A Secret Key Classification Framework of Symmetric Encryption Algorithm Based on Deep Transfer Learning

The leakage signals, including electromagnetic, energy, time, and temperature, generated during the operation of password devices contain highly correlated key information, which leads to security vulnerabilities. In traditional encryption algorithms, the length of the key greatly affects the upper...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 13; no. 21; p. 12025
Main Authors Cui, Xiaotong, Zhang, Hongxin, Fang, Xing, Wang, Yuanzhen, Wang, Danzhi, Fan, Fan, Shu, Lei
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.11.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The leakage signals, including electromagnetic, energy, time, and temperature, generated during the operation of password devices contain highly correlated key information, which leads to security vulnerabilities. In traditional encryption algorithms, the length of the key greatly affects the upper limit of its security against cracking. Regarding side-channel attacks on long-key algorithms, traditional template attack methods characterize the energy traces using multivariate Gaussian distribution during the template construction phase. The exhaustive key-guessing process is expected to consume a significant amount of time and computational resources. Therefore, to analyze the effectiveness of obtaining key values from the side information of password devices, we propose an innovative attack method based on a divide-and-conquer logical structure, targeting semi-bytes. We construct a collection of key classification submodules with symmetric correlations. By integrating a differential network model for byte-block sets and an end-to-end direct attack method, we form a holistic symmetric decision framework and propose a key classification structure based on deep transfer learning. This structure consists of three main parts: side information data acquisition, analysis of key-value effectiveness, and determination of attack positions. It employs multiple parallel symmetric subnetworks, effectively improving attack efficiency and reducing the key enumeration range. Experimental results show that the optimal attack accuracy of the network model can reach 91%, with an average attack accuracy of 78%. It overcomes overfitting issues under small sample dataset conditions.
AbstractList The leakage signals, including electromagnetic, energy, time, and temperature, generated during the operation of password devices contain highly correlated key information, which leads to security vulnerabilities. In traditional encryption algorithms, the length of the key greatly affects the upper limit of its security against cracking. Regarding side-channel attacks on long-key algorithms, traditional template attack methods characterize the energy traces using multivariate Gaussian distribution during the template construction phase. The exhaustive key-guessing process is expected to consume a significant amount of time and computational resources. Therefore, to analyze the effectiveness of obtaining key values from the side information of password devices, we propose an innovative attack method based on a divide-and-conquer logical structure, targeting semi-bytes. We construct a collection of key classification submodules with symmetric correlations. By integrating a differential network model for byte-block sets and an end-to-end direct attack method, we form a holistic symmetric decision framework and propose a key classification structure based on deep transfer learning. This structure consists of three main parts: side information data acquisition, analysis of key-value effectiveness, and determination of attack positions. It employs multiple parallel symmetric subnetworks, effectively improving attack efficiency and reducing the key enumeration range. Experimental results show that the optimal attack accuracy of the network model can reach 91%, with an average attack accuracy of 78%. It overcomes overfitting issues under small sample dataset conditions.
