Measuring HR analytics maturity: supporting the development of a roadmap for data-driven human resources management
PurposeToday, companies are struggling to develop their human resources analytics (HRA) capability, although interest in the subject is rapidly increasing. Furthermore, the academic literature on the subject is immature with limited practical guidance or comprehensive models that could support organ...
Saved in:
Published in | Management decision Vol. 62; no. 13; pp. 243 - 282 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Emerald Publishing Limited
2024
Emerald Group Publishing Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | PurposeToday, companies are struggling to develop their human resources analytics (HRA) capability, although interest in the subject is rapidly increasing. Furthermore, the academic literature on the subject is immature with limited practical guidance or comprehensive models that could support organisations in the development of their HRA capability. To address this issue, the aim of this paper is to provide a maturity model – i.e. HRAMM – and an interdependency matrix through which an organisation can (1) operationalise its HRA capability and assess its organisational maturity; (2) generate harmonious development roadmaps to improve its HRA capability; and (3) enable benchmarking and continuous improvement.Design/methodology/approachThe research described in this paper is based on the popular methodology proposed by Becker et al. (2009) and the procedure for maturity evaluation developed by Gastaldi et al. (2018). This method combines academic rigour and field experience in analytics, in a process spanning eight main phases that involves literature reviews and knowledge creation techniques.FindingsWe define HRA maturity through four areas and 14 dimensions, providing a comprehensive model to operationalise HRA capability. Additionally, we argue that HRA maturity develops through an evolutionary path described in four discrete stages of maturity that go beyond traditional analytics sophistication. Lastly, the interdependency matrix reveals specific enablers for the development of HRA.Practical implicationsThis paper provides practitioners with useful tools to monitor, evaluate and plan their HRA development path. Additionally, our research helps practitioners to prioritise their work and investment, generating an effective roadmap for developing and improving their HRA capability.Originality/valueTo the best of the authors’ knowledge, this study is the first to provide a model for evaluating the maturity of HRA capability plus an interdependency matrix to evaluate systematically the prerequisites and synergies among its constituting dimensions. |
---|---|
AbstractList | PurposeToday, companies are struggling to develop their human resources analytics (HRA) capability, although interest in the subject is rapidly increasing. Furthermore, the academic literature on the subject is immature with limited practical guidance or comprehensive models that could support organisations in the development of their HRA capability. To address this issue, the aim of this paper is to provide a maturity model – i.e. HRAMM – and an interdependency matrix through which an organisation can (1) operationalise its HRA capability and assess its organisational maturity; (2) generate harmonious development roadmaps to improve its HRA capability; and (3) enable benchmarking and continuous improvement.Design/methodology/approachThe research described in this paper is based on the popular methodology proposed by Becker et al. (2009) and the procedure for maturity evaluation developed by Gastaldi et al. (2018). This method combines academic rigour and field experience in analytics, in a process spanning eight main phases that involves literature reviews and knowledge creation techniques.FindingsWe define HRA maturity through four areas and 14 dimensions, providing a comprehensive model to operationalise HRA capability. Additionally, we argue that HRA maturity develops through an evolutionary path described in four discrete stages of maturity that go beyond traditional analytics sophistication. Lastly, the interdependency matrix reveals specific enablers for the development of HRA.Practical implicationsThis paper provides practitioners with useful tools to monitor, evaluate and plan their HRA development path. Additionally, our research helps practitioners to prioritise their work and investment, generating an effective roadmap for developing and improving their HRA capability.Originality/valueTo the best of the authors’ knowledge, this study is the first to provide a model for evaluating the maturity of HRA capability plus an interdependency matrix to evaluate systematically the prerequisites and synergies among its constituting dimensions. PurposeToday, companies are struggling to develop their human resources analytics (HRA) capability, although interest in the subject is rapidly increasing. Furthermore, the academic literature on the subject is immature with limited practical guidance or comprehensive models that could support organisations in the development of their HRA capability. To address this issue, the aim of this paper is to provide a maturity model – i.e. HRAMM – and an interdependency matrix through which an organisation can (1) operationalise its HRA capability and assess its organisational maturity; (2) generate harmonious development roadmaps to improve its HRA capability; and (3) enable benchmarking and continuous improvement.Design/methodology/approachThe research described in this paper is based on the popular methodology proposed by Becker et al. (2009) and the procedure for maturity evaluation developed by Gastaldi et al. (2018). This method combines academic rigour and field experience in analytics, in a process spanning eight main phases that involves literature reviews and knowledge creation techniques.FindingsWe define HRA maturity through four areas and 14 dimensions, providing a comprehensive model to operationalise HRA capability. Additionally, we argue that HRA maturity develops through an evolutionary path described in four discrete stages of maturity that go beyond traditional analytics sophistication. Lastly, the interdependency matrix reveals specific enablers for the development of HRA.Practical implicationsThis paper provides practitioners with useful tools to monitor, evaluate and plan their HRA development path. Additionally, our research helps practitioners to prioritise their work and investment, generating an effective roadmap for developing and improving their HRA capability.Originality/valueTo the best of the authors’ knowledge, this study is the first to provide a model for evaluating the maturity of HRA capability plus an interdependency matrix to evaluate systematically the prerequisites and synergies among its constituting dimensions. |
Author | Corso, Mariano Rigamonti, Elia Gastaldi, Luca |
Author_xml | – sequence: 1 givenname: Elia orcidid: 0000-0003-4336-7892 surname: Rigamonti fullname: Rigamonti, Elia email: elia.rigamonti@polimi.it – sequence: 2 givenname: Luca orcidid: 0000-0003-1997-8423 surname: Gastaldi fullname: Gastaldi, Luca email: luca.gastaldi@polimi.it – sequence: 3 givenname: Mariano surname: Corso fullname: Corso, Mariano email: mariano.corso@polimi.it |
BookMark | eNp9kd9L5DAQx4Mo3Lr6fK-Be65O0jRpfTt2724FlwPR5zJtE620SS9Jhf3vTVlfFLmXGRi-n_nxnXNyap3VhHxncMUYlNf7bcZYxoHnKZTqhKyYKspMgoJTsgLgRcaUUN_IeQgvACwvCrkiYa8xzL63T3R3T9HicIh9G-iIMVXj4YaGeZqcj4siPmva6Vc9uGnUNlJnKFLvsBtxosZ52mHErPP9q7b0eR7RUq-Dm32rl44Wn_TCXZAzg0PQl-95TR5__3rY7LK7v39uNz_vslaAjFkrq0aYxpRlqSouTSNKYUByrqpGFQ1U0jAjGyMQ2kRwLaq80JrnBUDXSpmvyY9j38m7f7MOsX5Ju6QTQ50zwRWIMmdJdX1Utd6F4LWpJ9-P6A81g3pxtt5vU64XZ-vF2UQUn4i2jxh7Z6PHfvgPd3Xkkgseh-6LQR9emL8BPjuNgA |
CitedBy_id | crossref_primary_10_33890_innova_v10_n1_2025_2706 crossref_primary_10_1108_EJTD_05_2024_0064 crossref_primary_10_1007_s11301_025_00491_y |
Cites_doi | 10.1016/j.ijinfomgt.2016.12.003 10.1016/j.infsof.2012.07.007 10.1108/PR-04-2020-0247 10.3390/su10103734 10.1002/pfi.119 10.1016/j.jbusres.2022.01.044 10.1016/j.jairtraman.2019.101721 10.1016/j.jbusres.2021.03.054 10.1111/1748-8583.12417 10.1016/j.jmsy.2021.07.011 10.1016/j.dss.2013.10.012 10.1016/j.techfore.2017.10.023 10.1111/1748-8583.12090 10.1007/s11846-022-00574-0 10.1007/s41471-023-00154-2 10.1002/1097-0266(200010/11)21:10/11<981::aid-smj125>3.0.co;2-4 10.1111/j.1748-8583.2005.tb00154.x 10.1080/10580530.2016.1155946 10.1016/j.jbusres.2023.114312 10.1111/1748-8583.12435 10.1080/09585192.2016.1244699 10.1002/hrm.21848 10.1108/BIJ-04-2022-0272 10.1080/09585192.2021.1886148 10.1016/j.hrmr.2020.100795 10.1080/09585192.2020.1847166 10.1007/s12599-012-0220-x 10.3127/ajis.v19i0.1150 10.1108/MD-01-2023-0080 10.20473/jisebi.9.2.276-287 10.1108/CR-12-2019-0163 10.1002/qre.2008 10.1108/PR-09-2021-0690 10.1002/hrm.21916 10.1108/JOEPP-03-2017-0021 10.1007/s12599-023-00805-y 10.1016/j.tre.2017.04.001 10.1016/j.apmrv.2023.04.004 10.1108/JOEPP-04-2020-0071 10.1002/smj.4250050207 10.3390/info11030142 10.1016/j.bushor.2018.01.005 10.1002/smj.332 10.1108/MD-12-2020-1581 10.1108/JWAM-03-2020-0020 10.1111/1748-8583.12283 10.1016/j.hrmr.2023.100974 10.4135/9781412983679.n18 10.1002/hrm.21854 10.1108/joepp-03-2017-0024 10.1108/JOEPP-03-2017-0022 10.1080/23311975.2016.1220663 10.1111/ntwe.12239 10.1007/s12599-009-0044-5 10.1108/JOEPP-04-2017-0035 10.1080/09585192.2018.1446181 10.1016/j.ijinfomgt.2015.01.011 10.1002/(sici)1097-0266(199708)18:7<509::aid-smj882>3.0.co;2-z 10.1080/10580530.2017.1416948 10.1016/j.techsoc.2021.101801 10.1016/j.bushor.2019.10.001 10.1016/j.hrmr.2023.100985 10.1109/tse.2011.2 10.1016/j.ijinfomgt.2018.07.001 10.3390/app12094625 10.1111/1748-8583.12412 10.1108/OIR-10-2020-0469 10.1002/smr.2415 10.1093/0199248540.003.0013 10.1002/hrm.21850 10.1007/s12599-023-00813-y 10.1080/10580530.2011.585583 10.1002/piq.21284 10.1016/j.techfore.2023.122826 10.1108/BIJ-06-2022-0401 10.1108/joepp-03-2017-0029 10.36001/ijphm.2016.v7i4.2466 10.1016/j.ijinfomgt.2018.08.002 10.1108/BIJ-06-2023-0412 10.1177/0149206310371691 10.1080/0960085X.2021.1927213 10.1108/CCIJ-02-2022-0012 10.1287/mnsc.1110.1460 |
ContentType | Journal Article |
Copyright | Elia Rigamonti, Luca Gastaldi and Mariano Corso Elia Rigamonti, Luca Gastaldi and Mariano Corso. This work is published under http://creativecommons.org/licences/by/4.0/legalcode (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: Elia Rigamonti, Luca Gastaldi and Mariano Corso – notice: Elia Rigamonti, Luca Gastaldi and Mariano Corso. This work is published under http://creativecommons.org/licences/by/4.0/legalcode (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | XDTOA AAYXX CITATION 7WY 7WZ 7XB 8AO 8FI AFKRA AZQEC BENPR BEZIV CCPQU DWQXO FYUFA F~G GNUQQ GUQSH K6~ K8~ L.- L.0 M0C M0T M2O MBDVC PHGZM PHGZT PJZUB PKEHL PPXIY PQBIZ PQEST PQQKQ PQUKI PRINS Q9U |
DOI | 10.1108/MD-11-2023-2087 |
DatabaseName | Emerald Open Access (Activated by CARLI) CrossRef ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ProQuest Pharma Collection Hospital Premium Collection ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Business Premium Collection ProQuest One ProQuest Central Korea Health Research Premium Collection ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library ProQuest Business Collection DELNET Management Collection ABI/INFORM Professional Advanced ABI/INFORM Professional Standard ABI/INFORM Global Healthcare Administration Database Research Library Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Business ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest One Business Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest Health & Medical Research Collection Health Research Premium Collection ABI/INFORM Professional Standard ProQuest Central Korea Health & Medical Research Collection ProQuest Research Library ProQuest Central (New) Business Premium Collection ABI/INFORM Global ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Health Management ProQuest Hospital Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest DELNET Management Collection ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: XDTOA name: Emerald Open Access url: https://www.emerald.com/insight sourceTypes: Publisher – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Business |
EISSN | 1758-6070 |
EndPage | 282 |
ExternalDocumentID | 10_1108_MD_11_2023_2087 10.1108/MD-11-2023-2087 |
GroupedDBID | -~X .WS 0R~ 1JL 29M 2RR 3FY 4.4 5GY 5VS 70U 7WY 9E0 9F- AAGBP AAGMD AAKOT AAMCF AAPSD AARQV AAUDR AAXBI ABEAN ABIJV ABIVO ABJNI ABSDC ABYQI ACBMB ACGFO ACGFS ACHQT ACMJI ACPVR ACTSA ADBBV ADFRT ADMHG ADOMW ADQHX AEBZA AEDOK AEMMR AETHF AFNZV AGTVX AGZLY AIAFM AJEBP AJFKA AKNUK ALIPV ALMA_UNASSIGNED_HOLDINGS AODMV APPLU ASMFL ATGMP AUCOK BENPR CS3 DU5 EBS FNNZZ GEA GEB GEC GEI GMM GMN GMX GQ. GROUPED_ABI_INFORM_COMPLETE H13 HZ~ IAO IEA IGG IJT IOF IPNFZ J1Y JI- JL0 K6~ LGEZI LOTEE LXL LXN LXY M2O M42 MS~ N95 NADUK NXXTH O9- P2P PQBIZ RIG RWL SLOBJ TAE TDY TEM TET TGG TMD TMF TMI TMK TMT TMX TN5 U5U XDTOA Z11 Z12 Z21 Z22 ZYZAG AAYXX ABXQL ADWNT AFNTC AHMHQ AILOG CITATION 7XB 8AO 8FI 8R4 8R5 AFKRA AQUVI AZQEC BEZIV BPHCQ BVXVI CCPQU DWQXO FYUFA GNUQQ GROUPED_ABI_INFORM_RESEARCH GUQSH K8~ L.- L.0 M0C M0T MBDVC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRG PRINS PROAC Q2X Q9U UKHRP |
ID | FETCH-LOGICAL-c406t-c69b4fbf8887926fb484f062279b75b096f1f6bf4a0cc402e4935ee23500dc663 |
IEDL.DBID | ZYZAG |
ISSN | 0025-1747 |
IngestDate | Sat Aug 16 18:51:12 EDT 2025 Thu Jul 31 00:22:23 EDT 2025 Thu Apr 24 22:49:12 EDT 2025 Thu Dec 12 02:30:39 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Keywords | Development path Decision-making People analytics Maturity model Workforce analytics Human capital analytics Organisational capability HR analytics |
Language | English |
License | Published by Emerald Publishing Limited. This article is published under the Creative Commons Attribution (CC BY 4.0) licence. Anyone may reproduce, distribute, translate and create derivative works of this article (for both commercial and non-commercial purposes), subject to full attribution to the original publication and authors. The full terms of this licence may be seen at https://www.emerald.com/insight/site-policies |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c406t-c69b4fbf8887926fb484f062279b75b096f1f6bf4a0cc402e4935ee23500dc663 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1997-8423 0000-0003-4336-7892 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.emerald.com/insight/content/doi/10.1108/MD-11-2023-2087/full/html |
PQID | 3142704831 |
PQPubID | 37362 |
PageCount | 40 |
ParticipantIDs | crossref_primary_10_1108_MD_11_2023_2087 proquest_journals_3142704831 emerald_primary_10_1108_MD-11-2023-2087 crossref_citationtrail_10_1108_MD_11_2023_2087 |
PublicationCentury | 2000 |
PublicationDate | 2024-00-00 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 2024-00-00 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Management decision |
PublicationYear | 2024 |
Publisher | Emerald Publishing Limited Emerald Group Publishing Limited |
Publisher_xml | – sequence: 0 name: Emerald Publishing Limited – name: Emerald Group Publishing Limited |
References | (key2024121103295804600_ref051) 2021; 60 (key2024121103295804600_ref049) 2012; 4 (key2024121103295804600_ref063) 2007; 46 (key2024121103295804600_ref067) 2022; 144 (key2024121103295804600_ref069) 2022; 68 (key2024121103295804600_ref009) 2016; 3 (key2024121103295804600_ref065) 2023; ahead-of-print (key2024121103295804600_ref053) 2018; 61 (key2024121103295804600_ref058) 2016; 33 (key2024121103295804600_ref007) 2022; 32 (key2024121103295804600_ref027) 2021; 60 (key2024121103295804600_ref003) 2018; 114 (key2024121103295804600_ref074) 2023; 61 (key2024121103295804600_ref081) 2022; 17 (key2024121103295804600_ref089) 2022; 46 (key2024121103295804600_ref045) 2019; 32 (key2024121103295804600_ref050) 2000; 1 (key2024121103295804600_ref033) 2023; 28 (key2024121103295804600_ref006) 2009; 1 (key2024121103295804600_ref037) 2011 (key2024121103295804600_ref011) 2015; 35 (key2024121103295804600_ref020) 2023; 65 (key2024121103295804600_ref071) 2021; 131 (key2024121103295804600_ref004) 2023; 1 (key2024121103295804600_ref035) 2022; 32 (key2024121103295804600_ref028) 2020; 30 (key2024121103295804600_ref041) 2017; 4 (key2024121103295804600_ref076) 2017 key2024121103295804600_ref094 (key2024121103295804600_ref079) 2012; 54 (key2024121103295804600_ref080) 1984; 5 (key2024121103295804600_ref057) 2020 (key2024121103295804600_ref030) 2019; 82 (key2024121103295804600_ref032) 2017; 4 (key2024121103295804600_ref083) 2012; 58 (key2024121103295804600_ref092) 2018; 57 (key2024121103295804600_ref097) 2018; 43 (key2024121103295804600_ref084) 2017; 4 (key2024121103295804600_ref047) 2021; 32 (key2024121103295804600_ref019) 2005 (key2024121103295804600_ref005) 2022; 37 (key2024121103295804600_ref025) 2018; 128 (key2024121103295804600_ref068) 2012; 38 (key2024121103295804600_ref023) 2021; 13 (key2024121103295804600_ref054) 2017; 4 (key2024121103295804600_ref059) 2018; 10 (key2024121103295804600_ref039) 2011; 52 (key2024121103295804600_ref022) 2021; 32 (key2024121103295804600_ref044) 2011; 28 (key2024121103295804600_ref093) 2023; 75 (key2024121103295804600_ref075) 2018; 29 (key2024121103295804600_ref078) 2002; 26 (key2024121103295804600_ref070) 2008 (key2024121103295804600_ref090) 2023; 35 (key2024121103295804600_ref096) 2023; 28 (key2024121103295804600_ref095) 2000; 21 (key2024121103295804600_ref029) 2019; 63 (key2024121103295804600_ref012) 2019; 46 (key2024121103295804600_ref026) 2022; 31 (key2024121103295804600_ref034) 2018; 57 (key2024121103295804600_ref013) 2014; 59 (key2024121103295804600_ref002) 2016; 26 (key2024121103295804600_ref018) 2007 (key2024121103295804600_ref052) 1989 (key2024121103295804600_ref082) 2023; 9 (key2024121103295804600_ref085) 2022; 12 (key2024121103295804600_ref008) 2021 (key2024121103295804600_ref040) 2018; 57 (key2024121103295804600_ref046) 2009 (key2024121103295804600_ref091) 2023; ahead-of-print (key2024121103295804600_ref042) 2017; 37 (key2024121103295804600_ref062) 2011 (key2024121103295804600_ref031) 2003; 24 (key2024121103295804600_ref001) 2017; 4 (key2024121103295804600_ref014) 2018; 35 (key2024121103295804600_ref015) 2023; 33 (key2024121103295804600_ref017) 2015; 19 (key2024121103295804600_ref024) 2020; 31 (key2024121103295804600_ref066) 2010; 37 (key2024121103295804600_ref010) 2005; 15 (key2024121103295804600_ref073) 1997; 18 (key2024121103295804600_ref087) 2016; 32 (key2024121103295804600_ref060) 2016; 7 (key2024121103295804600_ref061) 2020; 7 key2024121103295804600_ref056 (key2024121103295804600_ref016) 2012 (key2024121103295804600_ref088) 2023; 196 (key2024121103295804600_ref064) 2021; 51 (key2024121103295804600_ref072) 2023; 65 (key2024121103295804600_ref077) 2024; 170 (key2024121103295804600_ref036) 2020; 11 (key2024121103295804600_ref098) 2013; 95 (key2024121103295804600_ref055) 2018; 57 (key2024121103295804600_ref086) 2024; 53 (key2024121103295804600_ref048) 2017; 28 (key2024121103295804600_ref038) 2021; 33 (key2024121103295804600_ref043) 2023; 33 (key2024121103295804600_ref021) 2022; 34 |
References_xml | – volume: 37 start-page: 114 issue: 3 year: 2017 ident: key2024121103295804600_ref042 article-title: Defining analytics maturity indicators: a survey approach publication-title: International Journal of Information Management doi: 10.1016/j.ijinfomgt.2016.12.003 – volume: 54 start-page: 1317 issue: 12 year: 2012 ident: key2024121103295804600_ref079 article-title: The maturity of maturity model research: a systematic mapping study publication-title: Information and Software Technology doi: 10.1016/j.infsof.2012.07.007 – volume: 51 start-page: 251 issue: 1 year: 2021 ident: key2024121103295804600_ref064 article-title: Human resource analytics: a review and bibliometric analysis publication-title: Personnel Review doi: 10.1108/PR-04-2020-0247 – volume: 10 start-page: 3734 issue: 10 year: 2018 ident: key2024121103295804600_ref059 article-title: A conceptual framework for assessing an organization's readiness to adopt big data publication-title: Sustainability (Switzerland) doi: 10.3390/su10103734 – volume: 46 start-page: 4 issue: 4 year: 2007 ident: key2024121103295804600_ref063 article-title: A public sector HPT maturity model publication-title: Performance Improvement doi: 10.1002/pfi.119 – volume: 144 start-page: 637 issue: January year: 2022 ident: key2024121103295804600_ref067 article-title: Strategic human capital analytics and organisation performance: the mediating effects of managerial decision-making publication-title: Journal of Business Research doi: 10.1016/j.jbusres.2022.01.044 – volume: 82 year: 2019 ident: key2024121103295804600_ref030 article-title: Towards a maturity model for big data analytics in airline network planning publication-title: Journal of Air Transport Management doi: 10.1016/j.jairtraman.2019.101721 – volume: 131 start-page: 311 year: 2021 ident: key2024121103295804600_ref071 article-title: Examining the determinants of successful adoption of data analytics in human resource management – a framework for implications publication-title: Journal of Business Research doi: 10.1016/j.jbusres.2021.03.054 – volume: 32 start-page: 603 issue: 3 year: 2022 ident: key2024121103295804600_ref007 article-title: Human resources analytics: a legitimacy process publication-title: Human Resource Management Journal doi: 10.1111/1748-8583.12417 – volume: 60 start-page: 527 issue: July year: 2021 ident: key2024121103295804600_ref027 article-title: Data-driven manufacturing: an assessment model for data science maturity publication-title: Journal of Manufacturing Systems doi: 10.1016/j.jmsy.2021.07.011 – volume: 59 start-page: 119 year: 2014 ident: key2024121103295804600_ref013 article-title: The impact of advanced analytics and data accuracy on operational performance: a contingent resource-based theory (RBT) perspective publication-title: Decision Support Systems doi: 10.1016/j.dss.2013.10.012 – volume: 128 start-page: 84 year: 2018 ident: key2024121103295804600_ref025 article-title: Measuring the maturity of business intelligence in healthcare: supporting the development of a roadmap toward precision medicine within Ismet hospital publication-title: Technological Forecasting and Social Change doi: 10.1016/j.techfore.2017.10.023 – volume: 26 start-page: 1 issue: 1 year: 2016 ident: key2024121103295804600_ref002 article-title: HR and analytics: why HR is set to fail the big data challenge publication-title: Human Resource Management Journal doi: 10.1111/1748-8583.12090 – volume: 17 start-page: 2077 issue: 6 year: 2022 ident: key2024121103295804600_ref081 article-title: Towards a process-oriented understanding of HR analytics: implementation and application publication-title: Review of Managerial Science doi: 10.1007/s11846-022-00574-0 – volume: 75 start-page: 303 issue: 3 year: 2023 ident: key2024121103295804600_ref093 article-title: Data or business first? - manufacturers' transformation toward data-driven business models publication-title: Schmalenbach Journal of Business Research doi: 10.1007/s41471-023-00154-2 – volume: 21 start-page: 981 issue: Special Issue year: 2000 ident: key2024121103295804600_ref095 article-title: The satisfying principle in capability learning publication-title: Strategic Management Journal doi: 10.1002/1097-0266(200010/11)21:10/11<981::aid-smj125>3.0.co;2-4 – year: 2021 ident: key2024121103295804600_ref008 article-title: HR technology market 2021: the definitive guide – volume: 15 start-page: 67 issue: 3 year: 2005 ident: key2024121103295804600_ref010 article-title: Commonalities and contradictions in HRM and performance research publication-title: Human Resource Management Journal doi: 10.1111/j.1748-8583.2005.tb00154.x – volume: 33 start-page: 105 issue: 2 year: 2016 ident: key2024121103295804600_ref058 article-title: Toward better understanding and use of Business Intelligence in Organizations publication-title: Information Systems Management doi: 10.1080/10580530.2016.1155946 – volume: 170 issue: October 2023 year: 2024 ident: key2024121103295804600_ref077 article-title: Determinants of effective HR analytics implementation: an in-depth review and a dynamic framework for future research publication-title: Journal of Business Research doi: 10.1016/j.jbusres.2023.114312 – volume: 34 start-page: 326 issue: 2 year: 2022 ident: key2024121103295804600_ref021 article-title: HR analytics: an emerging field finding its place in the world alongside simmering ethical challenges publication-title: Human Resource Management Journal doi: 10.1111/1748-8583.12435 – volume: 28 start-page: 3 issue: 1 year: 2017 ident: key2024121103295804600_ref048 article-title: An evidence-based review of hr analytics publication-title: International Journal of Human Resource Management doi: 10.1080/09585192.2016.1244699 – volume: 57 start-page: 701 issue: 3 year: 2018 ident: key2024121103295804600_ref055 article-title: Building credible human capital analytics for organizational competitive advantage publication-title: Human Resource Management doi: 10.1002/hrm.21848 – volume: ahead-of-print year: 2023 ident: key2024121103295804600_ref065 article-title: Human resource analytics revisited: a systematic literature review of its adoption, global acceptance and implementation publication-title: Benchmarking doi: 10.1108/BIJ-04-2022-0272 – volume: 32 start-page: 2622 issue: 12 year: 2021 ident: key2024121103295804600_ref022 article-title: Staying close to business: the role of epistemic alignment in rendering hr analytics outputs relevant to decision-makers publication-title: International Journal of Human Resource Management doi: 10.1080/09585192.2021.1886148 – volume: 32 issue: 2 year: 2021 ident: key2024121103295804600_ref047 article-title: Human resources analytics: a systematization of research topics and directions for future research publication-title: Human Resource Management Review doi: 10.1016/j.hrmr.2020.100795 – volume: 33 start-page: 1 issue: 12 year: 2021 ident: key2024121103295804600_ref038 article-title: Insider econometrics meets people analytics and strategic human resource management publication-title: The International Journal of Human Resource Management doi: 10.1080/09585192.2020.1847166 – volume: 4 start-page: 193 year: 2012 ident: key2024121103295804600_ref049 article-title: A maturity model for management control systems publication-title: Business and Information Systems Engineering doi: 10.1007/s12599-012-0220-x – volume: 19 start-page: S5 year: 2015 ident: key2024121103295804600_ref017 article-title: A business analytics capability framework publication-title: Australasian Journal of Information Systems doi: 10.3127/ajis.v19i0.1150 – volume: 95 year: 2013 ident: key2024121103295804600_ref098 article-title: Towards the measurement of business intelligence maturity publication-title: Proceedings of the 21st European Conference on Information Systems, ECIS 2013 Completed Research – volume: 61 start-page: 3665 issue: 12 year: 2023 ident: key2024121103295804600_ref074 article-title: Trends in the thematic landscape of HR analytics research: a structural topic modeling approach publication-title: Management Decision doi: 10.1108/MD-01-2023-0080 – volume: 9 start-page: 276 issue: 2 year: 2023 ident: key2024121103295804600_ref082 article-title: Information quality of business intelligence systems: a maturity-based assessment publication-title: Journal of Information Systems Engineering and Business Intelligence doi: 10.20473/jisebi.9.2.276-287 – volume: 31 start-page: 162 issue: 1 year: 2020 ident: key2024121103295804600_ref024 article-title: Tackling the HR digitalization challenge: key factors and barriers to HR analytics adoption publication-title: Competitiveness Review doi: 10.1108/CR-12-2019-0163 – volume: 32 start-page: 2151 issue: 6 year: 2016 ident: key2024121103295804600_ref087 article-title: How can SMEs benefit from big data? Challenges and a path forward publication-title: Quality and Reliability Engineering International doi: 10.1002/qre.2008 – volume: 53 start-page: 18 issue: 1 year: 2024 ident: key2024121103295804600_ref086 article-title: Health services in Australia and the impact of antiquated rostering practices on medical scientists: a case for HR analytics and evidenced-based human resource management publication-title: Personnel Review doi: 10.1108/PR-09-2021-0690 – volume: 57 start-page: 679 issue: 3 year: 2018 ident: key2024121103295804600_ref034 article-title: The science and practice of workforce analytics: introduction to the HRM special issue publication-title: Human Resource Management doi: 10.1002/hrm.21916 – volume: 4 start-page: 119 issue: 2 year: 2017 ident: key2024121103295804600_ref084 article-title: Human capital analytics: why are we not there? publication-title: Journal of Organizational Effectiveness doi: 10.1108/JOEPP-03-2017-0021 – volume: 65 start-page: 703 issue: 6 year: 2023 ident: key2024121103295804600_ref072 article-title: Keeping your maturity assessment alive: a method for the continuous tracking and assessment of organizational capabilities and maturity publication-title: Business and Information Systems Engineering doi: 10.1007/s12599-023-00805-y – volume: 114 start-page: 416 year: 2018 ident: key2024121103295804600_ref003 article-title: Understanding big data analytics capabilities in supply chain management: unravelling the issues, challenges and implications for practice publication-title: Transportation Research Part E: Logistics and Transportation Review doi: 10.1016/j.tre.2017.04.001 – volume: 28 start-page: 598 issue: 4 year: 2023 ident: key2024121103295804600_ref033 article-title: Personalized human resource management via HR analytics and artificial intelligence: theory and implications publication-title: Asia Pacific Management Review doi: 10.1016/j.apmrv.2023.04.004 – start-page: 1 year: 2011 ident: key2024121103295804600_ref037 article-title: Business intelligence maturity: development and evaluation of a theoretical model – volume: 7 start-page: 203 issue: 2 year: 2020 ident: key2024121103295804600_ref061 article-title: People analytics effectiveness: developing a framework publication-title: Journal of Organizational Effectiveness doi: 10.1108/JOEPP-04-2020-0071 – volume: 5 start-page: 171 issue: 2 year: 1984 ident: key2024121103295804600_ref080 article-title: A resource-based view of the firm publication-title: Strategic Management Journal doi: 10.1002/smj.4250050207 – volume: 11 start-page: 1 issue: 3 year: 2020 ident: key2024121103295804600_ref036 article-title: Analytics maturity models: an overview publication-title: Information doi: 10.3390/info11030142 – volume: 61 start-page: 397 issue: 3 year: 2018 ident: key2024121103295804600_ref053 article-title: A strategic approach to workforce analytics: integrating science and agility publication-title: Business Horizons doi: 10.1016/j.bushor.2018.01.005 – volume: 24 start-page: 997 issue: 24 year: 2003 ident: key2024121103295804600_ref031 article-title: The dynamic resource-based view: capability lifecycles publication-title: Strategic Management Journal doi: 10.1002/smj.332 – volume: 60 start-page: 25 issue: 13 year: 2021 ident: key2024121103295804600_ref051 article-title: Bridging the gap: why, how and when HR analytics can impact organizational performance publication-title: Management Decision doi: 10.1108/MD-12-2020-1581 – year: 2009 ident: key2024121103295804600_ref046 article-title: Developing maturity grids for assessing organisational capabilities: practitioner guidance – volume: 13 start-page: 51 issue: 1 year: 2021 ident: key2024121103295804600_ref023 article-title: The HR Analytics cycle: a seven-step process for building evidence-based and ethical hr analytics capabilities publication-title: Journal of Work-Applied Management doi: 10.1108/JWAM-03-2020-0020 – volume: 30 start-page: 494 issue: 4 year: 2020 ident: key2024121103295804600_ref028 article-title: Hr analytics: the onto-epistemology and politics of metricised HRM publication-title: Human Resource Management Journal doi: 10.1111/1748-8583.12283 – volume: 33 issue: 4 year: 2023 ident: key2024121103295804600_ref043 article-title: Creating accountability through HR analytics – an audit society perspective publication-title: Human Resource Management Review doi: 10.1016/j.hrmr.2023.100974 – ident: key2024121103295804600_ref056 doi: 10.4135/9781412983679.n18 – volume: 57 start-page: 715 issue: 3 year: 2018 ident: key2024121103295804600_ref092 article-title: Analytical abilities and the performance of hr professionals publication-title: Human Resource Management doi: 10.1002/hrm.21854 – volume: 4 start-page: 133 issue: 2 year: 2017 ident: key2024121103295804600_ref001 article-title: Human capital analytics: the winding road publication-title: Journal of Organizational Effectiveness: People and Performance doi: 10.1108/joepp-03-2017-0024 – volume: 4 start-page: 157 issue: 2 year: 2017 ident: key2024121103295804600_ref032 article-title: The rise (and fall?) of HR Analytics: a study into the future application, value, structure, and system support publication-title: Journal of Organizational Effectiveness doi: 10.1108/JOEPP-03-2017-0022 – volume: 3 start-page: 1220663 issue: 1 year: 2016 ident: key2024121103295804600_ref009 article-title: Exploring business intelligence and its depth of maturity in Thai SMEs publication-title: Cogent Business and Management doi: 10.1080/23311975.2016.1220663 – volume: 37 start-page: 398 issue: 3 year: 2022 ident: key2024121103295804600_ref005 article-title: The role of the capability, opportunity, and motivation of firms for using human resource analytics to monitor employee performance: a multi-level analysis of the organisational, market, and country context publication-title: New Technology, Work and Employment doi: 10.1111/ntwe.12239 – volume: 1 start-page: 213 issue: 3 year: 2009 ident: key2024121103295804600_ref006 article-title: Developing maturity models for IT management - a procedure model and its application publication-title: Business and Information Systems Engineering doi: 10.1007/s12599-009-0044-5 – volume: 4 start-page: 110 issue: 2 year: 2017 ident: key2024121103295804600_ref054 article-title: Human capital analytics: why aren't we there? Introduction to the special issue publication-title: Journal of Organizational Effectiveness doi: 10.1108/JOEPP-04-2017-0035 – volume: 29 start-page: 3046 issue: 22 year: 2018 ident: key2024121103295804600_ref075 article-title: Individual adoption of hr analytics: a fine-grained view of the early stages leading to adoption publication-title: International Journal of Human Resource Management doi: 10.1080/09585192.2018.1446181 – volume: 35 start-page: 337 issue: 3 year: 2015 ident: key2024121103295804600_ref011 article-title: A framework for developing a domain specific business intelligence maturity model: application to healthcare publication-title: International Journal of Information Management doi: 10.1016/j.ijinfomgt.2015.01.011 – year: 2012 ident: key2024121103295804600_ref016 article-title: Towards a business analytics capability maturity model – volume-title: Competing on Analytics: The New Science of Winning year: 2007 ident: key2024121103295804600_ref018 – volume: 18 start-page: 509 issue: 7 year: 1997 ident: key2024121103295804600_ref073 article-title: Dynamic capabilities and strategic management publication-title: Strategic Management Journal doi: 10.1002/(sici)1097-0266(199708)18:7<509::aid-smj882>3.0.co;2-z – volume: 35 start-page: 62 issue: 1 year: 2018 ident: key2024121103295804600_ref014 article-title: Business analytics maturity of firms: an examination of the relationships between managerial perception of IT, business analytics maturity and success publication-title: Information Systems Management doi: 10.1080/10580530.2017.1416948 – year: 2011 ident: key2024121103295804600_ref062 article-title: What makes a useful maturity model? A framework of general design principles for maturity models and its demonstration in business process management – volume-title: Overcrowded: Designing Meaningful Products in a Word Awash with Ideas year: 2017 ident: key2024121103295804600_ref076 – year: 2005 ident: key2024121103295804600_ref019 article-title: Understanding the main phases of developing a maturity assessment model – volume: 68 issue: July 2021 year: 2022 ident: key2024121103295804600_ref069 article-title: Can big data analytics help organisations achieve sustainable competitive advantage? A developmental enquiry publication-title: Technology in Society doi: 10.1016/j.techsoc.2021.101801 – volume: 63 start-page: 85 issue: 1 year: 2019 ident: key2024121103295804600_ref029 article-title: The questions we ask: opportunities and challenges for using big data analytics to strategically manage human capital resources publication-title: Business Horizons doi: 10.1016/j.bushor.2019.10.001 – volume: 33 issue: 4 year: 2023 ident: key2024121103295804600_ref015 article-title: Understanding the adoption and institutionalization of workforce analytics: a systematic literature review and research agenda publication-title: Human Resource Management Review doi: 10.1016/j.hrmr.2023.100985 – volume-title: Knowledge Acquisition: Principles and Guidelines year: 1989 ident: key2024121103295804600_ref052 – volume: 38 start-page: 336 issue: 2 year: 2012 ident: key2024121103295804600_ref068 article-title: A model of data warehousing process maturity publication-title: IEEE Transactions on Software Engineering doi: 10.1109/tse.2011.2 – volume: 46 start-page: 278 year: 2019 ident: key2024121103295804600_ref012 article-title: A health data analytics maturity model for hospitals information systems publication-title: International Journal of Information Management doi: 10.1016/j.ijinfomgt.2018.07.001 – year: 2020 ident: key2024121103295804600_ref057 article-title: Towards a methodology for maturity models development: an exploratory study in software systems interoperability domain – volume: 12 start-page: 4625 issue: 9 year: 2022 ident: key2024121103295804600_ref085 article-title: Designing a business intelligence and analytics maturity model for higher education: a design science approach publication-title: Applied Sciences doi: 10.3390/app12094625 – volume: 32 start-page: 524 issue: 3 year: 2022 ident: key2024121103295804600_ref035 article-title: ‘It's so fake’: identity performances and cynicism within a people analytics team publication-title: Human Resource Management Journal doi: 10.1111/1748-8583.12412 – volume: 46 start-page: 547 issue: 3 year: 2022 ident: key2024121103295804600_ref089 article-title: The development of the data science capability maturity model: a survey-based research publication-title: Online Information Review doi: 10.1108/OIR-10-2020-0469 – volume: 35 start-page: 1 issue: 8 year: 2023 ident: key2024121103295804600_ref090 article-title: The development of data analytics maturity assessment framework: damaf publication-title: Journal of Software: Evolution and Process doi: 10.1002/smr.2415 – ident: key2024121103295804600_ref094 doi: 10.1093/0199248540.003.0013 – volume: 57 start-page: 685 issue: 3 year: 2018 ident: key2024121103295804600_ref040 article-title: Using workforce analytics to improve strategy execution publication-title: Human Resource Management doi: 10.1002/hrm.21850 – volume: 1 issue: 2 year: 2000 ident: key2024121103295804600_ref050 article-title: Qualitative content analysis [28 paragraphs] publication-title: Forum Qualitative Sozialforschung/Forum: Qualitative Social Research – volume: 52 start-page: 21 issue: 2 year: 2011 ident: key2024121103295804600_ref039 article-title: Big data, analytics and the path from insights to value publication-title: MIT Sloan Management Review – volume-title: Handbook of Collaborative Management Research year: 2008 ident: key2024121103295804600_ref070 – volume: 26 start-page: 13 issue: 2 year: 2002 ident: key2024121103295804600_ref078 article-title: Analyzing the past to prepare for the future: writing a literature review publication-title: MIS Quarterly – volume: 65 start-page: 539 issue: 5 year: 2023 ident: key2024121103295804600_ref020 article-title: A maturity model for assessing the digitalization of public health agencies: development and evaluation publication-title: Business and Information Systems Engineering doi: 10.1007/s12599-023-00813-y – volume: 28 start-page: 211 issue: 3 year: 2011 ident: key2024121103295804600_ref044 article-title: Business intelligence maturity: the economic transitional context within Slovenia publication-title: Information Systems Management doi: 10.1080/10580530.2011.585583 – volume: 32 start-page: 13 issue: 1 year: 2019 ident: key2024121103295804600_ref045 article-title: An output model for human resource development analytics publication-title: Performance Improvement Quarterly doi: 10.1002/piq.21284 – volume: 196 year: 2023 ident: key2024121103295804600_ref088 article-title: Evaluating maturity level of big data management and analytics in industrial companies publication-title: Technological Forecasting and Social Change doi: 10.1016/j.techfore.2023.122826 – volume: 1 start-page: 640 issue: 2 year: 2023 ident: key2024121103295804600_ref004 article-title: Human resources analytics: where do we go from here? publication-title: Benchmarking doi: 10.1108/BIJ-06-2022-0401 – volume: 4 start-page: 145 issue: 2 year: 2017 ident: key2024121103295804600_ref041 article-title: Human capital analytics: too much data and analysis, not enough models and business insights publication-title: Journal of Organizational Effectiveness: People and Performance doi: 10.1108/joepp-03-2017-0029 – volume: 7 issue: 4 year: 2016 ident: key2024121103295804600_ref060 article-title: IAMM: a maturity model for measuring industrial analytics capabilities in large-scale manufacturing facilities publication-title: International Journal of Prognostics and Health Management doi: 10.36001/ijphm.2016.v7i4.2466 – volume: 43 start-page: 224 issue: 1 year: 2018 ident: key2024121103295804600_ref097 article-title: People analytics—a scoping review of conceptual boundaries and value propositions publication-title: International Journal of Information Management doi: 10.1016/j.ijinfomgt.2018.08.002 – volume: ahead-of-print year: 2023 ident: key2024121103295804600_ref091 article-title: Role of HR analytics and attrition on organisational performance: a literature review leveraging the SCM-TBFO framework publication-title: Benchmarking doi: 10.1108/BIJ-06-2023-0412 – volume: 37 start-page: 468 issue: 2 year: 2010 ident: key2024121103295804600_ref066 article-title: Beyond collective entities: multilevel research on organizational routines and capabilities publication-title: Journal of Management doi: 10.1177/0149206310371691 – volume: 31 start-page: 410 issue: 3 year: 2022 ident: key2024121103295804600_ref026 article-title: The dark sides of people analytics: reviewing the perils for organisations and employees publication-title: European Journal of Information Systems doi: 10.1080/0960085X.2021.1927213 – volume: 28 start-page: 618 issue: 4 year: 2023 ident: key2024121103295804600_ref096 article-title: Data-driven human resource and data-driven talent management in internal and recruitment communication strategies: an empirical survey on Italian firms and insights for European context publication-title: Corporate Communications: An International Journal doi: 10.1108/CCIJ-02-2022-0012 – volume: 58 start-page: 913 issue: 5 year: 2012 ident: key2024121103295804600_ref083 article-title: Three-way complementarities: performance pay, human resource analytics, and information technology publication-title: Management Science doi: 10.1287/mnsc.1110.1460 |
SSID | ssj0013556 |
Score | 2.3764873 |
Snippet | PurposeToday, companies are struggling to develop their human resources analytics (HRA) capability, although interest in the subject is rapidly increasing.... |
SourceID | proquest crossref emerald |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 243 |
SubjectTerms | Business analytics Business intelligence Competitive advantage Data analysis Human resources |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELaglRAL4ikKBXlAgiWQxs6LBQFtVSGlQhWV2CLbsSfahKT9_9ylDgUELMkQO4Mfd9-dz99HyIVSHhex1E7IJHO4YKEjJGx3ZbIwUooZWec7knEwmvKnV__VJtwqW1bZ2MTaUGe5whz5DetxL0T-895d8e6gahSerloJjU3SBhMcQfDVfhiMnyfrcwS_1m-tRVsBe4eW3Ae1b5I-XilD9XB4YEXdF7_043Lu2kDXXme4S3YsXKT3q_ndIxt6vk-2mmr1A1IldY4P_A8dTahAhhHkXaYz5OsEgH1Lq2WBEBtbANaj2bpIiOaGClrmIpuJggJ4pVgu6mQlGkBai_fR0mb38Y9NncwhmQ4HL48jx-ooOArc9cJRQSy5kQaC3TD2AiN5xI0bIHegDH0JQYzpmUAaLlwFPTzNY-Zr7THfdTMFkOSItOb5XB8TalwjFHSL45BxY3whpI6ZiLg2gWu43yHXzSimypKMo9bFW1oHG26UJn14pzjsKQ57h1x9dihW_Bp_N7200_JLy29z2SHdZtpSuyWrdL2ATv7_fEq24U98lWfpktaiXOozQB4LeW6X1wduQ9YW priority: 102 providerName: ProQuest |
Title | Measuring HR analytics maturity: supporting the development of a roadmap for data-driven human resources management |
URI | https://www.emerald.com/insight/content/doi/10.1108/MD-11-2023-2087/full/html https://www.proquest.com/docview/3142704831 |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFH4arYS4sPFLFMbkAxJc0qaxEyfcCt2okDLQtElll8h2bIFY06pNL_z1e89JVm3aJA5ckhxsK7Gd5-89f_4ewHtjIqEybQPJNQ-E4jJQGn9340qZGsOd9vGO_DSZXYhv83i-B3l3FsbTKptwjLfTv6sNOakjIm6jFb4RHKDsNfmUDoVR_m-8pHJEAevRr3px9Qj60TgJ0x70L39eTr7uthVin87V53BFKC5brZ97Gru1TN05q7uz134ROtmHqnv9hnvyZ7it9dD8vaPs-N--7wCetnCVTZr59Qz2bPUcHnds-RewyX2MEdc_NjtjihROSPeZLUgvFAH-J7bZrgjiUwnEmqzckZTY0jHF1ktVLtSKIXhmRFcNyjUZYOaTB7J1u7tALXY8nZdwcXJ8_mUWtHkcAoNwoQ5MkmnhtENnW2ZR4rRIhQsT0i7UMtboRLmxS7QTKjRYI7Ii47G1EY_DsDQIiV5Br1pW9jUwFzplsFqWSS6ci5XSNuMqFdYloRPxAIbdsBWmFTmnXBtXhXd2wrTIp3gvqFML6tQBfLypsGr0PR4u-qEduXtK3hqpARx286RoTcKm4GMRSRLwH7_554bewhN8Fk3I5xB69Xpr3yEIqvUR9D8fn_44w_t8ev59ctRO9WvfhwQK |
linkProvider | Emerald |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLZgSMAF8RSDATmA4FLomrRdkRACBhqPTgiBxK0kaXKCbWxDiD_Fb8TuWgYIuO3SHprkELv2Z8fxB7CptSdkpIwTcsUdIXnoSIW_u7ZpWNOaW5XlO-Jm0LgTF_f-_Ri8F3dhqKyysImZoU7bmnLke7wqvJD6n1cPO88OsUbR6WpBoTFQi0vz9oohW-_gvI7y3fK8s9Pbk4aTswo4Gp1X39FBpIRVFkO_MPICq0RNWDegTnoq9BVCelu1gbJCuhpneEZE3DfG477rphodNK47DhOCYyhTgonj0-b1zfDcws_4YjOSWMT6Yd5MiLh24jpdYSO2cnxQBd8XP_jjMvDQIWRe7mwWZnJ4yo4G-jQHY6Y1D5NFdfwC9OIsp4j-jjVumKSOJtTnmT1Rf1AE9Pus99IhSE8jEFuydFiUxNqWSdZty_RJdhiCZUblqU7aJYPLMrJA1s1PE2jFoi5nEe5GssNLUGq1W2YZmHWt1DgtikIurPWlVCbisiaMDVwr_DLsFruY6LypOXFrPCZZcOPWkriO74S2PaFtL8PO54TOoJ_H30O3c7H8MvKbLMtQKcSW5CaglwwVduX_zxsw1biNr5Kr8-blKkzjqmKQ46lAqd99MWuIevpqPVc1Bg-j1u4PQ28SLg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1RT9swED5BkRAvExsgurHND6DxEkhjJ24mTdO2UhVYK4RA4i3Yju8J2q4tQvtr-3W7Sx3KprE3XpKH2H7wXe6-O5_vA9h1LlEmtz7S0spIGakjY-l3d1jqtnMSbZXv6A-y3qU6uUqvluBXfReGyyprm1gZ6nLkOEd-KFsq0dz_vHWIoSzirNP9PP4RMYMUn7TWdBpzFTn1P-8pfJt-Ou6QrPeSpHt08a0XBYaByJEjm0Uuy61CixQG6jzJ0Kq2wjjjrnpWp5bgPbYws6hM7GhG4lUuU-8TmcZx6chZ07rLsKIpKoobsPL1aHB2vjjDSCvu2IowlnC_Do2FmHen3-HrbMxcTg-u5nvkE_-6GLxwDpXH667DiwBVxZe5br2EJT98Bat1pfwGTPtVfpF8n-idC8PdTbjns7jlXqEE7j-K6d2Y4T2PIJwpykWBkhihMGIyMuWtGQsCzoJLVaNywsZXVMSBYhJOFnjFukZnEy6fZYe3oDEcDf02CIzROJqW51oqxNQY63Np2spjFqNKm3BQ72LhQoNz5tm4KapAJ24X_Q69C972gre9CfsPE8bz3h5PD_0QxPKPkX_Isgk7tdiKYA6mxUJ5X___83tYJa0uvh8PTt_AGi2q5umeHWjMJnf-LQGgmX0XNE3A9XMr92__sRZj |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Measuring+HR+analytics+maturity%3A+supporting+the+development+of+a+roadmap+for+data-driven+human+resources+management&rft.jtitle=Management+decision&rft.au=Rigamonti%2C+Elia&rft.au=Gastaldi%2C+Luca&rft.au=Corso%2C+Mariano&rft.date=2024&rft.pub=Emerald+Publishing+Limited&rft.issn=0025-1747&rft.volume=62&rft.issue=13&rft.spage=243&rft.epage=282&rft_id=info:doi/10.1108%2FMD-11-2023-2087&rft.externalDocID=10.1108%2FMD-11-2023-2087 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-1747&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-1747&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-1747&client=summon |