Thermal relics in hidden sectors
Dark matter may be hidden, with no standard model gauge interactions. At the same time, in WIMPless models (WIMP: weakly interacting massive particles) with hidden matter masses proportional to hidden gauge couplings squared, the hidden dark matter's thermal relic density may naturally be in th...
Saved in:
Published in | Journal of cosmology and astroparticle physics Vol. 2008; no. 10; p. 043 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
IOP Publishing
01.10.2008
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Dark matter may be hidden, with no standard model gauge interactions. At the same time, in WIMPless models (WIMP: weakly interacting massive particles) with hidden matter masses proportional to hidden gauge couplings squared, the hidden dark matter's thermal relic density may naturally be in the right range, preserving the key quantitative virtue of WIMPs. We consider this possibility in detail. We first determine model-independent constraints on hidden sectors from big bang nucleosynthesis and the cosmic microwave background. Contrary to conventional wisdom, large hidden sectors are easily accommodated. A flavour-free version of the standard model is allowed if the hidden sector is just 30% colder than the observable sector after reheating. Alternatively, if the hidden sector contains a one-generation version of the standard model with characteristic mass scale below 1 MeV, even identical reheating temperatures are allowed. We then analyse hidden sector freeze-out in detail for a concrete model, solving the Boltzmann equation numerically and explaining the results from both observable and hidden sector points of view. We find that WIMPless dark matter does indeed obtain the correct relic density for masses in the range keV{approx}<m{sub X}{approx}<TeV. The upper bound results from the requirement of perturbativity, and the lower bound assumes that the observable and hidden sectors reheat to the same temperature, and is raised to the MeV scale if the hidden sector is ten times colder. WIMPless dark matter therefore generalizes the WIMP paradigm to the largest mass range possible for viable thermal relics and provides a unified framework for exploring dark matter signals across nine orders of magnitude in dark matter mass. |
---|---|
AbstractList | Dark matter may be hidden, with no standard model gauge interactions. At the same time, in WIMPless models (WIMP: weakly interacting massive particles) with hidden matter masses proportional to hidden gauge couplings squared, the hidden dark matter's thermal relic density may naturally be in the right range, preserving the key quantitative virtue of WIMPs. We consider this possibility in detail. We first determine model-independent constraints on hidden sectors from big bang nucleosynthesis and the cosmic microwave background. Contrary to conventional wisdom, large hidden sectors are easily accommodated. A flavour-free version of the standard model is allowed if the hidden sector is just 30% colder than the observable sector after reheating. Alternatively, if the hidden sector contains a one-generation version of the standard model with characteristic mass scale below 1 MeV, even identical reheating temperatures are allowed. We then analyse hidden sector freeze-out in detail for a concrete model, solving the Boltzmann equation numerically and explaining the results from both observable and hidden sector points of view. We find that WIMPless dark matter does indeed obtain the correct relic density for masses in the range keV{approx}<m{sub X}{approx}<TeV. The upper bound results from the requirement of perturbativity, and the lower bound assumes that the observable and hidden sectors reheat to the same temperature, and is raised to the MeV scale if the hidden sector is ten times colder. WIMPless dark matter therefore generalizes the WIMP paradigm to the largest mass range possible for viable thermal relics and provides a unified framework for exploring dark matter signals across nine orders of magnitude in dark matter mass. |
Author | Yu, Hai-Bo Feng, Jonathan L Tu, Huitzu |
Author_xml | – sequence: 1 fullname: Feng, Jonathan L – sequence: 2 fullname: Tu, Huitzu – sequence: 3 fullname: Yu, Hai-Bo |
BackLink | https://www.osti.gov/biblio/22156801$$D View this record in Osti.gov |
BookMark | eNp9kE9LxDAQxYOs4O7qRxAKXq2d_G08yqKrsOCl99BNJzTSbUvSi9_elIp6WMxlksfvTWbehqz6oUdCbik8UNC6oKKUeSmpKhhAekIBgl-Q9Y---nO_IpsYPwCY4lyvSVa1GE51lwXsvI2Z77PWNw32WUQ7DSFek0tXdxFvvuuWVC_P1e41P7zv33ZPh9wKUFPeOG2tUEweqRKqlkfb1LKkjdAaFQX7yJBLFIoLV5fccadLTIdqhhKl4Ftyt7Qd4uRNtH5C29qh79MUhjEqlQaaKLlQNgwxBnRmDP5Uh09DwcxZmHlPM-9p5ixmOWWRfPeLzw_jr-UcasbGJRzO4P_-8AXqqG1O |
CitedBy_id | crossref_primary_10_1103_PhysRevD_79_114001 crossref_primary_10_1103_PhysRevD_85_055003 crossref_primary_10_1103_PhysRevD_103_075014 crossref_primary_10_1088_1475_7516_2020_07_016 crossref_primary_10_1103_PhysRevLett_132_211803 crossref_primary_10_1103_PhysRevD_83_095011 crossref_primary_10_1088_1475_7516_2024_03_005 crossref_primary_10_1016_j_dark_2013_07_001 crossref_primary_10_1103_PhysRevD_101_012003 crossref_primary_10_1103_PhysRevD_100_095018 crossref_primary_10_1007_JHEP08_2019_151 crossref_primary_10_1007_JHEP09_2014_069 crossref_primary_10_1103_PhysRevD_86_035003 crossref_primary_10_1007_JHEP02_2014_056 crossref_primary_10_1103_PhysRevLett_119_121801 crossref_primary_10_1088_1674_1137_44_6_063102 crossref_primary_10_1103_PhysRevD_106_103523 crossref_primary_10_1103_PhysRevD_101_075005 crossref_primary_10_1103_PhysRevD_98_023540 crossref_primary_10_1103_PhysRevD_86_123529 crossref_primary_10_1103_PhysRevLett_118_141802 crossref_primary_10_1007_JHEP11_2018_005 crossref_primary_10_1103_PhysRevD_92_055033 crossref_primary_10_1088_1742_6596_1526_1_012029 crossref_primary_10_1088_1475_7516_2018_11_050 crossref_primary_10_1088_1475_7516_2017_12_019 crossref_primary_10_1007_JHEP12_2016_108 crossref_primary_10_1016_j_physletb_2009_08_010 crossref_primary_10_1103_RevModPhys_95_035003 crossref_primary_10_3367_UFNe_0184_201402h_0194 crossref_primary_10_1103_PhysRevD_92_023531 crossref_primary_10_1016_j_physletb_2011_07_083 crossref_primary_10_1103_PhysRevD_104_055021 crossref_primary_10_1007_JHEP01_2020_032 crossref_primary_10_1007_JHEP11_2017_094 crossref_primary_10_1007_JHEP03_2022_114 crossref_primary_10_1103_PhysRevD_108_015014 crossref_primary_10_1016_j_physletb_2012_07_017 crossref_primary_10_1140_epjc_s10052_023_11271_x crossref_primary_10_1007_JHEP10_2014_061 crossref_primary_10_1103_PhysRevD_100_063530 crossref_primary_10_1103_PhysRevD_86_035022 crossref_primary_10_1103_PhysRevD_90_095016 crossref_primary_10_1103_PhysRevD_83_054005 crossref_primary_10_1103_PhysRevD_84_035007 crossref_primary_10_1103_PhysRevLett_110_211302 crossref_primary_10_1103_PhysRevLett_114_211303 crossref_primary_10_1007_JHEP06_2016_016 crossref_primary_10_1103_PhysRevD_96_055013 crossref_primary_10_1103_PhysRevD_94_095019 crossref_primary_10_1088_1475_7516_2023_09_012 crossref_primary_10_1103_PhysRevD_88_114015 crossref_primary_10_1088_1475_7516_2019_01_021 crossref_primary_10_1103_PhysRevD_100_083007 crossref_primary_10_3390_universe8030175 crossref_primary_10_1103_PhysRevD_84_074010 crossref_primary_10_1088_1475_7516_2018_02_044 crossref_primary_10_1103_PhysRevD_95_043527 crossref_primary_10_1103_PhysRevD_92_015025 crossref_primary_10_1103_PhysRevLett_115_061301 crossref_primary_10_1103_PhysRevLett_126_081802 crossref_primary_10_1103_PhysRevD_88_056017 crossref_primary_10_1007_JHEP03_2022_031 crossref_primary_10_1103_PhysRevD_83_063509 crossref_primary_10_1088_1475_7516_2016_08_001 crossref_primary_10_1103_PhysRevD_88_116005 crossref_primary_10_1103_PhysRevD_81_063507 crossref_primary_10_1103_PhysRevD_97_063522 crossref_primary_10_1007_JHEP07_2021_045 crossref_primary_10_1088_1475_7516_2013_10_058 crossref_primary_10_1088_1475_7516_2015_10_055 crossref_primary_10_1088_1475_7516_2016_03_018 crossref_primary_10_1088_1475_7516_2018_07_033 crossref_primary_10_1103_PhysRevD_100_015038 crossref_primary_10_1007_JHEP12_2016_039 crossref_primary_10_1016_j_physrep_2018_07_003 crossref_primary_10_1088_1475_7516_2017_05_022 crossref_primary_10_1103_PhysRevD_107_083522 crossref_primary_10_1103_PhysRevD_91_094026 crossref_primary_10_1146_annurev_astro_082708_101659 crossref_primary_10_1088_1475_7516_2014_09_035 crossref_primary_10_1103_PhysRevD_82_116010 crossref_primary_10_1103_PhysRevD_90_043524 crossref_primary_10_1103_PhysRevD_105_103503 crossref_primary_10_1142_S0217732316501431 crossref_primary_10_1103_PhysRevD_82_083525 crossref_primary_10_1088_1475_7516_2017_05_036 crossref_primary_10_1103_PhysRevD_107_L071702 crossref_primary_10_1103_PhysRevD_103_103508 crossref_primary_10_1016_j_ppnp_2013_03_001 crossref_primary_10_1103_PhysRevD_90_013020 crossref_primary_10_1103_PhysRevD_90_043538 crossref_primary_10_1007_JHEP09_2021_207 crossref_primary_10_1103_PhysRevD_108_103517 crossref_primary_10_1088_1475_7516_2014_05_047 crossref_primary_10_1007_JHEP03_2011_042 crossref_primary_10_1007_JHEP07_2019_044 crossref_primary_10_1088_1361_6471_ab4cd2 crossref_primary_10_1007_JHEP05_2011_106 crossref_primary_10_1088_1475_7516_2014_06_059 crossref_primary_10_1007_JHEP01_2019_081 crossref_primary_10_1103_PhysRevD_101_043002 crossref_primary_10_1103_PhysRevD_102_023030 crossref_primary_10_21468_SciPostPhysProc_12_070 crossref_primary_10_1016_j_physrep_2017_11_004 crossref_primary_10_1103_PhysRevD_82_103517 crossref_primary_10_1142_S0217751X14300130 crossref_primary_10_1103_PhysRevLett_123_191801 crossref_primary_10_1007_JHEP06_2015_128 crossref_primary_10_1103_PhysRevD_85_081301 crossref_primary_10_1088_1475_7516_2009_01_003 crossref_primary_10_1016_j_physletb_2015_06_063 crossref_primary_10_1088_1402_4896_ac42a6 crossref_primary_10_1103_PhysRevD_100_023004 crossref_primary_10_1103_PhysRevD_84_075020 crossref_primary_10_1007_JHEP02_2017_046 crossref_primary_10_1103_PhysRevD_91_115020 crossref_primary_10_1103_PhysRevLett_119_061102 crossref_primary_10_1103_PhysRevD_79_103523 crossref_primary_10_1103_PhysRevD_90_035018 crossref_primary_10_1088_1475_7516_2023_02_044 crossref_primary_10_1103_PhysRevD_88_025032 crossref_primary_10_1088_1475_7516_2009_01_032 crossref_primary_10_1103_PhysRevD_81_043532 crossref_primary_10_1103_PhysRevD_89_075017 crossref_primary_10_1103_PhysRevD_109_103537 crossref_primary_10_1007_JHEP06_2021_108 crossref_primary_10_1007_JHEP07_2023_006 crossref_primary_10_1007_JHEP08_2018_079 crossref_primary_10_1007_JHEP09_2018_130 crossref_primary_10_1103_PhysRevD_84_095013 crossref_primary_10_1103_PhysRevD_108_115008 crossref_primary_10_1007_JHEP06_2018_043 crossref_primary_10_1007_JHEP01_2015_089 crossref_primary_10_1103_PhysRevD_90_035002 crossref_primary_10_1103_PhysRevD_89_035009 crossref_primary_10_1103_PhysRevD_96_115029 crossref_primary_10_1103_PhysRevD_98_104010 crossref_primary_10_1016_j_physletb_2013_04_015 crossref_primary_10_1103_PhysRevD_99_095030 crossref_primary_10_1007_s11433_022_2090_7 crossref_primary_10_1103_PhysRevD_88_023520 crossref_primary_10_1007_JHEP09_2016_096 crossref_primary_10_1103_PhysRevD_80_095024 crossref_primary_10_1103_PhysRevD_107_023525 crossref_primary_10_1103_PhysRevD_93_095025 crossref_primary_10_1007_JHEP05_2024_281 crossref_primary_10_1007_JHEP08_2018_070 crossref_primary_10_1103_PhysRevD_79_023519 crossref_primary_10_1007_JHEP02_2018_100 crossref_primary_10_1088_1475_7516_2012_04_014 crossref_primary_10_1103_PhysRevD_91_055006 crossref_primary_10_1103_PhysRevD_89_115017 crossref_primary_10_1007_JHEP08_2021_114 crossref_primary_10_1007_JHEP03_2017_064 crossref_primary_10_1007_JHEP12_2019_037 crossref_primary_10_1088_1475_7516_2022_01_017 crossref_primary_10_1103_PhysRevD_84_095033 crossref_primary_10_3367_UFNr_0184_201402h_0194 crossref_primary_10_1016_j_physletb_2011_04_036 crossref_primary_10_21468_SciPostPhysLectNotes_71 crossref_primary_10_1088_1475_7516_2022_05_019 crossref_primary_10_1088_1475_7516_2012_07_022 crossref_primary_10_1007_JHEP11_2015_077 crossref_primary_10_1103_PhysRevD_101_023503 crossref_primary_10_1103_PhysRevLett_121_021304 crossref_primary_10_1103_PhysRevD_83_076011 crossref_primary_10_1103_PhysRevD_91_083505 crossref_primary_10_1103_PhysRevLett_130_221001 crossref_primary_10_1103_PhysRevLett_120_021801 crossref_primary_10_1103_PhysRevD_87_043510 crossref_primary_10_1103_PhysRevE_87_052123 crossref_primary_10_1088_1475_7516_2009_09_029 crossref_primary_10_1088_1475_7516_2014_07_039 crossref_primary_10_1016_j_aop_2010_12_015 crossref_primary_10_1103_PhysRevD_81_083511 crossref_primary_10_1103_PhysRevD_91_025010 crossref_primary_10_1103_PhysRevD_85_063503 crossref_primary_10_1088_1126_6708_2009_05_036 crossref_primary_10_1103_PhysRevD_104_083523 crossref_primary_10_1016_j_physrep_2021_11_001 crossref_primary_10_1007_JHEP03_2020_096 crossref_primary_10_1007_JHEP09_2017_113 crossref_primary_10_1103_PhysRevD_85_063510 crossref_primary_10_1103_PhysRevD_91_023512 crossref_primary_10_1140_epjc_s10052_017_4963_x crossref_primary_10_1103_PhysRevD_97_123017 crossref_primary_10_1088_1475_7516_2018_09_033 crossref_primary_10_1088_1475_7516_2009_07_004 crossref_primary_10_1103_PhysRevD_79_055007 crossref_primary_10_1134_S1063778810040034 crossref_primary_10_1088_1475_7516_2017_08_021 crossref_primary_10_1103_PhysRevD_94_083516 crossref_primary_10_1088_1475_7516_2017_08_020 crossref_primary_10_1007_JHEP04_2017_077 crossref_primary_10_1088_1475_7516_2023_11_053 crossref_primary_10_1103_PhysRevD_109_023032 crossref_primary_10_1103_PhysRevD_97_103531 crossref_primary_10_1103_PhysRevD_89_103513 crossref_primary_10_1103_PhysRevLett_101_261301 crossref_primary_10_1140_epjp_s13360_023_04412_4 crossref_primary_10_1103_PhysRevD_98_015032 crossref_primary_10_1007_JHEP01_2011_025 crossref_primary_10_1103_PhysRevD_87_115007 crossref_primary_10_1088_1361_6382_aa838b crossref_primary_10_1103_PhysRevD_94_035005 crossref_primary_10_1088_1475_7516_2014_10_062 crossref_primary_10_1007_JHEP04_2016_141 crossref_primary_10_1103_PhysRevD_102_083009 crossref_primary_10_1103_PhysRevD_82_123507 crossref_primary_10_1088_1475_7516_2009_10_023 crossref_primary_10_1103_PhysRevD_108_023528 crossref_primary_10_1088_1475_7516_2024_01_021 crossref_primary_10_1103_PhysRevLett_127_191802 crossref_primary_10_1088_1475_7516_2016_01_006 crossref_primary_10_1007_JHEP06_2021_086 crossref_primary_10_1088_1475_7516_2009_08_017 crossref_primary_10_1103_PhysRevD_105_063525 crossref_primary_10_1103_PhysRevD_85_076007 crossref_primary_10_1103_PhysRevLett_120_051102 crossref_primary_10_1103_PhysRevD_96_075037 crossref_primary_10_1103_PhysRevD_90_015023 |
Cites_doi | 10.1103/PhysRevD.44.999 10.1016/S0927-6505(97)00028-5 10.1016/j.astropartphys.2005.01.005 10.1016/0550-3213(91)90438-4 10.1103/PhysRevD.73.063513 10.1103/PhysRevD.77.087302 10.1088/1475-7516/2008/06/028 10.1103/PhysRevD.72.093007 10.1103/PhysRevLett.98.221601 10.1103/PhysRevD.41.2388 10.1146/annurev.nucl.56.080805.140437 10.1103/PhysRevD.68.027702 10.1088/1475-7516/2006/06/011 10.1088/1475-7516/2006/06/025 10.1088/1475-7516/2008/06/016 10.1103/PhysRevLett.97.031301 10.1016/S0370-2693(01)00217-9 10.1103/PhysRevLett.54.502 10.1103/PhysRevD.69.036001 10.1142/S0218271805005165 10.1086/317269 10.1103/PhysRev.104.254 10.1103/PhysRevD.71.103520 10.1103/PhysRevD.74.063509 10.1103/PhysRevD.66.063002 10.1088/1126-6708/2008/07/058 10.1103/PhysRevD.41.3594 10.1103/PhysRevD.70.123508 10.1103/PhysRevD.62.063506 10.1088/1475-7516/2008/06/026 10.1088/1475-7516/2007/08/021 10.1016/j.nuclphysb.2005.09.041 10.1038/314415a0 10.1016/0370-2693(84)91565-X 10.1016/j.physletb.2007.06.055 10.1103/PhysRevD.71.063534 10.1103/PhysRevLett.100.041304 10.1103/PhysRevLett.42.407 10.1016/j.physletb.2008.06.021 10.1016/0370-2693(77)90176-9 10.1103/PhysRevD.47.456 10.1103/PhysRevD.76.103515 10.1103/PhysRevD.68.023518 10.1016/0370-2693(96)00219-5 10.1088/1475-7516/2004/07/008 10.1146/annurev.nucl.55.090704.151541 |
ContentType | Journal Article |
DBID | AAYXX CITATION OTOTI |
DOI | 10.1088/1475-7516/2008/10/043 |
DatabaseName | CrossRef OSTI.GOV |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics |
EISSN | 1475-7516 |
ExternalDocumentID | 22156801 10_1088_1475_7516_2008_10_043 |
GroupedDBID | 02O 1JI 1WK 4.4 5B3 5PX 5VS 5ZH 7.M 7.Q AAGCD AAGID AAJIO AALHV ABQJV ACGFS AEFHF AENEX AFYNE AHSEE ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN BBWZM CJUJL DU5 EBS EDWGO EJD EMSAF EPQRW EQZZN FEDTE HAK HVGLF IHE IOP IZVLO J9A KNG KOT LAP M45 MGA MV1 N5L N9A NT- NT. P2P Q02 RIN RNS RO9 ROL RPA RW3 S3P SY9 UCJ UNR VSI W28 XPP ZMT AAJKP AATNI AAYXX ABJNI ABVAM ACAFW ACGFO ACHIP ADWVK AERVB AKPSB AOAED CITATION CRLBU IJHAN PJBAE OTOTI |
ID | FETCH-LOGICAL-c406t-df8cc4625b1646a5bcda571d488e610c92e35e4634fa73f3f87eeee182e5e543 |
IEDL.DBID | IOP |
ISSN | 1475-7516 |
IngestDate | Thu May 18 22:31:49 EDT 2023 Thu Sep 26 18:30:04 EDT 2024 Tue Nov 10 14:20:47 EST 2020 Mon May 13 15:56:58 EDT 2019 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c406t-df8cc4625b1646a5bcda571d488e610c92e35e4634fa73f3f87eeee182e5e543 |
OpenAccessLink | https://escholarship.org/content/qt0xw3k6zz/qt0xw3k6zz.pdf?t=r6fdpe |
ParticipantIDs | iop_primary_10_1088_1475_7516_2008_10_043 crossref_primary_10_1088_1475_7516_2008_10_043 osti_scitechconnect_22156801 |
PublicationCentury | 2000 |
PublicationDate | 2008-10-01 |
PublicationDateYYYYMMDD | 2008-10-01 |
PublicationDate_xml | – month: 10 year: 2008 text: 2008-10-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of cosmology and astroparticle physics |
PublicationYear | 2008 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Pukhov A (51) 1999 49 Kim Y G (30) 2008; 2008 McDonald J (29) 2008; 2008 Hamann J (45) 2007; 2007 Foot R (34) 2008 Gong Y Chen X (32) 2008 March-Russell J (27) 2008; 2008 Fields B Sarkar S (41) 2006 Gondolo P (54) 2004; 2004 50 53 10 11 55 12 56 13 57 14 58 15 16 17 18 Pukhov A (52) 2004 19 Feng J L Kumar J Strigari L E (35) 2008 1 2 Blinnikov S I (5) 1982; 36 3 8 9 60 61 62 63 20 64 22 23 Chen X (25) 2006; 2006 26 28 Blinnikov S I (6) 1983; 60 Narayanan V K (59) 2000; 543 Komatsu E (WMAP Collaboration) (42) 2008 Ichikawa K Sekiguchi T Takahashi T (46) 2008 Popa L A (47) 2008; 2008 Krolikowski W (31) 2008 Patt B Wilczek F (21) 2006 Blinnikov S I (4) 1982; 36 Simha V (48) 2008; 2008 36 37 Hannestad S (44) 2006; 2006 38 39 Feng J L Kumar J (33) 2008 Planck collaboration (43) 2006 Kang J Luty M A (24) 2008 40 Blinnikov S I (7) 1983; 27 |
References_xml | – ident: 64 doi: 10.1103/PhysRevD.44.999 – year: 2008 ident: 33 contributor: fullname: Feng J L Kumar J – ident: 37 doi: 10.1016/S0927-6505(97)00028-5 – ident: 40 doi: 10.1016/j.astropartphys.2005.01.005 – ident: 53 doi: 10.1016/0550-3213(91)90438-4 – year: 2006 ident: 43 contributor: fullname: Planck collaboration – ident: 61 doi: 10.1103/PhysRevD.73.063513 – volume: 2008 start-page: 100 issn: 1126-6708 year: 2008 ident: 30 publication-title: J. High Energy Phys. contributor: fullname: Kim Y G – ident: 28 doi: 10.1103/PhysRevD.77.087302 – volume: 2008 start-page: 028 issn: 1475-7508 year: 2008 ident: 47 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2008/06/028 contributor: fullname: Popa L A – ident: 20 doi: 10.1103/PhysRevD.72.093007 – ident: 23 doi: 10.1103/PhysRevLett.98.221601 – year: 2008 ident: 46 contributor: fullname: Ichikawa K Sekiguchi T Takahashi T – ident: 1 doi: 10.1103/PhysRevD.41.2388 – ident: 39 doi: 10.1146/annurev.nucl.56.080805.140437 – ident: 50 doi: 10.1103/PhysRevD.68.027702 – volume: 2006 start-page: 011 issn: 1475-7508 year: 2006 ident: 25 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2006/06/011 contributor: fullname: Chen X – volume: 27 start-page: 371 issn: 0004-6299 year: 1983 ident: 7 publication-title: Sov. Astron. contributor: fullname: Blinnikov S I – year: 2006 ident: 21 contributor: fullname: Patt B Wilczek F – volume: 2006 start-page: 025 issn: 1475-7508 year: 2006 ident: 44 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2006/06/025 contributor: fullname: Hannestad S – volume: 2008 start-page: 016 issn: 1475-7508 year: 2008 ident: 48 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2008/06/016 contributor: fullname: Simha V – ident: 57 doi: 10.1103/PhysRevLett.97.031301 – volume: 36 start-page: 809 issn: 0044-0027 year: 1982 ident: 4 publication-title: Yad. Fiz. contributor: fullname: Blinnikov S I – ident: 11 doi: 10.1016/S0370-2693(01)00217-9 – year: 2008 ident: 32 contributor: fullname: Gong Y Chen X – ident: 18 doi: 10.1103/PhysRevLett.54.502 – ident: 14 doi: 10.1103/PhysRevD.69.036001 – ident: 15 doi: 10.1142/S0218271805005165 – year: 1999 ident: 51 contributor: fullname: Pukhov A – volume: 543 start-page: L103 issn: 0004-637X year: 2000 ident: 59 publication-title: Astrophys. J. doi: 10.1086/317269 contributor: fullname: Narayanan V K – ident: 3 doi: 10.1103/PhysRev.104.254 – year: 2008 ident: 24 contributor: fullname: Kang J Luty M A – ident: 56 doi: 10.1103/PhysRevD.71.103520 – ident: 55 doi: 10.1103/PhysRevD.74.063509 – ident: 12 doi: 10.1103/PhysRevD.66.063002 – volume: 2008 start-page: 058 issn: 1126-6708 year: 2008 ident: 27 publication-title: J. High Energy Phys. doi: 10.1088/1126-6708/2008/07/058 contributor: fullname: March-Russell J – ident: 2 doi: 10.1103/PhysRevD.41.3594 – year: 2004 ident: 52 contributor: fullname: Pukhov A – ident: 16 doi: 10.1103/PhysRevD.70.123508 – ident: 10 doi: 10.1103/PhysRevD.62.063506 – volume: 2008 start-page: 026 issn: 1475-7516 year: 2008 ident: 29 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2008/06/026 contributor: fullname: McDonald J – year: 2008 ident: 31 contributor: fullname: Krolikowski W – volume: 2007 start-page: 021 issn: 1475-7508 year: 2007 ident: 45 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2007/08/021 contributor: fullname: Hamann J – year: 2008 ident: 34 contributor: fullname: Foot R – ident: 49 doi: 10.1016/j.nuclphysb.2005.09.041 – ident: 36 doi: 10.1038/314415a0 – ident: 17 doi: 10.1016/0370-2693(84)91565-X – year: 2006 ident: 41 contributor: fullname: Fields B Sarkar S – ident: 22 doi: 10.1016/j.physletb.2007.06.055 – ident: 60 doi: 10.1103/PhysRevD.71.063534 – ident: 62 doi: 10.1103/PhysRevLett.100.041304 – ident: 63 doi: 10.1103/PhysRevLett.42.407 – volume: 60 start-page: 632 issn: 0004-6299 year: 1983 ident: 6 publication-title: Astron. Zh. contributor: fullname: Blinnikov S I – ident: 26 doi: 10.1016/j.physletb.2008.06.021 – ident: 38 doi: 10.1016/0370-2693(77)90176-9 – year: 2008 ident: 35 contributor: fullname: Feng J L Kumar J Strigari L E – ident: 8 doi: 10.1103/PhysRevD.47.456 – ident: 58 doi: 10.1103/PhysRevD.76.103515 – ident: 13 doi: 10.1103/PhysRevD.68.023518 – volume: 36 start-page: 472 year: 1982 ident: 5 publication-title: Sov. J. Nucl. Phys. contributor: fullname: Blinnikov S I – ident: 9 doi: 10.1016/0370-2693(96)00219-5 – volume: 2004 start-page: 008 issn: 1475-7508 year: 2004 ident: 54 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2004/07/008 contributor: fullname: Gondolo P – year: 2008 ident: 42 contributor: fullname: Komatsu E (WMAP Collaboration) – ident: 19 doi: 10.1146/annurev.nucl.55.090704.151541 |
SSID | ssj0026338 |
Score | 2.4344182 |
Snippet | Dark matter may be hidden, with no standard model gauge interactions. At the same time, in WIMPless models (WIMP: weakly interacting massive particles) with... |
SourceID | osti crossref iop |
SourceType | Open Access Repository Aggregation Database Enrichment Source Publisher |
StartPage | 043 |
SubjectTerms | ASTROPHYSICS, COSMOLOGY AND ASTRONOMY BOLTZMANN EQUATION FLAVOR MODEL FREEZING OUT GAUGE INVARIANCE LIMITING VALUES MASS MEV RANGE NONLUMINOUS MATTER NUCLEOSYNTHESIS PARTICLES RELICT RADIATION STANDARD MODEL |
Title | Thermal relics in hidden sectors |
URI | http://iopscience.iop.org/1475-7516/2008/10/043 https://www.osti.gov/biblio/22156801 |
Volume | 2008 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED6VTiy8UQsFeQAkhqRNYucxVoiqIAEditTNih8RFZBUTTrAr-ecNBUVHUomy7nY0fnsu7N93wFcOXFkwgMiK6IBs6jqMSsSyuQ30aGv3VAx1wQnPz37w1f6OGGTBtSZ6abZbLny21isTvJNIwFz_K45qsdZ3u1Rg-6JitA4Ww8vo5WD5Xtl5urVF3XEDjp5G1tZ00U72CGuyxnOrF8aZrAPozpOp7pY8m4vCmHL77-wjdv-_AHsLa1N0q_E4xAaOj2CVj83-9_Z5xe5IWW52t7Ij4Gg1OBK_UHm-gMryDQlbwZjJCV5ubufn8B4cD--G1rLHAqWRFVdWCoJpaTo5AgDJBYzIVXMAkfhvNVoOcnI1R7T1PdoEgde4iVhoPFBr0Mzzah3Cs00S3ULSE8oFYhY4RvUaNQRfozGlSO1EwmNbmQb7JqZfFYhZfDyhDsMuWEDN2yosl5iNbKhDbfIpm1pr9doN9HwmUra0DEDyHEcDAauNJeFZMFdNGx81MVn_-jyHHbdGvvW6UCzmC_0BRoghbgspe4HfATJXA |
link.rule.ids | 230,314,780,784,885,1557,27924,27925,53905 |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4AJsaLbwOKugc18VCg7W4fRyIS8IEcMOHWdB-NRiyEloP-emdbIGI00djTZru73c4-ZmZ35huAMzP0tXuAb_jUZQaVDWb4XOr4JspzlOVJZmnn5Pue03mkN0M2LEBr6Qsznsy3_homc6DgnIRzgzivbupWXWY6dX13j9n1BrXrExkVYY2hCq8N-7oP_aXa5dhZPOtltYUfz09NrXCoIvYCd-sxrrdPfKe9BWrR49zc5KU2S3lNvH8Bc_zvL23D5lwwJc28zg4UVLwL5Waij8rHr2_kgmTp_CQk2QOCEww39RGZqhFmkOeYPGk4kpgk2UVAsg-D9vXgqmPMwy0YArl6asjIE4KiPsQ15ljIuJAhc02JS1yhkCV8S9lMUcemUejakR15rsIHFRTFFKP2AZTicazKQBpcSpeHEt8g86Mmd0KUw0yhTJ8r1DgrUFtQOJjkoBpBdhnueYEmRaBJkQfIxGwkRQUukXS_LXu-Uva7MgGStgJVPaoBjo2GyxXarkikgYUykINs-_APnzyF9X6rHdx1e7dHsGEtEHPNKpTS6Uwdo9iS8pNsVn4AIsnZRQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermal+relics+in+hidden+sectors&rft.jtitle=Journal+of+cosmology+and+astroparticle+physics&rft.au=Feng%2C+Jonathan+L&rft.au=Tu%2C+Huitzu&rft.au=Yu%2C+Hai-Bo&rft.date=2008-10-01&rft.issn=1475-7516&rft.eissn=1475-7516&rft.volume=2008&rft.issue=10&rft.spage=43&rft_id=info:doi/10.1088%2F1475-7516%2F2008%2F10%2F043&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1475_7516_2008_10_043 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1475-7516&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1475-7516&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1475-7516&client=summon |