Quality Improvement Techniques for Recycled Concrete Aggregate: A review
The main problem in using recycled concrete aggregate (RCA) as a construction material is due to the weak adhered mortar which usually has higher porosity and water absorption. It also has lower strength compared to natural aggregate (NA), and it often forms weak interfacial transition zones in the...
Saved in:
Published in | Journal of Advanced Concrete Technology Vol. 17; no. 4; pp. 151 - 167 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Tokyo
Japan Concrete Institute
20.04.2019
Japan Science and Technology Agency |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The main problem in using recycled concrete aggregate (RCA) as a construction material is due to the weak adhered mortar which usually has higher porosity and water absorption. It also has lower strength compared to natural aggregate (NA), and it often forms weak interfacial transition zones in the recycled aggregate concrete (RAC). These weak zones lead to negative effects on the mechanical properties and durability performance of RAC. In order to utilize RCA in more effectively as aggregate in concrete, it is necessary to improve the quality and enhance the properties of the attached weak mortar. This paper reviews different treatment methods of RCA based on the published research, and systematically analyses the strengths and weaknesses as well as the applicability and limitations of each method. The advantages and disadvantages of each treatment method, in terms of their technical feasibility, efficiency, economic and environmental impacts, are also discussed, in view of facilitating the selection of the most suitable treatment method for RCA. Although most techniques have been examined and trialed under laboratory conditions, further investigations are required to determine the most effective approach for treating RCA, with consideration not only given to the laboratory scale, but also on a commercial production scale. |
---|---|
AbstractList | The main problem in using recycled concrete aggregate (RCA) as a construction material is due to the weak adhered mortar which usually has higher porosity and water absorption. It also has lower strength compared to natural aggregate (NA), and it often forms weak interfacial transition zones in the recycled aggregate concrete (RAC). These weak zones lead to negative effects on the mechanical properties and durability performance of RAC. In order to utilize RCA in more effectively as aggregate in concrete, it is necessary to improve the quality and enhance the properties of the attached weak mortar. This paper reviews different treatment methods of RCA based on the published research, and systematically analyses the strengths and weaknesses as well as the applicability and limitations of each method. The advantages and disadvantages of each treatment method, in terms of their technical feasibility, efficiency, economic and environmental impacts, are also discussed, in view of facilitating the selection of the most suitable treatment method for RCA. Although most techniques have been examined and trialed under laboratory conditions, further investigations are required to determine the most effective approach for treating RCA, with consideration not only given to the laboratory scale, but also on a commercial production scale. |
Author | Shaban, Wafaa Mohamed Su, Haolin Li, Lijuan Xie, Jianhe Mo, Kim Hung Yang, Jian |
Author_xml | – sequence: 1 fullname: Shaban, Wafaa Mohamed organization: School of Naval Architecture, Ocean and Civil Engineering, State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China – sequence: 2 fullname: Yang, Jian organization: School of Naval Architecture, Ocean and Civil Engineering, State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China – sequence: 3 fullname: Su, Haolin organization: School of Naval Architecture, Ocean and Civil Engineering, State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China – sequence: 4 fullname: Mo, Kim Hung organization: Department of Civil Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia – sequence: 5 fullname: Li, Lijuan organization: School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, China – sequence: 6 fullname: Xie, Jianhe organization: School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, China |
BookMark | eNp1kEFLw0AQhRepYFs9-QcCHiV1J5smjQehFLWFgij1vEx3J2lCuqmbbaX_3q0tPQie5sF8b-bxeqxjGkOM3QIfCBjCQ4XKDSAdeH3BuiDiNBQZiM6vTsIRh_iK9dq24lykIk27bPq-xbp0-2C23thmR2syLliQWpnya0ttkDc2-CC1VzXpYNIYZclRMC4KSwU6egzGgaVdSd_X7DLHuqWb0-yzz5fnxWQazt9eZ5PxPFQxT1yo80RpkWKmhhhrrXMl4izlywx1wpWmJZAfOALMUSAHESXLKPIe4MR1MhJ9dne86-MeEjpZNVtr_EsZRSIaAiQQeQqOlLJN21rKpSodurIxzmJZS-DyUJg8FCYhlV57z_0fz8aWa7T7f-inI121Dgs6s2hd6cs6s_HJcF6oFVpJRvwA6heGuQ |
CitedBy_id | crossref_primary_10_1016_j_jobe_2024_111744 crossref_primary_10_1016_j_jobe_2023_107081 crossref_primary_10_1016_j_engstruct_2020_110851 crossref_primary_10_1016_j_jobe_2023_107083 crossref_primary_10_1155_2022_6762449 crossref_primary_10_1016_j_conbuildmat_2024_135355 crossref_primary_10_1016_j_conbuildmat_2020_118612 crossref_primary_10_1016_j_matpr_2023_03_223 crossref_primary_10_1088_1742_6596_2267_1_012003 crossref_primary_10_1016_j_conbuildmat_2024_136321 crossref_primary_10_1016_j_resconrec_2021_105955 crossref_primary_10_1002_suco_202300706 crossref_primary_10_1016_j_conbuildmat_2021_122547 crossref_primary_10_1016_j_jobe_2021_103316 crossref_primary_10_1016_j_jobe_2024_108622 crossref_primary_10_1016_j_cscm_2023_e02661 crossref_primary_10_1016_j_conbuildmat_2022_128246 crossref_primary_10_3390_coatings12030363 crossref_primary_10_3390_ma15082740 crossref_primary_10_31127_tuje_931076 crossref_primary_10_1016_j_conbuildmat_2021_126240 crossref_primary_10_1016_j_jclepro_2021_129355 crossref_primary_10_1016_j_conbuildmat_2023_134528 crossref_primary_10_3390_ma17215242 crossref_primary_10_1016_j_conbuildmat_2024_138510 crossref_primary_10_1016_j_cemconcomp_2023_104994 crossref_primary_10_1016_j_jobe_2021_102211 crossref_primary_10_3390_constrmater3040030 crossref_primary_10_1007_s10098_024_03029_0 crossref_primary_10_3390_su16031310 crossref_primary_10_1016_j_cscm_2022_e01267 crossref_primary_10_1088_1757_899X_1252_1_012057 crossref_primary_10_1016_j_conbuildmat_2022_128597 crossref_primary_10_1016_j_conbuildmat_2021_125200 crossref_primary_10_1617_s11527_022_02026_3 crossref_primary_10_1007_s11709_022_0801_9 crossref_primary_10_1007_s44268_024_00037_3 crossref_primary_10_1016_j_cemconcomp_2024_105865 crossref_primary_10_32604_jrm_2021_013669 crossref_primary_10_1016_j_jclepro_2022_130893 crossref_primary_10_3390_su16020814 crossref_primary_10_1016_j_conbuildmat_2021_125678 crossref_primary_10_1520_ACEM20210011 crossref_primary_10_1016_j_conbuildmat_2024_137591 crossref_primary_10_1061__ASCE_MT_1943_5533_0004657 crossref_primary_10_1016_j_cemconcomp_2022_104629 crossref_primary_10_3390_su17051903 crossref_primary_10_1016_j_jclepro_2020_121237 crossref_primary_10_1016_j_jcou_2024_102826 crossref_primary_10_1016_j_matpr_2022_04_746 crossref_primary_10_1088_2053_1591_ad4512 crossref_primary_10_1007_s11595_021_2380_3 crossref_primary_10_1016_j_cement_2024_100121 crossref_primary_10_14513_actatechjaur_00570 crossref_primary_10_1016_j_matpr_2023_04_093 crossref_primary_10_1016_j_asej_2024_102975 crossref_primary_10_1016_j_resconrec_2021_105443 crossref_primary_10_3390_ma13010064 crossref_primary_10_1080_21650373_2020_1748742 crossref_primary_10_1016_j_jclepro_2024_141858 crossref_primary_10_1016_j_jcou_2020_101185 crossref_primary_10_1016_j_conbuildmat_2023_132559 crossref_primary_10_1016_j_conbuildmat_2023_132319 crossref_primary_10_47481_jscmt_1106786 crossref_primary_10_1016_j_jobe_2022_104048 crossref_primary_10_1016_j_cscm_2023_e02208 crossref_primary_10_2139_ssrn_4132911 crossref_primary_10_1016_j_conbuildmat_2023_131616 crossref_primary_10_1016_j_conbuildmat_2021_123056 crossref_primary_10_1016_j_conbuildmat_2021_125477 crossref_primary_10_1016_j_conbuildmat_2022_129016 crossref_primary_10_2139_ssrn_4662901 crossref_primary_10_1016_j_jobe_2024_110601 crossref_primary_10_1016_j_rser_2021_111668 crossref_primary_10_29194_NJES_27030357 crossref_primary_10_1155_2019_4073130 crossref_primary_10_1016_j_cemconcomp_2019_103446 crossref_primary_10_1007_s40098_022_00659_3 crossref_primary_10_1080_19648189_2024_2439861 crossref_primary_10_1016_j_conbuildmat_2022_127901 crossref_primary_10_1061_JMCEE7_MTENG_18060 crossref_primary_10_1016_j_conbuildmat_2023_133509 crossref_primary_10_1016_j_conbuildmat_2023_133508 crossref_primary_10_14359_51735953 crossref_primary_10_1016_j_conbuildmat_2021_123066 crossref_primary_10_1016_j_cscm_2023_e02351 crossref_primary_10_1016_j_cemconcomp_2020_103807 crossref_primary_10_1016_j_conbuildmat_2019_117407 crossref_primary_10_1016_j_jclepro_2020_121264 crossref_primary_10_1007_s44268_023_00015_1 crossref_primary_10_1016_j_jclepro_2021_129074 crossref_primary_10_1155_2024_2004803 crossref_primary_10_3389_fbuil_2021_648220 crossref_primary_10_3390_ma12132147 crossref_primary_10_1016_j_cscm_2024_e03759 crossref_primary_10_1088_2631_8695_acc3df crossref_primary_10_1061_JMCEE7_MTENG_14807 crossref_primary_10_1016_j_jobe_2024_109852 crossref_primary_10_3390_buildings12101600 crossref_primary_10_1080_01694243_2021_1956210 crossref_primary_10_1155_2022_4262020 crossref_primary_10_1016_j_conbuildmat_2023_132126 crossref_primary_10_1016_j_jclepro_2023_140155 crossref_primary_10_2139_ssrn_4176012 crossref_primary_10_1016_j_jmrt_2023_02_048 crossref_primary_10_1016_j_jobe_2021_102677 crossref_primary_10_1016_j_conbuildmat_2020_119118 crossref_primary_10_1016_j_matpr_2020_12_456 crossref_primary_10_1016_j_conbuildmat_2019_04_231 crossref_primary_10_1016_j_conbuildmat_2020_121940 crossref_primary_10_1016_j_istruc_2021_04_094 crossref_primary_10_1016_j_conbuildmat_2021_122652 crossref_primary_10_1016_j_jobe_2022_105047 crossref_primary_10_1016_j_cscm_2021_e00650 crossref_primary_10_1016_j_jobe_2023_105868 |
Cites_doi | 10.1617/s11527-012-9852-z 10.3151/jact.10.395 10.1016/j.hbrcj.2015.07.001 10.1016/j.cemconcomp.2017.09.015 10.1061/(ASCE)MT.1943-5533.0000393 10.1016/j.conbuildmat.2016.02.064 10.1007/s40999-018-0301-4 10.1016/j.buildenv.2005.07.033 10.1016/j.conbuildmat.2014.01.085 10.1016/j.msec.2008.10.025 10.12989/sem.2013.47.5.701 10.12989/acc.2015.3.1.015 10.1016/j.conbuildmat.2012.04.013 10.1016/j.resconrec.2006.05.012 10.1016/j.cemconcomp.2016.10.006 10.1080/21650373.2016.1234983 10.1061/(ASCE)MT.1943-5533.0001296 10.1016/j.cemconcomp.2013.09.008 10.1016/j.cemconres.2004.10.025 10.1016/j.enbuild.2015.12.026 10.1016/j.conbuildmat.2011.03.038 10.1016/j.conbuildmat.2015.08.087 10.3151/jact.5.13 10.1016/j.conbuildmat.2009.10.038 10.2991/icmea-16.2016.29 10.1016/j.resconrec.2011.05.020 10.1016/j.mineng.2011.09.017 10.1016/j.cemconres.2007.04.002 10.1016/j.conbuildmat.2008.06.007 10.1016/j.conbuildmat.2016.12.132 10.1016/j.cemconres.2013.01.005 10.1016/j.jclepro.2015.08.078 10.1016/j.cemconres.2009.10.020 10.1016/j.cemconcomp.2010.05.003 10.1617/s11527-008-9399-1 10.1016/j.resconrec.2006.05.010 10.3390/su2051204 10.1016/j.conbuildmat.2015.03.006 10.1016/j.conbuildmat.2011.08.025 10.1016/j.cemconcomp.2012.08.008 10.1520/JAI101087 10.1061/(ASCE)0899-1561(2004)16:6(597) 10.1016/j.conbuildmat.2016.02.176 10.3151/jact.3.53 10.1016/j.conbuildmat.2012.02.027 10.1016/j.conbuildmat.2010.11.105 10.1016/j.ijsbe.2014.03.003 10.1016/S0008-8846(00)00475-0 10.1016/j.cemconcomp.2018.03.008 10.1061/(ASCE)MT.1943-5533.0001128 10.1680/macr.2010.62.12.879 10.1016/j.conbuildmat.2017.07.079 10.1007/s40069-015-0124-5 10.1016/j.conbuildmat.2016.05.093 10.25103/jestr.093.23 10.1016/j.cemconres.2005.11.003 10.1016/j.conbuildmat.2007.07.024 10.2472/jsms.50.835 10.1016/j.conbuildmat.2013.03.014 10.1016/S0958-9465(01)00012-9 10.1016/j.minpro.2013.11.009 10.1080/21650373.2016.1230899 10.3139/146.111245 10.1016/j.conbuildmat.2017.03.191 10.1016/j.conbuildmat.2010.11.063 10.1016/j.cemconres.2007.02.002 10.1016/j.conbuildmat.2008.07.019 10.14359/51687902 10.1016/j.conbuildmat.2016.09.047 10.1016/j.cemconres.2006.11.011 10.1016/j.wasman.2013.02.006 10.1016/j.conbuildmat.2014.01.053 10.1016/j.conbuildmat.2008.04.012 10.1016/j.cemconcomp.2015.04.017 10.1016/j.conbuildmat.2018.03.270 10.1016/j.conbuildmat.2015.07.089 10.1007/s10295-008-0514-7 |
ContentType | Journal Article |
Copyright | 2019 by Japan Concrete Institute Copyright Japan Science and Technology Agency 2019 |
Copyright_xml | – notice: 2019 by Japan Concrete Institute – notice: Copyright Japan Science and Technology Agency 2019 |
DBID | AAYXX CITATION 7QQ 7SR 8BQ 8FD FR3 JG9 KR7 |
DOI | 10.3151/jact.17.151 |
DatabaseName | CrossRef Ceramic Abstracts Engineered Materials Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Ceramic Abstracts Engineering Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1347-3913 |
EndPage | 167 |
ExternalDocumentID | 10_3151_jact_17_151 article_jact_17_4_17_151_article_char_en |
GroupedDBID | 5GY ACIWK ADDVE AENEX ALMA_UNASSIGNED_HOLDINGS CS3 DU5 EBS EJD JSF JSH KQ8 OK1 P2P RJT RZJ AAYXX CITATION 7QQ 7SR 8BQ 8FD FR3 JG9 KR7 |
ID | FETCH-LOGICAL-c406t-df6cd37a9c5a4dddfc34970b9ad60cdeb1e0cda81afa3a01326b226cd10e0d683 |
ISSN | 1346-8014 |
IngestDate | Mon Jun 30 09:56:58 EDT 2025 Thu Apr 24 22:54:48 EDT 2025 Tue Jul 01 01:31:05 EDT 2025 Wed Apr 05 06:08:43 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c406t-df6cd37a9c5a4dddfc34970b9ad60cdeb1e0cda81afa3a01326b226cd10e0d683 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/jact/17/4/17_151/_article/-char/en |
PQID | 2232511612 |
PQPubID | 1996343 |
PageCount | 17 |
ParticipantIDs | proquest_journals_2232511612 crossref_citationtrail_10_3151_jact_17_151 crossref_primary_10_3151_jact_17_151 jstage_primary_article_jact_17_4_17_151_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019/04/20 |
PublicationDateYYYYMMDD | 2019-04-20 |
PublicationDate_xml | – month: 04 year: 2019 text: 2019/04/20 day: 20 |
PublicationDecade | 2010 |
PublicationPlace | Tokyo |
PublicationPlace_xml | – name: Tokyo |
PublicationTitle | Journal of Advanced Concrete Technology |
PublicationTitleAlternate | ACT |
PublicationYear | 2019 |
Publisher | Japan Concrete Institute Japan Science and Technology Agency |
Publisher_xml | – name: Japan Concrete Institute – name: Japan Science and Technology Agency |
References | 28) Henry, M., Pardo, G., Nishimura, T. and Kato, Y., (2011). “Balancing durability and environmental impact in concrete combining low-grade recycled aggregates and mineral admixtures.” Resour. Conserv. Recycl. 55(11), 1060-1069. 40) Li, J., Xiao, H. and Zhou, Y., (2009). “Influence of coating recycled aggregate surface with pozzolanic powder on properties of recycled aggregate concrete.” Constr. Build. Mater., 23(3), 1287-1291. 56) Pandurangan, K., Dayanithy, A. and Om Prakash, S., (2016). “Influence of treatment methods on the bond strength of recycled aggregate concrete.” Constr. Build. Mater., 120, 212-221. 87) WBTC, (2002). “Specifications facilitating the use of recycled aggregates.” Works Bureau Technical Circular 12/2002, 209/32/105, Hong-Kong. 31) JIS A 5022, (2006). “Recycled aggregate for concrete-class M.” Japan Standards Association, Japan. 7) Akbarnezhad, A. and Ong, K. C. G., (2010). “Microwave decontamination of concrete.” Maga. Concr. Res., 62(12), 879-885. 51) Mukharjee, B. B. and Barai, S. V., (2017). “Mechanical and microstructural characterization of recycled aggregate concrete containing silica nanoparticles.” J. Sustain. Cement-Based Mater., 6(1), 37-53. 33) Jin, R., Li, B., Elamin, A., Wang, S., Tsioulou, O.and Wanatowski, D., (2018). “Experimental investigation of properties of concrete containing recycled construction wastes.” Int. J. Civ. Eng., 16(11), 1621-1633. 41) Like, Q., Yong, L., Jun, D. and Pengfei, T., (2016). “Thermal stress distribution and evaluation of concrete particles under microwave irradiation.” J. Eng. Technol. Rev., 9(3), 148-154. 30) JIS A 5021, (2005). “Recycled aggregate for concrete-class H.” Japan Standards Association, Japan. 72) Singh, N. B. and Rai, S., (2001). “Effect of polyvinyl alcohol on the hydration of cement with rice husk ash.” Cem. Concr. Res., 31(2), 239-243. 3) Abdel-Hay, A. S., (2017). “Properties of recycled concrete aggregate under different curing conditions.” HBRC J., 13(3), 271-276. 96) Zhang, J., Shi, C., Li, Y., Pan, X., Poon, C. and Xie, Z., (2015a). “Performance enhancement of recycled concrete aggregates through carbonation.” J. Mater. Civ. Eng., 27(11), 04015029. 42) Lippiatt, N. and Bourgeois, F., (2012). “Investigation of microwave-assisted concrete recycling using single-particle testing.” Mineral Eng., 31, 71-81. 24) Freedonia, (2016). “World construction aggregates – demand and sales forecasts, market share, market size, market leaders.” Cleveland, The Freedonia Group Inc, (Study No 3389). 100) Zhang, Z. and Wang, B., (2016). “Research on the life-cycle CO2 emission of China’s construction sector.” Energy Build., 112, 244-255. 23) Etxeberria, M., Vazquez, E., Mari, A. and Barra, M., (2007). “Influence of amount of recycled coarse aggregates and production process on properties of recycled aggregate concrete.” Cem. Concr. Res., 37, 735-742. 10) Archontas, N. D. and Pantazopoulou, S. J., (2015). “Microstructural behavior and mechanics of nano-modified cementitious materials.” Adv. Concr. Constr. 3(1), 15-37. 86) Turley, W., (2018). “Construction recycling & demolition recycling information by material: concrete.” Chicago, 5(2). 79) Tam, V. W. Y., Gao, X. F. and Tam, C. M., (2005). “Microstructural analysis of recycled aggregate concrete produced from two-stage mixing approach.” Cem. Concr. Res., 35, 1195-1203. 54) Padhi, R., S., Patra, R., K., Mukharjee, B., B. and Dey, T., (2018). “Influence of incorporation of rice husk ash and coarse recycled concrete aggregates on properties of concrete.” Constr. Build. Mater., 173, 289-297. 78) Tabsh, S., W. and Abdelfatah, A., S., (2009). “Influence of recycled concrete aggregates on strength properties.” Constr. Build. Mater., 23, 1163-1167. 82) Thiery, M., Dangla, P., Belin, P., Habert, G. and Roussel, N., (2013). “Carbonation kinetics of a bed of recycled concrete aggregates: A laboratory study on model materials.” Cem. Concr. Res., 46, 50-65. 46) Martirena, F., Castaño, T. and Alujas, A., Orozco-morales, R., Martinez, L. and Linsel, S., (2017). “Improving quality of coarse recycled aggregates through cement coating.” J. Sustain. Cement-Based Mater., 6(1), 69-84. 83) Thiery, M., Villain, G., Dangla, P. and Platret, G., (2007). “Investigation of the carbonation front shape on cementitious materials: Effects of the chemical kinetics.” Cem. Concr. Res., 37, 1047-1058. 58) Peng, C., (2016). “Calculation of a building’s life cycle carbon emissions based on Ecotect and building information modeling.” J. Clean. Prod., 112, 453-465. 14) Bru, K., Touzé, S., Bourgeois, F., Lippiatt, N. and Ménard, Y., (2014). “Assessment of a microwave-assisted recycling process for the recovery of high-quality aggregates from concrete waste.” Int. J. Mineral Process. 126, 90-98. 76) Sui, Y. and Mueller, A., (2012). “Development of thermo-mechanical treatment for recycling of used concrete.” Mater. Struct., 45, 1487-1495. 71) Silva, R. V., Neves, R., De Brito, J. and Dhir, R. K., (2015). “Carbonation behaviour of recycled aggregate concrete.” Cem. Concr. Compos., 62, 22-32. 49) Miyandehi, B. M, Feizbakhsh, A., Yazdi, M. A., Liu, Q. F., Yang, J. and Alipour, P., (2016). “Performance and properties of mortar mixed with nano-CuO and rice husk ash.” Cem. Concr. Compos., 74, 225-235. 2) Abd Elhakam, A., Mohamed, A. E. and Awad, E., (2012). “Influence of self-healing, mixing method and adding silica fume on mechanical properties of recycled aggregates concrete.” Constr. Build. Mater., 35, 421-427. 39) Leite, F. D. C., Motta, R. D. S., Vasconcelos, K. L. and Bernucci, L., (2011). “Laboratory evaluation of recycled construction and demolition waste for pavements.” Constr. Build. Mater., 25, 2972-2979. 90) Yang, J., Du, Q. and Bao, Y., (2011). “Concrete with recycled concrete aggregate and crushed clay bricks.” Constr. Build. Mater., 25, 1935-1945. 73) Smith, J.T., Tighe, S.L., Norris, J., Kim, E., and Xu, X., (2008). “Coarse recycled aggregate concrete pavements-design, instrumentation, and performance.” In: Proceedings of annual conference of the Transportation Association of Canada, Toronto, ON, Canada. 99) Zhang, J., Taylor, P. and Shi, C., (2015d). “Investigation of approaches for improving interfacial transition zone related freezing-and-thawing resistance in concrete pavements.” ACI Mater. J., 112(5), 613-618. 94) Yoda K., Harada M. and Sakuramoto F., (2003). “Field application and advantage of concrete recycled in-situ recycling systems.” London, E14 4JD, United Kingdom: Thomas Telford Services Ltd. 55) Pan, G., Zhan, M., Fu, M., Wang, Y. and Lu, X., (2017). “Effect of CO2 curing on demolition recycled fine aggregates enhanced by calcium hydroxide pre-soaking.” Constr. Build. Mater., 154, 810-818. 61) Qiu, J., Qin, D., Sheng-Tng, D. Q. and Yang, E., (2014). “Surface treatment of recycled concrete aggregates through microbial carbonate precipitation.” Constr. Build. Mater., 57, 144-150. 69) Shi, C., Wu, Z., Cao, Z., Ling, T., C. and Zheng., J., (2018). “Performance of mortar prepared with recycled concrete aggregate enhanced by CO2 and pozzolan slurry.” Constr. Build. Mater., 86, 130-138. 17) Chen, J. J., Thomas, J. J. and Jennings, H. M., (2006). “Decalcification shrinkage of cement paste.” Cem. Concr. Res., 36(5), 801-809. 97) Zhang, J., Shi, C., Li, Y., Pan, X., Poon, C. S. and Xie, Z., (2015b). “Influence of carbonated recycled concrete aggregate on properties of cement mortar.” Constr. Build. Mater., 98, 1-7. 21) De Juan, M. S. and Gutiérrez, P. A., (2009). “Study on the influence of attached mortar content on the properties of recycled concrete aggregate.” Constr. Build. Mater. 23(2), 872-877. 16) Castellote, M., Fernandez, L., Andrade, C. and Alonso, C., (2009). “Chemical changes and phase analysis of OPC pastes carbonated at different CO2 concentrations.” Mater. Struct., 42(4), 515-525. 15) BS 8500-2, (2002). “Concrete - complementary British standard to BS EN 206-1, Part 2: Specification for constituent materials and concrete.” British Standards Institution, United Kingdom. 101) Zhao, T., Wittmann, F. H., Jiang, R. and Li, W., (2011). “Application of silane-based compounds for the production of integral water repellent concrete.” In: Hydrophobe VI, 6th International Conference on Water Repellent Treatment of Building Materials. 137-144. 9) Al-Bayati, H. K. A., Das, P. K., Tighe, S. L. and Baaj, H., (2016). “Evaluation of various treatment methods for enhancing the physical and morphological properties of coarse recycled concrete aggregate.” Constr. Build. Mater., 112, 284-298. 84) Tripura, D., D., Raj, S., Mohammad, S. and Das, R., (2018). “Suitability of recycled aggregate as a replacement for natural aggregate in construction.” ACI Mater. J., 326, 37.1-37.10. 95) Yonezawa T., Kamiyama Y. and Yanagibashi K., (2001). “A study on a technology for producing high quality recycled coarse aggregate.” Zairyo/J Soc Mater Sci Jpn., 50(8), 835-42. 64) Saotome, T., (2007). “Development of construction and demolition waste recycling in Ontario.” School of Engineering Practice SEP 704, McMaster University, Hamilton, ON, Canada. 77) Sun, Y. D., Xiao, J. Z., (2004). “Aggregate of recycled concrete.” Concrete, 176(6), 33-36. 44) Ma, X. W., Han, Z.X., Li, X. Y. and Meng, F. N., (2009). “Thermal treatment of waste concrete and the rehydration properties of the dehydrated cement paste.” J. Qingdao Technol. Univ., 3(4), 93-97 57) Pasandín, A. R. and Pérez, I., (2014). “Mechanical properties of hot-mix asphalt made with recycled concrete aggregates coated with bitumen emulsion.” Constr. Build. Mater., 55, 350-358. 60) Qian, C., Wang, J., Wang, R. and Cheng, L., (2009). “Corrosion protection of cement-based building materials by surface deposition of CaCO3 by Bacillus pasteurii.” Mater. Sci. Eng. C., 29(4), 1273-1280. 26) Guo, H., Shi, C., Guan, X., Zhu, J., Ding, Y. and Ling, T-C., (2018). “Durability of recycled aggregate concrete - A review.” Cem. Concr. Compos., 89, 251-259. 5) ACI Committee 555, (2001). “Removal and reuse of hardened concrete.” ACI 555R-01, ACI committee 555 88 89 90 91 92 93 94 95 96 97 10 98 11 99 12 13 14 15 16 17 18 19 1 2 3 4 5 6 7 8 9 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 100 101 102 80 81 82 83 84 85 86 87 |
References_xml | – reference: 10) Archontas, N. D. and Pantazopoulou, S. J., (2015). “Microstructural behavior and mechanics of nano-modified cementitious materials.” Adv. Concr. Constr. 3(1), 15-37. – reference: 26) Guo, H., Shi, C., Guan, X., Zhu, J., Ding, Y. and Ling, T-C., (2018). “Durability of recycled aggregate concrete - A review.” Cem. Concr. Compos., 89, 251-259. – reference: 74) Spaeth, V. and Djerbi Tegguer, A., (2013). “Improvement of recycled concrete aggregate properties by polymer treatments.” Int. J. Sustain. Built Environ. 2(2), 143-152. – reference: 22) Eckert, M. and Oliveira, M., (2017). “Mitigation of the negative effects of recycled aggregate water absorption in concrete technology.” Constr. Build. Mater., 133, 416-424. – reference: 82) Thiery, M., Dangla, P., Belin, P., Habert, G. and Roussel, N., (2013). “Carbonation kinetics of a bed of recycled concrete aggregates: A laboratory study on model materials.” Cem. Concr. Res., 46, 50-65. – reference: 57) Pasandín, A. R. and Pérez, I., (2014). “Mechanical properties of hot-mix asphalt made with recycled concrete aggregates coated with bitumen emulsion.” Constr. Build. Mater., 55, 350-358. – reference: 29) Ismail, S. and Ramli, M., (2013). “Engineering properties of treated recycled concrete aggregate (RCA) for structural applications.” Constr. Build. Mater., 44, 464-476. – reference: 28) Henry, M., Pardo, G., Nishimura, T. and Kato, Y., (2011). “Balancing durability and environmental impact in concrete combining low-grade recycled aggregates and mineral admixtures.” Resour. Conserv. Recycl. 55(11), 1060-1069. – reference: 75) Spaeth, V., Delplancke-Ogletree, M. P. and Lecomte, J. P., (2008). “Hydration process and microstructure development of integral water repellent cement based materials.” In: Proceeding of 5th International Conference on Water Repellent Treatment of Building Materials, 254, 245-254. – reference: 14) Bru, K., Touzé, S., Bourgeois, F., Lippiatt, N. and Ménard, Y., (2014). “Assessment of a microwave-assisted recycling process for the recovery of high-quality aggregates from concrete waste.” Int. J. Mineral Process. 126, 90-98. – reference: 17) Chen, J. J., Thomas, J. J. and Jennings, H. M., (2006). “Decalcification shrinkage of cement paste.” Cem. Concr. Res., 36(5), 801-809. – reference: 98) Zhang, H., Zhao, Y., Meng, T. and Shah, S. P., (2015c). “The modification effects of a nano-silica slurry on microstructure, strength, and strain development of recycled aggregate concrete applied in an enlarged structural test.” Constr. Build. Mater., 95, 721-735. – reference: 68) Shayan, A. and Xu, A., (2003). “Performance and properties of structural concrete made with recycled concrete aggregate.” ACI Mater. J., 100(5), 371-380. – reference: 101) Zhao, T., Wittmann, F. H., Jiang, R. and Li, W., (2011). “Application of silane-based compounds for the production of integral water repellent concrete.” In: Hydrophobe VI, 6th International Conference on Water Repellent Treatment of Building Materials. 137-144. – reference: 7) Akbarnezhad, A. and Ong, K. C. G., (2010). “Microwave decontamination of concrete.” Maga. Concr. Res., 62(12), 879-885. – reference: 72) Singh, N. B. and Rai, S., (2001). “Effect of polyvinyl alcohol on the hydration of cement with rice husk ash.” Cem. Concr. Res., 31(2), 239-243. – reference: 77) Sun, Y. D., Xiao, J. Z., (2004). “Aggregate of recycled concrete.” Concrete, 176(6), 33-36. – reference: 88) Wang, L., Wang, J., Qian, X., Chen, P., Xu, Y. and Guo, J., (2017). “An environmentally friendly method to improve the quality of recycled concrete aggregates.” Constr. Build. Mater., 144, 432-441. – reference: 93) Yang, Y., Ying, C., Sierens, Z., Fan, H. and Li, J., (2018). “Efficient recycling and reuse of waste concrete on a construction site.” ACI Mater. J., 326, 38.1-38.10. – reference: 18) Cheng, H. L. and Wang, C. Y., (2004). “Improvement of recycled aggregate quality by pre-soaking with water glass.” Gypsum Cem. Build., 12, 12-14. – reference: 81) Tam, V. W. Y. and Tam, C. M., (2008). “Diversifying two-stage mixing approach (TSMA) for recycled aggregate concrete: TSMAs and TSMAsc.” Constr. Build. Mater., 22, 2068-2077. – reference: 43) Malešev, M., Radonjanin, V. and Marinković, S., (2010). “Recycled concrete as aggregate for structural concrete production.” Sustain., 2(5), 1204-1225. – reference: 19) Choi, H., Choi, H., Lim, M., Inoue, M., Kitagaki, R. and Noguchi, T., (2016). “Evaluation on the mechanical performance of low-quality recycled aggregate through interface enhancement between cement matrix and coarse aggregate by surface modification technology.” Int. J. Concr. Struct. Mater., 10(1), 87-97. – reference: 52) Mulder, E. and Feenstra, L., (2007). “Closed cycle construction - A process for the separation and reuse of the total C&D waste stream.” In: Proc. of Sustain. Constr. Mater. Technol., London, Taylor & Francis Group, 27-34. – reference: 67) Saravanakumar, P., Abhiram, K. and Manoj, B., (2016). “Properties of treated recycled aggregates and its influence on concrete strength characteristics.” Constr. Build. Mater., 111, 611-617. – reference: 48) Miller, G., (2005). “Running out of gravel and rock.” Toronto Star, January 6, A22. – reference: 62) Rahal, K., (2007). “Mechanical properties of concrete with recycled coarse aggregate.” Build. Environ., 42(1), 407-415. – reference: 24) Freedonia, (2016). “World construction aggregates – demand and sales forecasts, market share, market size, market leaders.” Cleveland, The Freedonia Group Inc, (Study No 3389). – reference: 94) Yoda K., Harada M. and Sakuramoto F., (2003). “Field application and advantage of concrete recycled in-situ recycling systems.” London, E14 4JD, United Kingdom: Thomas Telford Services Ltd. – reference: 65) Saravanakumar, P. and Dhinakaran, G., (2012). “Effect of admixed recycled aggregate concrete on properties of fresh and hardened concrete.” ASCE J. Mater. Civ. Eng., 24(4), 494-498. – reference: 71) Silva, R. V., Neves, R., De Brito, J. and Dhir, R. K., (2015). “Carbonation behaviour of recycled aggregate concrete.” Cem. Concr. Compos., 62, 22-32. – reference: 42) Lippiatt, N. and Bourgeois, F., (2012). “Investigation of microwave-assisted concrete recycling using single-particle testing.” Mineral Eng., 31, 71-81. – reference: 64) Saotome, T., (2007). “Development of construction and demolition waste recycling in Ontario.” School of Engineering Practice SEP 704, McMaster University, Hamilton, ON, Canada. – reference: 86) Turley, W., (2018). “Construction recycling & demolition recycling information by material: concrete.” Chicago, 5(2). – reference: 89) Xuan, D., Zhan, B. and Poon, C. S., (2017). “Durability of recycled aggregate concrete prepared with carbonated recycled concrete aggregates.” Cem. Concr. Compos., 84, 214-221. – reference: 38) Lee, C.-H., Du, J.-C. and Shen, D.-H., (2012). “Evaluation of pre-coated recycled concrete aggregate for hot mix asphalt.” Constr. Build. Mater. 28(1), 66-71. – reference: 66) Saravanakumar, P. and Dhinakaran, G., (2013). “Durability characteristics of recycled aggregate concrete.” Struct. Eng. and Mech., 47(5), 701-711. – reference: 20) DIN 4226-100, (2002). “Aggregates for mortar and concrete, Part 100: Recycled aggregates.” Deutsches Institut fur Normung E.V., Germany. – reference: 60) Qian, C., Wang, J., Wang, R. and Cheng, L., (2009). “Corrosion protection of cement-based building materials by surface deposition of CaCO3 by Bacillus pasteurii.” Mater. Sci. Eng. C., 29(4), 1273-1280. – reference: 32) JIS A 5023, (2007). “Recycled aggregate for concrete-class L.” Japan Standards Association, Japan. – reference: 6) Ajdukiewicz, A. and Kliszczewicz, A., (2002). “Influence of recycled aggregates on mechanical properties of HS/HPC.” Cem. Concr. Compos., 24, 269-279. – reference: 16) Castellote, M., Fernandez, L., Andrade, C. and Alonso, C., (2009). “Chemical changes and phase analysis of OPC pastes carbonated at different CO2 concentrations.” Mater. Struct., 42(4), 515-525. – reference: 73) Smith, J.T., Tighe, S.L., Norris, J., Kim, E., and Xu, X., (2008). “Coarse recycled aggregate concrete pavements-design, instrumentation, and performance.” In: Proceedings of annual conference of the Transportation Association of Canada, Toronto, ON, Canada. – reference: 12) Binyu, Z. and Chi Sun, P., (2015). “Use of furnace bottom ash for producing lightweight aggregate concrete with thermal insulation properties.” J. Clean. Prod., 99, 94-100. – reference: 36) Kou, S. C. and Poon, C. S., (2010). “Properties of concrete prepared with PVA-impregnated recycled concrete aggregates.” Cem. Concr. Compos., 32(8), 649-654. – reference: 5) ACI Committee 555, (2001). “Removal and reuse of hardened concrete.” ACI 555R-01, ACI committee 555 report, American Concrete Institute, Farmington Hills, Michigan. – reference: 100) Zhang, Z. and Wang, B., (2016). “Research on the life-cycle CO2 emission of China’s construction sector.” Energy Build., 112, 244-255. – reference: 99) Zhang, J., Taylor, P. and Shi, C., (2015d). “Investigation of approaches for improving interfacial transition zone related freezing-and-thawing resistance in concrete pavements.” ACI Mater. J., 112(5), 613-618. – reference: 59) Purushothaman, R., Amirthavalli, R. R. and Karan, L., (2015). “Influence of treatment methods on the strength and performance characteristics of recycled aggregate concrete.” J. Mater. Civ. Eng., 27(5), 04014168. – reference: 23) Etxeberria, M., Vazquez, E., Mari, A. and Barra, M., (2007). “Influence of amount of recycled coarse aggregates and production process on properties of recycled aggregate concrete.” Cem. Concr. Res., 37, 735-742. – reference: 61) Qiu, J., Qin, D., Sheng-Tng, D. Q. and Yang, E., (2014). “Surface treatment of recycled concrete aggregates through microbial carbonate precipitation.” Constr. Build. Mater., 57, 144-150. – reference: 50) Mohseni, E., Miyandehi, B. M., Yang, J. and Yazdi, M. A., (2015). “Single and combined effects of nano-SiO2, nano-Al2O3 and nano-TiO2 on the mechanical, rheological and durability properties of self-compacting mortar containing fly ash.” Constr. Build. Mater. 84, 331-340. – reference: 58) Peng, C., (2016). “Calculation of a building’s life cycle carbon emissions based on Ecotect and building information modeling.” J. Clean. Prod., 112, 453-465. – reference: 95) Yonezawa T., Kamiyama Y. and Yanagibashi K., (2001). “A study on a technology for producing high quality recycled coarse aggregate.” Zairyo/J Soc Mater Sci Jpn., 50(8), 835-42. – reference: 76) Sui, Y. and Mueller, A., (2012). “Development of thermo-mechanical treatment for recycling of used concrete.” Mater. Struct., 45, 1487-1495. – reference: 55) Pan, G., Zhan, M., Fu, M., Wang, Y. and Lu, X., (2017). “Effect of CO2 curing on demolition recycled fine aggregates enhanced by calcium hydroxide pre-soaking.” Constr. Build. Mater., 154, 810-818. – reference: 51) Mukharjee, B. B. and Barai, S. V., (2017). “Mechanical and microstructural characterization of recycled aggregate concrete containing silica nanoparticles.” J. Sustain. Cement-Based Mater., 6(1), 37-53. – reference: 87) WBTC, (2002). “Specifications facilitating the use of recycled aggregates.” Works Bureau Technical Circular 12/2002, 209/32/105, Hong-Kong. – reference: 35) Kong, D., Lei, T., Zheng, J., Ma, C., Jiang, J. and Jiang, J., (2010). “Effect and mechanism of surface-coating pozzolanic materials around aggregate on properties and ITZ microstructure of recycled aggregate concrete.” Constr. Build. Mater., 24(5), 701-708. – reference: 45) Mansur, A. A. P., Santos, D. B. and Mansur, H. S., (2007). “A microstructural approach to adherence mechanism of poly(vinyl alcohol) modified cement systems to ceramic tiles.” Cem. Concr. Res., 37(2), 270-282. – reference: 27) Haghighatnejad, N., Mousavi, S. Y., Khaleghi, S. J., Tabarsa, A. and Yousefi, S., (2016). “Properties of recycled PVC aggregate concrete under different curing conditions.” Constr. Build. Mater. 126, 943-950. – reference: 85) Tsujino, M., Noguchi, T., Tamura, M., Kanematsu, M. and Maruyama, I., (2007). “Application of conventionally recycled coarse aggregate to concrete structure by surface modification treatment.” J. Adv. Concr. Technol., 5(1), 13-25. – reference: 90) Yang, J., Du, Q. and Bao, Y., (2011). “Concrete with recycled concrete aggregate and crushed clay bricks.” Constr. Build. Mater., 25, 1935-1945. – reference: 33) Jin, R., Li, B., Elamin, A., Wang, S., Tsioulou, O.and Wanatowski, D., (2018). “Experimental investigation of properties of concrete containing recycled construction wastes.” Int. J. Civ. Eng., 16(11), 1621-1633. – reference: 53) Ogawa, H. and Nawa, T., (2012). “Improving the quality of recycled fine aggregates by selective removal of brittleness defects.” J. Adv. Concr. Technol., 10, 395-410. – reference: 25) Grabiec, A. M., Klama, J., Zawal, D. and Krupa, D., (2012). “Modification of recycled concrete aggregate by calcium carbonate biodeposition.” Constr. Build. Mater. 34, 145-150. – reference: 37) Kou, S. C., Zhan, B. J. and Poon, C. S., (2014). “Use of a CO2 curing step to improve the properties of concrete prepared with recycled aggregates.” Cem. Concr. Compos., 45, 22-28. – reference: 97) Zhang, J., Shi, C., Li, Y., Pan, X., Poon, C. S. and Xie, Z., (2015b). “Influence of carbonated recycled concrete aggregate on properties of cement mortar.” Constr. Build. Mater., 98, 1-7. – reference: 39) Leite, F. D. C., Motta, R. D. S., Vasconcelos, K. L. and Bernucci, L., (2011). “Laboratory evaluation of recycled construction and demolition waste for pavements.” Constr. Build. Mater., 25, 2972-2979. – reference: 102) Zhu, Y. G., Kou, S. C., Poon, C. S., Dai, J. G. and Li, Q. Y., (2013). “Influence of silane-based water repellent on the durability properties of recycled aggregate concrete.” Cem. Concr. Compos., 35(1), 32-38. – reference: 79) Tam, V. W. Y., Gao, X. F. and Tam, C. M., (2005). “Microstructural analysis of recycled aggregate concrete produced from two-stage mixing approach.” Cem. Concr. Res., 35, 1195-1203. – reference: 47) Menard, Y., Bru, K., Touze, S., Lemoign, A., Poirier, J. E., Ruffie, G. and Von Der Weid, F., (2013). “Innovative process routes for a high-quality concrete recycling.” Waste Manage., 33(6), 1561-1565. – reference: 49) Miyandehi, B. M, Feizbakhsh, A., Yazdi, M. A., Liu, Q. F., Yang, J. and Alipour, P., (2016). “Performance and properties of mortar mixed with nano-CuO and rice husk ash.” Cem. Concr. Compos., 74, 225-235. – reference: 91) Yang, J., Mohseni, E., Behforouz, B. and Khotbehsara, M. M., (2015). “An experimental investigation into the effects of Cr2O3 and ZnO2 nanoparticles on the mechanical properties and durability of self-compacting mortar.” Int. J. Mater. Res., 106(8), 886-892. – reference: 84) Tripura, D., D., Raj, S., Mohammad, S. and Das, R., (2018). “Suitability of recycled aggregate as a replacement for natural aggregate in construction.” ACI Mater. J., 326, 37.1-37.10. – reference: 1) Abbas, A., Fathifazl, G., Burkan Isgor, O., Razaqpur, A. G., Fournier, B. and Foo, S., (2008). “Proposed method for determining the residual mortar content of recycled concrete aggregates.” J. ASTM Int., 5(1), 1-12. – reference: 34) Katz, A., (2004). “Treatments for the Improvement of Recycled Aggregate.” J. Mater. Civ. Eng., 16(6), 597-603. – reference: 9) Al-Bayati, H. K. A., Das, P. K., Tighe, S. L. and Baaj, H., (2016). “Evaluation of various treatment methods for enhancing the physical and morphological properties of coarse recycled concrete aggregate.” Constr. Build. Mater., 112, 284-298. – reference: 92) Yang, L., Qian, Y., Fang, Q. and Han, Y., (2016). “Effects of recycled coarse aggregate reinforcing treated by water-glass on the performance of recycled concrete.” In: Proceedings of the 3rd International Conference on Material Engineering and Application (ICMEA 2016)., Adv. Eng. Res. 103, 181-186. – reference: 54) Padhi, R., S., Patra, R., K., Mukharjee, B., B. and Dey, T., (2018). “Influence of incorporation of rice husk ash and coarse recycled concrete aggregates on properties of concrete.” Constr. Build. Mater., 173, 289-297. – reference: 78) Tabsh, S., W. and Abdelfatah, A., S., (2009). “Influence of recycled concrete aggregates on strength properties.” Constr. Build. Mater., 23, 1163-1167. – reference: 63) Rao, A., Jha, K., N. and Misra, S., (2007). “Use of aggregates from recycled construction and demolition waste in concrete.” Resour. Conserv. Recycl., 50, 71-81. – reference: 15) BS 8500-2, (2002). “Concrete - complementary British standard to BS EN 206-1, Part 2: Specification for constituent materials and concrete.” British Standards Institution, United Kingdom. – reference: 96) Zhang, J., Shi, C., Li, Y., Pan, X., Poon, C. and Xie, Z., (2015a). “Performance enhancement of recycled concrete aggregates through carbonation.” J. Mater. Civ. Eng., 27(11), 04015029. – reference: 4) Achal, V., Mukherjee, A., Basu, P. C. and Reddy, M. S., (2009). “Lactose mother liquor as an alternative nutrient source for microbial concrete production by Sporosarcina pasteurii.” J. Ind. Microbiol. Biotechnol., 36(3), 433-438. – reference: 56) Pandurangan, K., Dayanithy, A. and Om Prakash, S., (2016). “Influence of treatment methods on the bond strength of recycled aggregate concrete.” Constr. Build. Mater., 120, 212-221. – reference: 83) Thiery, M., Villain, G., Dangla, P. and Platret, G., (2007). “Investigation of the carbonation front shape on cementitious materials: Effects of the chemical kinetics.” Cem. Concr. Res., 37, 1047-1058. – reference: 30) JIS A 5021, (2005). “Recycled aggregate for concrete-class H.” Japan Standards Association, Japan. – reference: 44) Ma, X. W., Han, Z.X., Li, X. Y. and Meng, F. N., (2009). “Thermal treatment of waste concrete and the rehydration properties of the dehydrated cement paste.” J. Qingdao Technol. Univ., 3(4), 93-97 – reference: 40) Li, J., Xiao, H. and Zhou, Y., (2009). “Influence of coating recycled aggregate surface with pozzolanic powder on properties of recycled aggregate concrete.” Constr. Build. Mater., 23(3), 1287-1291. – reference: 69) Shi, C., Wu, Z., Cao, Z., Ling, T., C. and Zheng., J., (2018). “Performance of mortar prepared with recycled concrete aggregate enhanced by CO2 and pozzolan slurry.” Constr. Build. Mater., 86, 130-138. – reference: 13) Borges, P. H. R., Costa, J. O., Milestone, N. B., Lynsdale, C. J. and Streatfield, R. E., (2010). “Carbonation of CH and C-S-H in composite cement pastes containing high amounts of BFS.” Cem. Concr. Res. 40(2), 284-292. – reference: 46) Martirena, F., Castaño, T. and Alujas, A., Orozco-morales, R., Martinez, L. and Linsel, S., (2017). “Improving quality of coarse recycled aggregates through cement coating.” J. Sustain. Cement-Based Mater., 6(1), 69-84. – reference: 21) De Juan, M. S. and Gutiérrez, P. A., (2009). “Study on the influence of attached mortar content on the properties of recycled concrete aggregate.” Constr. Build. Mater. 23(2), 872-877. – reference: 31) JIS A 5022, (2006). “Recycled aggregate for concrete-class M.” Japan Standards Association, Japan. – reference: 2) Abd Elhakam, A., Mohamed, A. E. and Awad, E., (2012). “Influence of self-healing, mixing method and adding silica fume on mechanical properties of recycled aggregates concrete.” Constr. Build. Mater., 35, 421-427. – reference: 11) BCSJ, (1977). “Proposed standard for the use of recycled aggregate and recycled aggregate concrete.” Committee on disposal and reuse of construction waste, Building Con-tractors Society of Japan, Japan. – reference: 80) Tam, V. W. Y., Tam, C. M. and Le, K. N., (2007). “Removal of cement mortar remains from recycled aggregate using pre-soaking approaches.” Resour. Conserv. Recycl., 50, 82-101. – reference: 8) Akbarnezhad, A., Ong, K. C. G., Zhang, M. H., Tam, C. T. and Foo, T. W. J., (2011). “Microwave-assisted beneficiation of recycled concrete aggregates.” Constr. Build. Mater., 25(8), 3469-3479. – reference: 41) Like, Q., Yong, L., Jun, D. and Pengfei, T., (2016). “Thermal stress distribution and evaluation of concrete particles under microwave irradiation.” J. Eng. Technol. Rev., 9(3), 148-154. – reference: 70) Shima, H., Tateyashiki, H., Matsuhashi, R. and Yoshida, Y., (2005). “An advanced concrete recycling technology and its applicability assessment by the input-output analysis.” J. Adv. Concr. Technol., 3(1), 53-67. – reference: 3) Abdel-Hay, A. S., (2017). “Properties of recycled concrete aggregate under different curing conditions.” HBRC J., 13(3), 271-276. – ident: 76 doi: 10.1617/s11527-012-9852-z – ident: 53 doi: 10.3151/jact.10.395 – ident: 3 doi: 10.1016/j.hbrcj.2015.07.001 – ident: 89 doi: 10.1016/j.cemconcomp.2017.09.015 – ident: 68 – ident: 65 doi: 10.1061/(ASCE)MT.1943-5533.0000393 – ident: 67 doi: 10.1016/j.conbuildmat.2016.02.064 – ident: 31 – ident: 33 doi: 10.1007/s40999-018-0301-4 – ident: 62 doi: 10.1016/j.buildenv.2005.07.033 – ident: 61 doi: 10.1016/j.conbuildmat.2014.01.085 – ident: 60 doi: 10.1016/j.msec.2008.10.025 – ident: 66 doi: 10.12989/sem.2013.47.5.701 – ident: 10 doi: 10.12989/acc.2015.3.1.015 – ident: 86 – ident: 2 doi: 10.1016/j.conbuildmat.2012.04.013 – ident: 80 doi: 10.1016/j.resconrec.2006.05.012 – ident: 49 doi: 10.1016/j.cemconcomp.2016.10.006 – ident: 46 doi: 10.1080/21650373.2016.1234983 – ident: 96 doi: 10.1061/(ASCE)MT.1943-5533.0001296 – ident: 37 doi: 10.1016/j.cemconcomp.2013.09.008 – ident: 48 – ident: 79 doi: 10.1016/j.cemconres.2004.10.025 – ident: 100 doi: 10.1016/j.enbuild.2015.12.026 – ident: 18 – ident: 8 doi: 10.1016/j.conbuildmat.2011.03.038 – ident: 97 doi: 10.1016/j.conbuildmat.2015.08.087 – ident: 85 doi: 10.3151/jact.5.13 – ident: 35 doi: 10.1016/j.conbuildmat.2009.10.038 – ident: 92 doi: 10.2991/icmea-16.2016.29 – ident: 24 – ident: 28 doi: 10.1016/j.resconrec.2011.05.020 – ident: 42 doi: 10.1016/j.mineng.2011.09.017 – ident: 83 doi: 10.1016/j.cemconres.2007.04.002 – ident: 78 doi: 10.1016/j.conbuildmat.2008.06.007 – ident: 22 doi: 10.1016/j.conbuildmat.2016.12.132 – ident: 82 doi: 10.1016/j.cemconres.2013.01.005 – ident: 58 doi: 10.1016/j.jclepro.2015.08.078 – ident: 94 – ident: 13 doi: 10.1016/j.cemconres.2009.10.020 – ident: 36 doi: 10.1016/j.cemconcomp.2010.05.003 – ident: 52 – ident: 15 – ident: 32 – ident: 16 doi: 10.1617/s11527-008-9399-1 – ident: 63 doi: 10.1016/j.resconrec.2006.05.010 – ident: 77 – ident: 43 doi: 10.3390/su2051204 – ident: 50 doi: 10.1016/j.conbuildmat.2015.03.006 – ident: 38 doi: 10.1016/j.conbuildmat.2011.08.025 – ident: 64 – ident: 102 doi: 10.1016/j.cemconcomp.2012.08.008 – ident: 93 – ident: 87 – ident: 12 – ident: 1 doi: 10.1520/JAI101087 – ident: 34 doi: 10.1061/(ASCE)0899-1561(2004)16:6(597) – ident: 9 doi: 10.1016/j.conbuildmat.2016.02.176 – ident: 70 doi: 10.3151/jact.3.53 – ident: 25 doi: 10.1016/j.conbuildmat.2012.02.027 – ident: 39 doi: 10.1016/j.conbuildmat.2010.11.105 – ident: 74 doi: 10.1016/j.ijsbe.2014.03.003 – ident: 72 doi: 10.1016/S0008-8846(00)00475-0 – ident: 26 doi: 10.1016/j.cemconcomp.2018.03.008 – ident: 59 doi: 10.1061/(ASCE)MT.1943-5533.0001128 – ident: 7 doi: 10.1680/macr.2010.62.12.879 – ident: 55 doi: 10.1016/j.conbuildmat.2017.07.079 – ident: 5 – ident: 69 – ident: 19 doi: 10.1007/s40069-015-0124-5 – ident: 56 doi: 10.1016/j.conbuildmat.2016.05.093 – ident: 30 – ident: 41 doi: 10.25103/jestr.093.23 – ident: 17 doi: 10.1016/j.cemconres.2005.11.003 – ident: 75 – ident: 81 doi: 10.1016/j.conbuildmat.2007.07.024 – ident: 95 doi: 10.2472/jsms.50.835 – ident: 29 doi: 10.1016/j.conbuildmat.2013.03.014 – ident: 6 doi: 10.1016/S0958-9465(01)00012-9 – ident: 14 doi: 10.1016/j.minpro.2013.11.009 – ident: 44 – ident: 51 doi: 10.1080/21650373.2016.1230899 – ident: 91 doi: 10.3139/146.111245 – ident: 88 doi: 10.1016/j.conbuildmat.2017.03.191 – ident: 90 doi: 10.1016/j.conbuildmat.2010.11.063 – ident: 23 doi: 10.1016/j.cemconres.2007.02.002 – ident: 40 doi: 10.1016/j.conbuildmat.2008.07.019 – ident: 99 doi: 10.14359/51687902 – ident: 27 doi: 10.1016/j.conbuildmat.2016.09.047 – ident: 45 doi: 10.1016/j.cemconres.2006.11.011 – ident: 20 – ident: 47 doi: 10.1016/j.wasman.2013.02.006 – ident: 101 – ident: 57 doi: 10.1016/j.conbuildmat.2014.01.053 – ident: 21 doi: 10.1016/j.conbuildmat.2008.04.012 – ident: 71 doi: 10.1016/j.cemconcomp.2015.04.017 – ident: 73 – ident: 11 – ident: 54 doi: 10.1016/j.conbuildmat.2018.03.270 – ident: 98 doi: 10.1016/j.conbuildmat.2015.07.089 – ident: 84 – ident: 4 doi: 10.1007/s10295-008-0514-7 |
SSID | ssj0037377 |
Score | 2.5026257 |
Snippet | The main problem in using recycled concrete aggregate (RCA) as a construction material is due to the weak adhered mortar which usually has higher porosity and... |
SourceID | proquest crossref jstage |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 151 |
SubjectTerms | Concrete aggregates Construction materials Environmental impact Laboratories Mechanical properties Mortars (material) Porosity Recycled materials Water absorption |
Title | Quality Improvement Techniques for Recycled Concrete Aggregate: A review |
URI | https://www.jstage.jst.go.jp/article/jact/17/4/17_151/_article/-char/en https://www.proquest.com/docview/2232511612 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Journal of Advanced Concrete Technology, 2019/04/20, Vol.17(4), pp.151-167 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEF5FtAc4IMpDBGi1B05EDl6vH5hbVLWKQK2EAMHN2ocNVCUgcA7013dmd71ZSA60Fyfa7NiK5_PMt7OeGUL2tUrrhmci0kCWo7RpikjGmkUSXEkmc9WUpg_Zj5_5-DI9uc6ue73wraVpK4fqz8K8kv_RKoyBXjFL9h80608KA_Ad9AtH0DAc36VjWwDjZWAjAybQZ2PlWJTVFFpAWvgCUhpT-4AgtvVgdANLbAye2aT0p9nmwDxH9W8IqE66nQvFn98KaaOoV6IRAqzErbh3KVNoTlxA-iTA4fnUeDyBDYO8xk3M9vTufjCeOm_qghHM7KskcWA_eYr1jW1e6LDuxsCOlTbl1BvdIgBXGlhQ5urPWmfMbK-Ot3aewyzTX0BhU-Whlwmrab_xcv7dQ1j1oHiFwhUrKoYJ-B8SWGWgmTw985tQvOCmcaf_Tza9E4UPgyu_IjQffwGnv5l37IatXKyRVadCOrKY-UR69WSdrATFJzfI2KGHBuihM_RQQA_t0EM79FCPnmM6ohY7m-Ty-7eLr-PI9dWIFNC3NtJNrjQvRKkykWqtG8XTsohlKXQeKw3eu4YPccQANVzgZlwugaUrzeI61vkR3yJLk4dJvU0oQ6-QaAGSypSGY0leCKVwGZ3JRPfJQXdzKuWKzmPvk9_VAjX0yb6f_GhrrSyeVti77Ce5B9BPSt1M_wNmMILB6JO9Ti2Ve4yfK-DHuMwGpr_zvuvvkuUZ9PfIUvs0rT8DM23lF4Ofv7p3kqo |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quality+Improvement+Techniques+for+Recycled+Concrete+Aggregate%3A+A+review&rft.jtitle=Journal+of+advanced+concrete+technology&rft.au=Shaban%2C+Wafaa+Mohamed&rft.au=Yang%2C+Jian&rft.au=Su%2C+Haolin&rft.au=Mo%2C+Kim+Hung&rft.date=2019-04-20&rft.issn=1346-8014&rft.eissn=1347-3913&rft.volume=17&rft.issue=4&rft.spage=151&rft.epage=167&rft_id=info:doi/10.3151%2Fjact.17.151&rft.externalDBID=n%2Fa&rft.externalDocID=10_3151_jact_17_151 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1346-8014&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1346-8014&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1346-8014&client=summon |