Remote Sensing and Precision Agriculture Technologies for Crop Disease Detection and Management with a Practical Application Example
Remote sensing technology has long been used to detect and map crop diseases. Airborne and satellite imagery acquired during growing seasons can be used not only for early detection and within-season management of some crop diseases, but also for the control of recurring diseases in future seasons....
Saved in:
Published in | Engineering (Beijing, China) Vol. 6; no. 5; pp. 528 - 532 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.05.2020
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Remote sensing technology has long been used to detect and map crop diseases. Airborne and satellite imagery acquired during growing seasons can be used not only for early detection and within-season management of some crop diseases, but also for the control of recurring diseases in future seasons. With variable rate technology in precision agriculture, site-specific fungicide application can be made to infested areas if the disease is stable, although traditional uniform application is more appropriate for diseases that can spread rapidly across the field. This article provides a brief overview of remote sensing and precision agriculture technologies that have been used for crop disease detection and management. Specifically, the article illustrates how airborne and satellite imagery and variable rate technology have been used for detecting and mapping cotton root rot, a destructive soilborne fungal disease, in cotton fields and how site-specific fungicide application has been implemented using prescription maps derived from the imagery for effective control of the disease. The overview and methodologies presented in this article should provide researchers, extension personnel, growers, crop consultants, and farm equipment and chemical dealers with practical guidelines for remote sensing detection and effective management of some crop diseases. |
---|---|
AbstractList | Remote sensing technology has long been used to detect and map crop diseases. Airborne and satellite imagery acquired during growing seasons can be used not only for early detection and within-season management of some crop diseases, but also for the control of recurring diseases in future seasons. With variable rate technology in precision agriculture, site-specific fungicide application can be made to infested areas if the disease is stable, although traditional uniform application is more appropriate for diseases that can spread rapidly across the field. This article provides a brief overview of remote sensing and precision agriculture technologies that have been used for crop disease detection and management. Specifically, the article illustrates how airborne and satellite imagery and variable rate technology have been used for detecting and mapping cotton root rot, a destructive soilborne fungal disease, in cotton fields and how site-specific fungicide application has been implemented using prescription maps derived from the imagery for effective control of the disease. The overview and methodologies presented in this article should provide researchers, extension personnel, growers, crop consultants, and farm equipment and chemical dealers with practical guidelines for remote sensing detection and effective management of some crop diseases. |
Author | Yang, Chenghai |
Author_xml | – sequence: 1 givenname: Chenghai surname: Yang fullname: Yang, Chenghai email: chenghai.yang@usda.gov organization: Aerial Application Technology Research Unit, Agricultural Research Service, US Department of Agriculture, College Station, TX 77845, USA |
BookMark | eNp9Uc1u3CAY5JBK-X2A3niB3YJtDFZOq03SREqUKEnPCH_-7LDyggWkTe598OLd5pJDuMA3MKNh5pgcOO-QkO-cLTnj9Y_NEt2wLBhv8rxkXByQo4I1YqFY0xySsxg3jGWYM8nUEfn7iFufkD6hi9YN1LiOPgQEG613dDUEC69jeg1InxFenB_9YDHS3ge6Dn6iFzaiiUgvMCGkmTMr3BlnBtyiS_SPTS_UZE2Tr8GMdDVNYz7s3l6-me004in51psx4tn__YT8urp8Xl8vbu9_3qxXtwuoWJ0WUJRKtrWSBYCAosK82rLmSrScCdm2jWoUiNb0slesUhx5IWqsGQKWRQPlCbnZ63bebPQU7NaEd-2N1TvAh0GbkF2OqLsKula1kIPqK656VUsGUsi6xA6l6LOW3GtB8DEG7DXYtPtVCsaOmjM996E3Oveh5z5mKAefmfwT88PJV5zzPQdzPL8tBh3BogPsbC4rZf_2C_Y_e9WpPQ |
CitedBy_id | crossref_primary_10_1016_j_cja_2023_08_008 crossref_primary_10_3390_rs13050962 crossref_primary_10_3390_su14169974 crossref_primary_10_3390_geomatics5010004 crossref_primary_10_1016_j_ecoinf_2025_103069 crossref_primary_10_47280_RevFacAgron_LUZ__v38_n4_03 crossref_primary_10_3390_rs15061520 crossref_primary_10_1109_JSTARS_2024_3377104 crossref_primary_10_3390_land13111751 crossref_primary_10_1016_j_ejrs_2024_06_003 crossref_primary_10_3390_electronics13122383 crossref_primary_10_3390_agronomy13071942 crossref_primary_10_3390_rs12213504 crossref_primary_10_3389_fpls_2022_1029529 crossref_primary_10_3390_agriculture15010081 crossref_primary_10_1631_FITEE_2300218 crossref_primary_10_3389_fpls_2023_1101143 crossref_primary_10_1007_s42360_021_00334_2 crossref_primary_10_1016_j_compag_2023_108047 crossref_primary_10_1007_s41348_022_00589_5 crossref_primary_10_1016_j_rsase_2023_100984 crossref_primary_10_1142_S2424862222500063 crossref_primary_10_1109_JSTARS_2024_3370508 crossref_primary_10_15302_J_FASE_2021426 crossref_primary_10_1016_j_compag_2025_109905 crossref_primary_10_1111_ppa_13493 crossref_primary_10_1371_journal_pone_0296896 crossref_primary_10_1016_j_compag_2021_106273 crossref_primary_10_22430_22565337_3158 crossref_primary_10_1007_s11276_024_03762_w crossref_primary_10_3390_s21134431 crossref_primary_10_1109_ACCESS_2021_3134196 crossref_primary_10_1016_j_heliyon_2024_e33208 crossref_primary_10_1080_01431161_2023_2205984 crossref_primary_10_1111_pce_15413 crossref_primary_10_1016_j_jii_2024_100748 crossref_primary_10_3390_rs16142526 crossref_primary_10_1007_s13313_022_00892_7 crossref_primary_10_3390_horticulturae8060517 crossref_primary_10_1016_j_rse_2023_113698 crossref_primary_10_1016_j_eja_2022_126691 crossref_primary_10_1016_j_compag_2024_109329 crossref_primary_10_1111_jac_12732 crossref_primary_10_3390_s22010146 crossref_primary_10_3390_rs13132486 crossref_primary_10_1007_s11356_023_28367_2 crossref_primary_10_21015_vtse_v11i2_1538 crossref_primary_10_1002_rob_22318 crossref_primary_10_3390_plants13121681 crossref_primary_10_1016_j_ecolind_2022_109424 crossref_primary_10_1016_j_eja_2022_126718 crossref_primary_10_1016_j_eswa_2022_118240 crossref_primary_10_1016_j_techsoc_2021_101744 crossref_primary_10_1109_JSTARS_2024_3378298 crossref_primary_10_1016_j_techfore_2022_121742 crossref_primary_10_1016_j_compag_2025_110027 crossref_primary_10_1186_s12859_025_06082_8 crossref_primary_10_3390_s20123498 crossref_primary_10_1088_1402_4896_acfc7a crossref_primary_10_3390_su16020735 crossref_primary_10_3390_rs14040945 crossref_primary_10_1002_csc2_21028 crossref_primary_10_3390_plants13172348 crossref_primary_10_1016_j_cjpre_2024_06_004 crossref_primary_10_3390_s25041255 crossref_primary_10_1016_j_cropro_2025_107117 crossref_primary_10_3390_agronomy14050991 crossref_primary_10_2139_ssrn_4665793 crossref_primary_10_1016_j_compag_2021_106053 crossref_primary_10_3389_fpls_2024_1392409 crossref_primary_10_1016_j_bios_2022_115008 crossref_primary_10_1016_j_compag_2021_106292 crossref_primary_10_1111_ppa_14006 crossref_primary_10_1080_01431161_2023_2225710 crossref_primary_10_3390_f15122147 crossref_primary_10_11648_j_wjast_20240204_17 crossref_primary_10_1016_j_jksuci_2022_02_006 crossref_primary_10_3390_rs14235947 crossref_primary_10_3390_su162210103 crossref_primary_10_3390_jof10040250 crossref_primary_10_1109_JIOT_2021_3128253 crossref_primary_10_1080_07038992_2023_2252926 crossref_primary_10_1016_j_eja_2024_127440 crossref_primary_10_1142_S021800142359005X crossref_primary_10_36783_18069657rbcs20230158 crossref_primary_10_3390_agriculture14081359 crossref_primary_10_1016_j_atech_2024_100495 crossref_primary_10_3390_rs13030396 crossref_primary_10_3390_su141811487 crossref_primary_10_1016_j_hazadv_2024_100461 crossref_primary_10_1109_JSTARS_2024_3422078 crossref_primary_10_3389_fpls_2022_834447 crossref_primary_10_1007_s11042_020_09577_z crossref_primary_10_3390_s24082647 crossref_primary_10_1002_aps3_11577 crossref_primary_10_1016_j_inpa_2023_04_001 |
Cites_doi | 10.21273/HORTSCI.36.1.94 10.13031/trans.12563 10.1016/j.compag.2016.02.026 10.1007/s11119-007-9038-9 10.1016/j.compag.2012.12.002 10.3733/hilg.v26n05p223 10.1007/s11119-005-5640-x 10.3390/rs9040308 10.1016/j.biosystemseng.2015.01.009 10.1007/s11119-014-9370-9 10.1007/s11119-017-9524-7 10.1016/j.compag.2016.10.003 10.1007/s11119-015-9421-x 10.1016/j.compag.2012.07.003 10.1007/s11119-013-9325-6 10.1007/s11119-010-9172-7 10.1016/S0926-6690(98)00033-8 10.1071/CP08304 10.1080/01431160701620683 10.3390/rs10060917 10.1007/s11119-007-9036-y 10.1016/j.biosystemseng.2010.07.011 10.13031/2013.19176 |
ContentType | Journal Article |
Copyright | 2020 THE AUTHOR |
Copyright_xml | – notice: 2020 THE AUTHOR |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.eng.2019.10.015 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EndPage | 532 |
ExternalDocumentID | oai_doaj_org_article_d4cdb8bc151f418f8670c75763ede75f 10_1016_j_eng_2019_10_015 S2095809918310415 |
GroupedDBID | 0R~ 0SF 1-T 5VR 6I. 92H 92I 92R 93N AACTN AAEDW AAFTH AALRI AAXUO ABMAC ACGFS ACHIH ADBBV AEXQZ AFTJW AFUIB AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV CCEZO CEKLB EBS EJD FDB GROUPED_DOAJ IPNFZ M41 NCXOZ O9- OK1 RIG ROL SSZ TCJ TGT -SC -S~ AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AKBMS AKRWK AKYEP CAJEC CITATION Q-- U1G U5M |
ID | FETCH-LOGICAL-c406t-c2387b6872cc5c24eeeeb36185b1057bb9898c5baf7f80481e1256e60ece329c3 |
IEDL.DBID | DOA |
ISSN | 2095-8099 |
IngestDate | Wed Aug 27 01:31:49 EDT 2025 Tue Jul 01 02:18:49 EDT 2025 Thu Apr 24 23:05:37 EDT 2025 Thu Jul 20 20:16:44 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Crop disease Airborne imagery Variable rate application High-resolution satellite imagery Prescription map Cotton root rot |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c406t-c2387b6872cc5c24eeeeb36185b1057bb9898c5baf7f80481e1256e60ece329c3 |
OpenAccessLink | https://doaj.org/article/d4cdb8bc151f418f8670c75763ede75f |
PageCount | 5 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d4cdb8bc151f418f8670c75763ede75f crossref_citationtrail_10_1016_j_eng_2019_10_015 crossref_primary_10_1016_j_eng_2019_10_015 elsevier_sciencedirect_doi_10_1016_j_eng_2019_10_015 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2020 2020-05-00 2020-05-01 |
PublicationDateYYYYMMDD | 2020-05-01 |
PublicationDate_xml | – month: 05 year: 2020 text: May 2020 |
PublicationDecade | 2020 |
PublicationTitle | Engineering (Beijing, China) |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Colwell (b0010) 1956; 26 Taubenhaus, Ezekiel, Neblette (b0005) 1929; 19 Li, Lee, Wang, Ehsani, Yang (b0080) 2014; 15 Fletcher, Skaria, Escobar, Everitt (b0035) 2001; 36 Kumar, Lee, Ehsani, Albrigo, Yang, Mangan (b0075) 2012; 6 Nixon, Escobar, Bowen (b0025) 1987 Mattupalli, Moffet, Shah, Young (b0120) 2018; 10 Yang, Odvody, Thomasson, Isakeit, Minzenmayer, Drake (b0130) 2018; 61 Escobar, Everitt, Noriega, Davis, Cavazos (b0135) 1997 Yang, Odvody, Fernandez, Landivar, Minzenmayer, Nichols (b0145) 2015; 16 Yuan, Pu, Zhang, Wang, Yang (b0100) 2016; 17 Ryerson, Curran, Stephens (b0020) 1997 Du, French, Skaria, Yang, Everitt (b0065) 2004 MacDonald, Staid, Staid, Cooper (b0055) 2016; 130 Zhang, Qin, Liu (b0040) 2005; 6 Zhang (b0160) 2016 Schimmelpfennig, Ebel (b0155) 2011 Yang, Fernandez, Everitt (b0070) 2010; 107 Li, Lee, Li, Ehsani, Mishra, Yang (b0105) 2015; 132 Yang (b0140) 2012; 88 Albetis, Duthoit, Guttler, Jacquin, Goulard, Poilvé (b0115) 2017; 9 Myers (b0015) 1983 Garcia-Ruiz, Sankaran, Maja, Lee, Rasmussen, Ehsani (b0110) 2013; 91 Huang, Lamb, Niu, Zhang, Liu, Wang (b0050) 2007; 8 Yang, Odvody, Thomasson, Isakeit, Nichols (b0125) 2016; 123 Lu, Zhou, Gao, Jiang (b0060) 2018; 19 Chen, Ma, Qiao, Cheng, Xu, Zhao (b0085) 2007; 28 Santoso, Gunawan, Jatmiko, Darmosarkoro, Minasny (b0095) 2011; 12 Yang, Fernandez, Everitt (b0045) 2005; 48 Franke, Menz (b0090) 2007; 8 Bramley (b0150) 2009; 60 Cook, Escobar, Everitt, Cavazos, Robinson, Davis (b0030) 1999; 9 Yang (10.1016/j.eng.2019.10.015_b0145) 2015; 16 Taubenhaus (10.1016/j.eng.2019.10.015_b0005) 1929; 19 Zhang (10.1016/j.eng.2019.10.015_b0040) 2005; 6 Yuan (10.1016/j.eng.2019.10.015_b0100) 2016; 17 Franke (10.1016/j.eng.2019.10.015_b0090) 2007; 8 Albetis (10.1016/j.eng.2019.10.015_b0115) 2017; 9 Yang (10.1016/j.eng.2019.10.015_b0125) 2016; 123 Li (10.1016/j.eng.2019.10.015_b0080) 2014; 15 Lu (10.1016/j.eng.2019.10.015_b0060) 2018; 19 Fletcher (10.1016/j.eng.2019.10.015_b0035) 2001; 36 Yang (10.1016/j.eng.2019.10.015_b0140) 2012; 88 Nixon (10.1016/j.eng.2019.10.015_b0025) 1987 Du (10.1016/j.eng.2019.10.015_b0065) 2004 Garcia-Ruiz (10.1016/j.eng.2019.10.015_b0110) 2013; 91 Schimmelpfennig (10.1016/j.eng.2019.10.015_b0155) 2011 Yang (10.1016/j.eng.2019.10.015_b0070) 2010; 107 Bramley (10.1016/j.eng.2019.10.015_b0150) 2009; 60 Mattupalli (10.1016/j.eng.2019.10.015_b0120) 2018; 10 Cook (10.1016/j.eng.2019.10.015_b0030) 1999; 9 Colwell (10.1016/j.eng.2019.10.015_b0010) 1956; 26 Li (10.1016/j.eng.2019.10.015_b0105) 2015; 132 Kumar (10.1016/j.eng.2019.10.015_b0075) 2012; 6 Escobar (10.1016/j.eng.2019.10.015_b0135) 1997 Chen (10.1016/j.eng.2019.10.015_b0085) 2007; 28 Yang (10.1016/j.eng.2019.10.015_b0130) 2018; 61 Ryerson (10.1016/j.eng.2019.10.015_b0020) 1997 MacDonald (10.1016/j.eng.2019.10.015_b0055) 2016; 130 Myers (10.1016/j.eng.2019.10.015_b0015) 1983 Yang (10.1016/j.eng.2019.10.015_b0045) 2005; 48 Santoso (10.1016/j.eng.2019.10.015_b0095) 2011; 12 Zhang (10.1016/j.eng.2019.10.015_b0160) 2016 Huang (10.1016/j.eng.2019.10.015_b0050) 2007; 8 |
References_xml | – volume: 60 start-page: 197 year: 2009 end-page: 217 ident: b0150 article-title: Lessons from nearly 20 years of precision agriculture research, development, and adoption as a guide to its appropriate application publication-title: Crop Pasture Sci – volume: 8 start-page: 161 year: 2007 end-page: 172 ident: b0090 article-title: Multi-temporal wheat disease detection by multi-spectral remote sensing publication-title: Precis Agric – start-page: 470 year: 1997 end-page: 484 ident: b0135 article-title: A true digital imaging system for remote sensing applications publication-title: Proceedings of the 16th Biennial Workshop on Color Photography and Videography in Resource Assessment; 1997 Apr 29–May 1, Weslaco, TX, USA – start-page: 3981 year: 2004 end-page: 3984 ident: b0065 article-title: Citrus pest stress monitoring using airborne hyperspectral imagery publication-title: Proceedings of the International Geoscience and Remote Sensing Symposium; 2004 Sep 20–24; Anchorage, AK, USA – volume: 9 start-page: 308 year: 2017 ident: b0115 article-title: Detection of publication-title: Remote Sens – volume: 16 start-page: 201 year: 2015 end-page: 215 ident: b0145 article-title: Evaluating unsupervised and supervised image classification methods for mapping cotton root rot publication-title: Precis Agric – volume: 107 start-page: 131 year: 2010 end-page: 139 ident: b0070 article-title: Comparison of airborne multispectral and hyperspectral imagery for mapping cotton root rot publication-title: Biosyst Eng – volume: 9 start-page: 205 year: 1999 end-page: 210 ident: b0030 article-title: Utilizing airborne video imagery in kenaf management and production publication-title: Ind Crops Prod – volume: 88 start-page: 13 year: 2012 end-page: 24 ident: b0140 article-title: A high-resolution airborne four-camera imaging system for agricultural applications publication-title: Comput Electron Agric – volume: 26 start-page: 223 year: 1956 end-page: 286 ident: b0010 article-title: Determining the prevalence of certain cereal crop diseases by means of aerial photography publication-title: Hilgardia – volume: 132 start-page: 28 year: 2015 end-page: 38 ident: b0105 article-title: Feasibility study on huanglongbing (citrus greening) detection based on WorldView-2 satellite imagery publication-title: Biosyst Eng – volume: 17 start-page: 332 year: 2016 end-page: 348 ident: b0100 article-title: Using high spatial resolution satellite imagery for mapping powdery mildew at a regional scale publication-title: Precis Agric – volume: 123 start-page: 154 year: 2016 end-page: 162 ident: b0125 article-title: Change detection of cotton root rot infection over 10-year intervals using airborne multispectral imagery publication-title: Comput Electron Agric – volume: 91 start-page: 106 year: 2013 end-page: 115 ident: b0110 article-title: Comparison of two aerial imaging platforms for identification of huanglongbing-infected citrus trees publication-title: Comput Electron Agric – volume: 36 start-page: 94 year: 2001 end-page: 97 ident: b0035 article-title: Field spectra and airborne digital imagery for detecting Phytophthora foot rot infections in citrus trees publication-title: HortScience – year: 2011 ident: b0155 article-title: On the doorstep of the information age: recent adoption of precision agriculture – start-page: 295 year: 1987 end-page: 305 ident: b0025 article-title: A multispectral false-color video imaging system for remote sensing applications publication-title: Proceedings of the 11th Biennial Workshop on Color Aerial Photography and Videography in the Plant Sciences and Related Fields; 1987 Apr 27–May 1; Weslaco, TX, USA – volume: 130 start-page: 109 year: 2016 end-page: 117 ident: b0055 article-title: Remote hyperspectral imaging of grapevine leafroll-associated virus 3 in cabernet sauvignon vineyards publication-title: Comput Electron Agric – volume: 6 start-page: 489 year: 2005 end-page: 508 ident: b0040 article-title: Remote sensed spectral imagery to detect late blight in field tomatoes publication-title: Precis Agric – volume: 48 start-page: 1619 year: 2005 end-page: 1626 ident: b0045 article-title: Mapping Phymatotrichum root rot of cotton using airborne three-band digital imagery publication-title: Trans ASABE – start-page: 365 year: 1997 end-page: 397 ident: b0020 article-title: Applications: agriculture publication-title: Manual of photographic interpretation – volume: 15 start-page: 162 year: 2014 end-page: 183 ident: b0080 article-title: ‘Extended spectral angle mapping (ESAM)’ for citrus greening disease detection using airborne hyperspectral imaging publication-title: Precis Agric – volume: 10 start-page: 917 year: 2018 ident: b0120 article-title: Supervised classification of RGB aerial imagery to evaluate the impact of a root rot disease publication-title: Remote Sens – volume: 28 start-page: 5183 year: 2007 end-page: 5189 ident: b0085 article-title: Detecting infestation of take-all disease in wheat using Landsat Thematic Mapper imagery publication-title: Int J Remote Sens – volume: 6 year: 2012 ident: b0075 article-title: Citrus greening disease detection using aerial hyperspectral and multispectral imaging techniques publication-title: J Appl Remote Sens – year: 2016 ident: b0160 article-title: Precision agriculture technology for crop farming – volume: 8 start-page: 187 year: 2007 end-page: 197 ident: b0050 article-title: Identification of yellow rust in wheat using publication-title: Precis Agric – volume: 19 start-page: 1025 year: 1929 end-page: 1029 ident: b0005 article-title: Airplane photography in the study of cotton root rot publication-title: Phytopathology – volume: 61 start-page: 849 year: 2018 end-page: 858 ident: b0130 article-title: Site-specific management of cotton root rot using airborne and high resolution satellite imagery and variable rate technology publication-title: Trans ASABE – volume: 12 start-page: 233 year: 2011 end-page: 248 ident: b0095 article-title: Mapping and identifying basal stem rot disease in oil palms in North Sumatra with QuickBird imagery publication-title: Precis Agric – start-page: 2111 year: 1983 end-page: 2228 ident: b0015 article-title: Remote sensing applications in agriculture publication-title: Manual of remote sensing – volume: 19 start-page: 379 year: 2018 end-page: 394 ident: b0060 article-title: Using hyperspectral imaging to discriminate yellow leaf curl disease in tomato leaves publication-title: Precis Agric – start-page: 2111 year: 1983 ident: 10.1016/j.eng.2019.10.015_b0015 article-title: Remote sensing applications in agriculture – volume: 19 start-page: 1025 issue: 6 year: 1929 ident: 10.1016/j.eng.2019.10.015_b0005 article-title: Airplane photography in the study of cotton root rot publication-title: Phytopathology – volume: 36 start-page: 94 issue: 1 year: 2001 ident: 10.1016/j.eng.2019.10.015_b0035 article-title: Field spectra and airborne digital imagery for detecting Phytophthora foot rot infections in citrus trees publication-title: HortScience doi: 10.21273/HORTSCI.36.1.94 – volume: 61 start-page: 849 issue: 3 year: 2018 ident: 10.1016/j.eng.2019.10.015_b0130 article-title: Site-specific management of cotton root rot using airborne and high resolution satellite imagery and variable rate technology publication-title: Trans ASABE doi: 10.13031/trans.12563 – volume: 123 start-page: 154 year: 2016 ident: 10.1016/j.eng.2019.10.015_b0125 article-title: Change detection of cotton root rot infection over 10-year intervals using airborne multispectral imagery publication-title: Comput Electron Agric doi: 10.1016/j.compag.2016.02.026 – volume: 8 start-page: 187 issue: 4–5 year: 2007 ident: 10.1016/j.eng.2019.10.015_b0050 article-title: Identification of yellow rust in wheat using in-situ spectral reflectance measurements and airborne hyperspectral imaging publication-title: Precis Agric doi: 10.1007/s11119-007-9038-9 – volume: 91 start-page: 106 year: 2013 ident: 10.1016/j.eng.2019.10.015_b0110 article-title: Comparison of two aerial imaging platforms for identification of huanglongbing-infected citrus trees publication-title: Comput Electron Agric doi: 10.1016/j.compag.2012.12.002 – volume: 26 start-page: 223 issue: 5 year: 1956 ident: 10.1016/j.eng.2019.10.015_b0010 article-title: Determining the prevalence of certain cereal crop diseases by means of aerial photography publication-title: Hilgardia doi: 10.3733/hilg.v26n05p223 – volume: 6 start-page: 489 issue: 6 year: 2005 ident: 10.1016/j.eng.2019.10.015_b0040 article-title: Remote sensed spectral imagery to detect late blight in field tomatoes publication-title: Precis Agric doi: 10.1007/s11119-005-5640-x – volume: 9 start-page: 308 issue: 4 year: 2017 ident: 10.1016/j.eng.2019.10.015_b0115 article-title: Detection of Flavescence dorée grapevine disease using unmanned aerial vehicle (UAV) multispectral imagery publication-title: Remote Sens doi: 10.3390/rs9040308 – volume: 132 start-page: 28 year: 2015 ident: 10.1016/j.eng.2019.10.015_b0105 article-title: Feasibility study on huanglongbing (citrus greening) detection based on WorldView-2 satellite imagery publication-title: Biosyst Eng doi: 10.1016/j.biosystemseng.2015.01.009 – volume: 16 start-page: 201 issue: 2 year: 2015 ident: 10.1016/j.eng.2019.10.015_b0145 article-title: Evaluating unsupervised and supervised image classification methods for mapping cotton root rot publication-title: Precis Agric doi: 10.1007/s11119-014-9370-9 – start-page: 365 year: 1997 ident: 10.1016/j.eng.2019.10.015_b0020 article-title: Applications: agriculture – volume: 19 start-page: 379 issue: 3 year: 2018 ident: 10.1016/j.eng.2019.10.015_b0060 article-title: Using hyperspectral imaging to discriminate yellow leaf curl disease in tomato leaves publication-title: Precis Agric doi: 10.1007/s11119-017-9524-7 – volume: 130 start-page: 109 year: 2016 ident: 10.1016/j.eng.2019.10.015_b0055 article-title: Remote hyperspectral imaging of grapevine leafroll-associated virus 3 in cabernet sauvignon vineyards publication-title: Comput Electron Agric doi: 10.1016/j.compag.2016.10.003 – start-page: 295 year: 1987 ident: 10.1016/j.eng.2019.10.015_b0025 article-title: A multispectral false-color video imaging system for remote sensing applications – volume: 17 start-page: 332 issue: 3 year: 2016 ident: 10.1016/j.eng.2019.10.015_b0100 article-title: Using high spatial resolution satellite imagery for mapping powdery mildew at a regional scale publication-title: Precis Agric doi: 10.1007/s11119-015-9421-x – volume: 88 start-page: 13 year: 2012 ident: 10.1016/j.eng.2019.10.015_b0140 article-title: A high-resolution airborne four-camera imaging system for agricultural applications publication-title: Comput Electron Agric doi: 10.1016/j.compag.2012.07.003 – volume: 15 start-page: 162 issue: 2 year: 2014 ident: 10.1016/j.eng.2019.10.015_b0080 article-title: ‘Extended spectral angle mapping (ESAM)’ for citrus greening disease detection using airborne hyperspectral imaging publication-title: Precis Agric doi: 10.1007/s11119-013-9325-6 – volume: 12 start-page: 233 issue: 2 year: 2011 ident: 10.1016/j.eng.2019.10.015_b0095 article-title: Mapping and identifying basal stem rot disease in oil palms in North Sumatra with QuickBird imagery publication-title: Precis Agric doi: 10.1007/s11119-010-9172-7 – year: 2016 ident: 10.1016/j.eng.2019.10.015_b0160 – volume: 9 start-page: 205 issue: 3 year: 1999 ident: 10.1016/j.eng.2019.10.015_b0030 article-title: Utilizing airborne video imagery in kenaf management and production publication-title: Ind Crops Prod doi: 10.1016/S0926-6690(98)00033-8 – volume: 60 start-page: 197 issue: 3 year: 2009 ident: 10.1016/j.eng.2019.10.015_b0150 article-title: Lessons from nearly 20 years of precision agriculture research, development, and adoption as a guide to its appropriate application publication-title: Crop Pasture Sci doi: 10.1071/CP08304 – volume: 28 start-page: 5183 issue: 22 year: 2007 ident: 10.1016/j.eng.2019.10.015_b0085 article-title: Detecting infestation of take-all disease in wheat using Landsat Thematic Mapper imagery publication-title: Int J Remote Sens doi: 10.1080/01431160701620683 – volume: 10 start-page: 917 issue: 6 year: 2018 ident: 10.1016/j.eng.2019.10.015_b0120 article-title: Supervised classification of RGB aerial imagery to evaluate the impact of a root rot disease publication-title: Remote Sens doi: 10.3390/rs10060917 – year: 2011 ident: 10.1016/j.eng.2019.10.015_b0155 – volume: 6 issue: 1 year: 2012 ident: 10.1016/j.eng.2019.10.015_b0075 article-title: Citrus greening disease detection using aerial hyperspectral and multispectral imaging techniques publication-title: J Appl Remote Sens – volume: 8 start-page: 161 issue: 3 year: 2007 ident: 10.1016/j.eng.2019.10.015_b0090 article-title: Multi-temporal wheat disease detection by multi-spectral remote sensing publication-title: Precis Agric doi: 10.1007/s11119-007-9036-y – start-page: 470 year: 1997 ident: 10.1016/j.eng.2019.10.015_b0135 article-title: A true digital imaging system for remote sensing applications – start-page: 3981 year: 2004 ident: 10.1016/j.eng.2019.10.015_b0065 article-title: Citrus pest stress monitoring using airborne hyperspectral imagery – volume: 107 start-page: 131 issue: 2 year: 2010 ident: 10.1016/j.eng.2019.10.015_b0070 article-title: Comparison of airborne multispectral and hyperspectral imagery for mapping cotton root rot publication-title: Biosyst Eng doi: 10.1016/j.biosystemseng.2010.07.011 – volume: 48 start-page: 1619 issue: 4 year: 2005 ident: 10.1016/j.eng.2019.10.015_b0045 article-title: Mapping Phymatotrichum root rot of cotton using airborne three-band digital imagery publication-title: Trans ASABE doi: 10.13031/2013.19176 |
SSID | ssj0001510708 |
Score | 2.4774303 |
SecondaryResourceType | review_article |
Snippet | Remote sensing technology has long been used to detect and map crop diseases. Airborne and satellite imagery acquired during growing seasons can be used not... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 528 |
SubjectTerms | Airborne imagery Cotton root rot Crop disease High-resolution satellite imagery Prescription map Variable rate application |
Title | Remote Sensing and Precision Agriculture Technologies for Crop Disease Detection and Management with a Practical Application Example |
URI | https://dx.doi.org/10.1016/j.eng.2019.10.015 https://doaj.org/article/d4cdb8bc151f418f8670c75763ede75f |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8sCEFEgT10nG0ocqJBACKnWL4su5AqG0qoLED-CHcxenJQuwkNFxHMt2fN_5vnwnxEVmIc-UBS-M-bTKD8GLQUUegtU2YkQLHNG9u9fjibqddqeNVF_MCXPywG7grnMFuYkNkGWyqhPbWEc-RISSQ8wx6lrefcnmNZwp938wuTUuHR1hCNqGk2QV0qzIXVjMmNaVXDGzi1PiNoxSpd3fsE0NezPaEds1UJQ918FdsYHFnthqyAfui89HpIFG-cQk9GImsyKXD8s6aY7szZa1rgbK9QE6-cWSYKrsL-cLOXDBGTnAsiJkFVUL34QYyYe0MpNO0wi4N9_hbjn8yFhZ-EBMRsPn_tirsyp4QMa79ICMdGR0HAUAXQgU0mVCTXbbcM5fYzijJHRNZiMbs5oMEgbSqH0EDIMEwkPRKuYFHglpQqB7odamk6sE_BiVMn5uO4nKyfcN2sJfDWsKteQ4Z754S1fcslf6OGcpzwQX0Uy0xeX6kYXT2_it8g3P1boiS2VXBbSA0noBpX8toLZQq5lOa9Th0AQ19fLzu4__490nYjNg_70iUJ6KVrl8xzMCOaU5r9bzFzkF-dY |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Remote+Sensing+and+Precision+Agriculture+Technologies+for+Crop+Disease+Detection+and+Management+with+a+Practical+Application+Example&rft.jtitle=Engineering+%28Beijing%2C+China%29&rft.au=Yang%2C+Chenghai&rft.date=2020-05-01&rft.issn=2095-8099&rft.volume=6&rft.issue=5&rft.spage=528&rft.epage=532&rft_id=info:doi/10.1016%2Fj.eng.2019.10.015&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eng_2019_10_015 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2095-8099&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2095-8099&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2095-8099&client=summon |