_primary_10_1038_s41598_021_88947_5 crossref_primary_10_1002_htj_22526 crossref_primary_10_1016_j_cjph_2020_11_019 crossref_primary_10_1080_01430750_2022_2029766 crossref_primary_10_1002_htj_22168 crossref_primary_10_1177_09544089211040598 crossref_primary_10_1007_s12668_023_01280_1 crossref_primary_10_1016_j_ijheatfluidflow_2024_109464 crossref_primary_10_1016_j_matpr_2023_03_737 crossref_primary_10_1038_s41598_023_29137_3 |
Cites_doi | 10.1139/cjp-2015-0799 10.1108/HFF-03-2012-0065 10.1140/epjp/i2016-16003-1 10.1002/zamm.200310052 10.1016/j.jmmm.2015.07.091 10.1016/j.jclepro.2020.121206 10.1007/s11771-019-4074-y 10.1016/j.ijheatmasstransfer.2017.10.113 10.1007/s40819-018-0484-z 10.1016/j.jmrt.2020.04.074 10.1016/j.cmpb.2020.105362 10.1016/j.cmpb.2020.105363 10.1016/j.ijheatmasstransfer.2018.06.005 10.18869/acadpub.jafm.67.223.22916 10.1007/s10973-020-09720-w 10.1016/j.rinp.2017.07.052 10.1016/j.ijheatmasstransfer.2015.10.014 10.1590/0104-6632.20150322s00001918 10.1016/j.jksus.2016.05.003 10.1016/j.rinp.2017.08.016 10.1016/j.jmrt.2020.04.079 10.1038/s41598-018-36243-0 10.1063/1.5021524 10.1007/s13204-019-01123-0 10.1016/j.physa.2019.123150 10.1016/j.apt.2016.04.005 |
ContentType | Journal Article |
Copyright | 2020 Faculty of Engineering, Alexandria University |
Copyright_xml | – notice: 2020 Faculty of Engineering, Alexandria University |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.aej.2020.09.053 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EndPage | 5261 |
ExternalDocumentID | oai_doaj_org_article_53b01f0f0c3544c9ae06c6c71d82b7aa 10_1016_j_aej_2020_09_053 S1110016820304968 |
GroupedDBID | --K 0R~ 0SF 4.4 457 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABMAC ACGFS ADBBV ADEZE AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB GROUPED_DOAJ HZ~ IPNFZ IXB KQ8 M41 NCXOZ O-L O9- OK1 P2P RIG ROL SES SSZ XH2 AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AKBMS AKRWK AKYEP CITATION |
ID | FETCH-LOGICAL-c406t-e82d914899576de27def2d0b1a4fd6baaa5ff468724f8d618d2af533b2fd9c583 |
IEDL.DBID | DOA |
ISSN | 1110-0168 |
IngestDate | Wed Aug 27 01:32:29 EDT 2025 Tue Jul 01 04:24:48 EDT 2025 Thu Apr 24 22:53:08 EDT 2025 Wed May 17 01:16:46 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | MHD Entropy generation rate Irreversibility 3D-flow Hybrid-nanofluid Non-linear radiation |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c406t-e82d914899576de27def2d0b1a4fd6baaa5ff468724f8d618d2af533b2fd9c583 |
OpenAccessLink | https://doaj.org/article/53b01f0f0c3544c9ae06c6c71d82b7aa |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_53b01f0f0c3544c9ae06c6c71d82b7aa crossref_primary_10_1016_j_aej_2020_09_053 crossref_citationtrail_10_1016_j_aej_2020_09_053 elsevier_sciencedirect_doi_10_1016_j_aej_2020_09_053 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2020 2020-12-00 2020-12-01 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: December 2020 |
PublicationDecade | 2020 |
PublicationTitle | Alexandria engineering journal |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | T. Hayat, M. Imtiaz, A. Alsaedi, M.A. Kutbi, MHD three-dimensional flow of nanofluid with velocity slip and nonlinear thermal radiation, J. Magnet. Magnet. Mater., 396 (2015) 31–37. Sheikholeslami, Jafaryar, Shafee, Babazadeh (b0130) 2020; 261 Adesanya, Dairo, Yusuf, Onanaye, Arekete (b0045) 2020; 540 Muhammad, Alsaedi, Hayat, Shehzad (b0075) 2017; 7 Awais, Hayat, Nawaz, Alsaedi (b0090) 2015; 32 Ariel (b0195) 2003; 83 Ullah, Shafie, Khan (b0105) 2017; 29 M.I. Khan, S. Qayyum, S. Kadry, W.A. Khan, S.Z. Abbas, Irreversibility Analysis and Heat Transport in Squeezing Nanoliquid Flow of Non–Newtonian (Second–Grade) Fluid between Infnite Plates with Activation Energy, Arabian J. Sci. Eng. 10.1007/s13369-020-04442-5. Reddy, Chamkha (b0180) 2016; 27 Yusuf, Adesanya, Gbadeyan (b0055) 2020 S.S.U. Devi, S.P.A. Devi, Numerical investigation of three-dimensional hybrid Cu–Al2O3/ water nanofluid flow over a stretching sheet with effecting Lorentz force subject to Newtonian heating, Can. J. Phys. 94: 490–496 (2016) http://dx.doi.org/10.1139/cjp- 2015-0799. Ijaz Khan, Alzahrani, Hobiny (b0190) 2020; 9 F. Mabood, T.A. Yusuf, W.A. Khan, Cu–Al2O3–H2O hybrid nanofluid flow with melting heat transfer, irreversibility analysis and nonlinear thermal radiation, J. Therm. Anal. Calorimetry, http://doi.org/10.1007/s10973-020-09720-w. Acharya, Maity, Kundu (b0145) 2020; 10 Rashidi, Mohammadi, Abbasbandy, Alhuthali (b0010) 2015; 8 Mondal, Almakki, Sibanda (b0040) 2019; 6 D. Khan, A. Khan, I. Khan, F. Ali, F. Karim & I. Tlili, Effects of relative magnetic field, chemical reaction, heat generation and Newtonian heating on convection flow of casson fluid over a moving vertical plate embedded in a porous medium, SCIENTIFIC REPORTS 9 (2019) 400 | 10.1038/S41598-018-36243-0. Abbas, Ijaz Khan, Kadry, Khan, Israr-Ur-Rehman, Waqas (b0060) 2020 Maleki, Alsarraf, Moghanizadeh, Hajabdollahi, Safaei (b0125) 2019; 26 Hayat, Shehzad, Qasim (b0085) 2014; 24 R. Jusoh, R. Nazar, I. Pop, Three-dimensional flow of a nanofluid over a permeable stretching/shrinking surface with velocity slip: A revised model, Phys. Fluids 30, 033604 (2018); http://doi.org/10.1063/1.5021524. Nayak, Shaw, Khan, Pandey, Nazeer (b0185) 2020; 9 Mahanthesh, Gireesha, Prasannakumara, Sampath Kumar (b0160) 2017; 7 S.S.U. Devi, S.P.A. Devi, Numerical investigation of three-dimensional hybrid Cu–Al2O3/water nanofluid flow over a stretching sheet with effecting Lorentz force subject to Newtonian heating, Can. J. Phys. 94 (2016) 490–496. http://dx.doi.org/10.1139/cjp-2015-0799. A.G. Hansen, H.Z. Herzig, On possible similarity solutions for three-dimensional incompressible laminar boundary layers I: Similarity with respect to stationary rectangular coordinates, NACA TN 3768, 1956. Wang, Muhammad, Ijaz Khan, Khan, Abbas (b0005) 2019 Sheikholeslami, Shehzad (b0155) 2018; 118 Nayak, Abdul Hakeem, Ganga, Ijaz Khan, Waqas, Makinde (b0020) 2019 Xu, Lee (b0200) 2013; 5 Usman, Hamid, Zubair, Haq, Wang (b0140) 2018; 126 Abbas, Khan, Kadry, Khan, Waqas, Khan (b0025) 2020; 190 Mabood, Das (b0120) 2016; 131 A.G. Hansen, H.Z. Herzig, On possible similarity solutions for three-dimensional incompressible laminar boundary layers II: Similarity with respect to stationary polar coordinates, NACATN 3768, 1956. Kuttan, Jayanthi, Chamkha, Gireesha (b0165) 2019; 5 Muhammad, Ijaz Khan (b0015) 2019 Riaz Muhammad, Khan, Jameel, Khan (b0050) 2019 Afridi, Qasim (b0035) 2018; 4 Mabood, Ibrahim, Rashidi, Shadloo, Lorenzini (b0095) 2016; 93 C.R. Reddy, P. Naveen, D. Srinivasacharya, Nonlinear Convective Flow of Non-Newtonian Fluid over an Inclined Plate with Convective Surface Condition: A Darcy–Forchheimer Model, Int. J. Appl. Comput. Math. 4, 51 (2018). http://doi.org/10.1007/s40819-018-0484-z. Al-Mdallal, Indumathi, Ganga, Abdul Hakeem (b0150) 2020; 17 Riaz Muhammad (10.1016/j.aej.2020.09.053_b0050) 2019 10.1016/j.aej.2020.09.053_b0070 Rashidi (10.1016/j.aej.2020.09.053_b0010) 2015; 8 Muhammad (10.1016/j.aej.2020.09.053_b0015) 2019 Nayak (10.1016/j.aej.2020.09.053_b0020) 2019 Hayat (10.1016/j.aej.2020.09.053_b0085) 2014; 24 Abbas (10.1016/j.aej.2020.09.053_b0025) 2020; 190 Al-Mdallal (10.1016/j.aej.2020.09.053_b0150) 2020; 17 10.1016/j.aej.2020.09.053_b0135 10.1016/j.aej.2020.09.053_b0115 10.1016/j.aej.2020.09.053_b0175 Ijaz Khan (10.1016/j.aej.2020.09.053_b0190) 2020; 9 10.1016/j.aej.2020.09.053_b0110 Usman (10.1016/j.aej.2020.09.053_b0140) 2018; 126 Kuttan (10.1016/j.aej.2020.09.053_b0165) 2019; 5 Acharya (10.1016/j.aej.2020.09.053_b0145) 2020; 10 Muhammad (10.1016/j.aej.2020.09.053_b0075) 2017; 7 10.1016/j.aej.2020.09.053_b0170 Afridi (10.1016/j.aej.2020.09.053_b0035) 2018; 4 10.1016/j.aej.2020.09.053_b0030 Mahanthesh (10.1016/j.aej.2020.09.053_b0160) 2017; 7 Ullah (10.1016/j.aej.2020.09.053_b0105) 2017; 29 10.1016/j.aej.2020.09.053_b0080 Maleki (10.1016/j.aej.2020.09.053_b0125) 2019; 26 Reddy (10.1016/j.aej.2020.09.053_b0180) 2016; 27 Ariel (10.1016/j.aej.2020.09.053_b0195) 2003; 83 Mabood (10.1016/j.aej.2020.09.053_b0095) 2016; 93 Nayak (10.1016/j.aej.2020.09.053_b0185) 2020; 9 Abbas (10.1016/j.aej.2020.09.053_b0060) 2020 Wang (10.1016/j.aej.2020.09.053_b0005) 2019 Xu (10.1016/j.aej.2020.09.053_b0200) 2013; 5 Sheikholeslami (10.1016/j.aej.2020.09.053_b0130) 2020; 261 Sheikholeslami (10.1016/j.aej.2020.09.053_b0155) 2018; 118 Awais (10.1016/j.aej.2020.09.053_b0090) 2015; 32 Mabood (10.1016/j.aej.2020.09.053_b0120) 2016; 131 Adesanya (10.1016/j.aej.2020.09.053_b0045) 2020; 540 10.1016/j.aej.2020.09.053_b0065 Mondal (10.1016/j.aej.2020.09.053_b0040) 2019; 6 10.1016/j.aej.2020.09.053_b0100 Yusuf (10.1016/j.aej.2020.09.053_b0055) 2020 |
References_xml | – year: 2020 ident: b0060 article-title: Fully developed entropy optimized second order velocity slip MHD nanofluid flow with activation energy publication-title: Comput. Methods Programs Biomed. – reference: A.G. Hansen, H.Z. Herzig, On possible similarity solutions for three-dimensional incompressible laminar boundary layers II: Similarity with respect to stationary polar coordinates, NACATN 3768, 1956. – volume: 27 start-page: 1207 year: 2016 end-page: 1218 ident: b0180 article-title: Soret and Dufour effects on MHD convective flow of Al2O3–water and TiO2–water nanofluids past a stretching sheet in porous media with heat generation/absorption publication-title: Adv. Powder Technol. – volume: 93 start-page: 674 year: 2016 end-page: 682 ident: b0095 article-title: Non-uniform heat source/sink and Soret effects on MHD non-Darcian convective flow past a stretching sheet in a micropolar fluid with radiation publication-title: Int. J. Heat Mass Transfer – reference: S.S.U. Devi, S.P.A. Devi, Numerical investigation of three-dimensional hybrid Cu–Al2O3/water nanofluid flow over a stretching sheet with effecting Lorentz force subject to Newtonian heating, Can. J. Phys. 94 (2016) 490–496. http://dx.doi.org/10.1139/cjp-2015-0799. – volume: 126 start-page: 1347 year: 2018 end-page: 1356 ident: b0140 article-title: Cu-Al2O3/Water hybrid nanofluid through a permeable surface in the presence of nonlinear radiation and variable thermal conductivity via LSM publication-title: Int. J. Heat Mass Transfer – volume: 10 start-page: 633 year: 2020 end-page: 647 ident: b0145 article-title: Influence of inclined magnetic field on the flow of condensed nanomaterial over a slippery surface: the hybrid visualization publication-title: Appl. Nanosci. – volume: 540 year: 2020 ident: b0045 article-title: Thermodynamics Analysis for heated gravity-driven hydromagnetic Couple Stress film with viscous dissipation effects publication-title: Physica A – volume: 190 year: 2020 ident: b0025 article-title: Entropy optimized Darcy-Forchheimer nanofluid (Silicon dioxide, Molybdenum disulfide) subject to temperature dependent viscosity publication-title: Comput. Methods Programs Biomed. – year: 2019 ident: b0005 article-title: Entropy optimized MHD nanomaterial flow subject to variable thicked surface publication-title: Comput. Methods Progr. Biomed. – volume: 24 start-page: 342 year: 2014 end-page: 358 ident: b0085 article-title: Asghar. Three-dimensional stretched flow via convective boundary condition and heat generation/absorption publication-title: International Journal of Numerical Methods for Heat & Fluid Flow – volume: 32 start-page: 555 year: 2015 end-page: 561 ident: b0090 article-title: Newtonian heating, thermal-diffusion and diffusion-thermo effects in an axisymmetric flow of a Jeffery fluid over a stretching surface publication-title: Braz. J. Chem. Eng. – volume: 131 start-page: 3 year: 2016 ident: b0120 article-title: Melting heat transfer on hydromagnetic flow of a nanofluid over a stretching sheet with radiation and second-order slip publication-title: Eur. Phys. J. Plus – volume: 7 start-page: 2990 year: 2017 end-page: 2996 ident: b0160 article-title: Magneto-Thermo-Marangoni convective flow of Cu-H2O nanoliquid past an infinite disk with particle shape and exponential space based heat source effects publication-title: Results. Phys. – volume: 4 start-page: 1 year: 2018 end-page: 11 ident: b0035 article-title: Entropy Generation in Three-Dimensional Flow of Dissipative Fluid publication-title: Int. J. Appl. Comput. Math – reference: D. Khan, A. Khan, I. Khan, F. Ali, F. Karim & I. Tlili, Effects of relative magnetic field, chemical reaction, heat generation and Newtonian heating on convection flow of casson fluid over a moving vertical plate embedded in a porous medium, SCIENTIFIC REPORTS 9 (2019) 400 | 10.1038/S41598-018-36243-0. – reference: S.S.U. Devi, S.P.A. Devi, Numerical investigation of three-dimensional hybrid Cu–Al2O3/ water nanofluid flow over a stretching sheet with effecting Lorentz force subject to Newtonian heating, Can. J. Phys. 94: 490–496 (2016) http://dx.doi.org/10.1139/cjp- 2015-0799. – volume: 8 start-page: 753 year: 2015 end-page: 765 ident: b0010 article-title: Entropy generation analysis for stagnation point flow in a porous medium over a permeable stretching surface publication-title: J. Appl. Fluid Mech. – year: 2019 ident: b0015 article-title: Magnetohydrodynamics (MHD) radiated nanomaterial viscous material flow by a curved surface with second order slip and entropy generation publication-title: Comput. Methods Programs Biomed. – volume: 5 year: 2019 ident: b0165 article-title: Heat transfer enhancement in the boundary layer flow of hybrid nanofluids due to variable viscosity and natural convection publication-title: Heliyon – volume: 261 year: 2020 ident: b0130 article-title: Acceleration of discharge process of clean energy storage unit with insertion of porous foam considering nanoparticle enhanced paraffin publication-title: J. Cleaner Prod. – volume: 6 start-page: 657 year: 2019 end-page: 665 ident: b0040 article-title: Dual solutions for three-dimensional magnetohydrodynamic nanofluid flow with entropy generation publication-title: J. Comput. Des. Eng. – volume: 5 start-page: pages year: 2013 ident: b0200 article-title: Variational iteration method for the magnetohydrodynamic flow over a nonlinear stretching sheet publication-title: Abst. Appl. Anal. – volume: 17 year: 2020 ident: b0150 article-title: Marangoni radiative effects of hybrid-nanofluids flow past a permeable surface with inclined magnetic field, Case Studies publication-title: Therm. Eng. – reference: T. Hayat, M. Imtiaz, A. Alsaedi, M.A. Kutbi, MHD three-dimensional flow of nanofluid with velocity slip and nonlinear thermal radiation, J. Magnet. Magnet. Mater., 396 (2015) 31–37. – volume: 26 start-page: 1099 year: 2019 end-page: 1115 ident: b0125 article-title: Heat transfer and nanofluid flow over a porous plate with radiation and slip boundary conditions publication-title: J. Cent. South Univ. – reference: F. Mabood, T.A. Yusuf, W.A. Khan, Cu–Al2O3–H2O hybrid nanofluid flow with melting heat transfer, irreversibility analysis and nonlinear thermal radiation, J. Therm. Anal. Calorimetry, http://doi.org/10.1007/s10973-020-09720-w. – reference: A.G. Hansen, H.Z. Herzig, On possible similarity solutions for three-dimensional incompressible laminar boundary layers I: Similarity with respect to stationary rectangular coordinates, NACA TN 3768, 1956. – volume: 29 start-page: 250 year: 2017 end-page: 259 ident: b0105 article-title: Effects of slip condition and Newtonian heating on MHD flow of Casson fluid over a nonlinearly stretching sheet saturated in a porous medium publication-title: J. King Saud Univ. – Sci. – start-page: 1 year: 2020 end-page: 18 ident: b0055 article-title: Entropy generation in MHD Williamson nanofluid over a convectively heated stretching plate with chemical reaction publication-title: Heat Transfer. – volume: 7 start-page: 2791 year: 2017 end-page: 2797 ident: b0075 article-title: A revised model for Darcy-Forchheimer three-dimensional flow of nanofluid subject to convective boundary condition publication-title: Results Phys. – reference: C.R. Reddy, P. Naveen, D. Srinivasacharya, Nonlinear Convective Flow of Non-Newtonian Fluid over an Inclined Plate with Convective Surface Condition: A Darcy–Forchheimer Model, Int. J. Appl. Comput. Math. 4, 51 (2018). http://doi.org/10.1007/s40819-018-0484-z. – volume: 83 start-page: 844 year: 2003 end-page: 852 ident: b0195 article-title: Generalized three-dimensional flow due to a stretching surface publication-title: Z. Angew. Math. Mech. – reference: M.I. Khan, S. Qayyum, S. Kadry, W.A. Khan, S.Z. Abbas, Irreversibility Analysis and Heat Transport in Squeezing Nanoliquid Flow of Non–Newtonian (Second–Grade) Fluid between Infnite Plates with Activation Energy, Arabian J. Sci. Eng. 10.1007/s13369-020-04442-5. – reference: R. Jusoh, R. Nazar, I. Pop, Three-dimensional flow of a nanofluid over a permeable stretching/shrinking surface with velocity slip: A revised model, Phys. Fluids 30, 033604 (2018); http://doi.org/10.1063/1.5021524. – volume: 118 start-page: 182 year: 2018 end-page: 192 ident: b0155 article-title: Numerical analysis of Fe3O4–H2O nanofluid flow in permeable media under the effect of external magnetic source publication-title: Int. J. Heat Mass Transf. – volume: 9 start-page: 7335 year: 2020 end-page: 7340 ident: b0190 article-title: Simulation and modeling of second order velocity slip flow of micropolar ferrofluid with Darcy-Forchheimer porous medium publication-title: J. Mater. Res. Technol. – year: 2019 ident: b0020 article-title: Entropy optimized MHD 3D nanomaterial of non-Newtonian fluid: A combined approach to good absorber of solar energy and intensification of heat transport publication-title: Comput. Methods Programs Biomed. – volume: 9 start-page: 7387 year: 2020 end-page: 7408 ident: b0185 article-title: Flow and thermal analysis on Darcy-Forchheimer flow of copper-water nanofluid due to a rotating disk: A static and dynamic approach publication-title: J. Mater. Res. Technol. – year: 2019 ident: b0050 article-title: Fully developed Darcy-Forchheimer mixed convective flow over a curved surface with activation energy and entropy generation publication-title: Comput. Methods Programs Biomed. – ident: 10.1016/j.aej.2020.09.053_b0170 doi: 10.1139/cjp-2015-0799 – volume: 24 start-page: 342 issue: 2 year: 2014 ident: 10.1016/j.aej.2020.09.053_b0085 article-title: Asghar. Three-dimensional stretched flow via convective boundary condition and heat generation/absorption publication-title: International Journal of Numerical Methods for Heat & Fluid Flow doi: 10.1108/HFF-03-2012-0065 – ident: 10.1016/j.aej.2020.09.053_b0065 – ident: 10.1016/j.aej.2020.09.053_b0135 doi: 10.1139/cjp-2015-0799 – volume: 131 start-page: 3 year: 2016 ident: 10.1016/j.aej.2020.09.053_b0120 article-title: Melting heat transfer on hydromagnetic flow of a nanofluid over a stretching sheet with radiation and second-order slip publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/i2016-16003-1 – year: 2019 ident: 10.1016/j.aej.2020.09.053_b0015 article-title: Magnetohydrodynamics (MHD) radiated nanomaterial viscous material flow by a curved surface with second order slip and entropy generation publication-title: Comput. Methods Programs Biomed. – volume: 83 start-page: 844 year: 2003 ident: 10.1016/j.aej.2020.09.053_b0195 article-title: Generalized three-dimensional flow due to a stretching surface publication-title: Z. Angew. Math. Mech. doi: 10.1002/zamm.200310052 – volume: 4 start-page: 1 issue: 16 year: 2018 ident: 10.1016/j.aej.2020.09.053_b0035 article-title: Entropy Generation in Three-Dimensional Flow of Dissipative Fluid publication-title: Int. J. Appl. Comput. Math – ident: 10.1016/j.aej.2020.09.053_b0115 doi: 10.1016/j.jmmm.2015.07.091 – volume: 261 year: 2020 ident: 10.1016/j.aej.2020.09.053_b0130 article-title: Acceleration of discharge process of clean energy storage unit with insertion of porous foam considering nanoparticle enhanced paraffin publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2020.121206 – volume: 26 start-page: 1099 year: 2019 ident: 10.1016/j.aej.2020.09.053_b0125 article-title: Heat transfer and nanofluid flow over a porous plate with radiation and slip boundary conditions publication-title: J. Cent. South Univ. doi: 10.1007/s11771-019-4074-y – year: 2019 ident: 10.1016/j.aej.2020.09.053_b0050 article-title: Fully developed Darcy-Forchheimer mixed convective flow over a curved surface with activation energy and entropy generation publication-title: Comput. Methods Programs Biomed. – volume: 118 start-page: 182 year: 2018 ident: 10.1016/j.aej.2020.09.053_b0155 article-title: Numerical analysis of Fe3O4–H2O nanofluid flow in permeable media under the effect of external magnetic source publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2017.10.113 – ident: 10.1016/j.aej.2020.09.053_b0100 doi: 10.1007/s40819-018-0484-z – volume: 9 start-page: 7387 issue: xx year: 2020 ident: 10.1016/j.aej.2020.09.053_b0185 article-title: Flow and thermal analysis on Darcy-Forchheimer flow of copper-water nanofluid due to a rotating disk: A static and dynamic approach publication-title: J. Mater. Res. Technol. doi: 10.1016/j.jmrt.2020.04.074 – year: 2019 ident: 10.1016/j.aej.2020.09.053_b0005 article-title: Entropy optimized MHD nanomaterial flow subject to variable thicked surface publication-title: Comput. Methods Progr. Biomed. – start-page: 1 year: 2020 ident: 10.1016/j.aej.2020.09.053_b0055 article-title: Entropy generation in MHD Williamson nanofluid over a convectively heated stretching plate with chemical reaction publication-title: Heat Transfer. – year: 2020 ident: 10.1016/j.aej.2020.09.053_b0060 article-title: Fully developed entropy optimized second order velocity slip MHD nanofluid flow with activation energy publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2020.105362 – volume: 190 year: 2020 ident: 10.1016/j.aej.2020.09.053_b0025 article-title: Entropy optimized Darcy-Forchheimer nanofluid (Silicon dioxide, Molybdenum disulfide) subject to temperature dependent viscosity publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2020.105363 – volume: 126 start-page: 1347 year: 2018 ident: 10.1016/j.aej.2020.09.053_b0140 article-title: Cu-Al2O3/Water hybrid nanofluid through a permeable surface in the presence of nonlinear radiation and variable thermal conductivity via LSM publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2018.06.005 – volume: 8 start-page: 753 issue: 4 year: 2015 ident: 10.1016/j.aej.2020.09.053_b0010 article-title: Entropy generation analysis for stagnation point flow in a porous medium over a permeable stretching surface publication-title: J. Appl. Fluid Mech. doi: 10.18869/acadpub.jafm.67.223.22916 – volume: 17 year: 2020 ident: 10.1016/j.aej.2020.09.053_b0150 article-title: Marangoni radiative effects of hybrid-nanofluids flow past a permeable surface with inclined magnetic field, Case Studies publication-title: Therm. Eng. – ident: 10.1016/j.aej.2020.09.053_b0175 doi: 10.1007/s10973-020-09720-w – volume: 7 start-page: 2791 year: 2017 ident: 10.1016/j.aej.2020.09.053_b0075 article-title: A revised model for Darcy-Forchheimer three-dimensional flow of nanofluid subject to convective boundary condition publication-title: Results Phys. doi: 10.1016/j.rinp.2017.07.052 – volume: 93 start-page: 674 year: 2016 ident: 10.1016/j.aej.2020.09.053_b0095 article-title: Non-uniform heat source/sink and Soret effects on MHD non-Darcian convective flow past a stretching sheet in a micropolar fluid with radiation publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2015.10.014 – volume: 32 start-page: 555 issue: 2 year: 2015 ident: 10.1016/j.aej.2020.09.053_b0090 article-title: Newtonian heating, thermal-diffusion and diffusion-thermo effects in an axisymmetric flow of a Jeffery fluid over a stretching surface publication-title: Braz. J. Chem. Eng. doi: 10.1590/0104-6632.20150322s00001918 – volume: 5 start-page: pages year: 2013 ident: 10.1016/j.aej.2020.09.053_b0200 article-title: Variational iteration method for the magnetohydrodynamic flow over a nonlinear stretching sheet publication-title: Abst. Appl. Anal. – year: 2019 ident: 10.1016/j.aej.2020.09.053_b0020 article-title: Entropy optimized MHD 3D nanomaterial of non-Newtonian fluid: A combined approach to good absorber of solar energy and intensification of heat transport publication-title: Comput. Methods Programs Biomed. – volume: 29 start-page: 250 year: 2017 ident: 10.1016/j.aej.2020.09.053_b0105 article-title: Effects of slip condition and Newtonian heating on MHD flow of Casson fluid over a nonlinearly stretching sheet saturated in a porous medium publication-title: J. King Saud Univ. – Sci. doi: 10.1016/j.jksus.2016.05.003 – volume: 6 start-page: 657 year: 2019 ident: 10.1016/j.aej.2020.09.053_b0040 article-title: Dual solutions for three-dimensional magnetohydrodynamic nanofluid flow with entropy generation publication-title: J. Comput. Des. Eng. – volume: 7 start-page: 2990 year: 2017 ident: 10.1016/j.aej.2020.09.053_b0160 article-title: Magneto-Thermo-Marangoni convective flow of Cu-H2O nanoliquid past an infinite disk with particle shape and exponential space based heat source effects publication-title: Results. Phys. doi: 10.1016/j.rinp.2017.08.016 – ident: 10.1016/j.aej.2020.09.053_b0070 – volume: 9 start-page: 7335 issue: xx year: 2020 ident: 10.1016/j.aej.2020.09.053_b0190 article-title: Simulation and modeling of second order velocity slip flow of micropolar ferrofluid with Darcy-Forchheimer porous medium publication-title: J. Mater. Res. Technol. doi: 10.1016/j.jmrt.2020.04.079 – ident: 10.1016/j.aej.2020.09.053_b0080 doi: 10.1038/s41598-018-36243-0 – ident: 10.1016/j.aej.2020.09.053_b0110 doi: 10.1063/1.5021524 – ident: 10.1016/j.aej.2020.09.053_b0030 – volume: 10 start-page: 633 year: 2020 ident: 10.1016/j.aej.2020.09.053_b0145 article-title: Influence of inclined magnetic field on the flow of condensed nanomaterial over a slippery surface: the hybrid visualization publication-title: Appl. Nanosci. doi: 10.1007/s13204-019-01123-0 – volume: 540 year: 2020 ident: 10.1016/j.aej.2020.09.053_b0045 article-title: Thermodynamics Analysis for heated gravity-driven hydromagnetic Couple Stress film with viscous dissipation effects publication-title: Physica A doi: 10.1016/j.physa.2019.123150 – volume: 5 year: 2019 ident: 10.1016/j.aej.2020.09.053_b0165 article-title: Heat transfer enhancement in the boundary layer flow of hybrid nanofluids due to variable viscosity and natural convection publication-title: Heliyon – volume: 27 start-page: 1207 year: 2016 ident: 10.1016/j.aej.2020.09.053_b0180 article-title: Soret and Dufour effects on MHD convective flow of Al2O3–water and TiO2–water nanofluids past a stretching sheet in porous media with heat generation/absorption publication-title: Adv. Powder Technol. doi: 10.1016/j.apt.2016.04.005 |
SSID | ssj0000579496 |
Score | 2.4675887 |
Snippet | The current research is conducted to investigate the slip effect and to analyze entropy production in both hybrid nanofluids, and common nanofluids flow past a... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 5247 |
SubjectTerms | 3D-flow Entropy generation rate Hybrid-nanofluid Irreversibility MHD Non-linear radiation |
SummonAdditionalLinks | – databaseName: Elsevier ScienceDirect Open Access Journals dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELaqnsoBQQFRCpUPnJCsdRzHibm1264WJOillfYWOf5hU7VJlSaHvfEafQBejCdhJj-r7QEOSLkksRMrM_bMxPN9Q8jHBNxUGyA6Sbl0DDTEMR0iz0TkhQ3cuKyvovDtu1pey6-rZLVH5hMWBtMqx7V_WNP71Xq8Mhu_5uy-LGcwD5E_SIEJw60ihYBfRJUiiG91tv3PgmBL2ZfpwvYMO0ybm32al_E3ECUK3rOdJvET89Sz-O9YqR3Ls3hBno8uIz0dRvWS7PnqkDzbIRJ8RX59aZCKqRlzXTfUjFwjtA503rGr8lKwpbik6w0itFhlqjrcdqWj5R0CpuCgdUUNjdk5RfhI26dY0oe19y0t8Q746XX3QHEvvruj-PuWVgPNhmlogwwHKOLP9BxmzoYtapg_6xLRx79_PkI3LLjzmlwvLq7mSzYWYGAW7HzLfCachnhJa4hKnBep80E4XkRGBqcKY0wSglRZKmTInIoyJ0wA_7EQwWmbZPEbsg9D8W8JjZxSmeYqaG5lIuOigOBPpDpxmYpCYY4In757bkd2ciyScZtPaWg3OYgqR1HlXOcgqiPyadvlfqDm-FfjMxTmtiGyavcX6uZHPqpVnsQFjwIP3MaJlFYbz5VVNo1cJorUwCDlpAr5EyWFR5V_f_e7_-t2TA7wbMideU_226bzH8ADaouTXsX_AMmrBVo priority: 102 providerName: Elsevier |
Title | Irreversibility analysis of Cu-TiO2-H2O hybrid-nanofluid impinging on a 3-D stretching sheet in a porous medium with nonlinear radiation: Darcy-Forchhiemer’s model |
URI | https://dx.doi.org/10.1016/j.aej.2020.09.053 https://doaj.org/article/53b01f0f0c3544c9ae06c6c71d82b7aa |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQe4EDovyILbTygROShePYjs2tf6stFVRCrdhb5PhHm6pNUJoc9sZr9AH6YjwJ4yRbhQNwQYpySOzY8ow138Qz3yD0TgBMtQG8k4xyR0BDHNEh8YQlntlAjVN9FYXPX-Tikn9aiuWk1FeMCRvogYeF-yDSgiaBBmpTwbnVxlNppc0Sp1iRmR4aUU0nztTA6g161hfngr0cI6-k2hxp9sFdxl-Bb8hoz3Eq0t-MUs_dP7FNE3szf4aejkARHwwT3EGPfPUcPZnQB75A96dNJGBqxgjXNTYjwwiuAz7qyEV5zsiCnePVOuZlkcpUdbjuSofLm5gmBReuK2xwSo5xTBpp-8BKfLvyvsVlfAPovO5ucTyB725w_GmLq4FcwzS4ibwGUbAf8THslzWZ17BrVmXMOf754w66xTI7L9Hl_OTiaEHGsgvEgnVviVfMafCStAZfxHmWOR-Yo0VieHCyMMaIELhUGeNBOZkox0wA1Fiw4LQVKn2FtmAq_jXCiZNSaSqDppYLnhYFuHws08IpmYTCzBDdrHtuR07yWBrjOt8En13lIKo8iiqnOgdRzdD7hy7fB0KOvzU-jMJ8aBi5tPsHoGH5qGH5vzRshvhGFfIRlgxwAz5V_nns3f8x9hv0OH5yiJ95i7bapvN7gILaYh9tH5x9_Xa23ys-3E-Xh78A7OQIcA |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKOQAHxFOUpw-ckKx1HMdxuNEtq13o47KV9hY5sd1N1SZVmhz2xt_gB_DH-CXM5LHaHuCAlJPjSSzP2DNjz3xDyMcIzNTcg3cSc2kZSIhliQ8cE4ETuefG6q6Kwsmpmp_Lb6totUemYy4MhlUOe3-_p3e79dAyGWZzclMUE1iHiB-kQIXhVZHS98h9sAYUAugvVofbgxbMtpRdnS4kYEgx3m52cV7GXYKbKHgHdxqFd_RTB-O_o6Z2VM_sCXk82Iz0Sz-sp2TPlc_Iox0kwefk16JGLKZ6CHbdUDOAjdDK02nLlsWZYHNxRtcbTNFipSkrf9UWlhbXmDEFD61KamjIjijmjzRdjCW9XTvX0ALfgKFetbcUL-Pba4rnt7TscTZMTWuEOEAef6ZHsHQ2bFbBAloXmH78-8dPIMOKOy_I-ezrcjpnQwUGloOib5jTwibgMCUJuCXWidg6LyzPAiO9VZkxJvJeKh0L6bVVgbbCeDAgM-Ftkkc6fEn2YSjuFaGBVUonXPmE5zKSYZaB9yfiJLJaBT4zB4SP857mAzw5Vsm4Ssc4tMsUWJUiq1KepMCqA_JpS3LTY3P8q_MhMnPbEWG1u4aqvkgHuUqjMOOB557nYSRlnhjHVa7yOLBaZLGBQcpRFNI7UgqfKv7-79f_R_aBPJgvT47T48Xp9zfkIb7pA2nekv2mbt07MIea7H0n7n8A-mkIfg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Irreversibility+analysis+of+Cu-TiO2-H2O+hybrid-nanofluid+impinging+on+a+3-D+stretching+sheet+in+a+porous+medium+with+nonlinear+radiation%3A+Darcy-Forchhiemer%E2%80%99s+model&rft.jtitle=Alexandria+engineering+journal&rft.au=T.A.+Yusuf&rft.au=F.+Mabood&rft.au=W.A.+Khan&rft.au=J.A.+Gbadeyan&rft.date=2020-12-01&rft.pub=Elsevier&rft.issn=1110-0168&rft.volume=59&rft.issue=6&rft.spage=5247&rft.epage=5261&rft_id=info:doi/10.1016%2Fj.aej.2020.09.053&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_53b01f0f0c3544c9ae06c6c71d82b7aa |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1110-0168&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1110-0168&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1110-0168&client=summon |