Audience Academic
Author Shu, Lei
Fan, Fan
Fang, Xing
Cui, Xiaotong
Zhang, Hongxin
Wang, Danzhi
Wang, Yuanzhen
Author_xml – sequence: 1
  givenname: Xiaotong
  orcidid: 0009-0009-6484-9170
  surname: Cui
  fullname: Cui, Xiaotong
– sequence: 2
  givenname: Hongxin
  surname: Zhang
  fullname: Zhang, Hongxin
– sequence: 3
  givenname: Xing
  orcidid: 0000-0002-1801-6831
  surname: Fang
  fullname: Fang, Xing
– sequence: 4
  givenname: Yuanzhen
  orcidid: 0009-0001-2504-1963
  surname: Wang
  fullname: Wang, Yuanzhen
– sequence: 5
  givenname: Danzhi
  surname: Wang
  fullname: Wang, Danzhi
– sequence: 6
  givenname: Fan
  surname: Fan
  fullname: Fan, Fan
– sequence: 7
  givenname: Lei
  orcidid: 0000-0002-5688-1447
  surname: Shu
  fullname: Shu, Lei
BookMark eNptkV1vFCEYhSemJq21d_0BJN66lY9hGC7XtdXGTbxovSbAvIysMzACTbP_Xrprk6YRLiAn5zyB97xrTkIM0DSXBF8xJvEnvSyEUUIopvxNc0ax6FasJeLkxf20uch5h-uShPUEnzXjGt2BTVDQd9ijzaRz9s5bXXwM6CbpGR5j-o2iQ3f7eYaSvEXXwab9cnCspzEmX37N6LPOMKAqfQFY0H3SITtIaAs6BR_G981bp6cMF__O8-bnzfX95ttq--Pr7Wa9XdkWd2VlBzACXNvT1jAzYMcE5pIbiw22uAcutMbSGYkFscQa17uuA865G5zWomPnze2RO0S9U0vys057FbVXByGmUelUvJ1AGRDG2ZZS09JWGtkLTgzumCFMGDLQyvpwZC0p_nmAXNQuPqRQn69o39fxyY7K6ro6ukZdoT64WJK2dQ8we1s7cr7qayEoZ4TjJyw9BmyKOSdwyvpyGHgN-kkRrJ4KVS8LraGPr0LPf_uv_S8yYqM7
CitedBy_id crossref_primary_10_1109_OJCS_2024_3461808
crossref_primary_10_2478_amns_2024_3171
Cites_doi 10.1016/j.jocs.2023.102078
10.54654/isj.v9i01.974
10.1007/978-3-030-35869-3_8
10.1109/IJCNN.2017.7966373
10.1109/HORA52670.2021.9461395
10.1007/s13389-017-0162-9
10.1016/j.eswa.2017.05.039
10.1109/CVPR.2016.90
10.1145/3274694.3274696
10.1007/978-3-030-77222-2
10.1109/TGRS.2019.2907932
10.1145/3316781.3317934
10.1049/cit2.12026
10.1109/ICIEA.2016.7603830
10.1007/978-3-031-17143-7_18
10.1109/TENSYMP55890.2023.10223652
10.1007/978-1-4899-7641-3_9
10.1007/3-540-68697-5_9
10.1007/s13389-011-0023-x
10.46586/tches.v2023.i4.460-492
10.1109/NORCHIP.2019.8906945
10.46586/tches.v2021.i3.235-274
10.1007/s13389-019-00212-8
10.46586/tches.v2019.i2.107-131
10.3390/cryptography4020015
10.1007/978-3-030-01424-7_27
10.1049/iet-ipr.2019.0985
10.1186/s13638-020-01808-z
10.1109/TCAD.2020.3033495
10.1109/MDAT.2021.3063306
10.5755/j02.eie.33995
10.1145/3411504.3421214
10.1145/3569577
10.1007/978-3-319-46493-0_38
10.1109/HOST45689.2020.9300261
10.1007/s13389-019-00209-3
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/app132112025
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_be7bfc422b4249b98751b063b137b1d2
A772531502
10_3390_app132112025
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
PMFND
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c406t-cdeb7ef4824b3bd0f370595bc0b0c08e57aa09fb9071c1cbf8f66e555fdfaa763
IEDL.DBID DOA
ISSN 2076-3417
IngestDate Wed Aug 27 01:22:16 EDT 2025
Sun Jun 29 15:53:00 EDT 2025
Tue Jun 10 21:14:38 EDT 2025
Tue Jul 01 04:34:21 EDT 2025
Thu Apr 24 23:02:38 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-cdeb7ef4824b3bd0f370595bc0b0c08e57aa09fb9071c1cbf8f66e555fdfaa763
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0001-2504-1963
0009-0009-6484-9170
0000-0002-1801-6831
0000-0002-5688-1447
OpenAccessLink https://doaj.org/article/be7bfc422b4249b98751b063b137b1d2
PQID 2888109629
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_be7bfc422b4249b98751b063b137b1d2
proquest_journals_2888109629
gale_infotracacademiconefile_A772531502
crossref_citationtrail_10_3390_app132112025
crossref_primary_10_3390_app132112025
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Lerman (ref_6) 2018; 8
Hettwer (ref_24) 2020; 10
Picek (ref_34) 2023; 55
ref_12
Bhasin (ref_26) 2019; Volume 11947
ref_33
Costes (ref_5) 2023; 4
Suthaharan (ref_9) 2016; Volume 36
ref_32
ref_31
ref_30
Affonso (ref_13) 2017; 85
ref_19
ref_18
ref_17
ref_39
ref_16
ref_15
ref_37
Bose (ref_11) 2020; 14
Chabanne (ref_23) 2021; 6
Sun (ref_28) 2021; 69
Atluri (ref_29) 2022; Volume 13556
Zhou (ref_36) 2020; 10
Ahmed (ref_4) 2023; 29
Li (ref_14) 2019; 57
ref_25
ref_22
ref_21
ref_20
Lu (ref_35) 2021; 3
ref_41
ref_40
ref_1
Schellenberg (ref_42) 2021; 38
ref_3
ref_2
ref_27
Zhang (ref_38) 2020; 40
ref_8
Tammina (ref_10) 2019; 9
ref_7
References_xml – ident: ref_21
  doi: 10.1016/j.jocs.2023.102078
– ident: ref_17
  doi: 10.54654/isj.v9i01.974
– ident: ref_30
– volume: Volume 11947
  start-page: 86
  year: 2019
  ident: ref_26
  article-title: One Trace Is All It Takes: Machine Learning-Based Side-Channel Attack on EdDSA
  publication-title: Security, Privacy, and Applied Cryptography Engineering
  doi: 10.1007/978-3-030-35869-3_8
– ident: ref_27
  doi: 10.1109/IJCNN.2017.7966373
– ident: ref_15
  doi: 10.1109/HORA52670.2021.9461395
– volume: 8
  start-page: 301
  year: 2018
  ident: ref_6
  article-title: Template attacks versus machine learning revisited and the curse of dimensionality in side-channel analysis: Extended version
  publication-title: J. Cryptogr. Eng.
  doi: 10.1007/s13389-017-0162-9
– volume: 85
  start-page: 114
  year: 2017
  ident: ref_13
  article-title: Deep learning for biological image classification
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.05.039
– ident: ref_40
  doi: 10.1109/CVPR.2016.90
– ident: ref_32
  doi: 10.1145/3274694.3274696
– ident: ref_1
  doi: 10.1007/978-3-030-77222-2
– volume: 57
  start-page: 6690
  year: 2019
  ident: ref_14
  article-title: Deep learning for hyperspectral image classification: An overview
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2019.2907932
– ident: ref_20
  doi: 10.1145/3316781.3317934
– volume: 6
  start-page: 3
  year: 2021
  ident: ref_23
  article-title: Side channel attacks for architecture extraction of neural networks
  publication-title: CAAI Trans. Intell. Technol.
  doi: 10.1049/cit2.12026
– ident: ref_16
  doi: 10.1109/ICIEA.2016.7603830
– volume: Volume 13556
  start-page: 364
  year: 2022
  ident: ref_29
  article-title: Precise Extraction of Deep Learning Models via Side-Channel Attacks on Edge/Endpoint Devices
  publication-title: Computer Security—ESORICS 2022
  doi: 10.1007/978-3-031-17143-7_18
– ident: ref_37
  doi: 10.1109/TENSYMP55890.2023.10223652
– volume: Volume 36
  start-page: 207
  year: 2016
  ident: ref_9
  article-title: Support Vector Machine
  publication-title: Machine Learning Models and Algorithms for Big Data Classification
  doi: 10.1007/978-1-4899-7641-3_9
– ident: ref_3
  doi: 10.1007/3-540-68697-5_9
– ident: ref_25
  doi: 10.1007/s13389-011-0023-x
– volume: 4
  start-page: 460
  year: 2023
  ident: ref_5
  article-title: Pincering SKINNY by Exploiting Slow Diffusion: Enhancing Differential Power Analysis with Cluster Graph Inference
  publication-title: IACR Trans. Cryptogr. Hardw. Embed. Syst.
  doi: 10.46586/tches.v2023.i4.460-492
– ident: ref_33
  doi: 10.1109/NORCHIP.2019.8906945
– volume: 3
  start-page: 235
  year: 2021
  ident: ref_35
  article-title: Pay attention to raw traces: A deep learning architecture for end-to-end profiling attacks
  publication-title: IACR Trans. Cryptogr. Hardw. Embed. Syst.
  doi: 10.46586/tches.v2021.i3.235-274
– volume: 10
  start-page: 135
  year: 2020
  ident: ref_24
  article-title: Applications of machine learning techniques in side-channel attacks: A survey
  publication-title: J. Cryptogr. Eng.
  doi: 10.1007/s13389-019-00212-8
– volume: 9
  start-page: 143
  year: 2019
  ident: ref_10
  article-title: Transfer learning using vgg-16 with deep convolutional neural network for classifying images
  publication-title: Int. J. Sci. Res. Publ.
– ident: ref_12
  doi: 10.46586/tches.v2019.i2.107-131
– ident: ref_31
– ident: ref_2
– ident: ref_8
  doi: 10.3390/cryptography4020015
– volume: 69
  start-page: 1742
  year: 2021
  ident: ref_28
  article-title: Electromagnetic side-channel hardware trojan detection based on transfer learning
  publication-title: IEEE Trans. Circuits Syst. II Express Briefs
– ident: ref_41
  doi: 10.1007/978-3-030-01424-7_27
– volume: 14
  start-page: 688
  year: 2020
  ident: ref_11
  article-title: Efficient inception V2 based deep convolutional neural network for real-time hand action recognition
  publication-title: IET Image Process.
  doi: 10.1049/iet-ipr.2019.0985
– ident: ref_18
  doi: 10.1186/s13638-020-01808-z
– volume: 40
  start-page: 1207
  year: 2020
  ident: ref_38
  article-title: Multilabel deep learning-based side-channel attack
  publication-title: IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.
  doi: 10.1109/TCAD.2020.3033495
– volume: 38
  start-page: 58
  year: 2021
  ident: ref_42
  article-title: An inside job: Remote power analysis attacks on FPGAs
  publication-title: IEEE Des. Test
  doi: 10.1109/MDAT.2021.3063306
– volume: 29
  start-page: 76
  year: 2023
  ident: ref_4
  article-title: Design of Convolutional Neural Networks Architecture for Non-Profiled Side-Channel Attack Detection
  publication-title: Elektron. Elektrotechnika
  doi: 10.5755/j02.eie.33995
– ident: ref_22
  doi: 10.1145/3411504.3421214
– volume: 55
  start-page: 1
  year: 2023
  ident: ref_34
  article-title: Sok: Deep learning-based physical side-channel analysis
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3569577
– ident: ref_39
  doi: 10.1007/978-3-319-46493-0_38
– ident: ref_7
  doi: 10.1109/HOST45689.2020.9300261
– ident: ref_19
– volume: 10
  start-page: 85
  year: 2020
  ident: ref_36
  article-title: Deep learning mitigates but does not annihilate the need of aligned traces and a generalized ResNet model for side-channel attacks
  publication-title: J. Cryptogr. Eng.
  doi: 10.1007/s13389-019-00209-3
SSID ssj0000913810
Score 2.2858858
Snippet The leakage signals, including electromagnetic, energy, time, and temperature, generated during the operation of password devices contain highly correlated key...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 12025
SubjectTerms AES
Algorithms
Classification
Cryptography
Datasets
Deep learning
Design
Efficiency
Electromagnetism
Investment analysis
Machine learning
Neural networks
Radiation
side-channel attack
symmetrical decision
transfer learning
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTxsxELZKuJQDAkrVFKh8aNWialXvrr3rPaGEJkKtiqpSJG6Wx2unB_IgWQ7598xsnDQXuHq9ku3xPD3zDWMftZchWJCJV4VMJPg0qZyjWplQWA0QikAB_V_XxdWt_HGn7mLAbRHTKtcysRXU9dRRjPxbhq5aivZ2Vl3MHhLqGkWvq7GFxg7bRRGsdYft9gfXv_9soiyEeom_rTLec_Tv6V0YHTC0MgR1x97SRS1k_3OCudU2wwO2H81E3lvR9ZC98pMjtrcFHnjEDiNbLviXiB19_oaNevyGDMGG__RL3na8pFyg9vj5cJ2IxaeB3yzHY-qm5fhg4ubLVnLw3v0I99z8G_M-area49B372e81WjBz3mEYx0ds9vh4O_lVRJ7KSQOVXaTuNpD6YPUmYQcahHyEg0rBU6AcEJ7VVorqgDoK6cudRB0KAqvlAp1sBaF0FvWmUwn_h3jqatsbnWAHMmL3hRApZ3NKpFVVNIguuzr-lSNi0Dj1O_i3qDDQTQw2zTosk-b2bMVwMYz8_pEoM0cgsVuB6bzkYlcZsCXEJzMMpDoVuK6SpUCGmGQ5iWkddZln4m8hpgXl-RsrEHAjREMlumhr4FCSQmcebq-ASZy9cL8v4PvX_58wl5TW_pVzeIp6zTzR3-GxksDH-INfQKTO-9X
  priority: 102
  providerName: ProQuest
Title A Secret Key Classification Framework of Symmetric Encryption Algorithm Based on Deep Transfer Learning
URI https://www.proquest.com/docview/2888109629
https://doaj.org/article/be7bfc422b4249b98751b063b137b1d2
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BbtQwELVKe4EDogXEQln5UAQIRTiJnTjHXdhtBaJClEq9WR7HXpC6u9U2HPbvmXG8VS4VF67WHGzPeGZeMvOGsRPtZQgWZOZVJTMJPs8a56hXJlRWA4Qq0Af9b-fV2aX8cqWuBqO-qCaspwfuL-4j-BqCk0UBEpECIERWOWBchbysIW-j98WYNwBT0Qc3OVFX9ZXuJeJ6-h-MwAuzC0FTsQcxKFL13-eQY5SZP2GPU3rIJ_22DtmeXx2xRwPSwCN2mJ7jLX-XOKPfP2WLCb-gBLDjX_2Wx0mXVAMUr53PdwVYfB34xXa5pClajs9WbrONHoNPrhfrze_u15JPMaq1HJc-e3_DYyQLfsMTDeviGbucz35-OsvSDIXMYajuMtd6qH2QupBQQitCWWNCpcAJEE5or2prRRMAMXLucgdBh6rySqnQBmvR-Txn-6v1yr9gPHeNLa0OUKJaEUUBKsPZohFFQ60MYsQ-7G7VuEQwTnMurg0CDdKBGepgxN7cSd_0xBr3yE1JQXcyRIcdF9BITDIS8y8jGbG3pF5Djxa35GzqPcCDEf2VmSDGQGekBEoe7yzApNd8awqt0Ziaqmhe_o_dvGIPaWh939F4zPa7zR__GlObDsbsgZ6fjtnBdHb-_cc42vRfzOD4fQ
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0CrlABwQLSCWFvCBChCKcBzndUBoS7ts6ePSVurNeBx7OXQf3Q1C-1N8IzOJs-yl3Hq1R9FkZjwPex6MvS2c8t6AilyaqUiBi6PSWqqV8ZkpAHzm6UL_9CwbXqrvV-nVBvvT1cJQWmWnExtFXU0t3ZF_khiqxehvy_LL7CaiqVH0utqN0GjF4tgtf2PItvh8dID83ZNycHjxdRiFqQKRReNVR7ZykDuvCqkggUr4JEcXIwUrQFhRuDQ3RpQeMGqMbWzBFz7LXJqmvvLG4HHE795j91WClpwq0wffVnc61GMTkWzz63Ff0Cs0hnvo0wiaxb1m-ZoBAbeZgca2DZ6wx8Ep5f1WirbYhptss0drrQq32VZQAgv-PnSq_vCUjfr8nNzOmiNNeDNfkzKPGmbzQZf2xaeeny_HY5rdZfnhxM6XjZ7i_esRUrj-Oeb7aEsrjksHzs14Yz-9m_PQ_HX0jF3eCY2fs83JdOJeMB7b0iSm8JCgMGHsBlAW1shSyJIKKESPfeyoqm1oa07TNa41hjfEA73Ogx7bW0HP2nYet8DtE4NWMNSEu1mYzkc6nGkNLgdvlZSgMIhFvPI0BnT5IE5yiCvZY--IvZpUBaJkTah4wB-jplu6j5ENqsBUIORuJwE66JCF_ifxL_-__YY9GF6cnuiTo7PjHfYQ8U_aasldtlnPf7lX6DbV8LqRVc5-3PXh-AuAgizk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKKiE4IFpABAr4QAUIrer1vg8IJSRRSyGqKJV6cz1eOxyaB8kilL_Gr2Nm1xtyKbded63VrOf52fNg7HVuY-c0xIFN0jiIwYZBYQzVyrhU5wAudXSg_3WcHl_Eny-Tyx32p62FobTK1ibWhrqcGzojP5II1UKMt2Vx5HxaxNlg9HHxM6AJUnTT2o7TaETk1K5_I3xbfTgZIK8PpRwNv386DvyEgcCgI6sCU1rIrItzGUMEpXBRhuFGAkaAMCK3Saa1KBwgggxNaMDlLk1tkiSudFqjauJ377DdjFBRh-32h-Ozb5sTHuq4iSQ32fZRVAi6k0bwhxGOoMncW36wHhdwk1OoPd3oIXvgQ1Tea2Rqj-3Y2T67v9W4cJ_teZOw4m993-p3j9ikx88pCK047gqvp21SHlLNej5qk8D43PHz9XRKk7wMH87Mcl1bLd67nuAeVz-mvI-eteT4aGDtgtfe1Nkl961gJ4_Zxa3s8hPWmc1n9injoSl0pHMHEYoWIjmAIjdaFkIWVE4huux9u6vK-CbnNGvjWiHYIR6obR502eFm9aJp7nHDuj4xaLOGWnLXD-bLifIarsBm4EwsJcQIaZGuLAkBA0AIowzCUnbZG2KvIsOBJBnt6x_wx6gFl-ohzkGDmAhcedBKgPIWZaX-yf-z_79-xe6iYqgvJ-PT5-wekh81pZMHrFMtf9kXGENV8NILK2dXt60ffwFV5zJ2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Secret+Key+Classification+Framework+of+Symmetric+Encryption+Algorithm+Based+on+Deep+Transfer+Learning&rft.jtitle=Applied+sciences&rft.au=Xiaotong+Cui&rft.au=Hongxin+Zhang&rft.au=Xing+Fang&rft.au=Yuanzhen+Wang&rft.date=2023-11-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=13&rft.issue=21&rft.spage=12025&rft_id=info:doi/10.3390%2Fapp132112025&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_be7bfc422b4249b98751b063b137b1d2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon