A Secret Key Classification Framework of Symmetric Encryption Algorithm Based on Deep Transfer Learning
The leakage signals, including electromagnetic, energy, time, and temperature, generated during the operation of password devices contain highly correlated key information, which leads to security vulnerabilities. In traditional encryption algorithms, the length of the key greatly affects the upper...
Saved in:
Published in | Applied sciences Vol. 13; no. 21; p. 12025 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.11.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The leakage signals, including electromagnetic, energy, time, and temperature, generated during the operation of password devices contain highly correlated key information, which leads to security vulnerabilities. In traditional encryption algorithms, the length of the key greatly affects the upper limit of its security against cracking. Regarding side-channel attacks on long-key algorithms, traditional template attack methods characterize the energy traces using multivariate Gaussian distribution during the template construction phase. The exhaustive key-guessing process is expected to consume a significant amount of time and computational resources. Therefore, to analyze the effectiveness of obtaining key values from the side information of password devices, we propose an innovative attack method based on a divide-and-conquer logical structure, targeting semi-bytes. We construct a collection of key classification submodules with symmetric correlations. By integrating a differential network model for byte-block sets and an end-to-end direct attack method, we form a holistic symmetric decision framework and propose a key classification structure based on deep transfer learning. This structure consists of three main parts: side information data acquisition, analysis of key-value effectiveness, and determination of attack positions. It employs multiple parallel symmetric subnetworks, effectively improving attack efficiency and reducing the key enumeration range. Experimental results show that the optimal attack accuracy of the network model can reach 91%, with an average attack accuracy of 78%. It overcomes overfitting issues under small sample dataset conditions. |
---|---|
AbstractList | The leakage signals, including electromagnetic, energy, time, and temperature, generated during the operation of password devices contain highly correlated key information, which leads to security vulnerabilities. In traditional encryption algorithms, the length of the key greatly affects the upper limit of its security against cracking. Regarding side-channel attacks on long-key algorithms, traditional template attack methods characterize the energy traces using multivariate Gaussian distribution during the template construction phase. The exhaustive key-guessing process is expected to consume a significant amount of time and computational resources. Therefore, to analyze the effectiveness of obtaining key values from the side information of password devices, we propose an innovative attack method based on a divide-and-conquer logical structure, targeting semi-bytes. We construct a collection of key classification submodules with symmetric correlations. By integrating a differential network model for byte-block sets and an end-to-end direct attack method, we form a holistic symmetric decision framework and propose a key classification structure based on deep transfer learning. This structure consists of three main parts: side information data acquisition, analysis of key-value effectiveness, and determination of attack positions. It employs multiple parallel symmetric subnetworks, effectively improving attack efficiency and reducing the key enumeration range. Experimental results show that the optimal attack accuracy of the network model can reach 91%, with an average attack accuracy of 78%. It overcomes overfitting issues under small sample dataset conditions. |
Audience | Academic |
Author | Shu, Lei Fan, Fan Fang, Xing Cui, Xiaotong Zhang, Hongxin Wang, Danzhi Wang, Yuanzhen |
Author_xml | – sequence: 1 givenname: Xiaotong orcidid: 0009-0009-6484-9170 surname: Cui fullname: Cui, Xiaotong – sequence: 2 givenname: Hongxin surname: Zhang fullname: Zhang, Hongxin – sequence: 3 givenname: Xing orcidid: 0000-0002-1801-6831 surname: Fang fullname: Fang, Xing – sequence: 4 givenname: Yuanzhen orcidid: 0009-0001-2504-1963 surname: Wang fullname: Wang, Yuanzhen – sequence: 5 givenname: Danzhi surname: Wang fullname: Wang, Danzhi – sequence: 6 givenname: Fan surname: Fan fullname: Fan, Fan – sequence: 7 givenname: Lei orcidid: 0000-0002-5688-1447 surname: Shu fullname: Shu, Lei |
BookMark | eNptkV1vFCEYhSemJq21d_0BJN66lY9hGC7XtdXGTbxovSbAvIysMzACTbP_Xrprk6YRLiAn5zyB97xrTkIM0DSXBF8xJvEnvSyEUUIopvxNc0ax6FasJeLkxf20uch5h-uShPUEnzXjGt2BTVDQd9ijzaRz9s5bXXwM6CbpGR5j-o2iQ3f7eYaSvEXXwab9cnCspzEmX37N6LPOMKAqfQFY0H3SITtIaAs6BR_G981bp6cMF__O8-bnzfX95ttq--Pr7Wa9XdkWd2VlBzACXNvT1jAzYMcE5pIbiw22uAcutMbSGYkFscQa17uuA865G5zWomPnze2RO0S9U0vys057FbVXByGmUelUvJ1AGRDG2ZZS09JWGtkLTgzumCFMGDLQyvpwZC0p_nmAXNQuPqRQn69o39fxyY7K6ro6ukZdoT64WJK2dQ8we1s7cr7qayEoZ4TjJyw9BmyKOSdwyvpyGHgN-kkRrJ4KVS8LraGPr0LPf_uv_S8yYqM7 |
CitedBy_id | crossref_primary_10_1109_OJCS_2024_3461808 crossref_primary_10_2478_amns_2024_3171 |
Cites_doi | 10.1016/j.jocs.2023.102078 10.54654/isj.v9i01.974 10.1007/978-3-030-35869-3_8 10.1109/IJCNN.2017.7966373 10.1109/HORA52670.2021.9461395 10.1007/s13389-017-0162-9 10.1016/j.eswa.2017.05.039 10.1109/CVPR.2016.90 10.1145/3274694.3274696 10.1007/978-3-030-77222-2 10.1109/TGRS.2019.2907932 10.1145/3316781.3317934 10.1049/cit2.12026 10.1109/ICIEA.2016.7603830 10.1007/978-3-031-17143-7_18 10.1109/TENSYMP55890.2023.10223652 10.1007/978-1-4899-7641-3_9 10.1007/3-540-68697-5_9 10.1007/s13389-011-0023-x 10.46586/tches.v2023.i4.460-492 10.1109/NORCHIP.2019.8906945 10.46586/tches.v2021.i3.235-274 10.1007/s13389-019-00212-8 10.46586/tches.v2019.i2.107-131 10.3390/cryptography4020015 10.1007/978-3-030-01424-7_27 10.1049/iet-ipr.2019.0985 10.1186/s13638-020-01808-z 10.1109/TCAD.2020.3033495 10.1109/MDAT.2021.3063306 10.5755/j02.eie.33995 10.1145/3411504.3421214 10.1145/3569577 10.1007/978-3-319-46493-0_38 10.1109/HOST45689.2020.9300261 10.1007/s13389-019-00209-3 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/app132112025 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 2076-3417 |
ExternalDocumentID | oai_doaj_org_article_be7bfc422b4249b98751b063b137b1d2 A772531502 10_3390_app132112025 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS PMFND ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c406t-cdeb7ef4824b3bd0f370595bc0b0c08e57aa09fb9071c1cbf8f66e555fdfaa763 |
IEDL.DBID | DOA |
ISSN | 2076-3417 |
IngestDate | Wed Aug 27 01:22:16 EDT 2025 Sun Jun 29 15:53:00 EDT 2025 Tue Jun 10 21:14:38 EDT 2025 Tue Jul 01 04:34:21 EDT 2025 Thu Apr 24 23:02:38 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c406t-cdeb7ef4824b3bd0f370595bc0b0c08e57aa09fb9071c1cbf8f66e555fdfaa763 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0001-2504-1963 0009-0009-6484-9170 0000-0002-1801-6831 0000-0002-5688-1447 |
OpenAccessLink | https://doaj.org/article/be7bfc422b4249b98751b063b137b1d2 |
PQID | 2888109629 |
PQPubID | 2032433 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_be7bfc422b4249b98751b063b137b1d2 proquest_journals_2888109629 gale_infotracacademiconefile_A772531502 crossref_citationtrail_10_3390_app132112025 crossref_primary_10_3390_app132112025 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-11-01 |
PublicationDateYYYYMMDD | 2023-11-01 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Applied sciences |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Lerman (ref_6) 2018; 8 Hettwer (ref_24) 2020; 10 Picek (ref_34) 2023; 55 ref_12 Bhasin (ref_26) 2019; Volume 11947 ref_33 Costes (ref_5) 2023; 4 Suthaharan (ref_9) 2016; Volume 36 ref_32 ref_31 ref_30 Affonso (ref_13) 2017; 85 ref_19 ref_18 ref_17 ref_39 ref_16 ref_15 ref_37 Bose (ref_11) 2020; 14 Chabanne (ref_23) 2021; 6 Sun (ref_28) 2021; 69 Atluri (ref_29) 2022; Volume 13556 Zhou (ref_36) 2020; 10 Ahmed (ref_4) 2023; 29 Li (ref_14) 2019; 57 ref_25 ref_22 ref_21 ref_20 Lu (ref_35) 2021; 3 ref_41 ref_40 ref_1 Schellenberg (ref_42) 2021; 38 ref_3 ref_2 ref_27 Zhang (ref_38) 2020; 40 ref_8 Tammina (ref_10) 2019; 9 ref_7 |
References_xml | – ident: ref_21 doi: 10.1016/j.jocs.2023.102078 – ident: ref_17 doi: 10.54654/isj.v9i01.974 – ident: ref_30 – volume: Volume 11947 start-page: 86 year: 2019 ident: ref_26 article-title: One Trace Is All It Takes: Machine Learning-Based Side-Channel Attack on EdDSA publication-title: Security, Privacy, and Applied Cryptography Engineering doi: 10.1007/978-3-030-35869-3_8 – ident: ref_27 doi: 10.1109/IJCNN.2017.7966373 – ident: ref_15 doi: 10.1109/HORA52670.2021.9461395 – volume: 8 start-page: 301 year: 2018 ident: ref_6 article-title: Template attacks versus machine learning revisited and the curse of dimensionality in side-channel analysis: Extended version publication-title: J. Cryptogr. Eng. doi: 10.1007/s13389-017-0162-9 – volume: 85 start-page: 114 year: 2017 ident: ref_13 article-title: Deep learning for biological image classification publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.05.039 – ident: ref_40 doi: 10.1109/CVPR.2016.90 – ident: ref_32 doi: 10.1145/3274694.3274696 – ident: ref_1 doi: 10.1007/978-3-030-77222-2 – volume: 57 start-page: 6690 year: 2019 ident: ref_14 article-title: Deep learning for hyperspectral image classification: An overview publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2019.2907932 – ident: ref_20 doi: 10.1145/3316781.3317934 – volume: 6 start-page: 3 year: 2021 ident: ref_23 article-title: Side channel attacks for architecture extraction of neural networks publication-title: CAAI Trans. Intell. Technol. doi: 10.1049/cit2.12026 – ident: ref_16 doi: 10.1109/ICIEA.2016.7603830 – volume: Volume 13556 start-page: 364 year: 2022 ident: ref_29 article-title: Precise Extraction of Deep Learning Models via Side-Channel Attacks on Edge/Endpoint Devices publication-title: Computer Security—ESORICS 2022 doi: 10.1007/978-3-031-17143-7_18 – ident: ref_37 doi: 10.1109/TENSYMP55890.2023.10223652 – volume: Volume 36 start-page: 207 year: 2016 ident: ref_9 article-title: Support Vector Machine publication-title: Machine Learning Models and Algorithms for Big Data Classification doi: 10.1007/978-1-4899-7641-3_9 – ident: ref_3 doi: 10.1007/3-540-68697-5_9 – ident: ref_25 doi: 10.1007/s13389-011-0023-x – volume: 4 start-page: 460 year: 2023 ident: ref_5 article-title: Pincering SKINNY by Exploiting Slow Diffusion: Enhancing Differential Power Analysis with Cluster Graph Inference publication-title: IACR Trans. Cryptogr. Hardw. Embed. Syst. doi: 10.46586/tches.v2023.i4.460-492 – ident: ref_33 doi: 10.1109/NORCHIP.2019.8906945 – volume: 3 start-page: 235 year: 2021 ident: ref_35 article-title: Pay attention to raw traces: A deep learning architecture for end-to-end profiling attacks publication-title: IACR Trans. Cryptogr. Hardw. Embed. Syst. doi: 10.46586/tches.v2021.i3.235-274 – volume: 10 start-page: 135 year: 2020 ident: ref_24 article-title: Applications of machine learning techniques in side-channel attacks: A survey publication-title: J. Cryptogr. Eng. doi: 10.1007/s13389-019-00212-8 – volume: 9 start-page: 143 year: 2019 ident: ref_10 article-title: Transfer learning using vgg-16 with deep convolutional neural network for classifying images publication-title: Int. J. Sci. Res. Publ. – ident: ref_12 doi: 10.46586/tches.v2019.i2.107-131 – ident: ref_31 – ident: ref_2 – ident: ref_8 doi: 10.3390/cryptography4020015 – volume: 69 start-page: 1742 year: 2021 ident: ref_28 article-title: Electromagnetic side-channel hardware trojan detection based on transfer learning publication-title: IEEE Trans. Circuits Syst. II Express Briefs – ident: ref_41 doi: 10.1007/978-3-030-01424-7_27 – volume: 14 start-page: 688 year: 2020 ident: ref_11 article-title: Efficient inception V2 based deep convolutional neural network for real-time hand action recognition publication-title: IET Image Process. doi: 10.1049/iet-ipr.2019.0985 – ident: ref_18 doi: 10.1186/s13638-020-01808-z – volume: 40 start-page: 1207 year: 2020 ident: ref_38 article-title: Multilabel deep learning-based side-channel attack publication-title: IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. doi: 10.1109/TCAD.2020.3033495 – volume: 38 start-page: 58 year: 2021 ident: ref_42 article-title: An inside job: Remote power analysis attacks on FPGAs publication-title: IEEE Des. Test doi: 10.1109/MDAT.2021.3063306 – volume: 29 start-page: 76 year: 2023 ident: ref_4 article-title: Design of Convolutional Neural Networks Architecture for Non-Profiled Side-Channel Attack Detection publication-title: Elektron. Elektrotechnika doi: 10.5755/j02.eie.33995 – ident: ref_22 doi: 10.1145/3411504.3421214 – volume: 55 start-page: 1 year: 2023 ident: ref_34 article-title: Sok: Deep learning-based physical side-channel analysis publication-title: ACM Comput. Surv. doi: 10.1145/3569577 – ident: ref_39 doi: 10.1007/978-3-319-46493-0_38 – ident: ref_7 doi: 10.1109/HOST45689.2020.9300261 – ident: ref_19 – volume: 10 start-page: 85 year: 2020 ident: ref_36 article-title: Deep learning mitigates but does not annihilate the need of aligned traces and a generalized ResNet model for side-channel attacks publication-title: J. Cryptogr. Eng. doi: 10.1007/s13389-019-00209-3 |
SSID | ssj0000913810 |
Score | 2.2858858 |
Snippet | The leakage signals, including electromagnetic, energy, time, and temperature, generated during the operation of password devices contain highly correlated key... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 12025 |
SubjectTerms | AES Algorithms Classification Cryptography Datasets Deep learning Design Efficiency Electromagnetism Investment analysis Machine learning Neural networks Radiation side-channel attack symmetrical decision transfer learning |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTxsxELZKuJQDAkrVFKh8aNWialXvrr3rPaGEJkKtiqpSJG6Wx2unB_IgWQ7598xsnDQXuHq9ku3xPD3zDWMftZchWJCJV4VMJPg0qZyjWplQWA0QikAB_V_XxdWt_HGn7mLAbRHTKtcysRXU9dRRjPxbhq5aivZ2Vl3MHhLqGkWvq7GFxg7bRRGsdYft9gfXv_9soiyEeom_rTLec_Tv6V0YHTC0MgR1x97SRS1k_3OCudU2wwO2H81E3lvR9ZC98pMjtrcFHnjEDiNbLviXiB19_oaNevyGDMGG__RL3na8pFyg9vj5cJ2IxaeB3yzHY-qm5fhg4ubLVnLw3v0I99z8G_M-area49B372e81WjBz3mEYx0ds9vh4O_lVRJ7KSQOVXaTuNpD6YPUmYQcahHyEg0rBU6AcEJ7VVorqgDoK6cudRB0KAqvlAp1sBaF0FvWmUwn_h3jqatsbnWAHMmL3hRApZ3NKpFVVNIguuzr-lSNi0Dj1O_i3qDDQTQw2zTosk-b2bMVwMYz8_pEoM0cgsVuB6bzkYlcZsCXEJzMMpDoVuK6SpUCGmGQ5iWkddZln4m8hpgXl-RsrEHAjREMlumhr4FCSQmcebq-ASZy9cL8v4PvX_58wl5TW_pVzeIp6zTzR3-GxksDH-INfQKTO-9X priority: 102 providerName: ProQuest |
Title | A Secret Key Classification Framework of Symmetric Encryption Algorithm Based on Deep Transfer Learning |
URI | https://www.proquest.com/docview/2888109629 https://doaj.org/article/be7bfc422b4249b98751b063b137b1d2 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BbtQwELVKe4EDogXEQln5UAQIRTiJnTjHXdhtBaJClEq9WR7HXpC6u9U2HPbvmXG8VS4VF67WHGzPeGZeMvOGsRPtZQgWZOZVJTMJPs8a56hXJlRWA4Qq0Af9b-fV2aX8cqWuBqO-qCaspwfuL-4j-BqCk0UBEpECIERWOWBchbysIW-j98WYNwBT0Qc3OVFX9ZXuJeJ6-h-MwAuzC0FTsQcxKFL13-eQY5SZP2GPU3rIJ_22DtmeXx2xRwPSwCN2mJ7jLX-XOKPfP2WLCb-gBLDjX_2Wx0mXVAMUr53PdwVYfB34xXa5pClajs9WbrONHoNPrhfrze_u15JPMaq1HJc-e3_DYyQLfsMTDeviGbucz35-OsvSDIXMYajuMtd6qH2QupBQQitCWWNCpcAJEE5or2prRRMAMXLucgdBh6rySqnQBmvR-Txn-6v1yr9gPHeNLa0OUKJaEUUBKsPZohFFQ60MYsQ-7G7VuEQwTnMurg0CDdKBGepgxN7cSd_0xBr3yE1JQXcyRIcdF9BITDIS8y8jGbG3pF5Djxa35GzqPcCDEf2VmSDGQGekBEoe7yzApNd8awqt0Ziaqmhe_o_dvGIPaWh939F4zPa7zR__GlObDsbsgZ6fjtnBdHb-_cc42vRfzOD4fQ |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0CrlABwQLSCWFvCBChCKcBzndUBoS7ts6ePSVurNeBx7OXQf3Q1C-1N8IzOJs-yl3Hq1R9FkZjwPex6MvS2c8t6AilyaqUiBi6PSWqqV8ZkpAHzm6UL_9CwbXqrvV-nVBvvT1cJQWmWnExtFXU0t3ZF_khiqxehvy_LL7CaiqVH0utqN0GjF4tgtf2PItvh8dID83ZNycHjxdRiFqQKRReNVR7ZykDuvCqkggUr4JEcXIwUrQFhRuDQ3RpQeMGqMbWzBFz7LXJqmvvLG4HHE795j91WClpwq0wffVnc61GMTkWzz63Ff0Cs0hnvo0wiaxb1m-ZoBAbeZgca2DZ6wx8Ep5f1WirbYhptss0drrQq32VZQAgv-PnSq_vCUjfr8nNzOmiNNeDNfkzKPGmbzQZf2xaeeny_HY5rdZfnhxM6XjZ7i_esRUrj-Oeb7aEsrjksHzs14Yz-9m_PQ_HX0jF3eCY2fs83JdOJeMB7b0iSm8JCgMGHsBlAW1shSyJIKKESPfeyoqm1oa07TNa41hjfEA73Ogx7bW0HP2nYet8DtE4NWMNSEu1mYzkc6nGkNLgdvlZSgMIhFvPI0BnT5IE5yiCvZY--IvZpUBaJkTah4wB-jplu6j5ENqsBUIORuJwE66JCF_ifxL_-__YY9GF6cnuiTo7PjHfYQ8U_aasldtlnPf7lX6DbV8LqRVc5-3PXh-AuAgizk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKKiE4IFpABAr4QAUIrer1vg8IJSRRSyGqKJV6cz1eOxyaB8kilL_Gr2Nm1xtyKbded63VrOf52fNg7HVuY-c0xIFN0jiIwYZBYQzVyrhU5wAudXSg_3WcHl_Eny-Tyx32p62FobTK1ibWhrqcGzojP5II1UKMt2Vx5HxaxNlg9HHxM6AJUnTT2o7TaETk1K5_I3xbfTgZIK8PpRwNv386DvyEgcCgI6sCU1rIrItzGUMEpXBRhuFGAkaAMCK3Saa1KBwgggxNaMDlLk1tkiSudFqjauJ377DdjFBRh-32h-Ozb5sTHuq4iSQ32fZRVAi6k0bwhxGOoMncW36wHhdwk1OoPd3oIXvgQ1Tea2Rqj-3Y2T67v9W4cJ_teZOw4m993-p3j9ikx88pCK047gqvp21SHlLNej5qk8D43PHz9XRKk7wMH87Mcl1bLd67nuAeVz-mvI-eteT4aGDtgtfe1Nkl961gJ4_Zxa3s8hPWmc1n9injoSl0pHMHEYoWIjmAIjdaFkIWVE4huux9u6vK-CbnNGvjWiHYIR6obR502eFm9aJp7nHDuj4xaLOGWnLXD-bLifIarsBm4EwsJcQIaZGuLAkBA0AIowzCUnbZG2KvIsOBJBnt6x_wx6gFl-ohzkGDmAhcedBKgPIWZaX-yf-z_79-xe6iYqgvJ-PT5-wekh81pZMHrFMtf9kXGENV8NILK2dXt60ffwFV5zJ2 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Secret+Key+Classification+Framework+of+Symmetric+Encryption+Algorithm+Based+on+Deep+Transfer+Learning&rft.jtitle=Applied+sciences&rft.au=Xiaotong+Cui&rft.au=Hongxin+Zhang&rft.au=Xing+Fang&rft.au=Yuanzhen+Wang&rft.date=2023-11-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=13&rft.issue=21&rft.spage=12025&rft_id=info:doi/10.3390%2Fapp132112025&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_be7bfc422b4249b98751b063b137b1d2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |