Remote Sensing and Precision Agriculture Technologies for Crop Disease Detection and Management with a Practical Application Example

Remote sensing technology has long been used to detect and map crop diseases. Airborne and satellite imagery acquired during growing seasons can be used not only for early detection and within-season management of some crop diseases, but also for the control of recurring diseases in future seasons....

Full description

Saved in:
Bibliographic Details
Published inEngineering (Beijing, China) Vol. 6; no. 5; pp. 528 - 532
Main Author Yang, Chenghai
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.05.2020
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Remote sensing technology has long been used to detect and map crop diseases. Airborne and satellite imagery acquired during growing seasons can be used not only for early detection and within-season management of some crop diseases, but also for the control of recurring diseases in future seasons. With variable rate technology in precision agriculture, site-specific fungicide application can be made to infested areas if the disease is stable, although traditional uniform application is more appropriate for diseases that can spread rapidly across the field. This article provides a brief overview of remote sensing and precision agriculture technologies that have been used for crop disease detection and management. Specifically, the article illustrates how airborne and satellite imagery and variable rate technology have been used for detecting and mapping cotton root rot, a destructive soilborne fungal disease, in cotton fields and how site-specific fungicide application has been implemented using prescription maps derived from the imagery for effective control of the disease. The overview and methodologies presented in this article should provide researchers, extension personnel, growers, crop consultants, and farm equipment and chemical dealers with practical guidelines for remote sensing detection and effective management of some crop diseases.
AbstractList Remote sensing technology has long been used to detect and map crop diseases. Airborne and satellite imagery acquired during growing seasons can be used not only for early detection and within-season management of some crop diseases, but also for the control of recurring diseases in future seasons. With variable rate technology in precision agriculture, site-specific fungicide application can be made to infested areas if the disease is stable, although traditional uniform application is more appropriate for diseases that can spread rapidly across the field. This article provides a brief overview of remote sensing and precision agriculture technologies that have been used for crop disease detection and management. Specifically, the article illustrates how airborne and satellite imagery and variable rate technology have been used for detecting and mapping cotton root rot, a destructive soilborne fungal disease, in cotton fields and how site-specific fungicide application has been implemented using prescription maps derived from the imagery for effective control of the disease. The overview and methodologies presented in this article should provide researchers, extension personnel, growers, crop consultants, and farm equipment and chemical dealers with practical guidelines for remote sensing detection and effective management of some crop diseases.
Author Yang, Chenghai
Author_xml – sequence: 1
  givenname: Chenghai
  surname: Yang
  fullname: Yang, Chenghai
  email: chenghai.yang@usda.gov
  organization: Aerial Application Technology Research Unit, Agricultural Research Service, US Department of Agriculture, College Station, TX 77845, USA
BookMark eNp9Uc1u3CAY5JBK-X2A3niB3YJtDFZOq03SREqUKEnPCH_-7LDyggWkTe598OLd5pJDuMA3MKNh5pgcOO-QkO-cLTnj9Y_NEt2wLBhv8rxkXByQo4I1YqFY0xySsxg3jGWYM8nUEfn7iFufkD6hi9YN1LiOPgQEG613dDUEC69jeg1InxFenB_9YDHS3ge6Dn6iFzaiiUgvMCGkmTMr3BlnBtyiS_SPTS_UZE2Tr8GMdDVNYz7s3l6-me004in51psx4tn__YT8urp8Xl8vbu9_3qxXtwuoWJ0WUJRKtrWSBYCAosK82rLmSrScCdm2jWoUiNb0slesUhx5IWqsGQKWRQPlCbnZ63bebPQU7NaEd-2N1TvAh0GbkF2OqLsKula1kIPqK656VUsGUsi6xA6l6LOW3GtB8DEG7DXYtPtVCsaOmjM996E3Oveh5z5mKAefmfwT88PJV5zzPQdzPL8tBh3BogPsbC4rZf_2C_Y_e9WpPQ
CitedBy_id crossref_primary_10_1016_j_cja_2023_08_008
crossref_primary_10_3390_rs13050962
crossref_primary_10_3390_su14169974
crossref_primary_10_3390_geomatics5010004
crossref_primary_10_1016_j_ecoinf_2025_103069
crossref_primary_10_47280_RevFacAgron_LUZ__v38_n4_03
crossref_primary_10_3390_rs15061520
crossref_primary_10_1109_JSTARS_2024_3377104
crossref_primary_10_3390_land13111751
crossref_primary_10_1016_j_ejrs_2024_06_003
crossref_primary_10_3390_electronics13122383
crossref_primary_10_3390_agronomy13071942
crossref_primary_10_3390_rs12213504
crossref_primary_10_3389_fpls_2022_1029529
crossref_primary_10_3390_agriculture15010081
crossref_primary_10_1631_FITEE_2300218
crossref_primary_10_3389_fpls_2023_1101143
crossref_primary_10_1007_s42360_021_00334_2
crossref_primary_10_1016_j_compag_2023_108047
crossref_primary_10_1007_s41348_022_00589_5
crossref_primary_10_1016_j_rsase_2023_100984
crossref_primary_10_1142_S2424862222500063
crossref_primary_10_1109_JSTARS_2024_3370508
crossref_primary_10_15302_J_FASE_2021426
crossref_primary_10_1016_j_compag_2025_109905
crossref_primary_10_1111_ppa_13493
crossref_primary_10_1371_journal_pone_0296896
crossref_primary_10_1016_j_compag_2021_106273
crossref_primary_10_22430_22565337_3158
crossref_primary_10_1007_s11276_024_03762_w
crossref_primary_10_3390_s21134431
crossref_primary_10_1109_ACCESS_2021_3134196
crossref_primary_10_1016_j_heliyon_2024_e33208
crossref_primary_10_1080_01431161_2023_2205984
crossref_primary_10_1111_pce_15413
crossref_primary_10_1016_j_jii_2024_100748
crossref_primary_10_3390_rs16142526
crossref_primary_10_1007_s13313_022_00892_7
crossref_primary_10_3390_horticulturae8060517
crossref_primary_10_1016_j_rse_2023_113698
crossref_primary_10_1016_j_eja_2022_126691
crossref_primary_10_1016_j_compag_2024_109329
crossref_primary_10_1111_jac_12732
crossref_primary_10_3390_s22010146
crossref_primary_10_3390_rs13132486
crossref_primary_10_1007_s11356_023_28367_2
crossref_primary_10_21015_vtse_v11i2_1538
crossref_primary_10_1002_rob_22318
crossref_primary_10_3390_plants13121681
crossref_primary_10_1016_j_ecolind_2022_109424
crossref_primary_10_1016_j_eja_2022_126718
crossref_primary_10_1016_j_eswa_2022_118240
crossref_primary_10_1016_j_techsoc_2021_101744
crossref_primary_10_1109_JSTARS_2024_3378298
crossref_primary_10_1016_j_techfore_2022_121742
crossref_primary_10_1016_j_compag_2025_110027
crossref_primary_10_1186_s12859_025_06082_8
crossref_primary_10_3390_s20123498
crossref_primary_10_1088_1402_4896_acfc7a
crossref_primary_10_3390_su16020735
crossref_primary_10_3390_rs14040945
crossref_primary_10_1002_csc2_21028
crossref_primary_10_3390_plants13172348
crossref_primary_10_1016_j_cjpre_2024_06_004
crossref_primary_10_3390_s25041255
crossref_primary_10_1016_j_cropro_2025_107117
crossref_primary_10_3390_agronomy14050991
crossref_primary_10_2139_ssrn_4665793
crossref_primary_10_1016_j_compag_2021_106053
crossref_primary_10_3389_fpls_2024_1392409
crossref_primary_10_1016_j_bios_2022_115008
crossref_primary_10_1016_j_compag_2021_106292
crossref_primary_10_1111_ppa_14006
crossref_primary_10_1080_01431161_2023_2225710
crossref_primary_10_3390_f15122147
crossref_primary_10_11648_j_wjast_20240204_17
crossref_primary_10_1016_j_jksuci_2022_02_006
crossref_primary_10_3390_rs14235947
crossref_primary_10_3390_su162210103
crossref_primary_10_3390_jof10040250
crossref_primary_10_1109_JIOT_2021_3128253
crossref_primary_10_1080_07038992_2023_2252926
crossref_primary_10_1016_j_eja_2024_127440
crossref_primary_10_1142_S021800142359005X
crossref_primary_10_36783_18069657rbcs20230158
crossref_primary_10_3390_agriculture14081359
crossref_primary_10_1016_j_atech_2024_100495
crossref_primary_10_3390_rs13030396
crossref_primary_10_3390_su141811487
crossref_primary_10_1016_j_hazadv_2024_100461
crossref_primary_10_1109_JSTARS_2024_3422078
crossref_primary_10_3389_fpls_2022_834447
crossref_primary_10_1007_s11042_020_09577_z
crossref_primary_10_3390_s24082647
crossref_primary_10_1002_aps3_11577
crossref_primary_10_1016_j_inpa_2023_04_001
Cites_doi 10.21273/HORTSCI.36.1.94
10.13031/trans.12563
10.1016/j.compag.2016.02.026
10.1007/s11119-007-9038-9
10.1016/j.compag.2012.12.002
10.3733/hilg.v26n05p223
10.1007/s11119-005-5640-x
10.3390/rs9040308
10.1016/j.biosystemseng.2015.01.009
10.1007/s11119-014-9370-9
10.1007/s11119-017-9524-7
10.1016/j.compag.2016.10.003
10.1007/s11119-015-9421-x
10.1016/j.compag.2012.07.003
10.1007/s11119-013-9325-6
10.1007/s11119-010-9172-7
10.1016/S0926-6690(98)00033-8
10.1071/CP08304
10.1080/01431160701620683
10.3390/rs10060917
10.1007/s11119-007-9036-y
10.1016/j.biosystemseng.2010.07.011
10.13031/2013.19176
ContentType Journal Article
Copyright 2020 THE AUTHOR
Copyright_xml – notice: 2020 THE AUTHOR
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.eng.2019.10.015
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 532
ExternalDocumentID oai_doaj_org_article_d4cdb8bc151f418f8670c75763ede75f
10_1016_j_eng_2019_10_015
S2095809918310415
GroupedDBID 0R~
0SF
1-T
5VR
6I.
92H
92I
92R
93N
AACTN
AAEDW
AAFTH
AALRI
AAXUO
ABMAC
ACGFS
ACHIH
ADBBV
AEXQZ
AFTJW
AFUIB
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
CCEZO
CEKLB
EBS
EJD
FDB
GROUPED_DOAJ
IPNFZ
M41
NCXOZ
O9-
OK1
RIG
ROL
SSZ
TCJ
TGT
-SC
-S~
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
CAJEC
CITATION
Q--
U1G
U5M
ID FETCH-LOGICAL-c406t-c2387b6872cc5c24eeeeb36185b1057bb9898c5baf7f80481e1256e60ece329c3
IEDL.DBID DOA
ISSN 2095-8099
IngestDate Wed Aug 27 01:31:49 EDT 2025
Tue Jul 01 02:18:49 EDT 2025
Thu Apr 24 23:05:37 EDT 2025
Thu Jul 20 20:16:44 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Crop disease
Airborne imagery
Variable rate application
High-resolution satellite imagery
Prescription map
Cotton root rot
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-c2387b6872cc5c24eeeeb36185b1057bb9898c5baf7f80481e1256e60ece329c3
OpenAccessLink https://doaj.org/article/d4cdb8bc151f418f8670c75763ede75f
PageCount 5
ParticipantIDs doaj_primary_oai_doaj_org_article_d4cdb8bc151f418f8670c75763ede75f
crossref_citationtrail_10_1016_j_eng_2019_10_015
crossref_primary_10_1016_j_eng_2019_10_015
elsevier_sciencedirect_doi_10_1016_j_eng_2019_10_015
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2020
2020-05-00
2020-05-01
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: May 2020
PublicationDecade 2020
PublicationTitle Engineering (Beijing, China)
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Colwell (b0010) 1956; 26
Taubenhaus, Ezekiel, Neblette (b0005) 1929; 19
Li, Lee, Wang, Ehsani, Yang (b0080) 2014; 15
Fletcher, Skaria, Escobar, Everitt (b0035) 2001; 36
Kumar, Lee, Ehsani, Albrigo, Yang, Mangan (b0075) 2012; 6
Nixon, Escobar, Bowen (b0025) 1987
Mattupalli, Moffet, Shah, Young (b0120) 2018; 10
Yang, Odvody, Thomasson, Isakeit, Minzenmayer, Drake (b0130) 2018; 61
Escobar, Everitt, Noriega, Davis, Cavazos (b0135) 1997
Yang, Odvody, Fernandez, Landivar, Minzenmayer, Nichols (b0145) 2015; 16
Yuan, Pu, Zhang, Wang, Yang (b0100) 2016; 17
Ryerson, Curran, Stephens (b0020) 1997
Du, French, Skaria, Yang, Everitt (b0065) 2004
MacDonald, Staid, Staid, Cooper (b0055) 2016; 130
Zhang, Qin, Liu (b0040) 2005; 6
Zhang (b0160) 2016
Schimmelpfennig, Ebel (b0155) 2011
Yang, Fernandez, Everitt (b0070) 2010; 107
Li, Lee, Li, Ehsani, Mishra, Yang (b0105) 2015; 132
Yang (b0140) 2012; 88
Albetis, Duthoit, Guttler, Jacquin, Goulard, Poilvé (b0115) 2017; 9
Myers (b0015) 1983
Garcia-Ruiz, Sankaran, Maja, Lee, Rasmussen, Ehsani (b0110) 2013; 91
Huang, Lamb, Niu, Zhang, Liu, Wang (b0050) 2007; 8
Yang, Odvody, Thomasson, Isakeit, Nichols (b0125) 2016; 123
Lu, Zhou, Gao, Jiang (b0060) 2018; 19
Chen, Ma, Qiao, Cheng, Xu, Zhao (b0085) 2007; 28
Santoso, Gunawan, Jatmiko, Darmosarkoro, Minasny (b0095) 2011; 12
Yang, Fernandez, Everitt (b0045) 2005; 48
Franke, Menz (b0090) 2007; 8
Bramley (b0150) 2009; 60
Cook, Escobar, Everitt, Cavazos, Robinson, Davis (b0030) 1999; 9
Yang (10.1016/j.eng.2019.10.015_b0145) 2015; 16
Taubenhaus (10.1016/j.eng.2019.10.015_b0005) 1929; 19
Zhang (10.1016/j.eng.2019.10.015_b0040) 2005; 6
Yuan (10.1016/j.eng.2019.10.015_b0100) 2016; 17
Franke (10.1016/j.eng.2019.10.015_b0090) 2007; 8
Albetis (10.1016/j.eng.2019.10.015_b0115) 2017; 9
Yang (10.1016/j.eng.2019.10.015_b0125) 2016; 123
Li (10.1016/j.eng.2019.10.015_b0080) 2014; 15
Lu (10.1016/j.eng.2019.10.015_b0060) 2018; 19
Fletcher (10.1016/j.eng.2019.10.015_b0035) 2001; 36
Yang (10.1016/j.eng.2019.10.015_b0140) 2012; 88
Nixon (10.1016/j.eng.2019.10.015_b0025) 1987
Du (10.1016/j.eng.2019.10.015_b0065) 2004
Garcia-Ruiz (10.1016/j.eng.2019.10.015_b0110) 2013; 91
Schimmelpfennig (10.1016/j.eng.2019.10.015_b0155) 2011
Yang (10.1016/j.eng.2019.10.015_b0070) 2010; 107
Bramley (10.1016/j.eng.2019.10.015_b0150) 2009; 60
Mattupalli (10.1016/j.eng.2019.10.015_b0120) 2018; 10
Cook (10.1016/j.eng.2019.10.015_b0030) 1999; 9
Colwell (10.1016/j.eng.2019.10.015_b0010) 1956; 26
Li (10.1016/j.eng.2019.10.015_b0105) 2015; 132
Kumar (10.1016/j.eng.2019.10.015_b0075) 2012; 6
Escobar (10.1016/j.eng.2019.10.015_b0135) 1997
Chen (10.1016/j.eng.2019.10.015_b0085) 2007; 28
Yang (10.1016/j.eng.2019.10.015_b0130) 2018; 61
Ryerson (10.1016/j.eng.2019.10.015_b0020) 1997
MacDonald (10.1016/j.eng.2019.10.015_b0055) 2016; 130
Myers (10.1016/j.eng.2019.10.015_b0015) 1983
Yang (10.1016/j.eng.2019.10.015_b0045) 2005; 48
Santoso (10.1016/j.eng.2019.10.015_b0095) 2011; 12
Zhang (10.1016/j.eng.2019.10.015_b0160) 2016
Huang (10.1016/j.eng.2019.10.015_b0050) 2007; 8
References_xml – volume: 60
  start-page: 197
  year: 2009
  end-page: 217
  ident: b0150
  article-title: Lessons from nearly 20 years of precision agriculture research, development, and adoption as a guide to its appropriate application
  publication-title: Crop Pasture Sci
– volume: 8
  start-page: 161
  year: 2007
  end-page: 172
  ident: b0090
  article-title: Multi-temporal wheat disease detection by multi-spectral remote sensing
  publication-title: Precis Agric
– start-page: 470
  year: 1997
  end-page: 484
  ident: b0135
  article-title: A true digital imaging system for remote sensing applications
  publication-title: Proceedings of the 16th Biennial Workshop on Color Photography and Videography in Resource Assessment; 1997 Apr 29–May 1, Weslaco, TX, USA
– start-page: 3981
  year: 2004
  end-page: 3984
  ident: b0065
  article-title: Citrus pest stress monitoring using airborne hyperspectral imagery
  publication-title: Proceedings of the International Geoscience and Remote Sensing Symposium; 2004 Sep 20–24; Anchorage, AK, USA
– volume: 9
  start-page: 308
  year: 2017
  ident: b0115
  article-title: Detection of
  publication-title: Remote Sens
– volume: 16
  start-page: 201
  year: 2015
  end-page: 215
  ident: b0145
  article-title: Evaluating unsupervised and supervised image classification methods for mapping cotton root rot
  publication-title: Precis Agric
– volume: 107
  start-page: 131
  year: 2010
  end-page: 139
  ident: b0070
  article-title: Comparison of airborne multispectral and hyperspectral imagery for mapping cotton root rot
  publication-title: Biosyst Eng
– volume: 9
  start-page: 205
  year: 1999
  end-page: 210
  ident: b0030
  article-title: Utilizing airborne video imagery in kenaf management and production
  publication-title: Ind Crops Prod
– volume: 88
  start-page: 13
  year: 2012
  end-page: 24
  ident: b0140
  article-title: A high-resolution airborne four-camera imaging system for agricultural applications
  publication-title: Comput Electron Agric
– volume: 26
  start-page: 223
  year: 1956
  end-page: 286
  ident: b0010
  article-title: Determining the prevalence of certain cereal crop diseases by means of aerial photography
  publication-title: Hilgardia
– volume: 132
  start-page: 28
  year: 2015
  end-page: 38
  ident: b0105
  article-title: Feasibility study on huanglongbing (citrus greening) detection based on WorldView-2 satellite imagery
  publication-title: Biosyst Eng
– volume: 17
  start-page: 332
  year: 2016
  end-page: 348
  ident: b0100
  article-title: Using high spatial resolution satellite imagery for mapping powdery mildew at a regional scale
  publication-title: Precis Agric
– volume: 123
  start-page: 154
  year: 2016
  end-page: 162
  ident: b0125
  article-title: Change detection of cotton root rot infection over 10-year intervals using airborne multispectral imagery
  publication-title: Comput Electron Agric
– volume: 91
  start-page: 106
  year: 2013
  end-page: 115
  ident: b0110
  article-title: Comparison of two aerial imaging platforms for identification of huanglongbing-infected citrus trees
  publication-title: Comput Electron Agric
– volume: 36
  start-page: 94
  year: 2001
  end-page: 97
  ident: b0035
  article-title: Field spectra and airborne digital imagery for detecting Phytophthora foot rot infections in citrus trees
  publication-title: HortScience
– year: 2011
  ident: b0155
  article-title: On the doorstep of the information age: recent adoption of precision agriculture
– start-page: 295
  year: 1987
  end-page: 305
  ident: b0025
  article-title: A multispectral false-color video imaging system for remote sensing applications
  publication-title: Proceedings of the 11th Biennial Workshop on Color Aerial Photography and Videography in the Plant Sciences and Related Fields; 1987 Apr 27–May 1; Weslaco, TX, USA
– volume: 130
  start-page: 109
  year: 2016
  end-page: 117
  ident: b0055
  article-title: Remote hyperspectral imaging of grapevine leafroll-associated virus 3 in cabernet sauvignon vineyards
  publication-title: Comput Electron Agric
– volume: 6
  start-page: 489
  year: 2005
  end-page: 508
  ident: b0040
  article-title: Remote sensed spectral imagery to detect late blight in field tomatoes
  publication-title: Precis Agric
– volume: 48
  start-page: 1619
  year: 2005
  end-page: 1626
  ident: b0045
  article-title: Mapping Phymatotrichum root rot of cotton using airborne three-band digital imagery
  publication-title: Trans ASABE
– start-page: 365
  year: 1997
  end-page: 397
  ident: b0020
  article-title: Applications: agriculture
  publication-title: Manual of photographic interpretation
– volume: 15
  start-page: 162
  year: 2014
  end-page: 183
  ident: b0080
  article-title: ‘Extended spectral angle mapping (ESAM)’ for citrus greening disease detection using airborne hyperspectral imaging
  publication-title: Precis Agric
– volume: 10
  start-page: 917
  year: 2018
  ident: b0120
  article-title: Supervised classification of RGB aerial imagery to evaluate the impact of a root rot disease
  publication-title: Remote Sens
– volume: 28
  start-page: 5183
  year: 2007
  end-page: 5189
  ident: b0085
  article-title: Detecting infestation of take-all disease in wheat using Landsat Thematic Mapper imagery
  publication-title: Int J Remote Sens
– volume: 6
  year: 2012
  ident: b0075
  article-title: Citrus greening disease detection using aerial hyperspectral and multispectral imaging techniques
  publication-title: J Appl Remote Sens
– year: 2016
  ident: b0160
  article-title: Precision agriculture technology for crop farming
– volume: 8
  start-page: 187
  year: 2007
  end-page: 197
  ident: b0050
  article-title: Identification of yellow rust in wheat using
  publication-title: Precis Agric
– volume: 19
  start-page: 1025
  year: 1929
  end-page: 1029
  ident: b0005
  article-title: Airplane photography in the study of cotton root rot
  publication-title: Phytopathology
– volume: 61
  start-page: 849
  year: 2018
  end-page: 858
  ident: b0130
  article-title: Site-specific management of cotton root rot using airborne and high resolution satellite imagery and variable rate technology
  publication-title: Trans ASABE
– volume: 12
  start-page: 233
  year: 2011
  end-page: 248
  ident: b0095
  article-title: Mapping and identifying basal stem rot disease in oil palms in North Sumatra with QuickBird imagery
  publication-title: Precis Agric
– start-page: 2111
  year: 1983
  end-page: 2228
  ident: b0015
  article-title: Remote sensing applications in agriculture
  publication-title: Manual of remote sensing
– volume: 19
  start-page: 379
  year: 2018
  end-page: 394
  ident: b0060
  article-title: Using hyperspectral imaging to discriminate yellow leaf curl disease in tomato leaves
  publication-title: Precis Agric
– start-page: 2111
  year: 1983
  ident: 10.1016/j.eng.2019.10.015_b0015
  article-title: Remote sensing applications in agriculture
– volume: 19
  start-page: 1025
  issue: 6
  year: 1929
  ident: 10.1016/j.eng.2019.10.015_b0005
  article-title: Airplane photography in the study of cotton root rot
  publication-title: Phytopathology
– volume: 36
  start-page: 94
  issue: 1
  year: 2001
  ident: 10.1016/j.eng.2019.10.015_b0035
  article-title: Field spectra and airborne digital imagery for detecting Phytophthora foot rot infections in citrus trees
  publication-title: HortScience
  doi: 10.21273/HORTSCI.36.1.94
– volume: 61
  start-page: 849
  issue: 3
  year: 2018
  ident: 10.1016/j.eng.2019.10.015_b0130
  article-title: Site-specific management of cotton root rot using airborne and high resolution satellite imagery and variable rate technology
  publication-title: Trans ASABE
  doi: 10.13031/trans.12563
– volume: 123
  start-page: 154
  year: 2016
  ident: 10.1016/j.eng.2019.10.015_b0125
  article-title: Change detection of cotton root rot infection over 10-year intervals using airborne multispectral imagery
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2016.02.026
– volume: 8
  start-page: 187
  issue: 4–5
  year: 2007
  ident: 10.1016/j.eng.2019.10.015_b0050
  article-title: Identification of yellow rust in wheat using in-situ spectral reflectance measurements and airborne hyperspectral imaging
  publication-title: Precis Agric
  doi: 10.1007/s11119-007-9038-9
– volume: 91
  start-page: 106
  year: 2013
  ident: 10.1016/j.eng.2019.10.015_b0110
  article-title: Comparison of two aerial imaging platforms for identification of huanglongbing-infected citrus trees
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2012.12.002
– volume: 26
  start-page: 223
  issue: 5
  year: 1956
  ident: 10.1016/j.eng.2019.10.015_b0010
  article-title: Determining the prevalence of certain cereal crop diseases by means of aerial photography
  publication-title: Hilgardia
  doi: 10.3733/hilg.v26n05p223
– volume: 6
  start-page: 489
  issue: 6
  year: 2005
  ident: 10.1016/j.eng.2019.10.015_b0040
  article-title: Remote sensed spectral imagery to detect late blight in field tomatoes
  publication-title: Precis Agric
  doi: 10.1007/s11119-005-5640-x
– volume: 9
  start-page: 308
  issue: 4
  year: 2017
  ident: 10.1016/j.eng.2019.10.015_b0115
  article-title: Detection of Flavescence dorée grapevine disease using unmanned aerial vehicle (UAV) multispectral imagery
  publication-title: Remote Sens
  doi: 10.3390/rs9040308
– volume: 132
  start-page: 28
  year: 2015
  ident: 10.1016/j.eng.2019.10.015_b0105
  article-title: Feasibility study on huanglongbing (citrus greening) detection based on WorldView-2 satellite imagery
  publication-title: Biosyst Eng
  doi: 10.1016/j.biosystemseng.2015.01.009
– volume: 16
  start-page: 201
  issue: 2
  year: 2015
  ident: 10.1016/j.eng.2019.10.015_b0145
  article-title: Evaluating unsupervised and supervised image classification methods for mapping cotton root rot
  publication-title: Precis Agric
  doi: 10.1007/s11119-014-9370-9
– start-page: 365
  year: 1997
  ident: 10.1016/j.eng.2019.10.015_b0020
  article-title: Applications: agriculture
– volume: 19
  start-page: 379
  issue: 3
  year: 2018
  ident: 10.1016/j.eng.2019.10.015_b0060
  article-title: Using hyperspectral imaging to discriminate yellow leaf curl disease in tomato leaves
  publication-title: Precis Agric
  doi: 10.1007/s11119-017-9524-7
– volume: 130
  start-page: 109
  year: 2016
  ident: 10.1016/j.eng.2019.10.015_b0055
  article-title: Remote hyperspectral imaging of grapevine leafroll-associated virus 3 in cabernet sauvignon vineyards
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2016.10.003
– start-page: 295
  year: 1987
  ident: 10.1016/j.eng.2019.10.015_b0025
  article-title: A multispectral false-color video imaging system for remote sensing applications
– volume: 17
  start-page: 332
  issue: 3
  year: 2016
  ident: 10.1016/j.eng.2019.10.015_b0100
  article-title: Using high spatial resolution satellite imagery for mapping powdery mildew at a regional scale
  publication-title: Precis Agric
  doi: 10.1007/s11119-015-9421-x
– volume: 88
  start-page: 13
  year: 2012
  ident: 10.1016/j.eng.2019.10.015_b0140
  article-title: A high-resolution airborne four-camera imaging system for agricultural applications
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2012.07.003
– volume: 15
  start-page: 162
  issue: 2
  year: 2014
  ident: 10.1016/j.eng.2019.10.015_b0080
  article-title: ‘Extended spectral angle mapping (ESAM)’ for citrus greening disease detection using airborne hyperspectral imaging
  publication-title: Precis Agric
  doi: 10.1007/s11119-013-9325-6
– volume: 12
  start-page: 233
  issue: 2
  year: 2011
  ident: 10.1016/j.eng.2019.10.015_b0095
  article-title: Mapping and identifying basal stem rot disease in oil palms in North Sumatra with QuickBird imagery
  publication-title: Precis Agric
  doi: 10.1007/s11119-010-9172-7
– year: 2016
  ident: 10.1016/j.eng.2019.10.015_b0160
– volume: 9
  start-page: 205
  issue: 3
  year: 1999
  ident: 10.1016/j.eng.2019.10.015_b0030
  article-title: Utilizing airborne video imagery in kenaf management and production
  publication-title: Ind Crops Prod
  doi: 10.1016/S0926-6690(98)00033-8
– volume: 60
  start-page: 197
  issue: 3
  year: 2009
  ident: 10.1016/j.eng.2019.10.015_b0150
  article-title: Lessons from nearly 20 years of precision agriculture research, development, and adoption as a guide to its appropriate application
  publication-title: Crop Pasture Sci
  doi: 10.1071/CP08304
– volume: 28
  start-page: 5183
  issue: 22
  year: 2007
  ident: 10.1016/j.eng.2019.10.015_b0085
  article-title: Detecting infestation of take-all disease in wheat using Landsat Thematic Mapper imagery
  publication-title: Int J Remote Sens
  doi: 10.1080/01431160701620683
– volume: 10
  start-page: 917
  issue: 6
  year: 2018
  ident: 10.1016/j.eng.2019.10.015_b0120
  article-title: Supervised classification of RGB aerial imagery to evaluate the impact of a root rot disease
  publication-title: Remote Sens
  doi: 10.3390/rs10060917
– year: 2011
  ident: 10.1016/j.eng.2019.10.015_b0155
– volume: 6
  issue: 1
  year: 2012
  ident: 10.1016/j.eng.2019.10.015_b0075
  article-title: Citrus greening disease detection using aerial hyperspectral and multispectral imaging techniques
  publication-title: J Appl Remote Sens
– volume: 8
  start-page: 161
  issue: 3
  year: 2007
  ident: 10.1016/j.eng.2019.10.015_b0090
  article-title: Multi-temporal wheat disease detection by multi-spectral remote sensing
  publication-title: Precis Agric
  doi: 10.1007/s11119-007-9036-y
– start-page: 470
  year: 1997
  ident: 10.1016/j.eng.2019.10.015_b0135
  article-title: A true digital imaging system for remote sensing applications
– start-page: 3981
  year: 2004
  ident: 10.1016/j.eng.2019.10.015_b0065
  article-title: Citrus pest stress monitoring using airborne hyperspectral imagery
– volume: 107
  start-page: 131
  issue: 2
  year: 2010
  ident: 10.1016/j.eng.2019.10.015_b0070
  article-title: Comparison of airborne multispectral and hyperspectral imagery for mapping cotton root rot
  publication-title: Biosyst Eng
  doi: 10.1016/j.biosystemseng.2010.07.011
– volume: 48
  start-page: 1619
  issue: 4
  year: 2005
  ident: 10.1016/j.eng.2019.10.015_b0045
  article-title: Mapping Phymatotrichum root rot of cotton using airborne three-band digital imagery
  publication-title: Trans ASABE
  doi: 10.13031/2013.19176
SSID ssj0001510708
Score 2.4774303
SecondaryResourceType review_article
Snippet Remote sensing technology has long been used to detect and map crop diseases. Airborne and satellite imagery acquired during growing seasons can be used not...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 528
SubjectTerms Airborne imagery
Cotton root rot
Crop disease
High-resolution satellite imagery
Prescription map
Variable rate application
Title Remote Sensing and Precision Agriculture Technologies for Crop Disease Detection and Management with a Practical Application Example
URI https://dx.doi.org/10.1016/j.eng.2019.10.015
https://doaj.org/article/d4cdb8bc151f418f8670c75763ede75f
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8sCEFEgT10nG0ocqJBACKnWL4su5AqG0qoLED-CHcxenJQuwkNFxHMt2fN_5vnwnxEVmIc-UBS-M-bTKD8GLQUUegtU2YkQLHNG9u9fjibqddqeNVF_MCXPywG7grnMFuYkNkGWyqhPbWEc-RISSQ8wx6lrefcnmNZwp938wuTUuHR1hCNqGk2QV0qzIXVjMmNaVXDGzi1PiNoxSpd3fsE0NezPaEds1UJQ918FdsYHFnthqyAfui89HpIFG-cQk9GImsyKXD8s6aY7szZa1rgbK9QE6-cWSYKrsL-cLOXDBGTnAsiJkFVUL34QYyYe0MpNO0wi4N9_hbjn8yFhZ-EBMRsPn_tirsyp4QMa79ICMdGR0HAUAXQgU0mVCTXbbcM5fYzijJHRNZiMbs5oMEgbSqH0EDIMEwkPRKuYFHglpQqB7odamk6sE_BiVMn5uO4nKyfcN2sJfDWsKteQ4Z754S1fcslf6OGcpzwQX0Uy0xeX6kYXT2_it8g3P1boiS2VXBbSA0noBpX8toLZQq5lOa9Th0AQ19fLzu4__490nYjNg_70iUJ6KVrl8xzMCOaU5r9bzFzkF-dY
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Remote+Sensing+and+Precision+Agriculture+Technologies+for+Crop+Disease+Detection+and+Management+with+a+Practical+Application+Example&rft.jtitle=Engineering+%28Beijing%2C+China%29&rft.au=Yang%2C+Chenghai&rft.date=2020-05-01&rft.issn=2095-8099&rft.volume=6&rft.issue=5&rft.spage=528&rft.epage=532&rft_id=info:doi/10.1016%2Fj.eng.2019.10.015&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eng_2019_10_015
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2095-8099&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2095-8099&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2095-8099&client=summon